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ABSTRACT

Resolution in climate models is thought to be an important factor for advancing seasonal prediction capa-

bility. To test this hypothesis, seasonal ensemble reforecasts are conducted over 1993–2009 with the European

community model EC-Earth in three configurations: standard resolution (;18 and ;60 km in the ocean and

atmosphere models, respectively), intermediate resolution (;0.258 and ;60 km), and high resolution (;0.258
and;39 km), the two latter configurations being used without any specific tuning. The model systematic biases

of 2-m temperature, sea surface temperature (SST), andwind speed are generally reduced.Notably, the tropical

Pacific cold tongue bias is significantly reduced, the Somali upwelling is better represented, and excessive

precipitation over the Indian Ocean and over the Maritime Continent is decreased. In terms of skill, tropical

SSTs and precipitation are better reforecasted in the Pacific and the Indian Oceans at higher resolutions. In

particular, the Indianmonsoon is better predicted. Improvements aremore difficult to detect at middle and high

latitudes. Still, a slight improvement is found in the prediction of the winter North Atlantic Oscillation (NAO)

along with amore realistic representation of atmospheric blocking. The sea ice extent bias is unchanged, but the

skill of the reforecasts increases in some cases, such as in summer for the pan-Arctic sea ice. All these results

emphasize the idea that the resolution increase is an essential feature for forecast system development. At the

same time, resolution alone cannot tackle all the forecast system deficiencies and will have to be implemented

alongside new physical improvements to significantly push the boundaries of seasonal prediction.

I. Introduction

Climate forecasting at a subseasonal to interannual

time range is now done routinely and operationally by

an increasing number of research centers and in-

stitutions. Although forecasting systems using numerical

general circulation models (GCMs) have made sub-

stantial progress in the last decades (Doblas-Reyes et al.

2013), systematic errors and the misrepresentations of

key processes still hinder forecast quality and limit the

value of dynamical prediction in certain areas of the

globe (Lin 2007; Guemas et al. 2012; Vannière et al.

2013; Voldoire et al. 2014). The desire to better capture

physical processes in the ocean and atmosphere,

alongside a continued development of the computa-

tional efficiency of high-performance clusters used to

run climate models, has motivated an increasing number

of studies using higher-resolution components of the

climate system for historical simulations and climate

change projections (Gent et al. 2010; Delworth et al.

2012; Sakamoto et al. 2012; Hourdin et al. 2013), as well

as for seasonal forecasting (MacLachlan et al. 2015; Jia

et al. 2015).
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Positive impacts of increased resolution have been re-

ported inmany studies using fully coupled or atmosphere-

only GCMs (CGCMs and AGCMs, respectively), as

documented in Table 1. From this table, it appears that

increasing the resolution of atmosphere and/or ocean has

beneficial impacts on the representation of the Asian

monsoon independently of the baseline resolution in both

AGCMs (Sperber et al. 1994; Lal et al. 1997; Branković

and Gregory 2001; Mizielinski et al. 2014; Johnson et al.

2016) and CGCMs (Gent et al. 2010; Delworth et al.

2012). Despite those improvements, many studies ac-

knowledge that the main biased features of the monsoon

are not corrected by increasing resolution (Martin 1999;

Johnson et al. 2016). For other phenomena, such as at-

mospheric blockings, the impact of increased resolu-

tion exhibits a dependence on the baseline resolution:

improvements are only noted in studies considering

atmospheric resolution higher than 100 km (AGCM

experiments: Berckmans et al. 2013; Matsueda et al.

2009; Jung et al. 2012; Dawson and Palmer 2014). The

well-known wide spread among representations of the

CGCM cold tongue bias (Vannière et al. 2013) has

been shown to be reduced in three different studies

using high-resolution ocean component (less than 35km;

Shaffrey et al. 2009; Roberts et al. 2009; Sakamoto et al.

2012), thanks to a better representation of tropical in-

stability waves (Roberts et al. 2009). The improvement of

the representation of orographic winds and their effects

on the ocean at high resolution (atmosphere resolution

higher than 50km) improves the representation of the

Somali jet (AGCM study; Johnson et al. 2016) and Pacific

upwelling (CGCM studies; Gent et al. 2010; Sakamoto

et al. 2012). The characteristics of El Niño–Southern
Oscillation (ENSO) have shown to be sensitive to at-

mospheric resolution (Guilyardi et al. 2004; seasonal

forecast: Jia et al. 2015), oceanic resolution (Kirtman

et al. 2012), and both oceanic and atmospheric resolu-

tions (Shaffrey et al. 2009; Sakamoto et al. 2012;

Delworth et al. 2012). However, in seasonal forecast ex-

periments using resolution and grid spacing ratios similar

to these studies, MacLachlan et al. (2015) conclude that

the ENSO skill was not affected by an increased resolu-

tion. Similarly, Zhu et al. (2015) do not show any change

in the ENSO skill when increasing atmospheric resolu-

tion to 15km coupled with an oceanic resolution of

100km. Several other improvements have also been re-

ported as listed in Table 1.

Most of the previously cited studies concerned pre-

industrial, historical, and climate projection experi-

ments. The impact of increasing resolution in the

atmosphere on seasonal forecast quality has been com-

paratively much less documented. GFDL operates

a high-resolution atmosphere (0.58) and standard

resolution ocean (18) versions of their CM2.5 coupled

climate model for seasonal forecasts (Jia et al. 2015;

Yang et al. 2015; see Table 1 for more details) as a

contribution to the North American Multimodel

Ensemble (NMME) coordinated experiment. The

UK Met Office GloSea5 system now uses high reso-

lution in the ocean (0.258 and 75 vertical levels) and in the
atmosphere (0.838 longitude3 0.558 latitude,;50 km at

midlatitudes), and exhibits encouraging improvements

in extratropical forecasting skill, including surface

North Atlantic Oscillation (NAO), winter storminess,

and near-surface temperature and wind speed over

Europe andNorthAmerica (Scaife et al. 2014;MacLachlan

et al. 2015).

The aim of the present study is to answer the following

two questions: 1)What is the impact of increasing oceanic

and atmospheric resolutions on seasonal forecast quality?

2) Could an increase of resolution result in an improve-

ment of key phenomena at the seasonal time scale, such

as the NAO, ENSO, blocking, and Indian monsoon? In

particular, howmodel-dependent are the results of Scaife

et al. (2014) and MacLachlan et al. (2015), especially

concerning the NAO? To answer those questions, we

performed seasonal reforecasts over a 17-yr period with

the EC-Earth coupled model (ocean, atmosphere, land,

and sea ice components) at three different resolutions:

standard (SRes), increased in the ocean (IRes), and in-

creased in both the ocean and the atmosphere (HRes).

The standard horizontal resolution settings for EC-Earth

are T255 for the atmosphere (approximately 0.78 in lati-

tude and longitude and 91 vertical levels) and a 18 oceanic
grid (with refinements around the equator and at the

poles) counting 46 vertical layers. At the intermediate

resolution the oceanic resolution is increased to a 0.258
horizontal grid with 75 vertical layers and in the high

resolution both oceanic and atmospheric resolutions are

enhanced, with 0.258 and 75 vertical layers in the ocean

and T511 in the atmosphere (;0.358 in latitude and lon-

gitude). These resolutions have been chosen because they

are comparable with the resolutions of GloSea5 (slightly

higher in the atmosphere) and thus we could expect to see

similar improvements especially for the NAO skill. Fol-

lowing Table 1, wemight also expect improvement of the

Asian monsoon, midlatitude blocking frequency, Pacific

cold tongue bias, oceanic upwelling, and the represen-

tation of ENSO. Analyzing IRes and HRes separately

will help in understanding the importance of enhanced

resolution in the ocean rather than in atmosphere. The

separate effects of oceanic and atmospheric resolutions

have been poorly documented up to now (Kirtman

et al. 2012).

The paper is organized as follows. Section 2 describes

the EC-Earth coupled model in detail, the experimental
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setup, and the methods used to assess the changes due to

the resolution. Global results in terms of forecast quality

are presented in section 3. Then, the results of the res-

olution changes will be further described in section 4, in

three different subsections focused first on the tropics,

then on the midlatitudes and more specifically Europe,

and finally on high latitudes. Discussion and conclusions

can be found in section 5.

2. Experiments and methods

a. The EC-Earth 3.0.1 coupled model

The EC-Earth Earth system model (ESM), used to

perform the reforecast of this study, is developed by the

EC-Earth consortium, counting close to 20 European

institutions. EC-Earth consists in the coupling of dif-

ferent models representing the components of the Earth

system: atmosphere, land, ocean, sea ice, vegetation,

glaciers, and atmospheric chemistry. In the present

study, the version 3.0.1 of the coupled model, including

the ocean, atmosphere, land, and sea ice components, is

used to reforecast seasonal climate over a 17-yr period.

An earlier version of the EC-Earth ESM is described in

detail in Hazeleger et al. (2012). The main differences

between these two versions are an improved radiation

scheme (Morcrette et al. 2008) and a new cloud micro-

physics scheme (Forbes et al. 2011).

The atmosphere model is the Integrated Forecasting

System (IFS)model cy36r4. In line with the objectives of

this study, we use two different horizontal atmospheric

resolutions: T255 (linear triangular truncation at wave-

number 255, corresponding to approximately 0.78 in

latitude and longitude) and T511 (linear triangular

truncation at wavenumber 511, corresponding to ap-

proximately 0.358 in latitude and longitude). At both

resolutions, the number of vertical layers is identical (91,

up to 0.01Pa). The time steps for IFS are 2700 and 900 s

for T255 and T511 configurations, respectively.

EC-Earth embeds the NEMO version 3.3.1 ocean

model (Madec 2008). Again, in order to address the

scientific question raised in the introduction, we use two

different horizontal resolutions: the ORCA-1 (;18) and
ORCA-025 (;0.258) grids with, respectively, 46 and 75

layers. The grid has higher horizontal resolution (of

about one-third of a degree in the ORCA-1 configura-

tion and one-tenth of a degree in the ORCA-025 con-

figuration) near the equator to resolve equatorial

planetary waves. The grid has three poles, one on the

South Pole and two near the North Pole (one in Canada

and one in Siberia), but at different longitudes and lat-

itudes. As a result, the horizontal resolution is increased

in the vicinity of the North Pole. The sea ice component

used in this study is the second version of the Louvain-

la-Neuve (LIM2) sea ice model (Fichefet andMorales

Maqueda 1997). The time steps are 3600 and 1200 s

for ORCA-1 and ORCA-025, respectively, and the

sea ice model is called every ocean time step at both

resolutions.

EC-Earth uses the H-TESSEL (TESSEL for Tiled

ECMWF Scheme for Surface Exchanges over Land)

scheme for the land surface (van den Hurk et al. 2000),

which includes an improved representation of hydrology

over the TESSEL scheme, in agreement with more re-

cent IFS cycles (Balsamo et al. 2009).

The atmosphere and ocean/ice components are cou-

pled with the Ocean Atmosphere Sea Ice Soil version 3

(OASIS3; Valcke 2013) coupler. The coupling fre-

quency between the ocean and atmosphere is every 3 h.

b. Experimental setup and initialization strategy

Three sets of 4-month 10-member seasonal reforecasts

were carried out with different configurations of the at-

mosphere and ocean components (Table 2). Forecasts

start on 1 May and 1 November every year from 1993 to

2009. Three experiments are considered: SRes (standard

resolution: T255-ORCA1L46), IRes (intermediate reso-

lution: T255-ORCA025L75), and HRes (high resolution:

T511-ORCA025L75). For all configurations the default

version of EC-Earth 3.0.1 as released by the EC-Earth

consortium has been used. The simulations have been run

using the autosubmit workflow manager (Manubens-Gil

et al. 2016).

It is worth noting, and remembering for the remainder

of the paper, that only the standard-resolution version

has undergone extensive tuning. However, a number of

parameters have been modified in the high-resolution

configuration. The high-resolution ocean model uses

increased albedo parameters for sea surface tempera-

tures and sea ice, increased nonlinear bottom drag,

modified eddy diffusivities and viscosities, and increased

surface input of the turbulent kinetic energy. Further-

more, the Langmuir parameterization is switched off

and the advection scheme for tracers has been changed

for individual members due to numerical instabilities. In

the atmospheric model the parameters related to the

momentum flux of gravity waves and a limiter for wind

tendencies in the upper atmosphere is changed. All

TABLE 2. Settings for atmospheric and ocean resolution for the

three sets of experiments presented in this manuscript.

Experiment name Atmosphere resolution Ocean resolution

SRes T255L91 ORCA1L46

IRes T255L91 ORCA025L75

HRes T511L91 ORCA025L75

9144 JOURNAL OF CL IMATE VOLUME 29



parameter and their respective values are summarized

in the supplementary information except for the nu-

merical parameters associated to the solver, which

change according to the model resolution. The main

characteristics of these simulations are summarized in

Table 1.

The atmospheric initial conditions are generated

from ERA-Interim. As the number of vertical levels is

different in EC-Earth and ERA-Interim, a vertical

interpolation of the model-level variables is per-

formed. The 10 atmospheric initial conditions used to

create the ensemble are generated using atmospheric

singular vectors (Du et al. 2012). Ocean and sea ice

initial conditions provided by the Global Ocean Re-

analysis and Simulations (GLORYS2v1), produced at

the ORCA-025 resolution (Ferry et al. 2010), have

been used for IRes and HRes. For the SRes experi-

ment, these initial conditions have been interpolated

to the ORCA1 resolution and smoothed to avoid

initial shocks.

c. Methods

1) BIAS AND BIAS CORRECTION

In our study, we analyze reforecast skill and bias for

the May and boreal summer [June–August (JJA)]

predictions (for May initialization), and for the No-

vember and boreal winter [December–February

(DJF)] predictions (for November initialization).

When initialized from an estimate of the observed

climate state, reforecasts typically drift toward their

attractor (i.e., toward the own stationary model cli-

mate). The drift can be understood as a systematic

error that depends on the forecast time. Because

model bias is a long-standing issue in climate science,

we first address the impact of enhanced resolution

on the development of this bias in our system. We

define the forecast climatology for a specific forecast

time as the forecast values averaged over all the

members and all the start dates. The bias is therefore

defined as the difference between the forecast and the

observed climatologies over the same period. We

apply a simple per-pair bias correction (García-
Serrano et al. 2013) to our seasonal reforecasts before

estimating the forecast skill and reliability. This

method of bias correction consists in subtracting the

climatology of the forecast to the different member

and start dates. The same procedure is applied on the

observations. This way the mean bias of the model is

removed and the reforecasts can be compared with the

observations. This method has been used in cross-

validationmode; this way the climatology is calculated

excluding the year that is forecasted.

2) SKILL ASSESSMENT

The skill is assessed using the anomaly correlation

coefficient (ACC), the root-mean-square error (RMSE),

and theBrier skill score (BS; Brier 1950) as defined below:

ACC( f )5
�
i

[m
i
( f )2m( f )][r

i
( f )2 r( f )]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
i

[m
i
( f )2m( f )]2�i

[r
i
( f )2 r( f )]2

r , (1)

RMSE( f )5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

[m
i
( f )2 r

i
( f )]2

s
, (2)

where f is the forecast time, mi( f ) the bias-corrected

model ensemble mean forecast for year i, m( f ) the

forecast averaged over the reforecast period, ri( f ) and

r( f ) the corresponding reference data at forecast time f,

and N the number of years in the reforecast period.

Also,

BS( f )5
1

N
�
N

i51

[y
i
( f )2 o

i
( f )]2 , (3)

where yi( f ) is the probabilistic forecast of a given event

(e.g., temperature reaches over the second tercile of

reference data in year i at forecast time f) based on the

fraction of ensemble members predicting this event;

oi( f ) is the corresponding ‘‘observation’’ in the refer-

ence data and has a value of 1 if the event happens,

0 otherwise. The Brier score is a distance in probability

space and should be as small as possible.

We use the standard reliability-resolution-uncertainty

decomposition of the Brier score as in Toth et al. (2003),

by binning forecast–observation pairs according to

J5 11 since our ensemble size is 10 members. If Nj is

the number of forecasts worth yj, the decomposition is

written as follows:

BS( f )5
1

N
�
J

j51

N
j
[y

j
( f )2 o( f )]2

2
1

N
�
J

j51

N
j
[o

j
( f )2 o( f )]2 1 o( f )[12 o( f )] , (4)

BS( f )5Rel( f )2Res(f )1Unc( f ) . (5)

Reliability (Rel) is an estimate of the conditional bias of

the probabilistic forecast, whereas resolution (Res)

evaluates how well the model separates probabilistic

events. Uncertainty (Unc) is independent from the

model and depends only on the probabilistic event we

choose to evaluate the model on.

We provide uncertainty estimates and confidence in-

tervals with all the skill assessment. We use the Student
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distribution with N degrees of freedom to estimate the

significance level of correlation, N being the effective

number of independent data calculated following the

method of von Storch and Zwiers (2001). The signifi-

cance of the difference between two correlations is es-

timated using the methodology of Siegert et al. (2016),

which takes into account the dependence from sharing

the same observations in both correlation coefficients.

This method to assess the significance of the difference

of two correlations also takes into account the in-

dependent number of data, which is necessary given the

serial correlation typical of the time series considered.

Different observational and reanalysis datasets are

used in the verification process to assess the robustness of

the results. The ERA-Interim reanalysis (Dee et al. 2011)

is used for the two-meter air temperature (T2M), sea

level pressure (SLP), winds, and daily precipitations. For

sea surface temperature (SST), the ERSST v3b (Smith

et al. 2008) and European SpaceAgency Climate Change

Initiative (ESACCI) datasets are used. For precipitation,

in addition to the daily precipitation from ERA-Interim,

the Global Precipitation Climatology Project (GPCP)

v2.2 (Adler et al. 2003) and the Global Precipitation

Climatology Centre (GPCC) data product version 4

(Schneider et al. 2008) are used. For sea ice, the bootstrap

sea ice concentrations version 2 (Comiso 2000) were used

as a reference, although the evaluation was also con-

ducted on alternative products: ESA CCI (Ivanova et al.

2015), Ocean and Sea Ice Satellite Application Facility

(OSI-SAF; Eastwood et al. 2014), HadISST (Rayner

et al. 2003), and Centennial In Situ Observation-Based

Estimates of the Variability of SST and Marine Meteo-

rological Variables, version 2 (COBE-2; Hirahara et al.

2014) to gauge the sensitivity of results to observational

error. The reference datasets will be referred to as ob-

servation in the following. All the verification, as well as

part of the plotting, have been done using the version

2.1.1 of the R-based s2dverification package (http://cran.r-

project.org/web/packages/s2dverification/index.html). All the

area-averaged indices have been computed directly on the

native grids. For maps data have been interpolated on a

18 3 18 grid. Some tests have been performed to assess the

sensitivity of the results to this interpolation showing that

interpolation does not affect the score representation

(not shown).

3) DEFINITION

The monsoon onset date has been estimated from

Wang and LinHo (2002) criteria. The onset date is de-

fined as the first day for which precipitation from ERA-

Interim averaged over India exceeds 5mmday21. To

estimate this date, we first compute the quantile corre-

sponding to the 5mmday21 threshold, in cross-validation

mode, from observed daily data for the months of May

and June. Then, the forecasted onset date is estimated as

the first day exceeding this quantile in the model.

Several methods can be used to compute the NAO

index, such as EOF analysis of sea level pressure or

500-hPa geopotential height fields (e.g., Doblas-Reyes

et al. 2003), sea level pressure point value differences

between Reykjavik and Gibraltar (e.g., Maidens et al.

2013), or area-averaged sea level pressure differences

between subpolar regions and midlatitudes (e.g.,

Stephenson et al. 2006). In this study, we choose to

compute the NAO with two different indices based on

an EOF analysis leading to an NAO index for the model

(Pmod) and the observations (Pobs). The Pobs (Pmod)

NAO index computation method consists in computing

the NAO pattern as the leading EOF of sea level pres-

sure in the reference dataset (the reforecast data) in

cross-validation mode and projecting the model sea

level pressure anomalies for the given month/season

onto the pattern to compute the index. These results have

also been compared with the method of Stephenson

et al. (2006).

The instantaneous blocking index computed as in

Davini et al. (2012) is used. This index is a 2D extension

of the Tibaldi and Molteni (1990) index and provides a

measure of the Rossby wave breaking activity in the

midlatitudes (between 308 and 758N). It is based on the

reversal of the daily 500-hPa geopotential height gradi-

ent: data are interpolated on a common 2.58 3 2.58 grid
before the index is computed. The GHGS and GHGN

gradients are thus computed as follows:

GHGS(l
0
,f

0
)5
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0
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0
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0
,f

S
)
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0
2f
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, (6)
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, (7)

wheref0 ranges from 308 to 758Nand l0 ranges from08 to
3608; fS 5f0 2 158 and fN 5f0 1 158. Instantaneous

blocking (IB) is identified when

GHGS(l
0
,f

0
). 0 GHGS(l

0
,f

0
),2

10m

8lat
. (8)

ERA-Interim reanalysis data are used to assess the

monsoon onset, NAO, and blocking results.

3. Results

a. Bias reduction

The impact of increasing resolution on the model

mean climate is first assessed by considering how the
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bias in the SRes reforecasts changes in the IRes and

HRes experiments. The winter (DJF) and summer

(JJA) biases are computed for forecast months 2 to 4 of

the forecast initialized on 1 November and 1 May re-

spectively following the methodology described in sec-

tion 2c. These are the fast growing systematic errors of

the coupled model, as some biases take several years to

develop. The biases described here do not necessarily

correspond to the stationary biases of the coupledmodel

(Toniazzo and Woolnough 2014). Figures 1 and 2 show

results for JJA and DJF reforecasts, respectively, for

SST, precipitation, and 850-hPa winds. Figures 1a and 2a

show the classical cold tongue bias in the equatorial

Pacific (Vannière et al. 2013) of up to 38C in the SRes. A

similar bias is also visible in boreal summer in the

tropical Atlantic (Wahl et al. 2011; Liu et al. 2012). SRes

simulates too-warm SST in the western boundary cur-

rents, Kuroshio, and Gulf Stream (as was the case in

EC-Earth 2.2; Hazeleger et al. 2012; Gent et al. 2010)

and in the Antarctic circumpolar region. All the pre-

viously mentioned biases are present in both seasons but

are stronger in DJF.

In summer, in the IndianOcean, SRes exhibits a warm

bias in the Somali upwelling that is common to other

coupled models (Prodhomme et al. 2014). In the sum-

mer hemisphere (JJA in the Northern Hemisphere and

DJF in the Southern Hemisphere) SRes exhibits a large

cold bias in the midlatitudes.

Precipitation biases are mainly visible in the tropics,

in part because the precipitation is stronger there.

Precipitation is excessive in the Indian Ocean in both

winter and summer, especially over the Maritime Conti-

nent [consistent with Neale and Slingo (2003)] and for

the monsoon precipitations [as in Prodhomme et al.

(2014)]. In the Pacific, the double ITCZ bias is also

found for precipitation in winter, although in the sum-

mer the ITCZ is shifted northward (Lin 2007; Bellucci

et al. 2010).

FIG. 1. (a) Mean bias of SST (unit: K) in JJA (months 2 to 4 of the forecasts initialized in May) in the SRes experiment, with respect to

ESA. (b) Difference of SST for the IRes experiment with respect to the SRes experiments. (c) Difference of SST for theHRes experiment

with respect to the SRes experiments. (d)–(f) As in (a)–(c), but for precipitation (colors, unit: mmday21) and 850-hPawinds (arrows, unit:

m s21). (g)–(i) As in (a)–(c), but for near-surface atmosphere temperature (unit: K). For (b),(c),(e), and (f), dots show the points where the

difference is significant at the 95% confidence level according to the Student’s t test. For (e) and (f) only the values of wind differences

significant at 95% confidence level are shown.
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Figures 1b, 1c, 2b, and 2c show the bias differences

between the SRes and the IRes and HRes experiments,

respectively, for the SST. Increasing the resolution is in

general beneficial for the SST bias. IRes and HRes show

some important and similar improvements with respect

to SRes: 1) the cold bias in summer in the North Pacific

and North Atlantic basins, 2) the warm bias in the Somali

upwelling, and 3) the cold tongue bias are all reduced,

especially in boreal winter. This last improvement could

be related to a better representation of tropical instability

waves (Roberts et al. 2009). The higher-resolution at-

mosphere in HRes further reduces the cold tongue bias

and the warm bias in the Somali upwelling, due to the

better representation of the air–sea coupling and Ekman

pumping (Chowdary et al. 2016).

For wind and precipitation the main changes occur

when both oceanic and atmospheric resolutions are in-

creased. In the Indian Ocean, in agreement with

Prodhomme et al. (2014), the SST cooling, associated with

the increase of oceanic resolution, leads to a decrease of

the excessive oceanic precipitation (Figs. 1c,f). Probably

because of the improved orography, the bias over the

Maritime Continent is also reduced, which is consistent

with Love et al. (2011) and Schiemann et al. (2014).

To quantify the change in terms of mean state when

the resolution is increased, Table 3 shows the percentage

of Earth’s surface where the bias is reduced in HRes,

with respect to SRes for SST, T2M, and precipitation.

This table shows that for all variables the bias is reduced

formore than half of Earth’s surface, so according to this

metric the mean state is improved when the resolution is

increased, which confirms the results of Figs. 1 and 2

described above. To conclude, the increase of oceanic

resolution leads to an improvement of the SST mean

state but does not affect the precipitation, winds, and

temperature. The combination of both oceanic and at-

mospheric resolution increases improves the represen-

tation of the mean state of all the considered variables.

This encouraging result is consistent with the literature

(Jung et al. 2012; Sakamoto et al. 2012) and needs to be

further investigated from a physical point of view in

order to clearly attribute processes that could be re-

sponsible for these improvements. While this will be the

topic of future studies, we want here to stress that these

improvements have been obtained with minimal tuning

of the IRes andHRes configurations, opening promising

perspectives when it will come to calibrate high-

resolution GCMs in a more thorough way. The next

FIG. 2. As in Fig. 1, but for DJF (months 2 to 4 of the forecast initialized in November).
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section will investigate how the prediction skill of the

system is affected by the resolution changes.

b. Impact on the forecast quality

The left columns of Figs. 3 and 4 show the ACC time

correlation for the SRes experiment for SST, T2M, and

precipitation with respect to the observation for JJA and

DJF reforecasts, respectively. The correlation is com-

puted for each grid point of the reference observed

dataset so as to give a fair comparison of the skill

for all the resolutions after applying a conservative

interpolation of the reforecasts. EC-Earth3 exhibits

standard correlation levels, comparable to other state-

of-the-art seasonal forecasting systems (Doblas-Reyes

et al. 2013). For all variables, scores are the highest over

the tropical area, especially in the tropical Pacific basin,

related to the El Niño–Southern Oscillation (ENSO)

predictability (Figs. S1 and S2; Phelps et al. 2004;

Landman and Beraki 2012; Doblas-Reyes et al. 2013).

The skill of precipitation is lower than for SST, a com-

mon feature of dynamical seasonal forecast systems

(Figs. 3 and 4; Doblas-Reyes et al. 2013). In summer, the

correlation is generally lower than for DJF, associated

with a weaker ENSO predictability (Figs. 4 and 5), due

to the well-known spring predictability barrier (Chen

et al. 2004; Duan and Wei 2013).

The right columns of Figs. 3 and 4 show for the two

seasons the difference in ACC time correlation between

TABLE 3. Surface of the globe where the bias in HRes is reduced with respect to SRes is shown in bold. The improvement is further

decomposed for the area where the bias in SRes is negative (in italics) and positive (normal font).

SST Land 2-m temperature Precipitation Land precipitation

May 37.1% 1 24.4% 34.0% 1 23.6% 29.8% 1 20.6% 33.3% 1 26.2%

start date 5 61.5% 5 57.6% 5 50.5% 5 59.5%

November 39.1% 1 21.1% 50.4% 1 1% 32.1% 1 23.2% 34.5% 1 25.6%

start date 5 60.2% 5 60.7% 5 55.3% 5 60.2%

FIG. 3. (a) Correlation of JJA (months 2 to 4 of the forecasts initialized inMay) ensemblemean SST in SRes with

respect to ESA SST. Dots show the area where the correlation is significant at the 95% confidence level.

(b) Difference of correlation of the ensemble mean between the HRes and SRes experiments for the JJA SST. The

correlations are computed with respect to the ESA SST. Dots show the area where the difference of correlation is

significant at 95% confidence level. (c),(d) As in (a),(b), but for near-surface atmosphere temperature. The cor-

relations are computed with respect to the ERA-Interim 2-m temperature. (e),(f) As in (a),(b), but for pre-

cipitation. The correlations are computed with respect to the GPCP precipitation.
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HRes and SRes. To have an objective metric of the

changes, Table 4 shows the percentage of the globe for

which the skill is increased in HRes with respect to

SRes and the percentage of the globe with correlation

significant at 95% confidence level in SRes and HRes.

In general, the changes are patchy, for approximately

half of Earth’s surface, the skill is higher in HRes than

SRes and the area with significant skill remains

equivalent in the two reforecasts. For both seasons, we

find few areas of significant change in correlation by

increasing the resolution (Figs. 3b,d,f and 4b,d,f). The

ACC decreases in the Southern Ocean, especially in

boreal winter, as well as in the Atlantic Ocean and in

the polar regions in the summer hemisphere (Figs. 3b,

d,f and 4b,d,f). In boreal summer, the main areas of

improvement common for the three considered vari-

ables, are the equatorial Indian Ocean, Maritime

Continent, and western equatorial Pacific (Figs. 3b,d,f),

which is consistent with the observed bias reduction in

the region (see section 3a). This suggests that the

improved resolution in the Indo-Pacific leads to a

better representation of physical processes in the re-

gion, for example the upwelling (Akuetevi et al. 2016)

and gravity waves in the Maritime Continent (Love

et al. 2011). Large correlation increases are also no-

ticed for T2M, for both JJA and DJF, in the north of

Russia, Europe, and Alaska in the high-resolution

experiment (Figs. 3b,d,f and 4b,d,f), where the biases

also decrease in HRes compared to SRes (Fig. 1). It is

worth restating here that despite the significant cor-

relation increase the ACC might remain insignificant

in some regions. This correlation increase could be

associated with a better representation of the main

variability modes in these regions, such as blocking or

the NAO. This will be investigated in further detail in

section 4b.

To conclude, it appears that increasing the resolu-

tion does not affect substantially skill at the gridpoint

level. This conclusion holds with a different skill

metric such as RMSE (see supplementary Figs. S3 and

S4). In some areas, including large impact areas such

as the Indian Ocean and the Indian monsoon region,

some skill increase is visible. However, it is worth

taking into account that the comparison between

standard and high-resolution experiments is not

completely fair in the sense that the standard resolu-

tion has undergone substantial tuning, while the same

settings with no further tuning are used for the high-

resolution configurations.

To better understand the skill changes that occur

when the resolution is increased and investigate these

changes at a subseasonal scale, the next section will

provide a deeper assessment of skill and forecast quality

for selected regions of interest.

FIG. 4. As in Fig. 3, but for DJF (months 2 to 4 of the forecast initialized in November).
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4. Regional skill and forecast quality assessment

a. Tropical variability

1) ENSO AND THE ATLANTIC NIÑO

The main source of skill at seasonal time scales is the

ENSO phenomenon. From the maps presented in the

previous section, the tropical Pacific does not stand out

as a region where skill is improved. Still, dots showing

significant differences are visible in the equatorial Pa-

cific (Figs. 3 and 4). To evaluate the changes occurring in

this highly relevant region, we look more specifically

at the skill of the Niño-3.4 index (SST averaged over

58S–58N, 1908–2408E), which is generally used to assess

the skill of a system to forecast ENSO. Figure 5 shows

that the resolution increase does improve the ENSO

skill. The skill increase occurs for both summer and

winter seasons and during the whole forecast length,

although the increase is stronger in summer. Increasing

only the oceanic resolution already improves the ENSO

skill and the benefit is reinforced when the resolution of

both components is increased, which is consistent with

the strong coupled nature of the ENSO phenomenon.

This improvement is robust when considering both de-

terministic scores such as correlation with different ob-

servational products (Figs. 5a,e), RMSE (Figs. 5b,f), and

probabilistic skill scores such as the Brier score (Figs. 5c,

d,g,h). The Brier score is smaller (therefore better) in all

cases considered in HRes and/or IRes with respect to

SRes, due to improvements in both resolution and re-

liability components, except for the DJF Niño-3.4 index
reaching above the second tercile. In this case (Fig. 5h)

the reliability is better and the reliability curve is closer

to the perfect reliability diagonal, but the resolution

score decreases. As shown in Table 1, the increase of

atmospheric and/or oceanic resolution is not always as-

sociated with the improved representation of ENSO

(MacLachlan et al. 2015; Jia et al. 2015; Zhu et al. 2015).

From this small number of studies using different at-

mospheric and oceanic resolutions and grid ratios

(Table 1), it is hard to extract one common argument

explaining why the skill increases in some models and

not in others. These improvements might be linked to

the mean state improvement in the tropical Pacific

(Figs. 1 and 2) and also to the better representation of

high-frequency and small-scale coupled processes asso-

ciated to increased horizontal but also vertical resolu-

tion (Masson et al. 2012). In order to better understand

why ENSO is affected by resolution changes, other

sensitivity experiments, including seasonal forecast and

preindustrial control simulations with different hori-

zontal and vertical resolutions in the ocean and atmo-

sphere, in particular an experiment with resolution

increased only in the atmosphere component, would be

needed. The robustness of these results must also be

assessed with larger simulations, since 17 start dates and

10 members is relatively limited.

The skill of the Atlantic Niño and the West African

monsoon does not increase with model resolution

(Fig. S5). This result might be expected for several

reasons. First, in the literature the tropical Atlantic and

surrounding precipitation have not been highlighted as

affected by resolution changes (see Table 1). Then, the

strongly biased tropical Atlantic mean state (Fig. 1) is

not affected the by resolution increase, which suggests

that no change in the representation of this region occurs

when the resolution increases. Exarchou et al. (2016,

manuscript submitted to Climate Dyn.) investigate in

detail the mechanisms leading to the formation of the

biases in the EC-Earth 3model in this region and conclude

that biases are associated with the misrepresentation of

cloud cover in the Angola–Benguela region and around

the equator due to an erroneous subtropical overturning

cell. Those two processes are not expected to be strongly

impacted by resolution changes. As expected in the

absence of improvement in the tropical Atlantic, the

skill of theWest African monsoon average precipitation

is not clearly improved when the resolution is increased

(Fig. S5).

2) INDIAN MONSOON AND INDIAN OCEAN

Several studies reported an improved representation

of the Indian monsoon with an increase of resolution

(Table 1; Sperber et al. 1994; Lal et al. 1997; Gent et al.

TABLE 4. In bold, surface of the globe where the ACC time correlation in HRes is increased with respect to SRes. In each cell, line 2

(line 3) shows the relative surface of the planet for which the correlation is significant at the 95% confidence level in SRes (HRes).

SST Land 2-m temperature Precipitation Land precipitation

May 47.8% 53.7% 50.6% 50.3%

start date SRes: 70.4% SRes: 33.5% SRes: 20.9% SRes: 16.2%

HRes: 69.3% HRes: 35.7% HRes: 21.8% HRes: 18.3%

November 43.2% 48.3% 51.6% 55.4%
start date SRes: 64.3% SRes: 36.8% SRes: 27.6% SRes: 20.1%

HRes: 59.8% HRes: 36.1% HRes: 27.6% HRes: 22.7%
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FIG. 5. Comparison of Niño-3.4 skill between SRes (black), IRes (red), andHRes (blue).

(a) Correlation in the Niño-3.4 region between SRes, IRes, and HRes and the observation

(ESA, plain line and ERSST, dashed line) for May start dates. Dots shows the correlation

significant at 95% confidence level and green stars show the correlation in IRes and HRes

significantly different from SRes at 95% confidence level. (b) RMSE in the Niño-3.4 region
of SRes, IRes, and HRes with respect to the observation (ESA, plain line and ERSST,

dashed line) for May start dates. The dotted lines show the spread of the different experi-

ment with the same color as the RMSE. (c) Reliability diagram for Niño-3.4 SST below the

first tercile (LaNiña–like events) for JJA1993–2009; the correspondingBrier score is shown

in the top left corner. Error bars indicate significance intervals at 95% computed with

a bootstrappingmethod. The size of the dots is proportional to the size of the population bin

for each forecast probability. (d) As in (c), but for the SST above the second tercile

(El Niño–like events). (e)–(h) As in (a)–(d), but for November start dates.
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2010; Delworth et al. 2012; Johnson et al. 2016). In ad-

dition, the monsoon and the monsoon onset date are

known to be strongly influenced by ENSO (Boschat et al.

2011; Prodhomme et al. 2015); therefore improvement of

ENSO representation might lead to improvement in the

Indian monsoon. Figures 6a–c show three different

monsoon indices: the Indian summermonsoon dynamical

index (IMDI; zonal wind at 850hPa averaged in the re-

gion 58–158N, 408–808Eminus the zonal wind averaged in

the region 208–308N, 708–908E; Wang et al. 2001), the

extended Indian monsoon rainfall (58–308N, 708–958E),
and the Indian summer monsoon rainfall (continental

precipitation over the region 58–308N, 708–958E). All

these indices show an improvement of skill with the in-

crease of resolution at the beginning of the monsoon

season. The improvement of earlymonsoon skill could be

associated with an improvement of the forecast of the

monsoon onset date, one of themost relevant variables of

the monsoon. To confirm this hypothesis we have esti-

mated the monsoon onset date based on the criteria of

Wang and LinHo (2002), following the methodology

described in section 2c.We obtain the results described in

Table 5, which shows the estimated mean threshold, the

mean, the standard deviation, and the ACC of the onset

date in the different simulations. The three simulations

show a relatively high correlation for this precipitation-

based monsoon onset date, close to other studies of

monsoon onset predictability (Alessandri et al. 2014).

The skill of the onset date is increased in IRes and HRes

compared to SRes, and the highest skill is obtained in the

IRes reforecast; however, the changes are not significant

at the 95% confidence level.

To show the increase ofmonsoon skill, Figs. 6d–f show

the skill of three indices known to influence the

FIG. 6. Correlation of different indices as a function of forecast time. For all figures, dots show the correlation significant at 95%

confidence level and green stars show the correlation in IRes and HRes significantly different from SRes at 95% confidence level.

(a) Indian monsoon dynamical index (IMDI): zonal wind at 850 hPa averaged in the region 58–158N, 408–808Eminus the wind at averaged

in the region 208–308N, 708–908E. (b) Extended Indian monsoon rainfall (EIMR): precipitation averaged in the region 108–308N, 708–
1108E. (c) Indian summermonsoon rainfall (ISMR): precipitation averaged over land in the region 58–308N, 708–958E. (d)Western Indian

Ocean (WIO): SST averaged in the region 108S8–108N, 608–808E. (e) Indian Ocean basin (IOB): SST averaged in 208S–208N, 408–1108E.
(f) SST averaged in the Arabian Sea (108–308N, 408–808E).

TABLE 5. Onset date characteristics estimated from the criteria

ofWang andLinHo (2002), which is the day for which precipitation

from ERA-Interim averaged over India exceeds 5mmday21 (in

the ISMR region, continental precipitation over the region 58–
308N, 708–958E). The quantile corresponding to this value is esti-

mated with cross-validation for the month of May and July in the

different simulations, the average corresponding threshold is dis-

played in the table. Then the onset date in themodel is estimated as

the first day exceeding this quantile in the model.

ERA-Interim SRes IRes HRes

Mean 26 May 17 May 17 May 18 May

Threshold (mmday21) 5 4.46 4.32 4.97

Std dev (days) 10.9 6.9 7.5 6.39

Correlation 0.61 0.69 0.65
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monsoon and especially the monsoon onset: the SST in

the Arabian Sea (Levine and Turner 2012), in the

western Indian Ocean (WIO; Prodhomme et al. 2014),

and in the Indian Ocean basin (IOB; Boschat et al. 2011;

Prodhomme et al. 2015). The skill of these three indices

is slightly increased in IRes and HRes; as for the mon-

soon onset date, the skill is the highest in IRes. This last

point requires deeper investigation. This increase of skill

in the Indian Ocean and the increase of ENSO skill

could explain the improvement of the monsoon pre-

dictability in IRes and HRes.

The results suggest that higher resolution in the ocean

and/or atmosphere can improve the simulation of the

Indo-Pacific SST, which seems to have a positive impact

on the Indian monsoon predictability. To better un-

derstand the sources of skill coming from the resolution

increase and disentangle the effects of large-scale and

local processes, an assessment of the large-scale dynamics

of the monsoon, vertical and horizontal wind shear in

the Indian Ocean, north–south tropospheric temper-

ature gradient, dynamical onset date (Xavier et al.

2007), and the local processes in the Indian Ocean,

such as the intraseasonal oscillation (Goswami 2005),

would be needed. The robustness of the small im-

provements of the onset date skill should also be

tested by comparing different indices (Fasullo and

Webster 2003; Xavier et al. 2007; Wang et al. 2009;

Bombardi and Carvalho 2009).

b. Atmospheric circulation at midlatitudes

1) NORTH ATLANTIC OSCILLATION

Impacts of increasing ocean and atmosphere resolution

are assessed over the Northern Hemisphere midlatitude

both in terms of variability (Northern Hemisphere

blocking index) and skill in forecasting interannual vari-

ations of the main climate indices (e.g., NAO).

The NAO accounts for a substantial part of the large-

scale atmospheric circulation over the North Atlantic

region at seasonal-to-interannual time scales. Several

studies have evaluated the (generally limited) forecast

skill of GCMs of the seasonal NAO index (e.g., Doblas-

Reyes et al. 2003; Arribas et al. 2011; Kim et al. 2012).

Recently, higher-resolution GCMs were found to have

significant skill in forecasting the NAO (Scaife et al.

2014). Butler et al. (2016) showed by studying the

Climate-System Historical Forecast Project database

that models with a well-resolved stratosphere tend to

better represent responses to ENSO and the quasi-

biennial oscillation (QBO) in upper levels of the atmo-

sphere, but that this does not necessarily translate into

boreal winter NAO skill improvements. The NAO skill

assessment is highly uncertain when using limited ensemble

sizes and short reforecast periods (e.g., Shi et al. 2015).

We therefore chose to evaluate the NAO reforecast skill

using several NAO indices (pressure difference, Pmod

and Pobs; see section 2c for more detail), and focused on

both seasonal (months 2–4 average) skill and monthly

skill up to four months lead.

NAO index correlation coefficients with respect to

ERA-Interim data for boreal winter and summer in the

three experiments studied here are shown in Fig. 7 for

Pobs and Pmod NAO index calculations. Results from

Fig. 7 can be summarized as follows. The NAO pre-

diction skill in EC-Earth is quite poor with standard

resolution over the 1993–2009 reforecast period for both

FIG. 7. Correlation of the NAO index in boreal (a) summer and

(b) winter reforecasts for months 2–4 and computed month by

month for SRes (black), IRes (red), and HRes (blue), using both

Pobs (dark colors) and Pmod (pale colors) computations.
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boreal winter and summer. Increasing resolution leads

to some improvements in NAO correlation, especially

for boreal winter (Fig. 7b). For boreal summer (Fig. 7a)

results are more contrasted, since for higher forecast

times (those exceeding month 3) the NAO correlation

drops when increasing resolution.

Results are similar for both methods shown in the

figure, and confirmed in the case of boreal winter by

computing area-averaged sea level pressure differences

as in Stephenson et al. (2006) (not shown). However it is

crucial to note that uncertainty intervals for these scores

are very large and differences are often not significant.

2) ATMOSPHERIC BLOCKING

Atmospheric blocking simulation is a common issue in

state-of-the-art GCMs. The most recent generation of

GCMs still exhibits large biases, especially over the

European region (Anstey et al. 2013). To evaluate the

winter atmospheric blocking variability, the instantaneous

blocking index computed as in Davini et al. (2012) is

hereafter used.

Figure 8 shows the average bias for the full winter sea-

son (November–February) for the SRes, IRes, and HRes

experiments. SRes shows limited bias over both North

Atlantic and Pacific; however, the classic negative bias

over Europe is clearly present. Increasing the oceanic

resolution does not lead to any evident improvement;

conversely, increasing the atmospheric resolution leads

to a reduction of the bias over Europe and the North Pa-

cific. This is in agreement with experiments showing a

notable improvement of blocking over the Euro-Atlantic

region following an increase in horizontal resolution (e.g.,

Matsueda et al. 2009; Jung et al. 2012; Dawson et al. 2012).

Indeed, there is mounting evidence that reduced Euro-

Atlantic blocking bias is associated with better-resolved

transient eddy activity, which can sustain blocking persis-

tence (Berckmans et al. 2013), andwith a higher orography

variance (especially relevant over the Rocky Mountains),

which affects the mean tilt of the Atlantic eddy-driven jet,

favoring higher geopotential height values over Europe

(Jung et al. 2012; Berckmans et al. 2013).

On the other side, the lack of improvements following

an increase in oceanic resolution is likely associated with

the persistent SST biases in the North Atlantic region,

which can be seen in both SRes and IRes (Fig. 2). Al-

though minor improvements can be observed, there are

FIG. 8. (a) Instantaneous blocking frequency averaged over the full period (1993–2009) expressed as a percentage of blocked days in the SRes

experiment. (b) As in (c), but for IRes. (c) As in (a), but for HRes. (d) Differences of blocking frequency expressed as a percentage of blocked

days in the SRes experiment with respect to months; interim reanalysis. (e) As in (d), but for IRes. (f) As in (d), but for IRes.
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small changes in the SST midlatitude frontal zone (and in

general over North Atlantic) between the low and high

oceanic resolution experiments. This partially contrasts

with the work of Scaife et al. (2011), where increased

oceanic resolution leads to improved blocking. However,

we must keep in mind that the November initializations

and the short-term duration of the current simulations

certainly play a significant role. They indeed keep both the

models far from their own attractor, potentially reducing

the benefits of a better resolved oceanic circulation.

Regarding the predictive skill, an extremely weak

signal is found (not shown). Greenland blocking shows

weak skill in agreement with results for the NAO, but

nothing significant emerges over Europe. Considering

the improvement in the mean state for the HRes ex-

periments, it is likely that a larger number of ensemble

members will be needed to achieve forecast skill for

blocking over Europe.

c. Polar regions

Seasonal sea ice prediction is a growing field of re-

search (Chevallier et al. 2013; Wang et al. 2013). In the

Arctic, forecasting the sea ice conditions a few months in

advance is of great strategic relevance (Emerson and

Lahn 2012; U.S. Navy 2012). As an example of response

to these challenges, the Sea Ice Prediction Network

(SIPN;www.arcus.org/sipn) has collected, each year since

2008, submissions from various groups using a range of

methods in order to predict the upcoming summer sea ice

conditions in the Arctic. Predicting the seasonal devel-

opment of Antarctic sea ice is arguably less interesting

from an end-user perspective, especially over the winter

season, but is still challenging from a scientific point of

view given the recent chain of high records of sea ice

extent in 2012 (Turner et al. 2013), 2013 (Reid et al. 2015),

and 2014 (Massonnet et al. 2015b). The present section

attempts to assess systematically how resolution can im-

pact the skill and biases of sea ice seasonal prediction.

We focus here on the fourth month of prediction

(August and February) as the sea ice cover exhibits

strong seasonality reaching its maximum and minimum

extensions in late local winter or summer, respectively.

(Note that September is conventionally preferred to

August, but our simulations do not extend that far). We

define sea ice extent as the cumulative area of ocean grid

cells where sea ice concentration exceeds 15%, and

compute this diagnostic from the monthly-mean sea ice

concentration field, for various sectors of the planet.

We note first that changing the resolution does not have

an obvious impact (positive or negative) on model bias

(Fig. S6). This bias is systematically larger between any

experiment and the observations than the difference be-

tween any two experiments, for all sectors and start dates

considered. The results should thus be viewed as ‘‘con-

servative’’ in the sense that high-resolution does not de-

grade existing model biases; it remains to be established

whether fine tuning can eventually reduce them. In either

case, the message is straightforward: resolution alone does

not spontaneously improve the mean state of simulated

Arctic and Antarctic sea ice, at least at the seasonal time

scale. Improving the estimation of ocean–sea ice initial

conditions would likely play a more important role to re-

duce basinwide and regional biases, as suggested by recent

studies (Guemas et al. 2016; Massonnet et al. 2015a).

We then consider the ability of the model to predict

interannual variations of August sea ice extent. Because of

secular negative (positive) trends in sea ice extent in the

Arctic (Antarctic), we focus on detrended time series to

avoid overinterpretation of model skill. Figure 9 reports

correlation of detrended time series of sea ice extent in

August in several sectors of the Arctic and Southern

Oceans for the three experiments SRes, IRes, and HRes,

and using five sea ice concentration products as observa-

tional references. This makes a total of 40 triplets (120) of

correlations.We find theHRes experiment to rank highest

19 times. If all tests were independent from each other

(which is questionable since observations and sea ice ex-

tent in sectors are well correlated with one another), a

result as extreme as this one could happen 4.5% of the

time just by chance. An inspection of actual time series of

sea ice extent (Fig. S6) reveals that correlation changes are

the consequence of hardly noticeable changes in the time

series. Using alternative observational products alters the

estimated correlations, by amounts sometimes as large as

differences across experiments themselves, but preserves

rankings anyway (Fig. 9). If not spectacular, the overall

improvement of the scores, consistent among observa-

tional products, when resolution increases is a reassuring

FIG. 9. Correlation of 1993–2008 August forecasts (initialized in

May) for the three experiments SRes (green), IRes (orange), and

HRes (red), against five observational products (symbols) in seven

sectors: Arctic [08–908N], Barents Sea [688–828N, 188–708E], Ant-

arctic [08–908S], Weddell Sea [08–908S, 608W–208E], southern Pa-

cific [08–908S, 908–1608E], southern Indian Ocean [08–908S, 208–
908E], Ross Sea [08–908S, 1308W–1608E] and Amundsen–

Bellinghausen Seas [ 08–908S, 608–138W]. The plain horizontal

line is the zero line, and the dashed line the threshold above which

correlations are significant at 5% confidence level.
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result. However, the difference of correlation between

HRes and SRes are not significant at 95% confidence level

in most of the cases.

A similar analysis conducted for the target month of

February (not shown here) reveals a totally different

picture. The SRes run ranks highest in 20 cases out of 40,

which would have happened 2.1% of the time by chance.

By a symmetrical argument, we conclude that using a

higher-resolution, but untuned configuration degrades

the ability of the model to forecast sea ice extent varia-

tions. Sea ice extent in the Arctic in winter is largely

controlled by oceanic heat convergence (Bitz et al. 2005),

and we hypothesize that a simple change in resolution is

not sufficient to transport the adequate amounts of heat

northward—at least when the same parameterizations as

the ones for the SRes configuration are used.

When considering both themean state and variability,

it is apparent that our three simulations resemble more

each other than they resemble observations. This in-

dicates that resolution alone cannot fully address long-

standing biases, and that other ongoing developments

(modeling, new parameterizations, generation of better

initial conditions) have to come into play.

5. Conclusions

In the present study, we have compared three different

simulations run with the same version of the EC-Earth

coupled model. The simulations differ only in their oce-

anic and atmospheric resolutions. This unique set of

simulations offers the possibility to investigate systemat-

ically the benefits of resolution for seasonal climate pre-

diction. It is not possible to extract a common conclusion

for all regions, seasons, variables, and lead times consid-

ered in this paper, as results vary highly depending on the

process investigated. We first summarize cases where

resolution is clearly beneficial, then examples where it

leaves baseline prediction capabilities unchanged (or

even deteriorates them), and finally cases for which the

assessment is uncertain.

The increase of oceanic and/or atmospheric resolution

in EC-Earth 3 generally leads to an improved repre-

sentation of the mean state of the reforecast. The SST is

more sensitive to resolution increase in the oceanmodel,

whereas atmospheric variables (precipitation, near-

surface wind, T2M over land) are improved only if

atmospheric resolution is also increased. Some im-

provement of the mean state, especially in the tropical

Indo-Pacific, is associated with an improvement of skill

in this region for both SST (Niño-3.4, IOB, western In-

dian Ocean, and Arabian Sea) and monsoon simulation

(onset date, dynamical index, and rainfall). Some minor

improvements are also visible in the sea ice and NAO

predictability, as well as the representation of the

blocking indices. All those improvements, summarized

in Table 6, suggest that, despite the absence of specific

TABLE 6. Summary of the changes associated with an increase of resolution in the EC-Earth seasonal predictions. Improvements are

marked with (11), degradations with (22), and results showing no specific changes are marked with (55).

Mean state Skill

Global maps (11) For all variables the percentage of Earth’s sur-

face where the bias is reduced is higher than 50%

(22) The skill is not improved at the grid point level

ENSO and Pacific SST (11) Reduction of the cold tongue bias (11) Increase of the ENSO skill

(11) Better representation of the Kuroshio current

Indian Ocean SST (11) Improvement of the Somalian upwelling (11) Slight improvement of skill of western Indian

Ocean, Arabian Sea SST, and IOB (stronger in

IRes)

Atlantic SST (11) Reduction of the warm bias in summer in the

North Atlantic

(11) Decrease of skill in the northeastern Atlantic

(22) Decrease of the skill in the equatorial Atlantic

(11) Better representation of the Gulf Stream

(55) No improvement in the tropical Atlantic

Indian monsoon (11) Reduction of the excessive oceanic pre-

cipitation over the Indian Ocean.

(11) Improvement of the skill of dynamical and

precipitation monsoon index and slight improve-

ment of the prediction of the monsoon onset date

(especially in IRes)

(55) Seasonal cycle of the monsoon is not improved

(not shown)

African monsoon (55) No improvement (not shown) (55) No improvement

Atmospheric blocking (11) Improvement of the blocking representation (55) No skill

North Atlantic Oscillation (11) Improvement for winter and beginning of

summer

(22) Degradation for August

Sea ice (55) No difference. Model biases remain unchanged. (11) Slight improvement for boreal summer

prediction.

(22) Slight degradation for boreal winter prediction
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tuning, increasing the resolution is a way forward to

improve both the simulation of themean climate and the

predictability of high-impact phenomena. Other phe-

nomena have been shown to be improved with resolu-

tion increase and have not been assessed in this study,

such as tropical cyclones (Caron et al. 2011; Manganello

et al. 2016) or polar jet (Guemas and Codron 2011;

Hourdin et al. 2013).

However, despite these improvements, the SST skill is

decreased in the high-resolution simulation over more

than half of the ocean surface. This is especially true in

the tropicalAtlantic, where bothmean state and skill are

deteriorated in the high-resolution runs compared to the

standard resolution. Most coupled models are strongly

biased in the Atlantic (Toniazzo and Woolnough 2014);

the PREFACE (Enhancing Prediction of Tropical At-

lantic climate and its Impacts) EU FP7 project, which

partly funded this study, aims to better understand the

reasons underlying the formation of those biases. Our

results illustrate the limitations to increasing resolution

as ameans of improving seasonal forecasts, particularly in

the case of the tropical Atlantic. In the scope of the

project, different studies are in preparation tackling these

biases with different approaches, such as wind stress and

flux corrections, assessment of the daily evolution of the

model drift in seasonal reforecasts, and CMIP5 multi-

model analysis. It is essential to study together seasonal

forecast and long-term simulations to better understand

how both systematic error and variability of the long run

could be related to seasonal forecast drift and skill.

Some hints of improvement of the representation of

the NorthAtlantic Oscillation and blocking indices have

been found when the resolution is increased; however

the limited ensemble size and number of start dates

considered here are not sufficient to assess robustly the

changes in the forecasting skill of these phenomena.

These considerations open a common debate in the

seasonal forecasting community: whether resources

should be used to increase resolution or ensemble size.

Running the HRes experiment is approximately 19

times more expensive than the SRes experiments. In

addition, other strategies, such as introducing stochas-

tically perturbed parameterization tendencies (SPPT)

perturbations in the atmosphere could lead to compa-

rable increase of ENSO skill to the one obtained in

HRes (Batté and Doblas-Reyes 2015). It is legitimate to

ask if such an expensive experiment is justified given the

amplitude of the observed improvements. To answer

this question it is worth investigating if an equivalent

tuning to the one performed for the low-resolution

configuration would help the HRes version signifi-

cantly improve its performances. A substantial effort

should be done for the tuning of the high-resolution

version of EC-Earth to answer this question, ideally

following an objective framework applied to bothmodel

resolutions (Bellprat et al. 2012).

As the horizontal resolution increases in both the

ocean and the atmosphere, GCMsmove closer to the so-

called ‘‘grey zone’’ of spatial scales for which classic

physical parameterizations may no longer be adapted.

As shown by Jung et al. (2012), an upper limit to im-

provements due to increasing resolution in current-

generation GCMs is to be expected, and research is

now underway to design scale-aware parameterizations

that could help push back limitations in climate fore-

casting, provided that appropriate computational re-

sources are available (e.g., Stan and Xu 2014; Campin

et al. 2011) . At the spatial resolutions considered in this

study (from ;18 to ;0.258), model biases and forecast

skill are in general moderately affected by the sole

changes in resolution, indicating that further process-

based tuning will be necessary for the newly developed

high-resolution versions of the model. Yet, in some

particular cases (ENSO prediction, Indian Ocean),

these simple changes in resolution are sufficient to sig-

nificantly advance the forecast system capabilities. De-

veloping and tuning global forecast systems at higher

resolutions is thus of utmost importance for pushing the

boundaries of seasonal prediction.
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