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Abstract Constructible sets are needed in many algorithms of Computer Algebra, particularly in the Grobner
Cover and other algorithms for parametric polynomial systems. In this paper we review the canonical form of
constructible sets and give algorithms for computing it.
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1 Introduction

In the basic paper defining the Grébner Cover [16] for discussing parametric polynomial systems of equations, we
introduced algorithms that have been improved since then. We used our own algorithm BUILDTREE for computing
the initial Comprehensive Grobner System (CGS), needed for the Grobner Cover, now substituted in the Singular [7]
library “grobcov.lib” by the more efficient Kapur—Sun—Wang algorithm [11]. The algorithm GROBCOV used specially
simple locally closed sets, whose union is certified to be also locally closed by Wibmer’s theorem [17] (algorithm
LCUNION).

The Grobner Cover is used in [15] for the automatic deduction of geometric theorems. It is also essential for
computing geometrical loci and defining a taxonomy of the components of loci in [1], as well as for envelopes.
In general in these tasks, the representation of locally closed sets, i.e. difference of varieties, is sufficient. But for
more general applications, where Wibmer’s theorem [17] is not applicable, the union of locally closed sets is not
always locally closed. This is the reason for reviewing here the canonical representation of constructible sets giving
algorithms to compute it, as well as to use the new algorithms inside the library for computing higher dimensional
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geometrical loci’s. As shown in Example 2, the algorithm for computing the canonical form of constructible sets
can be very useful in an alternative construction of the Grobner Cover.

Canonical form of constructible sets were already introduced by [3], in the context of general topology. More
recently, [10] have given a description of invariant sequences for constructible sets in Zariski topology. The object of
this paper is, taken this last description as starting point, to give formulas and algorithms for computing effectively
the canonical form of constructible sets.

In Sect. 2, we give the two canonical representations of locally closed sets and an algorithm PCREP for computing
them, that is central for our purposes. In Sect. 3, we recall the canonical structure of constructible sets introduced by
[10], complementing it with dimension characteristics and an effective formula. This formula allows us to give an
algorithm in Sect. 4 to build the canonical representation of constructible sets, using the CREP for locally closed sets.
In Sect. 4 we also propose an acceleration method. Finally in Sect. 5 clarifying examples are given. In particular an
example shows why the new algorithms are promising for an alternative approach for building the Grobner Cover.

Some remarks about notation. All along the paper we shall use the notations € and C to represent inclusion and
strict inclusion, respectively. If » > 1 is an integer the symbol [r] means the set [r] = {i e N: 1 <i <r}. Fora
set S C C", the complementary set C"\S of S is denoted S¢. Finally A W B means disjoint reunion, that is, A U B
with the additional information that AN B = ¢.

2 Canonical Representations of Locally Closed Sets

Consider the ring Q[x] = Q[x1, ..., x,,] of polynomials in n indeterminates xi, ..., x, with rational coefficients.
If N C Q[x], the variety of N is the set

VIN) ={uecC":g(u)=0forall g € N}.

Let a = RAD({N)). Then V(N) = V((N)) = V(a). The ideal a is called the ideal of the variety V(N), and is
denoted a = I(V(N)). If S € C", the closure of S is the smallest variety containing S, and is denoted S. The ideal
of S, denoted I(S), is defined by I(S) = I(S). By the Nullstellensatz, there is a one-to-one correspondence between
varieties V and radical ideals a. For a radical ideal a and a variety V, both I(V(a)) = a and V(I(V)) = V hold.

By taking varieties as closed sets, we have a topology in C” called the Q-Zariski topology of C". For concepts about
varieties and the Q-Zariski topology of C" not defined here (such as irreducible varieties, irreducible components,
dimension of a variety, etc.), we refer to [2,5].

Aset S € C" is locally closed if it is the intersection of an open set and a closed set.

Remark 2.1 The concept of locally closed set admits different but equivalent definitions. Indeed, the following
conditions are easily shown to be equivalent:

(a) The set S is locally closed;

(b) the set S is the difference of two closed sets;
(c) the set S is open in the closure Sof S;

(d) the set S\S is closed.

Let S be an open (resp. closed) set. As C" is closed (resp. open), then S = § N C”" is a locally closed set. Thus,
open sets and closed sets are locally closed.

We introduce now the canonical C-representation of a locally closed set S. Let S be a locally closed set. As §
and S\ S are closed, there exist radical ideals a and b such that

S=V(a) and S\S = V(b).

These ideals satisfy

S = S\(S\S) = V(a)\V(b). 2.1
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Computing the Canonical Representation of Constructible Sets

Taking into account the one-to-one correspondence between radical ideals and varieties, the ideals a = I(S) and
b=1 (§ \S) are uniquely determined by S. The pair CREP(S) = [a, b] is called the C-canonical representation of
the locally closed set S. It is canonical in the sense that it does not depend on how the locally closed set S is given:
it depends only on S. The set V(a) (or a) is called the top of S, whereas V(b) (or b) is called the hole of S.

Remark 2.2 If [a, b] = CREP(S), then S is closed if and only if b = (1).
Remark 2.3 Note that if S is empty, then a = (1), b = (1).

The following Proposition explains how to obtain CREP(S) = [a, b] for a locally closed set S given in the form
S = V(P)\V(Q) by two ideals P and Q. It uses the decomposition of V(P) into irreducible varieties, which can
be done by [8] algorithm.

Proposition 2.4 Let S = V(P)\V(Q) be a locally closed set given by two ideals P and Q, and let {p), ..., p}}
be the prime decomposition of P. Consider the set {p1, ..., p,} of ideals p} such that V(p;) Z V(Q). Then, the
C-representation [a, b] of S satisfies

() a =iz pis

(i) b =RAD(a+ Q);
(iii) if S is non-empty then a C b.

Proof (i) Fori € [s]letV; = V(p;). Then V(P) = V1 U--- U V; is the decomposition of V(P) into irreducible
varieties. We have

S =V(P)\V(Q) = (U Vi)\V(Q) = J vA\v@ nv).
i=1 i=1
LetJ = {i € [s]: V(p;) € V(Q)}.Ifi € [s]\J, then V; NV (Q) = V; and so V;\(V(Q) N V;) = . Thus the
set V;\(V(Q) N V;) can be excluded from the union, obtaining
s ={JVAV@Nn V).
ieJ

Fori € J, we have V(Q) N V; C V;. As V; is irreducible, the closure of V;\(V(Q) N V;) is V;. Therefore,

S=Jvi=Vveo. (2.2)
ieJ i=1
a=1) =1V =(pi =0 (2.3)
ieJ ieJ i=1

(ii) To obtain b = I(S\S) note that

s=U,_, vav@nvn=J_ vavion = (U, Vi) \WV@ =5\v@.
S\S =S\(S\V(2) =5NV(Q) = V(@) NV(Q) =V(a+ Q)
so that, b = I(S\S) = RAD(a + Q).

(iii) From b = RAD(a + Q), clearly b © a. Now b = a implies S = ¢ and in this case a = b = (1). Therefore, if
S is non-empty, then b D a. O

We can further decompose CREP(S) = [a, b] and obtain another representation of S. Let {p; : i € [r]} be the
prime decomposition of a and for i € [r]let {p;; : j € [r;]} be the prime decomposition of p; + b. The set

PREP(S) = {[pi, {pij : j € [}l i € [r]} (2.4)

a Journal: MCS MS: 0248 [ TYPESET []DISK []LE []CP Disp.:2016/2/29 Pages: 14 Layout: Medium




Author Proof

96

97

98

929

100

101

102

o

3

o
=

105

106

107

108

109

110

111

112

113

1

>

115

116

17

118

1

9

1

n

0

121

1

N

2

1

N
[}

1

N

4

125

126

127

12
12
130

J. M. Brunat, A. Montes

is called the P-representation of S. Note that it only depends on S. Each [p;, {p;; : j € [r;]1}] is called a component
of S, from which V(p;) (or p;) is the fop and V(p;;) (or p;;) with j € [r;] its holes.

Remark 2.5 Note that if S = ¢, then PREP(S) = {[(1), {(1)}]}.
Proposition 2.6 Let [a, b] and {[p;, {p;j : j € [ril}] : i € [r]} be respectively the C-representation and P-
representation of a locally closed set S. Then
(i) If S £ 0, thenp; C p;j, foralli € [r]land j € [r;];
(i) a=(V_ipi;
(i) b= N}y piji
@) 8 = Ui (Voo \ (U2 Vo).
Proof (1) Itis consequence of the definition of P-representation, as b ¢ p; for non empty S.

(i1) It is consequence of Proposition 2.4.
(iii) Considering the intersection of all the identities RAD(p; +b) =p;; N--- N pi, we have

T=()()rij=[)RaD(; +b) = RAD(m(Pi + b))
i=1j=1 i=1 i=1
and

V(T) = V(ﬂ(p,- - b)) = J Vi +0) = (Vp) N V(b))

i=1 i=1 i=1
= (U V(pi)) NV()=V(@ NVb) =V(Ob).

i=1

Taking ideals of the varieties and using the Nullstellensatz, we have b = T, so that (iii) is proved.
(iv) As [a, b] is the C-representation of S, we have § = V(a)\V(b). Then, by taking varieties in (ii) and (iii), we
have

r

S =V(@)\V(b) = (U V(p»)\ U U Vi) | = [ Vo U V(pi))
i=1 j=1

i=1j=1 i=1
O
Proposition 2.7 Let S be a non empty locally closed set with
CREP(S) = [a, b] and PREP(S) = {[p;, {pij : j € [ril}] : i € [r]}.
Then
(i) dim V(p;;) <dim V(p;) foralli € [r]land j € [r;];
(i) dimV(b) < dim V(a).
Proof (i) As the p; and p;; are prime and correspond to irreducible varieties the result is obvious.
(i) From Proposition 2.6 (iii) , we have
r ri
dim V (b) = dim |_J | J V(pij)
i=1j=1
=max{dim V(p;;) :i € [r], j € [r;i]}
< max{dimV(p;) : i € [r]} = dim V(a).
O
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[CREP, PREP] <— CPrep(P, Q)

Input:

[P, Q]: a pair of ideals representing the set S = V(P)\V(Q)
Output:

[a, b] the C-representation of S and

{tvi, {pi1. - - -, pir;}1: 1 <i <r} the P-representation of S
begin

a=(1);PREP=0;i =0

{p}, ..., p;} = PRIMEDECOMP(P)

for j = 1tosdo
ingp’jthen
i=i+lip=pa=anyp

{pi1. ... pir;} = PRIMEDECOMP(Q + p;)
PREP = PREP U {[p;, {pi1, ..., pir; 11}
end if
end for
b =RAD(Q + a)
CREP = [a, b]
return([CREP, PREP])

end

Algorithm 1: CPREP

w1 Corollary 2.8 Let V and W be varieties and S = V\W.IfW C V and V =S, then CREP(S) = [I(V), I(W)] and
12 dimW < dimV.

s Proof If S = V then a = I(S) = I(V). Moreover
w S\S=ENE UW)=SNW = W.
135 Thus b = I(W). The dimension relation is a consequence of Proposition 2.7. O

136 Proposition 2.4 and the definition of P-representation justify Algorithm 1 CPREP for obtaining the canonical
137 representations CREP and PREP of a locally closed set S = V(P)\V(Q) given by a pair of ideals [P, Q]. The
1s  algorithm can be easily modified for obtaining only the C-representation CREP(S) of S.

139 Remark 2.9 If the set S is empty, the algorithm for obtaining CPREP(S) will return CPREP(S) = [[(1), (1)1, {[(1),
o {(DI]

N

11~ 3 Canonical Representation of Constructible Sets

12 A set S € C" is constructible if it is a finite union of locally closed sets. In particular, locally closed sets are
s constructible. Constructible sets appear naturally in solving parametric polynomial systems of equations. Many
4 authors give special representations for constructible sets [4, 10, 12,13], adequate for its goals. Our goal is developing
1s  the invariant sequence of a constructible set described in [10] setting the outlook on its effective computation, to
s generalize the CREP of a locally closed set.

147 Next lemma recalls the behaviour of locally closed sets and constructible sets respect to union, intersection and
14s  complementation. We omit the proofs which are straightforward.

1

N

1

=

1

N

149 Lemma 3.1 .

1

o

0 (1) If S is locally closed, then S€ is constructible;
1 (i) If Sy and Sy are locally closed, then Sy U Sy is constructible and S1 N Sy is locally closed;
2 (i) If Sy is locally closed and S is constructible, then Sy U S> and Sy N Sy are constructible;

1

o

1

o
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@iv) If S1 and S> are constructible, then S1 U Sy and S1 N Sy are constructible.
(v) if S is constructible, then S¢ is constructible.
(vi) if Sy and S, are constructible, then S1\S3 is constructible.

In the following £ denotes the family of locally closed sets and C the family of constructible sets.

Remark 3.2 According to Lemma 3.1, if 1 and S, are constructible, then Sy U S>, S1 N Sz and SY are constructible
sets, too. Then C is a Boolean algebra of subsets of C" containing £. On the other hand, if a Boolean algebra A
contains £ then it must contain the finite union of locally closed sets, that is, C € .A. We conclude that C is the
Boolean algebra generated by £. Let 7 be the union of the family of open sets and the family of closed sets. The
boolean algebra generated by 7 contains £, so C is also the boolean algebra generated by 7.

The first step of the construction of the canonical structure of the constructible set S given as a union of locally
closed sets is to separate S into two disjoint sets: S = S & C where C is the complement of S with respect to S.
Having this in mind we define:

C(S) =S\S, L(S) = S\C(), 3.1

(If the set S is clear from the context, we often write C and L instead of C(S) and L(S) respectively).
If S € C, then, S and S€ are constructible and C(S) = S\ S is a difference of constructibles, so it is a constructible
set. Thus, the map

C:C—>¢C
S C(S) =5\S

is well defined. Note:

i) S=CSWS;
(i) S is closed if and only if C(S) = @;
(iii) S is locally closed if and only if C(S) is closed.

The set L(S) = E\E (where C = C(9)) is a difference of closed sets, so it is locally closed. Then,

L:C— L
S+ L(S) =S\C

is a well defined map. Clearly S = L(S) & C. Moreover, L(S) C S. Indeed,
L(S) = S\C = S\ (ﬁ) c S\ (S\S) = .

For a constructible set S, the set L(S) can be characterized as the largest locally closed set included in S.
We give now a Proposition that determines an explicit expression of C as a union of locally closed sets in terms
of the input expression of S.

Proposition 3.3 Let S = S1U---US, be a constructible set with each S; locally closed. Fori € [r] let CREP(S;) =
[CL,‘, b,‘], Vl = V(Cli) and Wi = V(b,’). Then,

c=s5\s=U ({NVv]n(NW

rcir \ \jer JeT
= U W \ Uvill|- (3.2)
TClr] jéT jeT
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Computing the Canonical Representation of Constructible Sets

Proof We have

S=WVI\WDU---UVA\W,) = Vi N W) U---U(V, N W)

-n ((un]o(uwl).

TC[r] jer J€T

and thus

ss=U (N )n( W
TC[r] JeT JE€T

For a subset T C [r], let

ze=|\vi|n W]

jeT jéT

so that §¢ = UTg[r] Z 7. With this notation, the equality to prove is E\S = UTC[r] Zr.ForasetT C [r] and an
index £ € T we have

VeNZr SVen (\VESVen Vi =0,
jer

(in particular, Vy N Zj,; = @) and, if £¢T', then W, C V; and

ven (YW= (W,

J€T J €T

and we have V, N Z7 = Zr. Therefore, by using the distributive law,

S\S=MViU---UuV)nNs=WU---Uv)n U i
T<ir]

O

Proposition 3.3 provides an explicit formula of C = S\ S, as a union of locally closed sets. We can compute the
CREP of each one of these subsets of C and obtain an expression that allows us to handle C C S in the same way as
we have done with S. This provides an iterative method to build the canonical representation of S. Next Proposition
summarizes the basic properties of the first step in the recursive construction.

Proposition 3.4 Let S # () be a constructible set, C = C(S), L = L(S), a =I(S) and b = I(C). Then,

i) CcS;
(i) CCS;
(i) S=1L;
(iv) [a, b] = [I(S), I(C)] = [I(S)], I(C)] is the C-representation of L.
(v) dimC < dim S.
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Proof (i) Let S = S1 U --- U S, with §; locally closed. For i € [r], let CREP(S;) = [a;, b;], Vi = V(a;) and
W; = V(b;). Then, S = [J/_,(V;\W;) with W; C V;. By taking closures it results in S = J/_; V;. Now, from
formula (3.2) of Proposition 3.3 it results in

L=S\C258\ (| Jw; =(UV,)\ Uw, =UU v \ U Wi -
i= j=1

j=1 i=1 j=1 1 k=1

where V; = U;izl Vik is the decomposition of V; into irreducible varieties. If some irreducible variety Vi of V;
of the segment i is cancelled by some W; of a segment j, i.e. W; 2 Vi, then V; D W; O Vi, and in this case
the variety Vj is included in V;. So, Vj; does not cancel in the closure of L nor of S. Thus LD U,r: Vi= S. As
L C S we also have L C S, and the inclusion is proved.

(iv) and (v) From (ii) and (iii) the expression L = S\C satisfies the conditions of Corollary 2.8, and thus (iv) and
(v) follow. |

We proceed now to describe the method for obtaining the canonical representation. Let S be a constructible set.
Define the sequence (A;) by

A1 =S, A =CA)).

By Proposition 3.4 (ii) and (v), if A; # @, we have A D A;4+1 and dim A; > dim Aj+1. Therefore, there exists
an integer kK > 1 such that A;;1 = ¥ and Ay is closed. Consider the finite sequences

S=A1,A, ..., A, Arp1 =0 (3.3)
S=A1DA; DDA =0,
dim(S) = dim(A;) > dim(42) > --- > dim(Ay).

By construction A = C(A}) = E\S is disjoint with S = Aj. But A3 = A_Z\Az is disjoint with A, and a subset
of S. Thus, we have two decreasing and disjoint subsequences

S=A1 DA3D -+ D Ay,
C=A)D A4 DD Ay.

Applying L to sequence (3.3), i.e. L; = A;\A;11, we get a new sequence of disjoint sets that fill the whole S,
Ly =A\Ay, Ly=A)\Az, ..., Ly = At\Agy1 = Ag
so that
S=A=A\Ar 1 =L WL W - L.

As the L; belong alternatively to S and to C the previous sequence is divided into

S=L1WL3W---W Lopy, 3.4
C=LyWLsW--- Loy. 3.5)
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[a, C] < FirstLevel(A)
Input:
A ={[ar, b1], ..., [ar, br]}
a set of CREP’s of the segments defining a constructible set A
Output:
a: the closure of A and
C: a set of CREP’s of the segments defining C(A)

begin
a=Ni— &
p=(0);q=(1);C=0;
topC = (1)
forall T C [r] do
for j € [r] do
if j € Tthenp=yp+b; else = qN a; end if
end for
[a, b] = CREP(p, q)
C = APPEND([a, b] to C)
end do
C = SIMPLIFYUNION(C) # facility for reducing terms
return ([a, C])
end

Algorithm 2: FIRSTLEVEL

The odd disjoint locally closed subsets L, L3 ... Loy+1 in which § is decomposed by the above procedure form
the canonical structure of the constructible set S and is independent of the initially given locally closed sets defining
S. We also obtain the canonical structure of the complement C = S\ S as the union of the even locally closed subsets
LoWLsW--- Lyy. From them it is obvious how to obtain the canonical representation of S and C whose levels
are already given by their CREP’s.

Fori € [k], define the ideals a; = I(A;). By using Proposition 3.4 (iv) and (v) it results

Li = V(a)\V(aiy1),
CREP(L;) = [a;, a;11],
dim V(a;) > dim V(a;+1),
I(S) =a1 Cap C-+- Cayg1 = (1),
S=V(a) D V(@)D V(@)D D V() =9
Remark 3.5 In Q[x1, ..., x,], taking into account the decreasing dimensions of the levels of a constructible set we
have

(i) The maximum number of levels of S and C is n + 1, that will occur when

dim(Ly) = n, dim(Ly) =n — 1, dim(L3) =n —2, ..., dim(L,4+1) = 0.

(ii) The maximum number of levels of S'is [ 5] + 1.
(iii) dim(Lpi—1) > dim(L2i+1) + 2.

4 Algorithms for Obtaining the Canonical Representation of a Constructible Set
The algorithms work with ideals, whereas the definitions of C and L as well as the formulas given in the previous

sections are given in varieties. To set down the algorithms we must consider the one-to-one correspondence between
ideals of varieties and varieties.
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L <« ConsLevels(A)
Input:
A ={lar, bi],...,[ar, b1}
a set of CREP’s of the segments of a constructible set
S = Uiz (V(a)\V(b;))
Output:
L =[Ly, L3, Log+1]
the set of CREP’s of the canonical levels of S.

begin
L=0;t=0,A"=A; #0 = level
while A" # ¢ do
=041
[b, C] = FIRSTLEVEL(A’)
A =C
if ¢ mod2 =1thena=1»
else
L = APPEND([a, b] to L)
end if
end while
return(L)
end

Algorithm 3: CONSLEVELS

To flexibilize the language, if S = S; U- - - U S, is a constructible set with each S; locally closed, we call the sets
S; the segments of S in the expression S = S U--- U S,.

Algorithm 2 FIRSTLEVEL corresponds to Proposition 3.3. Given a constructible set S, we apply the algorithm
CREP to its segments; the resulting set of pairs of ideals is the input of FIRSTLEVEL.

FIRSTLEVEL applied to A; returns [a, A; 1], following Proposition 3.3, where A; 1 = C(A;) is given by the set
of CREP’s of its segments, and a is the ideal corresponding to the top of A;.

FIRSTLEVEL does not return the true level L(A;) defined by A; but only its closure. The reason is that the hole
will be computed in the next call to FIRSTLEVEL when applied to A; .

Algorithm 3 CONSLEVELS iterates calls to FIRSTLEVEL(A;), obtaining [b, C], separating the top b and repeating
the call with the next A; 1 = C. But in order to complete the even levels, (i.e. the levels of the constructible), for
the odd calls, b is reserved setting a = b, whereas for the even calls, the previous level is L;_; = [a, b]. The odd
levels L;_1 are incorporated to the list L of levels of S.

Moreover, the algorithms can be accelerated. Formula (3.2) of Proposition 3.3 for computing the complement
C =C0) = E\S can contain many terms as CREP’s of locally closed sets, as it considers all the subsets of [r].
Observe that if there are two different segments of C such that CREP(S;) = [a;, b;] and CREP(S;) = [a;, b;] are
such that b; = a;, then

SiUS; = (V(@@)\V(6;) UV(b)\V(b;)) = V(a)\V(b;),

so that CREP(S; U §;) = [a;, b;]. This can be tested for every (i, j). After this process it can appear more than
one segment that has become closed. All of them can be summarized into a single one taking the intersection of
the corresponding ideals of varieties. Doing so we can reduce the number of segments in C which will results in
an acceleration of the algorithm CONSLEVELS. The acceleration Algorithm 4 SIMPLIFYUNION is to be used inside
FIRSTLEVEL after obtaining C. Example 3 shows the effectivity of doing so.

In all the algorithms for computing the canonical form of constructible sets we use the CREP of locally closed
sets. The reason is that the procedure FIRSTLEVEL uses formulas (3.1) and (3.2) that use CREP, and the iterative
procedure CONSLEVELS call it at each step. We remember that in [16], we used PREP for adding together locally
closed segments in the algorithm LCUNION, because in this context we know that the considered unions are locally
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closed by Wibmer’s Theorem, and so a simpler algorithm can be used. But this is no more applicable for general
constructible sets. It is not difficult to transform one representation into the other if we want to compare results.

Note: If A is a list and J a set of indices, DELETE(A, J) means delete from A all the elements in
positions j € J.

A’ < SimplifyUnion(A) # implementation facility for reducing terms
Input:
A ={[ar, b1], ..., [ar, br]}
a set of CREP’s of the locally closed sets defining 7 = Ule (V(ai)\V(b;))
Output:
A’: a simpler set of CREP’s of the T

begin
A=A
i=1
while i € [#A'] do
j=1
while j € [#A'] do
if j #iand A}, = A | do

Ap =147, A},z]
A’ = DELETE(A/, {j})
if j <itheni=i-1
end if
else j =j+1
end if
end while
i=i+1
end while
J:{je#A/:A}’Z: 1}
a= mjej A,j,l

A’ = DELETE(A’, J)
A" = APPEND([a, (1)]to A”)
return(A’)

end

Algorithm 4: SIMPLIFYUNION
5 Examples

We have implemented algorithms FIRSTLEVEL and CONSLEVELS (as well as the acceleration routine SIMPLIFYU-
NION) in Singular. They will be next included in the reformed GROBCOV library. We show here some examples of
adding locally closed sets to obtain the canonical representation of the constructible.

Example 1 The first example is a simple geometric problem in 3-dimensional space with a nice geometrical inter-
pretation. Consider the constructible set S = S1 U S> U S3, where

Si=Va?+y*+22 = D\V( 22 +y2 = 1),
S5 =V, x> +22 = D\V@@E+ 1), y,x +z+ 1),
S3 = V(@)\V(5z — 4,5y — 3, x).

The set S is a sphere minus a maximum circle, S> is a maximum circle minus two points and S3 is a plane minus
one point. Applying CONSLEVELS to them the result is:
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Li =V +y2+ 22— D\V@E 2 +y2 = 1),
Ly =V(z,x* +y* = D\V(z,x + y* — 1, xy, x* — x),
Ly=V(z x+y* —1,xy, x> —x).

The canonical representations of S and C are
S=Li WLy, C=S8\S=L,.

As expected from the geometrical interpretation, S, is completely included in S; except for the point P; =
V(z,y,x—1) ={(1,0,0)}. Point P; is not in S7 because it is in the circle retrieved from the sphere, and cannot be
included in L because it does not form a locally closed set with L. Thus S; U $> = S; U{(1, 0, 0)}. Now, adding
S5 will add the plane x = 0 minus point (0, 3/5, 4/5) already contained in Sj. This implies the addition of the
component V(x), that in order to be included in the first level, from which the maximum circle V(z, x24 y2 —1)is
excluded, will left to be added to the next level the intersection points P, = (0, 1,0) and P; = (-0, —1, 0). Thus
the second level will be L3 = P U P, U P3 = {(1,0,0), (0, 1, 0), (0, —1, 0)}.

Example 2 We consider now the following system of equations in the context of the computation of its Grobner
Cover [16], in which we can verify the interest of the canonical representation of constructible sets. Consider the
ring R = Q(ao, bo, co, a1, b1, c1)[x, y], and the system

S = {a0x2 + box + co, allx2 + b1x 4+ c1}.

The first step is to compute a CGS (Comprehensive Grobner System). Using Kapur—Sun—Wang algorithm [11],
the parameter space is divided into 11 disjoint segments S, . .., S11, and for each segment S; a basis B; specializing

Table 1 Segments and bases of Example 2

S| = V(O)\V(aéc% — apgbobic1 — 2apcoarcy + aoCob% + b(z)alcl — bocoa1by + cga%)

By = {1}

Sy = V(a%c% —apbobic1 — 2apcoarcy + a()Cob% + b(z)alcl — bocoa1by + c%alz)\V(boalcl — coarby, apaicy — C()alz, apcoarby —
bgcoalz, aéc% —apgbobicy + agcob% — cgalz)

By = {(boaici — coa1b1)x + (—agc} + bobicy + coarcy — cob?)}

S3 = V(ar, ap)\V(ai, bobic1 — cob?, ag)

B3 = {1}

S4 = V(ar, apc? — bobicr + cobP)\V (b1, a1, aper)
By = {b1x — c1}

S5 = V(b1, a1, a0)\V(c1, b, a1, ao)

Bs = {1}

Se = V(c1, b1, an\V(ci, by, ar, ap)

Bg = {a0x2 + box + co}

87 = V(ci, b, a1, ap)\V(c1, b1, a1, bo, ao)

By = {box + co}

Sg = V(c1, b1, ai, bo, ap)\V(c1, b1, ai, o, bo, ap)

Bs = {1}
S9 = V(c1, b1, a1, co, by, ap)\V(1)
By = {0}

S10 = V(cr, co)\V(c1, co, aoby — boay)

Bio = {(aob1 — boay)x}

S11 = V(boci — cobi, apc1 — cobi, apby — bo, a1)\V (a1, boci — coby, apci, apby)
By = {a1x® + bix +c1}
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Table 2 Levels of the canonical representation of Example 2

Sy =8S1US8USsUSg =L UL3ULs

L= V(O)\V(a%c% — agbobici — 2apcpaicy + aoCob% + b(z)alcl — bocpa1by + c%a%)
L3 = V(ai, ap)\V(ai, ay, —bocy + coby)

Ls =V (b1, ay, by, ap)\V(c1, b1, a1, o, bo, ao)

Sy =8US4US7USi9=L1UL3

L= V(a(Z)C% —aogbobici —2apcoaicy +a000b% +b(2)a161 —bocopa by +c%a%)\V(—aocl +coay, —agby +boay, —apgbocy +apcob)
L3 = V(ai, ag, —boc1 + cob1)\V (b1, a1, by, ao)

Si2y =86 U St =Ly

Ly = V(=bocy + coby, —apcy + coay, —agby + boay)\V(ay, ag, —bocy + coby)

S0y = So

Ly =V(c1, b1, a1, co, by, ap)\V(1)

to the reduced Grobner basis on the whole segment is given. Table 1 gives the sets S; and B;. The segments in the
CGS are algorithm depending, and can change if we use another algorithm for computing the CGS.

Lets now add together the segments with the same set of Ipp’s, using CONSLEVELS algorithm. There are four
different sets of Ipp’s (leading power products) in the 11 cases, namely {1}, {x}, {x2} and {0}. We obtain the levels
of the canonical representation of the constructible sets formed by the union of the corresponding segments shown
in Table 2.

The canonical levels of the constructible sets so obtained do not depend any more on the CGS algorithm used,
as each of these segments correspond to a canonical level of all the points of the parameter space with fixed value
of the Ipp’s. We observe that the locally closed segments with fixed Ipp’s obtained using CONSLEVEL algorithm are
identical to the canonical segments of the Grobner Cover given in CREP representation. Wibmer’s Theorem [17],
stays that given an homogeneous parametric ideal, the set of points of the parameter space for which the reduced
Grobner basis has a given set of Ipp’s is parametric (i.e. it accepts a unique reduced Grobner basis using /-regular
functions), and is locally closed. So, in general, for the Computation of the Grobner Cover of non-homogeneous
ideals, it is necessary to homogenize the input ideal, then compute its Grobner Cover and dehomogenize the result.
The dehomogenized bases can contain segments with the same sets of Ipp. In this example we start with a non-
homogeneous ideal, and instead of homogenizing and using Wibmer’s Theorem, we add together the segments of
the CGS with fixed lpp of the non-homogeneous ideal using CONSLEVELS (for which Wibmer’s Theorem cannot
be applied). There is no contradiction in the fact that for this non-homogeneous ideal the sets of points with fixed
Ipp are not locally closed.

The interesting point that we observe in this example, is that, proceeding in this alternative way, we also recover
the canonical segments of the Grobner Cover. This property will be developed in a next research.

Example 3 To test the effectivity of using the acceleration Algorithm SIMPLIFYUNION, we have applied CON-
SLEVELS to the output of a CGS containing 26 segments. These segments were grouped into 9 constructible sets
by their Ipp’s. The Ipp-sets contained respectively 7, 6, 4, 1, 1, 1, 1, 2, 3 segments. Applying CONSLEVELS to each
Ipp-segment, each one was reduced to a single segment for each of the 9 constructible sets (i.e. in this example
the Ipp-segments resulted to be locally closed). We tested times with and without using SIMPLIFYUNION algorithm
inside FIRSTLEVEL. The total timing was 7.61 s using it and 22.07 s without using it, that justifies the utility of
SIMPLIFYUNION.
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