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Abstract

The project concerns the hydropower renewable energy technology at its micro scale:

thanks to an internship performed with the Belgian startup TurbulentHydro, the purpose

of this Master Thesis is to evaluate the energy performance of 2 different models currently

under investigation: the so-called Flatblades and Streamlines configurations. These

layouts are similar in shape but different both in dimension and for the turbine used.

After a little introduction on renewable energies and hydropower technology, the

selected CFD simulation procedure and all its options have been explained as well as the

choice of the turbulence model to apply, computing the meaningful parameters to add in

the model. This dissertation highlights the fluid dynamics behaviour by means of suitable

softwares for this purpose: Autodesk Inventor, the 3D CAD mechanical design software

in order to build, and edit when necessary, the geometries of the models considered,

MeshMixer, a state-of-art software for locally adjusting the mesh of the starting model

and OpenFOAM, a free and open source CFD program in order to run and evaluate any

details of the analysis, simulating the operation conditions by means of its components

and tools. Eventually, the most important CFD results are presented.

Different configurations bring different results. Regarding Flatblades model, the scope

was refined the CFD initial setup in order to achieve results as close to the real case

validation as possible whereas, for Streamlines model, an additional new component has

been added for improving the current design in terms of energy output at the turbine

level. At the end, conclusions stated possible refinements and improvements for these

simulations as well as uncertainties arose from the results that might be avoided for the

next stages.
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Chapter 1

Introduction

During the past decades, the power generation and its environmental impact arose as

a global issue that any single country has to face, renewable energies are clean energy

resources that have way lower or absent environmental impact than whichever traditional

energy technologies. These sources will never run out, they are slowly and constantly

taking over non-renewable energies such as oil or gas, even though conventional technologies

are the most energy production used globally, e.g. coil source, which is the biggest air

polluter, has still the highest share, 39% on the global electricity generation in 2014 [1].

A glance on the world electricity generation is issued in Figure 1.1.

A shift from fossil-fuels based to renewable energies technologies is necessary to face

this problem worldwide.

Nowadays, various renewable energy technologies have been developed: the solar

energy is coming directly from the sunlight, it can be used for different purposes such as

heating or lighting buildings, for hot sanitary domestic water and, for generating electricity

thanks to photovoltaics effect; this is surely the most known among renewable energies

and it has a big potential to be exploited. Many efforts are undertaken to reach acceptable

efficiencies, especially regarding PV modules.

Wind energy, captured by wind turbines with propeller-like blades, generates electricity

according to where they are mounted and at which height they are operating.
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Figure 1.1: World electricity production in 2014 [1]

The last two technologies mentioned are pretty volatile, they strongly depend on the

sun and wind availabilities at the place taken into account.

From organic matter, new technology can extract energy out of it, it is so-called biomass

energy; it is quite recent compared to the others but it can be utilised for replacing

transportation fuels, chemicals or produce electricity as well. Geothermal usage takes

advantages from the internal Earth heat for disparate uses like air heating and/or cooling

for building and electric power production; the most abundant element on the planet is

hydrogen, which can be also used as an energy carriers, allowing transporting and storing

energy. In Figure 1.1, it is easy to figure out the predominance of conventional energy

generation technology in terms of shares.

One of the most impactful green energy is the electricity generated from water, better

known as hydroelectric power. This technology is currently the most present one among

renewable energies, it produces 17% of the total power generated globally. In 2014, EU27

countries produce around 349 TWh of electricity generation from hydroelectric power

sources, which account for the 11% of the total electricity production, which makes, even

in this case, in the most exploited renewable energy in the Old continent. [1]

1.1 Hydroelectricity, an overview

The hydroelectric power is an old method to produce energy but, especially during the XX

century, it enhanced new knowledges and improvements that reach quite important role

in the power generation benchmark; first power plants were installed in North America
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and UK at the end of XX century and, afterward, this technology has been spread around

the world.

The top 5 greatest market in terms of hydropower capacity are, respectively, China,

Brazil, US, Russia and Canada but China has a far overcoming any other country with

the amount of 249 GW; to complete the top 10, the list contains India, Norway, Japan,

France and Turkey. Various countries account hydroelectricity in their land with a share

of electricity generation for over 50% like Canada or Brazil but also the “outsiders”

Mozambique and Nepal. [2]

Figure 1.2: Typical hydroelectric power plant [3]

The working principle is quite simple, it produces electricity in a similar way as

coal-fired power plants: a falling water from the reservoir, where it has potential energy

thanks to the accumulated water, rush down at a penstock and it used to run a water

turbine, which can be either an impulse or reaction type, striking and creating forces on the

blades of it. Here the potential energy is transformed in mechanical energy. Consequently,

it turns a metal shaft of an electric generator which is designed to produce current in

stationary coils of wire and, thanks to power houses and transmission cables located into,

the power generated is transferred to the electricity grid. [3]

In the Figure 1.2 a general layout of a dam hydroelectric power plant.

The capacity to generate energy is highly dependent on the height from which water

falls and on the available flow, a suitable gate can adjust the mass flow rate according
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to the energy needs by the grid network. The turbine configuration has to be chosen

depending on the head and on the flow rate usable at the power plant, whereas the shape

of the blades are designed in accordance with type of impeller selected and water pressures.

Hydropower offers many advantages compared to other energy resources and, at the same

time, tackling the environmental problems that fossil fuel-wise technologies largely have.

In Table 1.1 is shown the main pros and cons of hydroelectricity:

Advantages

• Renewable energy, rainfall renews water and no pollution created

• Flexible, thanks to adjusting water inlet flow and power output

• Reliable energy, very little fluctuations in electricity

• Relatively low O&M costs

Disadvantages

• Dependent on local precipitations, droughts may affect the system

• It can modify the fish habitat

• High investment costs

Table 1.1: Pros and cons of hydroelectric power [3, 4]

One of the classification of this technology is made regarding the capacity size of

the power plants, although the definitions vary a bit between each others, the Table 1.2

highlights the different categories:

Size Capacity range

Large > 50 MW

Medium 10 MW ÷ 50 MW

Small 0.1 MW ÷ 10 MW

Micro < 0.1 MW

Table 1.2: Classification of hydroelectric power plants [5, 6]

Recently, the nano-hydroelectric power plants are released, it consists in applications

of up to few kW but this technology is still under development and, so far, it has very

little usage.

The main concern of this project is entirely focused on micro-hydropower plants. This

technology, usually, does not have large storage reservoir but it exploits a portion of
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moving water that is diverted from the standard river stream to a suitable channel or

pressurised pipeline which link directly the river to the water turbine. This is the so

called run-of-the-river system. The next picture shown an example of this system in

Pakistan.

Various systems use an additional inverter in order to convert the low-voltage DC current

provided from the generator into either 120 or 240 V of AC electricity current. As any

other electricity generation system, it can be either off-grid or connected to electricity

network.

Figure 1.3: Run-of-the-river system based in Muzaffarabad area [7]

Most of the installations are used by home or small business-owners because, even if

they are small power plants, it is good enough to provide energy to run the entire energy

appliances of a big house or a small resort [8]. In the next section, it has been analysed

the concept of Turbulent and all the features concerning the innovation and sustainability

behind it.

1.2 Turbulent concept and technology

TurbulentHydro is a start-up from Belgium found in January 2015. The team started

prototyping vortex water turbine and all the turnkey based on that since summer 2014,

after successes on hydro-power projects; it is located both in Belgium and Chile. It has

been developed considering biomimicry, which is the imitation of system and elements of
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the nature for the purpose of solving human issues.

The Turbulent solution proposes an affordable and reliable way to generate energy from

water stream to even the most remote locations in the world, thus increasing the global

electrification rate, in small scale and toward the path of prosumer.

This can be done thanks to a smart and decentralised energy production together with

ease to install turnkey product. It generates electricity in the form of a single turbine

or a network of multiple turbines. Turbulent aims both to sell single products and to

collaborate with energy distributor and issuer, as well as installation companies to deliver

the technology as simple as possible. Furthermore, the target is to electrify remote

locations at which standard electricity grid is complicate either to install or to reach.

[9]

Figure 1.4: Turbulent solution working system [9]

This new technology is inspired by the natural shape of a vortex and enable to deliver

affordable, renewable energy without damaging the local ecosystem. These hydropower

plants range from 3 kW to 200 kW and are built using standard components combined

with our specifically modelled propeller and control software.

The main idea is revolutionary: these hydro-power plants operate at a high efficiency,

using the run-of-the-river technology, with a low height difference and, by combining few

of them, it can produce the same amount of energy as a dam. The benefits are even more

important, they are listed below [9]:

• Fish friendly: A low shear, low impeller RPM and low change of pressure make

sure that fishes that get in the turbine, exit not harmed.
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• Low maintenance: Self-cleaning trash rack and good quality components result

in a quite low required maintenance.

• Long operating life: A solid design and rugged materials make sure that the

turbine can easily achieve 20 years of regular production.

• No flood risk: The power plant works together with nature because it does not

clog the flow of the river up.

• Remote monitoring: From anywhere at any time, the vortex is outfitted with a

remote monitoring software.

• Turnkey and mobile: The vortex turbine is pre-manufactured, easily transportable

and cost-effective as well as smallest in its type.

Turbulent took the design tools of a classic Kaplan water turbine and modified it to the

extreme. The turbine has a low specific speed that can be made with a cheaper production

process and lower tolerances. The main advantage of this modified turbine lies in its low

heads range. This turbine produces 10 kW at 1.5 meters, and as the river conditions

change (incl. height and flow), the runner efficiency diminishes by only a little amount

due to a wide efficiency band. Another benefit it leaded from the low rotational speed of

the turbine, which mean fish-friendliness by design. It has neither high shear speeds, nor

large pressure changes, hence the additional benefit of allowing sediment and sand to pass

without being abraded. All over the large scale design of 10 to 30 kW is easy to install

and eco-friendly, while at the same time producing clean energy for the grid, or for the

remote communities that need it.

Electrical power Height difference Yearly energy production

2.25 kW 2 m 12 ÷ 15 MWh

Efficiency Flow Yearly saved energy costs

55 % 230 lps 2400 ÷ 3000 e

Table 1.3: Technical data [9]
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Figure 1.5: On-site Kleerbeck plant

Most of the research team is developing and mapping potential sites in Chile, although

the Turbulent pilot site is in Kleerbeck, Belgium; this is the first sample of an installed

Turbulent product, the first real tests of a Turbulent power plant have been performed

here both from the mechanical and electronic sides, the set-up is depicted in the Figure

1.5 and the features of the plant are shown in the Table 1.3.
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Chapter 2

Computational Fluid Dynamics

The computational fluid dynamics, hereafter called CFD, is an interdisciplinary matter

between numerical analysis, fluid mechanics and computer science in order to watch

not only how a liquid or a gas streams flows but also how those affect the surrounded

environment.

The values and parameters took into account are, usually, velocity, density, heat

transfer, velocity and pressure and the theory behind it is based in Navier-Stokes equations.

The latter rules the fluids motion and it can be considered as the Second Newtonian Law

of motion for fluids, it also concerns the conservation of momentum and mass, together

with the continuity equation [10]. It is pivotal in this analysis because, by solving these

equations for a set of boundary conditions as elucidated in the next paragraphs, it predicts

fluid characteristics for a given geometry.

Pre-processing:

Setting up/mesh the model

Determining flow parameters

Running CFD simulation

Post-processing:

Visualising results

Estimating accuracy



10 CFD analyses and performance comparison of micro-hydropower plants

The softwares involved in the analysis require informations about content, size and

layout of the control volume considered; they are used for realising a 3D mathematical

model on a mesh that can be handled by view and rotated from various perspective. The

main 3 steps of the analysis are indicated in the above diagram.

First of all, it needs to decide which kind of simulation to perform, there are various

types of [11]:

• 2D, quasi 3D or 3D: 2D simulation is used for initial design phase such as section

of a vane or blades, quasi 3-D simulation is an upgrade of the 2D where additional

terms about the acceleration/deceleration caused by whatever cause are considered,

many CFD codes need to activate this feature since they require hidden commands.

3D is the most complete one, at which also secondary flows are obtained correctly,

it works very well in case of boundary layers grow very fast and interact with a huge

part of flow field.

• Viscid or inviscid: an inviscid Euler simulation is suitable for flows close to the

design point and it does not take into account boundary layer whereas inviscid one

is necessary to predict losses and separation; nowadays, the latter configuration does

not require so much time as back in time.

• Transient or stationary: transient simulations are performed when it is needed

to know the behaviour of a transient flow which has a strong influence on the entire

flow field; else, a stationary simulation fits better the case.

In this project, stationary 3D simulations are implemented, as it can be seen in the next

chapters. By changing variables and parameters, the user can set and visualise how water

stream clashes the blades of a turbine under a number of different conditions, for example.

There are different softwares whose run CFD simulations. During the initial period of

Turbulent experience, it has been adopted a programme called FlowSimulation, add-in of

the basic SolidWorks, which allow a successful performance to simulate gas and liquid flows

in real conditions, either for internal or external analysis. Unfortunately, in FlowSimulation,

it is not possible to perform a free-surface simulation, which is the involvement of air/water

interface, a key point for the analyses needed in this project. Hence, when this characteristic
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was not possible to apply, a migration to another software was needed. The second

software used to perform CFD analysis was Autodesk CFD Simulation, this software allows

to make free-surface simulation, analogous to FlowSimulation, they have many similarity

like performing the 3 steps of the CFD analysis (drawing, meshing and simulation) in the

same in-built software which take much short time to setup the simulation, compared to

other softwares.

On the other hand, they do not allow to change all the variables involved in the theory,

especially concerning the turbulence model, the most important topics to reach result as

close to the experimental data as possible, especially regarding the first configuration

undertaken. Beside that, the results from this software were quite good and consistent

with the prediction, except for the specific value about the torque applied on the runner

which is a truly meaningful value for the analysis and, after a long period to figure out

why that value was wrong, also this software has been discarded for the project.

Finally, after quite some weeks, it has been decided to perform the CFD simulations

with the most powerful software available online: OpenFOAM. This software is quite

different to the ones just mentioned because it is working on C++ environment as base

language. To do so, it has been needed some time to understand how this language

works in Ubuntu, especially using the terminal of the new operating system and, in turn,

it took quite long time to learn how to use that. That is why in the Appendix D are

highlighted the main commands to know in order to work properly under this language

and environment.

In the Figure 2.1, the entire final procedure to make the CFD analysis is illustrated.
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Figure 2.1: CFD procedure

2.1 OpenFOAM overview

OpenFOAM is an open-source, free and state-of-art CFD software since 2004. It has a

huge customer base across most areas of engineering and science, from both commercial

and academic organisations.

OpenFOAM has a wide range of features to solve

even very complex fluid flows involving turbulence,

heat transfer and chemical reactions to solid

mechanics, acoustics and magnetics. Quality performance is based on rigorous testing.

The code evaluation, verification and validation process includes various daily unit tests,

test battery on a weekly basis, and large industry test battery anytime a new version

releases. Tests are designed to assess regression behaviour, scalability, code performance

and memory usage. It is a collection of nearly 250 applications built on another collection
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of more than 100 software libraries. [12]

The version used in the project is 2.04 OpenFOAM over 14.04.5 Ubuntu operating system.

The User Guide examines any single utilities enabled to use, various reader and write data

modules. Its releases are scheduled every six months in June and December and it works

only in the Ubuntu ambient, so a Linux partition, by a free virtual machine additionally

installed, has been addressed on the local computer used. [13]

The original structure of any cases ran in OpenFOAM are shown in the Figure 2.2:

Figure 2.2: Case directories in OpenFOAM

The mandatory three directories, those had to be implemented, are system, constant

and time directories, the latter usually contain the initial time step at 0 sec, as it can be

seen in the next chapters and the name is based on the simulated time taken into account,

so normally, the initial time directory is called 0.

For both models considered in the project, the directories are unchanged, even though

their contents vary according to the purpose, geometry and many other variables. Setting

up these folders is part of the pre-processing procedure. An example of how these files

look like, it delineated in Appendix A. The unit dimensions are expressed in this form:

[0 1 -2 0 0 0 0]
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Number Property SI unit

1 Mass kilogram (kg)

2 Length metre (m)

3 Time second (s)

4 Temperature kelvin (K)

5 Quantity mole (mol)

6 Current ampere (A)

7 Luminous intensity candela (cd)

Table 2.1: SI dimension units in OpenFOAM

In the example written above, the numbers represent the position within the brackets

and it is the the unit of measure of acceleration m/s2.

2.1.1 Constant folder

This directory regards all the constant values by which the thorough case description is

made as well as specifying the physical quantities, concerning the application in case.

The sub-folder triSurface contains all the .stl files of the geometry taken into account,

throughout the various setups, it has been made files named as the separated patch

considered as shown in Appendix G, the number of stls files vary according to the

configuration. The sub-folder polyMesh is necessary to connect and link cells and boundary

faces around cells and boundary patches, each face refers to the owner and the neighbour

cells; by doing so, the connectivity is arranged. After this, it listed the points, faces,

owner and neighbour cells and boundaries. This folder contains blockMeshDict which

specify the vertices, blocks, edges and boundaries within the model thanks to blockMesh

utility explained in Appendix E.5 as well as in Section 2.2.

Others files present in this folder are [13]:

• dynamicMeshDict : it is the dictionary for solving systems thanks to moving meshes,

it acts during the simulations itself, it controls morphing and deformation of the

mesh. The dictionary allows to specify four types of mesh motion: it has chosen

the staticFvMesh one which basically has no mesh motion, so the mesh is fixed as
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static; this utility varies a lot according to the version of OpenFOAM.

• g : it is to define the gravity function and its value, it has clearly been chosen the

constant gravitational acceleration across the domain.

• turbulenceProperties : it selected for any case which include turbulence modelling,

the choice can be between 3 different kinds of modelling: laminar, LES or RAS. It

chose the last one for the analysis.

• RASProperties : it specifies which Reynolds-averaged stress turbulence model to

apply (name and switch it on/off) and to whether print the coefficient or not, it

enables the turbulence model to do. Optional features of the dictionary are not

taken into account within the project.

• transportProperties : it defines the density and viscosity for the all means of transport

to consider, generally, water and air and, even in this case, the standard values has

been constantly set in this file as outlined in Appendix E.1 .

2.1.2 System folder

The directory system contains the parameters linked to the procedure to get the solution

itself. The files contained in this folder for this project purposes are the following:

• controlDict : it defines the data concerning the time control as well as the reading

and writing of the solution. Time steps, Start/End time, format and precision,

Courant number are set here, OpenFOAM provides great flexibility, as it partially

reproduced in the Appendix E.6; it also regards which useful parameters for the

analysis to print at the end of the simulation; in this case, the forces acting on

the blades faces by water stream passing through the runner and, eventually the

torque; within its features, it is also established the writing control of the steps:

adjustableRunTime has been stated.

• decomposeParDict : it uses to decompose mesh and fields. The objective is to break

the entire domain, accordingly to certain parameters and specified in this dictionary;

there are different methods of decomposition, the user has to choose between simple,

hierarchical, manual and scotch as well as define the number of subdomains (of CPU

cores) to have. Simple mode is the one selected in the dictionary.
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• fvOptions : throughout this project, fvOptions is used to define the exact region of

rotation for the runner, the velocity in magnitude and direction, at what time it

starts and how long it lasts. An example of this file is in Appendix E.3.

• fvScheme: it discretises, by schemes, the solution during the run-time. It sets

the numerical schemes for terms like derivatives in system of equations as well as

gradient or laplacian operators. The items to define have to be chosen among the

common numerical models: Euler, Gauss linear, Gauss upwind, etc. The file is in

Appendix E.4.

• fvSolution: over here, tolerances, relaxation factors, algorithms and equations solvers

are controlled; it contains various sub-dictionaries, such as solver values to run the

simulation; for pressures PCG with GAMG preconditioner and for U, k and omega

the smoothSolver has chose.

• meshQualityDict : it gets back about the mesh, only controlling some feature like

maximum non-orthogonality allowed, described in snappyHexMeshDict. It includes

defaults values from master dictionary.

• setFieldsDict : This is done in order to set initial condition within the domain, in

case a non-uniform ones it would be set up here; as it sees later on, this is a quite

important file because it allows to specify the turbulence parameters and the initial

condition for the height of the water initially within the configuration. This file

varies for any simulation.

• surfaceFeatureExtractDict : it extracts the edge features and save it to a new .eMesh

files located in the same subdirectory. The extraction method is selected as from

surface.

• topoSetDict : it performs to enclose the rotating frame for the runner, it sets the

geometrical area to consider for the rotation, specifying in this project, the cylinder

source for the rotational region, as it has been highlighted in the Appendix E.7.

Furthermore, other 2 files: snappyHexMeshDict and snappyHexMeshDict.org are present

in this folder, they are explained in Section 2.2.1 as well as in Appendix E.2.
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2.1.3 0 folder

The time directory gets the single files for any specific fields like pressure or velocity;

the data might be initial values or boundary conditions that user should specify for the

simulation or results written by OpenFOAM itself. The following files are involved in this

folder:

• alpha.water : it defines the fraction of water and air within the volume as initial

condition. It is very important file especially for the first 3 Flatblades simulations,

because the first parameters needed to be calculated was the initial height of the

water within the volume. Furthermore, the scalar value alpha was set, punctually:

α = 0, the cell is considered 100% of air fraction

α = 1, the cell is considered 100% of water fraction

• k : it is part of the turbulence model. It is the turbulent kinetic energy, computed

in Chapter 3. The boundary field sets this amount for any single .stl files defined in

constant/triSurface.

• nut : this file concerns the choice for the wall function specified via viscosity value

for the turbulence model and enables to apply different walls functions to different

walls regions.

• omega: alike k regards the parameters for the turbulence model for any .stl files, ω

is the specific dissipation rate and it is calculated in Chapter 3.

• prgh: it is defined by the equation

p− ρgh

which is the dynamic pressure calculated as the static pressure minus the hydrostatic

one.

• U : it sets the velocity onto inlet patch as the initial condition, important for the

incoming flow in the model.

An important consideration about this folder is that these initial conditions, also the ones

regarding k and ω parameters are changed during the simulation and, referring to that,

the default parameters set in system/setFields are overwriting these initial conditions as

well as for the initial water height.
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2.2 Meshing

One of the most important practise to perform CFD analysis as best as possible is surely

the meshing of the model. It is an integral part of the numerical solution and have to

satisfy certain criteria to observe an accurate and valid solution. Fluid flows, expect for

very simple cases, are not suitable for analytic solution, and it makes the analyses harder

from the mathematical point of view. Therefore, the entire volume is used to be split

into smaller subdomains thanks to geometric shapes applied for that purpose, it might

be 3D ones such as hexahedral or tetrahedral one. By doing so, any single amount of the

governing fluid equations is discretised and solved within these subdomains. [14]

It should focus the attention on the proper continuity of undergo solution along

the portions nearby, so that the approximate solution can be put together to make a

exhaustive picture of the fluid flow within the whole domain. As it analysed in this

section, usually these subdomains are called cells. Various computational and solver

techniques have been released recently, refining mesh elements and their connectivity

more and more. Many softwares have automatic meshing tool (e.g FlowSimulation or

Autodesk CFD Simulation), which can be way faster than using manual meshing, but it

would work very well only if the geometry is not very complex or the flow condition are

not so complicated. Structured meshes are regular connectivity characterised, it expressed

as either a 2 or 3 dimensional array, it makes the mesh conserving space because of a

storage arrangement relationship defined on adjacent cells. Hence, multi-block hexahedral

structured mesh is the most often used in this case [15].

Figure 2.3: blockMesh benchmark [12]
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It is tough to define the mesh size in a common frame and, basically, it depends on the

purpose of the simulation. OpenFOAM provides different meshing tools: by default,

it uses a polyhedral cells in in 3-D polygonal faces. This mesh within the software

is called polyMesh, it enables to generate a huge freedom in meshing and handling,

especially, complex geometry or changing over time [12]. In the next list, it highlighted

the specifications for the mesh:

• Point : location in a 3D space, it is defined by a vector. They are listed and referred

to by a label

• Faces : it is a list of ordered points, 2 points are linked by an edge, also faces are

listed as well as referred to by labels; the direction took into account is defined by

right-hand rule. They can be internal faces (which connect 2 cells) or boundary

faces (of whom one cell coincide with the boundary domain)

• Cells : list of faces in casual order, they must entirely cover the computational

domain, convex, closed and its cell center inside the cell.

• Boundary : list of patches, of which everyone is associated with a boundary condition.

OpenFOAM provides 2 main utilities to produce a mesh for models: blockMesh and

snappyHexMesh; blockMesh is suggested for creating a simple hexahedral structured block

mesh, each block consists in 12 edges and 8 vertices in a specified order, as shown in the

Figure 2.3. The theory behind this first tool is pretty smooth: it defines the vertices first,

then secondly, edges, blocks and patches. The vertices are listed in such a way that each

of them can be mentioned by remarking its label, edges can be splines, polylines, arcs or

straight lines. Each block is referred to a local coordinate system and 2 vertices are linked

with a either straight or spline edge lines, it is right-handed and it decompose the entire

geometry in multidimensional hexahedral blocks. The blocks are defined as follows:

• Vertex numbering: the blocks are always hexahedra and the vertices are listed and

ordered in a certain manner.

• Number of cells: this entry gives the number of cells for each x, y, z direction.

• Cells expansion ratio: it is a useful tool, it gives the expansion ratio for each

x, y, z direction enabling refinement in a specified axes if needed; the one used
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simpleGrading underlines uniform expansions along the three axes and, the same

order of magnitude between them.

The boundary of the mesh is listed under blocks, this boundary is broken into various

patches, but for this purpose, only the big bounding box is indicate in this file because

another tool of OpenFOAM is used. Hence, the boundary allBoundary is written and it

includes all the outer patches of the suitable model for the simulation. The blockMeshDict

file is shown in Appendix E.5.

Nonetheless , in this project, snappyHexMesh is used because of its functionality and,

as an initial starting point, the blockMesh tool as described in the next subsection.

2.2.1 snappyHexMesh

It is a 3D meshes including hexahedra and spit-hexahedra from triangulated surface or

tri-surface geometries in STL (Stereolithography) format; the procedure is iterative: it

constantly refines the initial mesh; the biggest advantage is the flexibility for the mesh

refinement throughout the model as well as a pre-specified final mesh. Load balancing

steps run in parallel with the mesh generation.

This dictionary is explained in details in Appendix E.2. In Table 2.2, the entire

procedure of meshing is resumed and explained, taking into account the OpenFOAM user

guide [12].
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Step

1

Initial STL

surface

The STL object is uploaded in

OpenFOAM, the entire volume

is depicted as the grey

rectangular zone.

Step

2

Creation of

background

mesh

blockMesh enables to generate

an initial mesh with an cell size

ratio of around 1.

Step

3

Splitting of

cells by

feature edge

Feature edge is present in the

castellatedMeshControls

sub-dictionary, it spots the

edgeMesh file and level of

refinement.

Step

4

Splitting of

cells by

surface

In the same dictionary, the cells

are selected for splitting in the

place of specified surfaces, it

requires a min and max level of

refinement.

Step

5

Removing of

cells

One or more regions within the

bonding domain addresses the

cells to remove.

Step

6

Splitting of

cells by region

The refinement region

sub-dictionary leads a further

splitting in one or more specified

volume region.

Step

7

Snapping

surface

It moves cell vertex points onto

surface geometry to delete

jagged castellated surface from

the mesh.

Step

8
Layer addition

It introduces additional layers of

hexahedral cells aligned to the

boundary surface.

Table 2.2: snappyHexMesh procedure [12]
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Eventually, the meshQualityControls sub-dictionary controls the quality of the mesh

just explained and, by the final balancing, it is possible to spot if some mesh irregularity

or flaws are present in the mesh.

2.3 Rotating region

The rotating region is a truly important zone that has to be set properly within the

control volume, it concerns where the turbine is, more precisely from the hole of the basin

bottom to the output of the cylindrical casing, passing through the runner.

First of all, it is fundamental to choose the right path to set a rotating region in

OpenFOAM: in this case, steady time dependency and stationary and rotating regions

in the computational domain, the file topoSet in combination with fvOptions have been

chosen, they enable to use multiple reference frame model and the file fvOptions is taken

into consideration in the Appendix E.3. Not to weigh on the dissertation, the governing

equations at the rotating region are not highlighted in the project.

2.4 Solvers: simpleFOAM and interFoam

In OpenFOAM, there are various models in order to solve RANS equations; in this project,

it has been decided to use simpleFoam. It used the SIMPLE algorithm, which stand

for Semi-Implicit Method for Pressure Linked Equations, this algorithm is iterative and

this solver takes into account the mass and momentum conservation as depicted in the

following equations:

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = ν∇2u−∇p+ g (2.2)

simpleFoam is the most appropriate model for this case because it is a steady-state solver

for turbulent and incompressible flow, it has been used for both laminar and turbulent

zones.

Whereas, interFoam is chosen for the time step control, it provides automatic adjustment

of time steps, specifying the valuable parameters such as time start, time step, writing
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time and so on. The steps are not approximated to a convenient value hence, they are

saved in somewhat arbitrary mode. The same solver utilises the OpenFOAM created

limiter called MULES (Multidimensional Universal Limiter for Explicit Solution) for

discretisation schemes to keep the phase fraction bounded independent from numerical

scheme, mesh structures, etc. [12]

2.5 Boundary conditions

The boundary conditions are set in the 0 folder. In OpenFOAM there are 2 kinds of

boundary conditions: basic and derived. The basic ones are specified in suitable entries

and it varies from simple to complex ones, whereas the derived are functions of the basic

conditions. For any simulation considered throughout the project, these parameters are

unchanged. Separately, there are other files in 0 folder, regarding k and ω parameters as

well as water height, these quantities are varying according to the simulation taken into

consideration.

They have been explained in Section 2.1.3 and as it outlined thereafter; these values are

defined in other directories.

2.5.1 Inlet/Outlet Velocities

Regarding the velocity field, the U file contains all the requirements for it. Practically,

the values to add are in the Table 2.3. In all the other patches, this file sets 0 as values,

inletOutlet type allows the flow to to get out from the top patch, for instance in an extreme

case of overflow which it never encountered during any simulations.

Patches Property

Inlet
flowRateInletVelocity type

Mass flow rate = 9 kg/s and perpendicular to the surface

Outlet inletOutlet type and internalField value

Top inletOutlet type and internalField value

Table 2.3: Velocities boundary conditions
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2.5.2 Pressure field

Similarly for this condition, only the three interface model/air are involved in it. This

configuration in the file prgh. In this condition the inlet patch is not important as it

strongly depends on the inflow. In the table it is highlighted how to set it:

Patches Property

Inlet fixedFluxPressure type and internalField value

Outlet fixedValue type and uniform 0 value

Top fixedValue type and uniform 0 value

Table 2.4: Pressures boundary conditions

As it can be seen in the above table, as boundary conditions, outlet and top patches are

set at null value which means that the pressure in those zones is equal to the environment

one and, concerning the inlet patch, it is deriving from the internal simulation.

Velocity and pressure field are related between each others.
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Chapter 3

Turbulence modelling

Almost every environmental stream in nature, either water or air, are turbulent. The

phenomenon is quite irregular and highly intermittent to be analysed, even nowadays

there is no common theory about both the turbulence theory and its statistical properties,

so a holistic and empirical approach to this concept is required.

Various model has been developed throughout the decades and, in next sections, the most

used ones are explained and, especially for the one chosen to undertake the project, is

highlighted more in details.

3.1 Theory

With the limits of continuum as initial hypothesis, the Navier-Stokes equation has been

the one that govern, almost universally, the physics of all fluid stream, turbulent ones

too.

First of all, turbulence occurs at high Reynolds number because of the sophisticated

mixture of inertia and viscous terms in the momentum equations. Reynolds was the first

one facing the problem and investigating the transition from laminar to turbulent flow

and he identified a single dimensionless parameter, the so-called Reynolds number :

Re =
UρL

µ
(3.1)

The initial assumption is that the fluid taken into account is Newtonian, usually true

for many fluids in the field of engineering applications, which means that the viscosity is
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constant regardless the shear rate. [16]

There are two characteristic value of the Reynolds number which can identify the approach

of the flow from the laminar to transient and, in turn, from transient to turbulent; so if

the it is below 2300, the flow is laminar and when it is over 4000, the flow is turbulent,

in the range between those values, the flow is in transition between the two types.

In the Figure 3.1 it is clearly shown what happens to the flow over a flat plate:

Figure 3.1: Water flow over a plate [17]

In the laminar range, at the inlet of the plate, the behaviour is quite straightforward:

the flow can be solved by a steady-state Navier-Stokes equations, which predict both

pressure and velocity fields; the latter does not change with time in this area, so the

prediction is quite accurate. The phenomenon is way more complicate when the transition

toward turbulence range starts: chaotic oscillations appear and the flow is varying with

time in this field. Time domain consideration and fine mesh of small eddies flow must

be taken into account and Navier-Stokes approach is not feasible anymore; on the other

hand, in this range, it is possible to use Reynolds-average Navier-Stokes (RANS) approach,

which is relying on the separation of the entire flow field over time in small local oscillation

and time-averaged field but, by doing so, it introduces further unknowns to our system

of equations. Fluctuations are involving also pressure and temperature amounts [17]. It

is explained in Section 3.1.2.

3.1.1 Near-wall treatment

Near-wall treatments are used to model the velocity profile at the first node of the wall.

The model is based on magnitudes such as k, epsilon, nut, wall shear stress, friction

velocity and so on. Therefore, the implemented function, provide the computation of
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the law of wall. Wall functions are necessary to develop a proper turbulence model that

perform well at the near-wall area, the range can be split in 4 different regimes as shown

in the Figure 3.1. These functions are also employed in the tool used by OpenFOAM to

mesh the near-wall zones on the model, in Appendix E.2 under addLayersControls, the

wall functions are added.

The first region is called viscous sublayer, in this region and in correspondence of the

wall, velocity is null and for the thin layer right above, the velocity is linearly varying with

distances. Further up, the stream starts the transition to turbulent and this zone is called

buffer layer (both regions are very small, approximately one hundredth of the others),

which can be approximated because of its thickness. When the stream is completely

turbulent developed, the average flow speed is proportional to the log of the wall distance

and this third region is called log-law region. Further away from the wall, the free-stream

region is present, which is the region not affected from the wall function. [17]

Figure 3.2: Wall function

For all these sectors, the RANS model can be computed, which calculate a non-zero

velocity at the wall, ignoring the flow field in buffer region and assuming an analytic

solution at the viscous sublayer. By doing so, it results in highly lower calculation needs.

If a higher level of accuracy for the wall function is needed, then complementary turbulence

model would be used.

3.1.2 Reynolds averaged equations (RANS)

All the forces acting on each element surface are separated in 2 different types:
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• Long range force: It acts on the fluid element mass and distributed over the volume,

so force per mass unit.

• Short term force: It acts only on the surface of the fluid element, whose total force

exerted is proportional to the surface area

For sake of simplicity, the whole procedure of equations governing instantaneous fluid

motion is not explained. As discussed before, turbulence theory is not very simple and

it is easier to go through more linear parameters to evaluate, such as turbulence kinetic

energy, dissipation rates, intensity and so on.

The starting point is from incompressible momentum equation, illustrated in Equation

3.2:

ρ

[
∂ũı
∂t

+ ũ
∂ũı
∂x̃

]
= − ∂p̃

∂xı
+
∂T̃ı
∂x

(3.2)

The viscous stress, which is the stress minus the average normal stress, is represented by

the tensor with the initial hypothesis of incompressible fluid: [17]

Tı = 2µs̃ı (3.3)

Taking into account these considerations and the above equations, it used now the Reynolds

decomposition, which is the analysis of the flow in 2 parts: the mean motion, represented

in capital letter and the fluctuating motions, represented in lowercases.

ũı = Uı + uı (3.4)

p̃ = P + p (3.5)

T̃ı = Tı + τı (3.6)
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Figure 3.3: Velocity fluctuations

In the Figure 3.3 the fluctuations of velocity, for instance, is reproduced; similar

consideration are for the other 2 equations written above.

So substituting the decomposition into Equation 3.2, getting the average and reformulating

the correlation of fluctuations, the final result is the following equation:

ρ

[
∂Uı
∂t

+ U
∂Uı
∂x

]
= −∂P

∂xı
+

∂

∂x
(Tı − ρ〈uıx〉) (3.7)

The right-hand term of the Equation 3.7 is the contribution of the fluctuation of non-linear

acceleration terms, which has not the unit of measure of a stress as in the left-hand term.

From the motion point of view, it is acting as a stress, so with this consideration, it takes

the name of Reynolds stress.

The main objective of the turbulence model is to solve the Reynolds stress which can

be done thanks to three main selection to take:

Linear eddy

viscosity models

Also known as Boussinesq hypothesis, it relates the Reynolds

stress tensor proportional to the main strain rate tensor

Non-linear eddy

viscosity models

An eddy viscosity coefficient is used to link the mean

turbulence field to the mean velocity field

Reynolds stress

model

The eddy viscosity is not taking into account and it

computes directly the Reynolds stresses

Table 3.1: Models to solve Reynolds stresses [13]

As explained in Table 3.1, there are different ways to perform turbulence analysis of a

flow; according to the software used to perform the CFD analysis, in this project, it has
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used the linear eddy viscosity model, which is the most used for turbulence modelling and

it is the most linear to apply among them.

3.1.3 Linear eddy viscosity model

The linear relationship discussed in the previous section is:

ρ〈uıu〉 = 2µtSı −
2

3
ρkδı (3.8)

The last term is the so called Boussinesq hypothesis, it required by tensorial algebra

purpose.

Among the models included in this category, the attention is focused on those in which

two extra transport equations show the turbulent property of the flow; these are named

two-equation turbulence model. By using this model, it allows to account for history effect

like diffusion of turbulence energy and convection. These models are the most common

used and many softwares are available for this analysis. Very often, the first variable

determines the turbulence energy and the second one the scale of turbulence.

For the project it has been used one of the so-called k-ω models. Again, among these,

it has been chosen the sub category of SST k-ω model, which is described in the next

section.

3.2 SST k-ω model

It based on physical experiments and attempts to predict solutions for common engineering

issues. It can be used as low-Re turbulence model without including any other damping

function. The shear-stress transport (SST) formulation became attractive for its features,

it mixes the best of two big categories, which are k-ω and k-ε models.

The transport equations in order to calculate the 2 parameters k and ω are, respectively,

the following:

∂

∂t
(ρk) +

∂

∂xı
(ρkuı) =

∂

∂x

(
Γk

∂k

∂x

)
+ G̃k − Yk + Sk (3.9)

∂

∂t
(ρω) +

∂

∂xı
(ρωuı) =

∂

∂x

(
Γω

∂ω

∂x

)
+ G̃ω − Yω +Dω + Sω (3.10)
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It uses the k-ω model in the inner part of the boundary layer, which allows to have

a model usable until the wall through the viscous sub-layer and, at the same time, it

allows the usage of the k-ε model in the free-stream region where the other model has

some unwanted fluctuations. The big merit of this model is the good performance on the

separating streams and pressure gradients.

On the other hand, the SST k-ω model generates a little bit too much turbulence levels

but, by doing so, it is more accurate and less intense than the pure k-ε model. In the

next subsection, it computes and analyses the meaningful parameters of this selected

turbulence model.

3.3 Computation of the parameters

The division is in various regions according to the geometry considered and to the behaviour

of the water flow within the control volume. The domain is divided up in 5 zones regarding

the Flatblades model and in 6 regions regarding the Streamlines geometry.

Because of its completeness, in Table 3.2 the ones concerning the model of Streamlines

are presented; in white squares, there are roughly outlined the regions investigated during

the study (it detected that some zones are overlapping between each other); as it examined,

the regions are peculiar at their characteristics in terms of area considered or water

features, such as vortex generated in vortex basin area or water flowing down in rotating

region and so on. We need to have an initial guess for the parameters k and ω as well as

suitable values for all the area studied [18].

After the estimation, the boxes are considered to set the parameters properly and have

a better performance from the fluid dynamic point of view and refine the CFD analysis,

inserting these values with the appropriate OpenFOAM directory.
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Inlet

Water stream

Neck

Vortex basin

Rotating region

Outlet

Table 3.2: Turbulence parameters’ region

All the parameters necessary for the model are shown under. The Table 3.3 is resuming

the entire values list to set a proper turbulence model to run the CFD analysis.
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Turbulence

intensity [-]

It’s the root-mean-square ratio

between the velocity fluctuations and

the mean flow velocity; generally, the

value is between 1% and 10%, in

free-stream region it could be as low

as 0.05%

I ≡ u′

uavg
= 0.16Re

−1/8
DH

Hydraulic

diameter [m]

Relevant dimension of the duct,

varying according to the configuration

(A is the area section of the duct and

p is the “wetted” perimeter of the

duct)

DH = 4
A

p

Turbulent

length scale

[m]

A physical quantity that is related to

the energy in turbulent flows

contained in the large eddies size, 0.07

is related to the maximum value of the

mixing length in fully-developed pipe

flow

l = 0.07DH

Turbulent

kinetic energy

[m2/s2]

This formulation is from the intensity

value and taking the average velocity
k =

3

2
(uavgI)2

Turbulent

dissipation

rate [m2/s3]

This formulation is from turbulence

length scale (Cµ is an empirical

constant, approximately 0.09)

ε = C
3/4
µ

k3/2

l

Specific

dissipation

rate [1/s]

This formulation is from turbulence

length scale (Cµ is an empirical

constant, approximately 0.09)

ω =
k1/2

Cµ
1/4l

Table 3.3: Turbulence parameters [18]
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Some assumptions had to be made: most of the parameters are originally unknown

so, except for the geometry entries, the velocity parameters are the ones coming from the

2nd Flatblades simulation results, which is the most close to the real condition for that

geometry, but it has been extended also for Streamlines model. Regarding Outlet box,

which in Flatblades doesn’t exist, it has made a further approximation (value considering

the average of Water stream and Rotating region boxes).

Hence, concerning the Streamlines configuration, the final results for all the parameters

are the following:

Inlet
Water

stream
Neck

Vortex

basin

Rotating

region
Outlet

Turbulence

intensity I
0.036 0.036 0.040 0.031 0.034 0.032

Turbulent length

scale l
0.007 0.011 0.009 0.030 0.012 0.022

Turbulent kinetic

energy k
0.004 0.002 5× 10−4 0.002 0.004 0.002

Turbulent

dissipation rate ε
0.007 0.001 2× 10−4 6× 10−4 0.003 8× 10−4

Specific

dissipation rate ω
17.29 6.79 4.30 2.99 9.43 3.88

Table 3.4: Turbulence parameters results for Streamlines

The average values for the specific dissipation rate and for turbulent kinetic energy,

which are needed for the OpenFOAM setup, are the following:

k 0.002493 m2/s2

ω 7.44873 1/s

Table 3.5: Average values for k and ω for Streamlines

Concerning the Flatblades configuration, the final results for all the parameters are
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the following:

Inlet
Water

stream
Neck

Vortex

basin

Rotating

region

Turbulence

intensity I
0.036 0.033 0.037 0.028 0.034

Turbulent length

scale l
0.007 0.023 0.019 0.056 0.012

Turbulent kinetic

energy k
0.004 0.001 4× 10−4 0.002 0.004

Turbulent

dissipation rate ε
0.007 3× 10−4 7× 10−5 3× 10−4 0.003

Specific

dissipation rate ω
17.29 2.85 1.93 1.47 9.52

Table 3.6: Turbulence parameters results for Flatblades

This model contains 5 area, contrarily the previous one which also has the Outlet

area as shown in the Table 3.2. The average values for the specific dissipation rate and

for turbulent kinetic energy, which are needed for the OpenFOAM setup, are the following:

k 0.002404 m2/s2

ω 6.612115 1/s

Table 3.7: Average values for k and ω for Flatblades

Unfortunately, in OpenFOAM, it is not possible to set all the boxes in the dictionary

setFields because, for the turbulence values purpose, it is impracticable to insert boxes

or any other geometrical volume with splines or curvature, only boxes or cylinders are

available for this version of OpenFOAM. During Streamlines simulation and in the last

Flatblades ones, these calculated parameters regarding average, vortex basin and rotating

region values are considered within the directories.
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OpenFOAM returns standard coefficients in the source code but, to specify the values

just calculated, it needed to inserted sub-dictionary which specify the volume domain at

which the parameters are set up. In this case, these values are k and ω they have been

added in RAS file.
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Chapter 4

Turbulent models

In this chapter, it focused the attention on the 2 configurations the analysis is made

at. Both geometries are similar between each other, the pivotal part of the model is the

runner and the most important values to consider are the torque applied by the water

passing through it, pressures and velocities through the runner. Throughout the chapter,

it explained the geometry of both models, how the simulations are set up and the final

results. The models are drawn in Inventor and, in this first step, they are as shell ones, like

in the real life. Secondly, it has been needed a water tightened volume, which means using

lids to tight the volume where the water is flowing by, thanks to a feature in Inventor,

it is possible to cap the inlet, outlet and the upper parts of the both models, basically

the regions where the air interact with the water flow. The origin of the model is set as

depicted, more concretely for the Flatblades configuration in Figure 4.1.

Figure 4.1: Origin and axis on the model

The next step is to split the configuration in different patches by using Meshmixer,



38 CFD analyses and performance comparison of micro-hydropower plants

thanks to a swap brush, the zone we want to separate from the original model for the

basin are highlighted and export them one by one in .stl format, they are the items linked

in constant. Below, it shown particular views from the Flatblades model:

(a) Basin (b) Turbine

Figure 4.2: Patches of the model

In the same manner, Streamlines is divided into patches too but with the additional

part of the diffuser and the area where the water is flowing out from the diffuser.

The results are evaluated using the software paraFoam which is the main post-processing

tool, in the Figure 4.3 it revealed a sample of this software windows:

Figure 4.3: paraView home
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It is a reader module that has to run in parallel with ParaView, the visualisation

application by OpenFOAM. The latter uses VTK programme (Visualisation ToolKit) in

order to read any data. In Pipeline Browser, the result simulation folder is loaded; in

Properties Panel contains the selection of the input taken into account like time, pressure

and so on and, in Display tab, colours, mesh and general representations are included.

For this project, some filters are applied in order to appreciate as much as possible

the final results of a simulation, as shown in Table 4.1.

Most of the parameters are evaluated in their limit time steps: 0 sec, to check the

initial conditions of water height and, in case of refined turbulence parameters, the default

amounts inside the control volume, the cylinders concerning vortex basin, rotational region

as well as the meshing criteria and last time step, especially for the pressure and velocities

amounts. Further analyses by moving and rotate the model have been made to appreciate

the velocity and pressure at the inlet and outlet of the rotating region and diffuser area,

values required for the power calculations.
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Filters Specifications Purpose

Alpha.water Clip alpha.water field

To appreciate the

water height at

begin and end of

the simulation.

3D Velocity

magnitude

Clip alpha.water field by 0.8 absolute value

filter and setting velocity as visualising

datum

To evaluate the

velocity

throughout the

model.

2D Velocity

magnitude

Clip alpha.water field by 0.8 absolute value

filter, setting velocity as visualising datum

and introducing the x-cutting plane

To evaluate the

velocity at the

runner zone.

3D Pressure

magnitude

Clip alpha.water field by 0.8 absolute value

filter and setting pressure as visualising

datum

To evaluate the

pressure

throughout the

model.

2D Pressure

magnitude

Clip alpha.water field by 0.8 absolute value

filter, setting pressure as visualising datum

and introducing the x-cutting plane

To evaluate the

velocity at the

runner zone.

Turbulent

kinetic energy

Clip alpha.water field by 0.8 absolute value

filter, setting turbulent kinetic energy as

visualising datum and introducing the

x-cutting plane

To evaluate k at

the runner zone.

Specific

dissipation rate

Clip alpha.water field by 0.8 absolute value

filter, setting specific dissipation rate as

visualising datum and introducing the

x-cutting plane

To evaluate ω at

the runner zone.

Table 4.1: Results analysis
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4.1 Power calculations

The power is strictly related to the water stream properties, shape of the blades and

geometry of the runner itself. Special focus concerns the torque value, this parameter

should be as much accurate as possible because, according to the next formula, it provides

the relation between the power generated and the torque from the water stream passing

through the runner:

Pt = |T |N
60

2π (4.1)

After the simulation, OpenFOAM issued a .dat file called MomentZ, where all the

variables output wanted are mentioned in controlDict dictionary. It represents all the

forces involved in the runner area, including the torque value, the syntax is the following:

Time Forces (pressure, viscous, porous) Moment (pressure, viscous, porous)

Table 4.2: Forces and Torques syntax results

Any single item of forces and moments are further split in x-y-z components.

Figure 4.4: Heights in runner and diffuser zones

For this project’s purpose, it

focused the attention on the

z-component of the pressure entry

in moment vector which is the

torque value needed for the above

formula. Hereafter, it shown the

pictures of the most meaningful

parameters needed for a complete

CFD simulation.

The main goal of the project is to find out how much power is generated from the

water stream via runner. To do so, the most important heights of the rotating region has

been split into three meaningful levels as indicated below:
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1 Inlet of the turbine

2
Outlet of the turbine/Inlet of the

diffuser

3 Outlet of the diffuser

Table 4.3: Particular points in the models

In Figure 4.4, there are the graphical description of the 3 heights. Hence, it applied

the conservation of energy principle between the points 1 and 2 which states that the net

rate of energy transfer into a control volume by heat and work transfer is equal to the

time rate of change of the energy content of the control volume plus the net flow rate of

energy out of the control surface by mass flow. [19]

Taking the consideration of incompressible fluid through the system and steady state,

it can be addressed the following equation, regarding the runner:

Q̇net in + Ẇs,net in =
∑
in

ṁ
(
h+

c2

2
+ gz

)
−
∑
out

ṁ
(
h+

c2

2
+ gz

)
(4.2)

In this project, the first term can be deleted because there is no thermal energy involved

and the mass flow rate for unique single-stream device remain constant, furthermore,

dividing both members by mass flow rate, the Equation 4.2 reduces to:

ws,net in = h2 − h1 +
c22 − c21

2
+ g(z2 − z1) (4.3)

Using the definition of enthalpy h = u+ p/ρ and considering the assumption of ideal flow

(no irreversibility, so the internal energy remains constant), it rearranged into Formula

4.3:

ws,net in +
p1
ρ1

+
c21
2

+ gz1 =
p2
ρ2

+
c22
2

+ gz2 (4.4)

where, per unit mass: p/ρ is the flow energy, c2/2 is the kinetic energy and gz is the potential

energy of the fluid considered. For sake of simplicity, it introduces the mechanical energy
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balance on unit-mass basis : em,i = em,o + em,l where the left-hand term is the mechanical

energy at the inlet and the right-hand term is the mechanical energy at the outlet plus the

energy due to losses, mostly friction. Additionally, it adds the mechanical work output

of the turbine as ws,net in = −wt and so it can type the final version, expressed in the

Formula 4.5:

p1
ρ1

+
c21
2

+ gz1 =
p2
ρ2

+
c22
2

+ gz2 + wt + em,l (4.5)

Adding the condition that the density is not changing during the process (incompressible

flow, ρ1 = ρ2), introducing the specific water weight equals to the wanter density times

the gravity acceleration and reformulate the formula in terms of heads, which is more

helpful in this case, the above equation can be also written like:

p1
γ

+
c21
2g

+ z1 =
p2
γ

+
c22
2g

+ z2 + ht +412 (4.6)

The last term in the Formula 4.6, regarding the losses due to friction, is negligible because

of the little span between the two points (few centimetres). From this formulation, the

last step in order to calculate the power available, is shown in the Formula 4.7:

Pi = ṁ g ht (4.7)

So to obtain the hydraulic turbine efficiency [20], the Equation 4.8 is examined:

ηt =
Pt
Pi

(4.8)

Regarding the diffuser zone, from point 2 to point 3, the procedure is easier because

neither thermal energy nor shaft work are within the zone and, it has been figured out

that it can apply the Bernoulli principle [21], as shown in the Formula 4.9:

v2

2
+ gz +

p

ρ
= constant (4.9)
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Keeping this principle leads to the following constrains:

• Incompressible flow: the condition of constant density must be satisfied.

• Steady flow: the water flow itself is not in transient period, so no changes in flow

conditions.

• Flow along a streamlines: no vorticity in the flow field.

• No heat transfer: not applicable for significant changes in temperatures.

• Frictionless flow: the water flows involves very little amount of frictional effects, so

it can be neglected.

• No shaft work: devices, machine or impeller that can alter the streamlines must not

be in the zone considered.

All the above assumptions match the diffuser taken into account.

This principle is addressed in the area in order to figure out how the diffuser affects the

rotating region at the outlet, so the Equation 4.9 applied at the diffuser is in the following

form:

p2
γ

+
c22
2g

+ z2 =
p3
γ

+
c23
2g

+ z3 (4.10)

However, this equation has not been used because the values p2 and c2 are taken directly

from the simulation results. The common parameters used in this model are illustrated

in Table 4.4.

γ 9810 N/m3 g 9.81 m/s2

ρ 1000 kg/m3 ṁ 9 kg/s

Table 4.4: Constant parameters for power calculations

4.2 Flatblades

This is the first configuration analysed at testing level, it is built up with stainless steel

for the basin and PLA for the runner. Physically, this model is mounted in 1 Turbulent
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laboratory in Belgium but, sadly, due to lack in the basin and issues with the metering

system, it has not been possible to validate the CFD results got from this project. The

entire design is shown in Figure 4.5:

(a) Y-Z view (b) X-Z view

(c) X-Y view

Figure 4.5: Flatblades model view

The Figures 4.5 represents the water-tightened model, this is the one ready to be

simulate in OpenFOAM by the group of patches, these images are snapshots from Inventor

software. Second step is the usage of the meshing tool provided, also regarding the

near-wall treatment. In the next pictures, there are various particular views to highlight

the treatment of the mesh according to the zone taken into account.
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Figure 4.6: Turbines’ blades for Flatblades

(a) General meshing (b) Blades meshing

(c) Near-wall meshing (d) Outlet meshing

Figure 4.7: Flatblades meshing, particular views

In the Figure 4.6, the blades of the turbines are illustrated, the hub is not represented

because it has been treated differently, since it is not part of the fluid model, the design

as shown in Figure 4.7 regards only the water-tight volume. As visible too, particular

attention has been focused on the particular zones such as edge of the blades, walls and
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inlet/outlet.

So now, the simulations ran on Flatblades one are presented. The simulations were

done in a separate server and they took take at least 3 days according to the time step

given in the controlDict dictionary as well as on the geometry and boundary conditions.

As discussed in Subsection 4.2.4, the 1st and 3rd simulations brought results that are not

considered in the main project, although they are shown in Appendix C.

4.2.1 Second simulation

The 2nd simulation has been made with the constrain of nearly half water-tightened basin,

as shown under:

(a) Initial water height (b) Boxes in setFields dictionaries

Figure 4.8: Initial conditions for the 2nd simulation

35 cm is the initial water level inserted on the z value in the second bracket of the

boxToCell and boxToFace groups, all the other entries are typed for over dimension the

system and make sure that the volume considered is taken into account. The first

parenthesis mentions the lowest point in terms of x, y, z amount, whereas the second

one indicated the highest point and, inside fieldValues, the parameter it wanted to set.

About the velocities:
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(a) Top view (b) Vortex detail

Figure 4.9: Velocities results for the 2nd simulation

Considering these results, the velocities selected for the power calculations are: 1.25

m/s at the inlet and 0.6 m/s at the outlet. About the pressures:

(a) Top view (b) Vortex detail

Figure 4.10: Pressures results for the 2nd simulation

Considering these results, the pressures selected for the power calculations are: 500

Pa at the inlet and 1350 Pa at the outlet. About the turbulence parameters, Figures 4.11

outlined the behaviour of the turbulence model through the runner zone:
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(a) Turbulent kinetic energy (b) Specific dissipation rate

Figure 4.11: k and ω results for the 2nd simulation

At the end, the torque generated at the last time step:

Figure 4.12: Forces and Torque values for the 2nd simulation

So the Torque obtained from the simulation is -0.226 Nm approximately.

4.2.2 Fourth simulation

This simulation has been done as a adjustment of the previous case, it sets up the refined

turbulence parameter as initial conditions, they are represented in Figures 4.13 as their

entries in setFields directory and graphically in Figures 4.14:
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(a) Default values

(b) Refined parameters

Figure 4.13: setFields refined areas for the 4th simulation

(a) k (b) ω

Figure 4.14: Turbulence parameters initial conditions for the 4th simulation

Referencing to the cylinderToCell syntax, it reproduced as follows: p1 is the point

on the lower face of the cylinder, p2 is the point on the upper face of the cylinder, the

radius and, eventually under fieldValues, the parameters needed to set within the volume.

About the velocities:
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(a) Top view (b) Vortex detail

Figure 4.15: Velocities results for the 4th simulation

Considering these results, the velocities selected for the power calculations are: 1.2

m/s at the inlet and 0.4 m/s at the outlet. About the pressures:

(a) Top view (b) Vortex detail

Figure 4.16: Pressures results for the 4th simulation

Considering these results, the pressures selected for the power calculations are: 550

Pa at the inlet and 1450 Pa at the outlet. About the turbulence parameters, Figures 4.17

outlined the behaviour of the turbulence model through the runner zone
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(a) Turbulent kinetic energy (b) Specific dissipation rate

Figure 4.17: k and ω results for the 4th simulation

At the end, the torque generated at the last time step:

Figure 4.18: Forces and Torque values for the 4th simulation

So the Torque obtained from the simulation is -0.216 Nm approximately.

4.2.3 Fifth simulation

In this simulation, only one parameter varied from the 4th simulation: the average values

of k and ω. In Subsection 4.2.4 has examined why.

Figure 4.19: setFields average values refined for the 5th simulation
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(a) k (b) ω

Figure 4.20: Turbulence parameters initial conditions for the 5th simulation

About the velocities:

(a) Top view (b) Vortex detail

Figure 4.21: Velocities results for the 5th simulation

Considering these results, the velocities selected for the power calculations are: 1,3

m/s at the inlet and 0,55 m/s at the outlet. About the pressures:
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(a) Top view (b) Vortex detail

Figure 4.22: Pressures results for the 5th simulation

Considering these results, the pressures selected for the power calculations are: 530

Pa at the inlet and 1470 Pa at the outlet. About the turbulence parameters, Figures 4.23

outlined the behaviour of the turbulence model through the runner zone

(a) Turbulent kinetic energy (b) Specific dissipation rate

Figure 4.23: k and ω results for the 5th simulation

At the end, the torque generated at the last time step:
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Figure 4.24: Forces and Torque values for the 5th simulation

So the Torque obtained from the simulation is -0.223 Nm approximately.

4.2.4 Assessment of the results

Initially, the duration of the 1st simulation was very long: it took around 6 days to

completely finish, the main reason is the writing procedure and the time step simulation,

the results were saved every 0.1 seconds which leads to a way longer simulation and

unnecessary steps to write, also many Gigabytes to save the results so, from the 2nd

simulation onwards, this value has been increased to 1 sec in controlDict file.

The first three simulations have been made in order to appreciate the free water

surface and how high the water stream level is after a certain time, 40 seconds simulation

is reasonably good for visualising steady-state condition at the last and a compromise to

get pretty fast results. The 4th simulation has been performed after analysing the first

three simulations results as their improvements and with new enhancements to insert.

Regarding the alpha.water initial condition: the assumption of 35 cm initial water height

in the basin at the 2nd simulation is the most accurate to the real case because, as it can

be seen from the animation of the first 3 simulations too, it is approaching the water flow

level when reaching steady-state conditions more than the other 2 simulations which have

been made under empty basin and full basin initial conditions, 35 cm is a little bit higher

than half-full basin since the model is 50 cm high. So, the 4th and 5th simulations came up

with this consideration and use the same initial condition as in the 2nd one. That is why

the 1st and 3rd simulations are not presented in the main core of the project. Moreover,

it has been added the refined turbulence parameters that are calculated in details in

the Chapter 3, so only during 4th and 5th simulations, refined turbulence parameters are

applied.

Concerning turbulence parameters, within the 4th simulation, it has used the average

refined parameters as default values and a cylinder above the runner area with its own
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values, calculated in Chapter3 but the results did not accomplish the expectations so,

as a further edit, the rotating region turbulence values, as exhibited in Table 3.6, are

implemented to the entire control volume for the 5th simulation in order to keep the exact

turbulence amounts in the rotating region, which is the most important zone of the system

both for power generation and specification accuracy and, at the same time, maintain the

same cylinder set in the 4th simulation on the vortex basin.

By the separation in .stl files by Meshmixer, the model is split up in different patches,

Appendix G shows how many patches are present within the configurations, it has done

thorough because, whether changes in whatever parameters are made or not, it can be

done patch by patch; avoiding the issue of separating the model over again for new

purposes.

The turbine in the rotating region starts to run at t = 5 sec until t = 40 sec, which

correspond to the end of the simulation. This value is set up in order to avoid transient

problem at the begin of the simulation. From experiments, it decided to set the turbine

at constant speed of 240 rpm throughout the simulation (inserted in rad/s, as shown in

the Appendix E.3).

The velocity results at the inlet and outlet of the turbine are pretty similar between

each others, around 0.5 at the inlet and 1.3 m/s at the outlet, as it can be viewed from the

Figures 4.9, 4.15 and 4.21 as well as the previous results from Autocad CFD Simulation,

as shown in the Appendix F. Looking at the Figures 4.10, 4.33 and 4.22, it is fair enough

to have the same considerations for pressure results, very close values between simulations:

higher on the flanks of the rotating region and lower away from the vortex (including the

free water stream). So as expected, no big differences between simulations are in these

results once reaching steady-state condition. It had been encountered that the pressure

values at the inlet of the turbine should be higher than the ones got from the results, this

is because of the quite low mass flow rate at the inlet of the basin and, additionally, the

outlet pressure is nearly 3 times bigger than the inlet. The utilisation of the diffuser deals

with that and it has been implemented in Streamlines model.

The most important parameter is certainly the torque: among the simulations, the
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results are very analogous, around 0.22 Nm. It has been performed real-life experiments

on the model and the closest value to simulation conditions are shown in the next Table:

Experimental data T = 0.497 Nm at ω = 235.7 rpm and ṁ = 8.08 kg/s

Simulation results

T = 0.226 Nm at ω = 240 rpm and ṁ = 9 kg/s (2nd sim)

T = 0.216 Nm at ω = 240 rpm and ṁ = 9 kg/s (4th sim)

T = 0.223 Nm at ω = 240 rpm and ṁ = 9 kg/s (5th sim)

Table 4.5: Comparison between experimental data and simulations results

So, as it shown in Table 4.5, it figures out that the torque value should be higher and

approach the experimental results. Especially for 4th and 5th simulations, higher torque

values were expected, so the reasons why the simulation values are different from the

experimental data has to be found elsewhere. In Chapter 5, some recommendations are

presented.

Regarding the power calculations and taking the values of velocities and pressures at the

inlet and outlet of the turbine, these are the following results:

2nd simulation
ht = 0.1086 m Pav = 9.592 W

Pt = 5.680 W ηt = 0.593

4th simulation
ht = 0.1075 m Pav = 9.491 W

Pt = 5.429 W ηt = 0.572

5th simulation
ht = 0.1089 m Pav = 9.615 W

Pt = 5.605 W ηt = 0.583

Table 4.6: Power results for Flatblades

Even regarding these results, the difference between simulations is very little. The

efficiency of the turbine is approximately 0.58 averagely and, actually, also the efficiency

values could be higher since most of the turbine applied in this filed of application have

efficiency with order of magnitude approaching 70%. [22]



58 CFD analyses and performance comparison of micro-hydropower plants

4.3 Streamlines

This second configuration is named Streamlines because the so-called company designed

and compared models with the same concept as Flatblades, but aiming some requirements

such as easy installation, shipping by pallet, capable to scale and adaptable and so on. [23]

Streamlines provided different models, but throughout this project, only one is addressed.

The layout of this configuration is quite similar with the previous configuration with an

additional part appended at the outlet, thanks to the implementation of the diffuser

and lower walls in it. The whole model is shown in Figure 4.26. It is build out of

a straightforward scroll housing, a small compact turbine based on properly designed

hydrofoils. The outlet consists of a limited height below the basin.

Contrarily the previous configuration, the characteristic turbine inserted in the model

has 5 blades instead of 6, as shown in Figure 4.25

Figure 4.25: Streamlines turbine
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(a) Y-Z view (b) X-Z view

(c) X-Y view

Figure 4.26: Streamlines model views

Origin and axises in this configuration are the same as shown in the Figure 4.1.

As visible from Figures 4.27, particular attention has been focused on the particular

zones such as edge of the blades, walls and inlet/outlet.

In order to check the closed surface, using the command checkSurface in OpenFOAM,

it made sure that the volume was completely closed and there are no illegal triangles

within it.
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(a) General meshing (b) Blades meshing

(c) Near-wall meshing (d) Hub meshing

Figure 4.27: Streamlines meshing, particular views

4.3.1 Diffuser

A pivotal zone for the Streamlines model is surely the diffuser. The main role of the

diffuser is to keep the air out of the runner, placing it deep and making the water flow

in such a way to be as efficient as possible. In the Figure 4.28 (snapshot took from

Meshmixer environment), it shown the standard layout of the diffuser assembly which,

in the Streamlines simulation, has built up; further geometrical features are shown in

Appendix B.

The main focus is to maximise both the difference of velocity and pressure through

the diffuser. By doing so, the turbine can take advantages of the water stream as much

as possible. The velocity at the outlet of the diffuser is strongly dependent on the diffuser

layout.
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Figure 4.28: Standard diffuser for Streamlines

Thanks to this configuration, the problem with the stream separation on the walls is

avoided because of the high curvature between inlet and outlet of the diffuser. For reasons

accounting the velocity, in order to decrease it of nearly 3 times, the outlet area should

be 3 times bigger than the inlet area.

Separately from this project, different diffuser geometries were analyzed (the one in

Figure 4.28 is drawn as in the standard geometry for Streamlines company) and the task

was to find out the best shape and geometry for it because it affects both velocity and

pressure on the outflow zone of the model. [24]

4.3.2 First simulation

The mesh regarding the model is more refined than Flatblades one, for blockMeshDict, the

simpleGrading is almost double of the previous model, dealing with the geometry values.

It leads to a simulation way more slow, but more accurate. Because of that, and for time

hustle, the model has been simulate for only 2 seconds.

So, regarding the initial water height, the Figures 4.29 revealed this condition and its

relative setFields values and in Figure 4.30 the usual default alpha.water value is visible.
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(a) Initial water height (b) Boxes in setFields dictionaries

Figure 4.29: Initial condition for the simulation

(a) Default values

(b) Refined parameters

Figure 4.30: setFields refined areas for the simulation

For what the turbulence parameters are concerning, here are presented the initial

boxes as mentioned in setFields, according to the geometry. Different from Flatblades

simulations, here the cylinderToCell and cellToFace functions properly establish the

refined area at the runner zone, the second function is addressed in order to include

the both faces of the blades within the analysis.
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(a) k (b) ω

Figure 4.31: Turbulence parameters initial conditions for the simulation

About the velocities:

(a) Top view (b) Vortex detail

Figure 4.32: Velocities results for the simulation

Considering these results, the important velocities out of this simulation are: 1.5 m/s

at the inlet and 1 m/s at the outlet and 0.7 m/s at the outlet of the diffuser.

About the pressures:
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(a) Top view (b) Vortex detail

Figure 4.33: Pressures results for the simulation

Considering these results, the important pressures out of this simulation are: 500 Pa

at the inlet and 1000 Pa at the outlet and 1200 Pa at the outlet of the diffuser.

About the turbulence parameters:

(a) Turbulent kinetic energy (b) Specific dissipation rate

Figure 4.34: k and ω results for the simulation

At the end, the torque generated at the last time step:

Figure 4.35: Forces and Torque values for the simulation
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So the Torque obtained from the simulation is -0.204 Nm approximately.

As long as the results of this simulation are concerning, longer simulation which approach

the steady-state conditions are well-needed: decreasing the meshing size can help it out

on having faster simulation. To simulate 2 seconds it took around 2 days!

This is why, unfortunately, the steady-state conditions are not accomplished and power

results are not computed. Expecting that, specifically, the pressures of the turbine

outlet would be lower and at the diffuser outlet higher than the ones got from this

simulation. Either way, it can be figured out that the influence of the diffuser within

the configuration is quite valuable: the decrease in pressure between the Flatblades and

Streamlines simulation is around 500 Pa, which accounts for 32% of pressure drops and

for the 30% of power increment (comparing these results with 5th Flatblades simulations).

Torques value is approximately the same as in Flatblades.
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Chapter 5

Conclusions

Although some results are quite satisfactory, many diverse improvements can be done.

First of all, a better computer in order to get the entire CFD procedure faster and more

efficient is very necessary; different operative systems have to be used in addition with

2 server for simulating and visualising results, running by virtual machines. A more

powerful computer is required.

CAD drawings and adjustments as well as patches separation have been made by

Inventor and Meshmixer, they are powerful tools to prepare the water volume needed

by OpenFOAM in constant/triSurface directory. Additionally, to make sure that the

volume has no imperfections and flaws, MeshLab, add-in of OpenFOAM has used. So

these instruments are effective to have a straightforward pre-processing CFD operations.

As computed in Chapter 3, set all the boxes/cylinders for the turbulence values in setFields

dictionary would get more accurate results but, at the same time, it slows down the

simulations. Furthermore, suitable Streamlines turbulence parameters have to be inserted

and run over again the simulation: the current ones are assumptions from the Flatblades

result.

OpenFOAM is definitely the best software to run CFD simulation by now, even if

its learning is tough, the elaborate settings allow to change whatever value in whatever

patch or even cells. The only drawback encountered is regarding the interaction between

fluid and material: OpenFOAM works and runs only under water-tight volume conditions,

avoiding the interaction with materials which enclose the control volume. SnappyHexMesh
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is a meshing tool for complex geometry and, looking at the results, it performs accurate

and thoroughly. Hence, no further improvements concerning the mesh of the model and all

its features are needed. To previously check the meshing before starting the simulation,

many time the meshQuality dictionary has been ran. A further refinement for initial

setup is to decrease the time step simulation in controlDict which, again, will make the

simulation more correct but less quick.

More studies about the initial water level condition are needed, Flatblades simulations

are set on 35 cm from the bottom of the model but, most likely, this height is just a little

bit shorter: it has figured out from the last step simulated. I would suggest to keep it

as low as 25 cm for Flatblades configuration or, in correspondence with the inlet height;

whereas 15 cm for Streamlines model is logical.

Moreover, for both models, longer simulations are required: it could not be long enough

for reaching the steady-state conditions completely, regarding Streamlines configuration,

only a little step has been made for the simulation, normally 40 sec simulations are

required to appreciate the steady-state conditions and get accurate parameters out of the

simulations. Additionally, different operation points for the turbine speed are required in

order to check whether the assumption of 240 rpm is consistent for a certain amount of

mass flow rate (9 m/s for any simulation) with the real case or not.

Concerning the turbulence modelling: the SST k-ω turbulence model is a two-equation

eddy viscosity model and the most suitable for these models in terms of compromise

between wall treatment and free-stream behaviour, k-ω turbulence model is very sensitive

to initial guesses inserted in the files 0/k and 0/omega, so the more accurate guesses are,

the better result it gets. Therefore, from Figures 4.11, 4.17, 4.23 and 4.34, better guesses

can be initialised.

Very important is to have more exact and meticulous real-life validation for both

models, it has been very difficult compare the CFD results with the experimental data I

had, because most of the operating points were with higher mass flow rates and/or higher

rotational speeds. So it has not been truly possible to appreciate how much the results
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are close to the experimental data.

Possible improvements are also be taken from the discretisation and time-integration

schemes, because the initial estimations with simpleFoam and interFoam might not be

enough accurate for these models, so more rigourous discretised solution might be helpful.

Last, but not least, it is to set, as a further enhancement, new simulations with the new

specific dissipation rate and turbulent kinetic energy amounts starting from the results of

the 5th simulation.
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List of Symbols

4ij Regular head loss due to friction between i and j [m]

ṁ Mass flow rate [kg/s]

Q̇net Net transfer energy to a control volume by heat [J ]

Ẇs,net Net shaft work transfer energy [J ]

ηt Hydraulic turbine efficiency

γ Specific weight [N/m3]

Γk,ω Effective diffusivity of k, ω

µ Fluid dynamic viscosity [m2/s]

µt Eddy viscosity [m2/s]

ω Specific dissipation rate [1/s]

ρ Fluid density [kg/m3]

G̃k,ω Generation of k, ω

p̃ Static pressure [Pa]

s̃ı i/j-component of instantaneous strain rate tensor [Pa]

ũı i/j-component of the fluid velocity at a certain point xı and time t[m/s]

ε Turbulent dissipation rate [m2/s3]

c Fluid flow speed at the chosen point [m/s]

DH Hydraulic diameter [m]
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Dk,ω Cross-diffusion term of k,ω

em,l Mechanical energy lost per mass [J/kg]

h Enthalpy [J ]

ht Extracted head removed from the fluid by the turbine [m]

I Turbulent intensity

k Turbulent kinetic energy [m2/s2]

L Characteristic length [m]

l Turbulence length scale

N Rotational velocity of the turbine [rpm]

p Static pressure at the chosen point [Pa]

Pt Turbine power output [W ]

Pi Hydraulic turbine power [W ]

Re Reynolds number

Sı Mean strain rate

Sk,ω User-defined source term of k,ω

T Torque generated by the water stream [Nm]

Tı Viscous (or deviatoric) stresses [Pa]

U Average value of velocity [m/s]

u
′

Velocity fluctuation [m/s]

Yk,ω Dissipation of k,ω due to turbulence

z Height at the chosen point [m]
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Appendix A

Initial setup
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Appendix B

Qualitative 2D CAD drawings

These CAD models have been drawn in Autodesk Inventor in three-dimensions and,

afterwards, exported in 2D .dwg files in order to visualize the geometry values. In these

figures, it depicted the most valuable geometric parameters of both models (Flatblades

and Streamlines). They were important not only to know the correct dimensions of

the configuration, but also the origin reference because, especially to set the turbulence

parameters and the rotating region, it had to be taken into account the origin and set the

values accordingly, e.g.cylinderToCell of the turbulence model, outlines cylinders starting

from the origin. As already mentioned, the origin in Flatblades and Streamlines drawing

lays on the top part of the runner zone.

2D Flatblades drawing 2D Streamlines drawing
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Appendix C

1st and 3rd Flatblades simulations

Here are presented the results for the 1st and 3rd Flatblades simulations, which are taken

into consideration to compare the simulation results among different initial water height.

In order, the results are displayed as water height, velocities, pressures and turbulence

coefficients. Eventually, forces and torque values in the rotating region are exposed.

C.1 First simulation

Water height initial condition



CFD analyses and performance comparison of micro-hydropower plants 77

(a) Top view (b) Vortex detail

Velocity results

(a) Top view (b) Vortex detail

Pressure results

(a) k (b) ω

Turbulence parameters results

Torque and force results
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C.2 Third simulation

Water height initial condition

(a) Top view (b) Vortex detail

Velocity results

(a) Top view (b) Vortex detail

Pressure results
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(a) k (b) ω

Turbulence parameters results

Torque and force results
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Appendix D

Important commands on Ubuntu

terminal

• Open a virtual screen of the main server: typing tmux

• Reopen an ongoing simulation: typing tmux attach -t ‘name’

• Exit from the server: typing exit

• Detach an ongoing simulation: pressing ctrl+b and then d

• Copy a folder: typing scp -r ‘source’ ‘destination’

• Copy a file: typing scp ‘source’ ‘destination’

• Make a new directory: typing mkdir ‘name of the folder’

• Rename a tmux session: pressing ctrl+b and, then $

• Run the simulation: check Appendix H

• Delete a directory: typing rm -r ‘name of the folder’

• Delete a file: typing rm ‘name of the file’

• List the current position in the server: typing ls

• Get in the previous directory: typing cd ..

• List the ongoing tmux session: typing tmux list-session
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• Kill a simulation: pressing ctrl+c

• Stop a simulation: pressing ctrl+z

• Create a file: typing vi ‘name of the file’

• Move a file: typing mv ‘source’ ‘destination’

• Check the enclosed volume: typing surfaceCheck ‘name of the file’

• Check the mesh: typing checkMesh ‘name of the file’

• Merge files: typing cat ‘name1’ ‘name2’ ’...’ >‘name merged’
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Appendix E

Other meaningful files for

OpenFOAM

In all the following sections, the files used in OpenFOAM for Flatblades simulation are

outlined.

E.1 transportProperties

In this file, it addressed the properties of water and air to consider in the model, focusing

on the kinematic viscosity with nu in m2/s and density with rho in kg/m3. Moreover,

the sigma is set to zero because not taking part of the analysis.
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E.2 snappyHexMeshDict
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The features of this dictionaries are: preservation of featured edges, correct local meshing

for rotating frame, fully parallel execution and implementation of additional wall layers.

[25]

First of all, the first three lines switch either on or off the steps to run, concerning to make

the basic mesh, deciding to snap the back of surfaces and add viscous layer on them. All

of them are activated. Secondly, in geometry brackets, the .stls files are loaded with their

types and names.

In castellatedMeshControls the maximum amount of cells per CPU core, the maximum
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amount of cells to use before mesh deletion steps, the minimum of bad cells allowed

during the refinement stages, the expansion factor between low and high refinement zone

are expressed; furthermore, under features the explicit edge and surface based refinement

are specified. At the end, it resolves the sharp angles by spotting local curvature and

refine it as well as type the refinement regions, whether to allow zone faces that share

the same neighbour or owner cell zone and the cartesian point to retain the required

volume mesh. Under snapControls, it mentions the settings for the snapping: number

of pre-smoothing iterations before surface projection, scaling the maximum edge length,

number of smoothing iterations applied and the control number of scaling back iterations

for error reduction and, eventually, the number of snapping iterations to perform. Optional

new commands are implemented under the main controls, mostly in order to detect errors

in snaps. The final mesh steps is the addLayersControls which permits to add a specific

set of boundary patches: initially, the final layer and minimum thickness and the .stls

files to work on are typed, final layer thickness and expansion ratio are the ratio of height

of adjacent surface and consecutive layer in the direction away from the surface and their

grow.

There are also advanced features for the specification of feature angle above which

layers are automatically collapsed, the smoothing of the normal surfaces, the definition of

the medial axis used for mesh moving away from the surface, and, possibly, to reduce the

layer thickness; at the end, layer iteration settings are addressed in case of not converging

iterations. All along snappyHexMesh, the output quality is constantly monitored; under

meshQualityControls the orthogonality, skewness, concavity of the faces, minimum face

area and pyramid volume, the quality of the decomposition from cells to tetrahedra and

from faces to triangular element, cell determinant, face weight metric, minimum face

volume ratio, face triangle twist are checked. The vantage point of snappyHexMesh is

to scale the mesh back locally so the the advanced features regards the scaling and the

smoothing of displacement field. The mesh quality controls all the constrains and it might

cause instability and/or divergence, any entries previously mentioned have different level

of importance, e.g. non-orthogonality is way more important than face twist metric

calculated and some of them can be give any error if not accomplished.

In snappyHexMesh, the rotating region is also mesh refined: under refinementSurface, it
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is take into consideration the blades of the turbine. For each of those, the minimum and

maximum level of refinement, arrange the baffles type, which is a zero-thickness mesh

objects on the blades and, the blade at which the baffle is applied.

E.3 fvOptions

For specifying direction and order of magnitude of the rotation and other features, it has

been used the dictionary fvOptions. This dictionary concerns exactly the first simulation

of Flatblades configuration.

The velocity of the runner is fixed at 240 rpm (equals to 25.13 rad/s) for any simulation

considered. In this file, it specified the starting time (the timeStart was 0 for this

simulation, increased to 5 sec for all the other simulations), total duration, how many

axes of rotation are taken into consideration (by typing 0 or 1 to activate it) and the

angular velocity, using the same selection modes as in topoSet.
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E.4 fvSchemes

fvSchemes is the file that gathered all the mathematical models to solve equations concerning

operators and schemes. Similarly the other dictionaries, this file is in common among all

the simulations and configurations.

E.5 blockMeshDict

This is a sample of blockMesh tool in OpenFOAM applied to the Flatblades configuration.

So, under vertices the 8 points, took as the extreme bounding volume is typed. The
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negative and positive values are referred to the origin of the control volume (for any

model, set at the top of the runner zone, in the middle of the runner upper face).

E.6 controlDict

Here, not entirely represented, it is the control panel for reading and writing the results,

different values are managed in this dictionary. Beside the 1st simulation for the Flatblades

model, all the other simulations are set as in the above picture, this edit has been

done in order to speed up the running of the simulation which still take around 3 days

implementing this.

Specifically, the most of the picture shown that the simulation start at time 0 at end

at time 40 sec, deltaT sets the time step (0.01 sec) with adjustable time step and it writes

results as many time step as it has. The application used for the simulation is interFoam

as already explained in the Chapter 2.
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E.7 topoSet

To specify the cells within the rotating region, it has been used the dictionary topoSet.

As visible, the new region has been selected as for the option cellSet among 6 different

choices; by doing so, a virtual cylinder to turn has considered and to adjust the size, 3

important points are defined: the center of the lower face, the center of the upper face

and the radius.

Secondly, it added the cellZoneSet to put the previously defined option in a zone now

generated by sourceInfo brackets.
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Appendix F

Autodesk CFD Simulations results

(a) Free surface view
(b) Plane x-z at the center of the

runner

(c) Plane y-x few mms above the

runner

(d) Plane x-z at the center of the

runner

Autodesk CFD Simulation was the first software to implement CFD analysis; in the above

figures, it shown the velocity values along the coordinates planes and the free surface after

60 seconds. These results are quite consistent with the OpenFOAM ones, less accurate

though.

This software behaves differently compared to the one it used. The initial and boundary

conditions, density, viscosity and all the other parameters are way easier to set and
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the simulation is quite fast (around 1 day of time length). It is real-time visible the

performance of the simulation, especially regarding the free surface stream, which allow

to spot quickly if something went wrong during the configuration. A vantage point for

this software is that it is possible to insert the material of the different parts of the model,

thanks to a installed database and there is also the possibility to add a material which is

not present in the database.

Due to problems with the torque results, no refinement on near-wall meshing and

setting correctly the turbulence parameters, these results has been discarded and migrated

to OpenFOAM software which is the best open-source to perform CFD on it.
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Appendix G

Model .stl files

Flatblades Streamlines

Back Blade 1

Basin Blade 2

Blade 1 Blade 3

Blade 2 Blade 4

Blade 3 Blade 5

Blade 4 Diffuser walls

Blade 5 Full basin

Blade 6 Hub

Bottom Inlet

Hub Outlet

Inlet Rest

Left Top

Neck -

Outlet -

Outwall -

Right -

Top -

In the above table, it shown all the separated files by Meshmixer, the blades files are

separated from the original model in a different way, because it is not concerning the
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water-tight model.

Additionally, 2 files are created: Runblades and MergeVol for the purpose of checking the

volume merging all the .stl files concerning the sides of the water-tight model as well as

for the runner. To do so, an add-in of OpenFOAM software, in Ubuntu environment, has

been used: Meshlab.

Furthermore, in some files in OpenFOAM Streamlines setup, there were additional patches

called blade 1slave, blade 2slave, blade 3slave, blade 4slave and blade 5slave because the blades

of the turbine has 2 sides, the master indicated as in the table above and the slave ones

additionally inserted.
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Appendix H

Meshing and running simpleFoam in

parallel with snappyHexMesh tool

1. Rename 0 folder as 0.org: to prevent snappyHexMesh interfering with it.

2. blockMesh : to generate a background mesh for snappyHexMesh.

3. surfaceFeatureExtract : to let snappyHexMesh knows where to snap to.

4. decomposePar : to divide the mesh up into 1 section per CPU core.

5. mpirun -np 12 snappyHexMesh -overwrite -parallel : to make the mesher

runs in parallel.

6. reconstructParMesh -constant : to merge the mesh back together.

7. Delete all the processor folders: to clear up all the old mesh data.

8. topoSet : to run the sub-dictionary when and if required.

9. Rename 0.org folder as 0: reactivate the folder to use for the solver.

10. Edit the ’boundary’ file and remove all the references to patches created

by blockMesh in Step2: to leave only the patches desired for the simulation to

run.

11. setFields : to run this sub-dictionary when and if required.

12. decomposePar : to put the solution setup into 1 folder per CPU core.
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13. mpirun -n 12 renumberMesh -overwrite -parallel : to optimise the mesh.

14. mpirun -np 12 interFoam -parallel : to make the solver run in parallel, from

this point the simulation run smoothly.

15. reconstructPar : put the CPU results back together in one if a transient solver is

running.

16. Delete all the processor folders: to clear up all the old mesh data.

17. paraFoam : to visualise the results.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Hydroelectricity, an overview
	Turbulent concept and technology

	Computational Fluid Dynamics
	OpenFOAM overview
	Constant folder
	System folder
	0 folder

	Meshing
	snappyHexMesh

	Rotating region
	Solvers: simpleFOAM and interFoam
	Boundary conditions
	Inlet/Outlet Velocities
	Pressure field


	Turbulence modelling
	Theory
	Near-wall treatment
	Reynolds averaged equations (RANS)
	Linear eddy viscosity model

	SST k- model
	Computation of the parameters

	Turbulent models
	Power calculations
	Flatblades
	Second simulation
	Fourth simulation
	Fifth simulation
	Assessment of the results

	Streamlines
	Diffuser
	First simulation


	Conclusions
	List of Symbols
	References
	Initial setup
	Qualitative 2D CAD drawings
	1st and 3rd Flatblades simulations
	First simulation
	Third simulation

	Important commands on Ubuntu terminal
	Other meaningful files for OpenFOAM
	transportProperties
	snappyHexMeshDict
	fvOptions
	fvSchemes
	blockMeshDict
	controlDict
	topoSet

	Autodesk CFD Simulations results
	Model .stl files
	Meshing and running simpleFoam in parallel with snappyHexMesh tool

