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Abstract 
Clustering is an approach that many microprocessors are 
adopting in recent times in order to mitigate the increasing 
penalties of wire delays. In this work we propose a novel 
clustered VLIW architecture which has all its resources 
partitioned among clusters, including the cache memory. A 
modulo scheduling scheme for  this architecture is also pro- 
posed. This algorithm takes into account both register and 
memory inter-cluster communications so that the jinal 
schedule results in a cluster assignment that favors cluster 
locality in cache references and register accesses. It has 
been evaluated for  both 2- and 4-cluster conjigurations and 
for  differing number and latencies of inter-cluster buses. 
The proposed algorithm produces schedules with very low 
communication requirements and outperforms previous 
cluster-oriented schedulers. 

1. Introduction 

Technology projections point to wire delays as being one of 
the main hurdles for improving instruction throughput of 
future microprocessors [23]. As wire delays grow relative 
to gate delays and feature sizes shrink, the percentage of 
on-chip transistors that can be reached in a single cycle will 
decrease, and microprocessors will become communica- 
tion bound rather than capacity bound [ 11 [ 141. 

Techniques to solve this problem at all levels, from 
applications to technology, will be crucial for performance. 
Clustering is an effective microarchitectural approach to 
mitigate the negative effect of wire delays. The main idea 
is to have a hierarchical organization of the interconnection 
wires such that units that communicate frequently are inter- 
connected through short and fast wires. On the other hand, 
units that rarely communicate can use longer and slower 
wires. In other words, the microarchitecture exploits what 
we may call communication locality. Several commercial 
microprocessors have adopted this approach, such as the 
Alpha 21264 [ lo] ,  which is a superscalar processor, but this 

trend is even more common for VLIW processors used in 
the embeddediDSP domain. Examples of the latter are 
Texas Instrument’s TMS32OC6000 [24], Equator’s 
MAP1000 [15] and Analog’s TigerSharc [8]. 

Clustering can be applied to different parts of the 
microarchitecture. Cluster microarchitectures proposed so 
far, both in the commercial and research arena, distribute 
the functional units and register files, but the data cache is 
considered a centralized resource. This centralized organi- 
zation challenges the scalability of these architectures. 
Besides, some studies point out that the access time (in 
number of cycles) to the memory structures is likely to 
increase with future technologies, even when their capacity 
is kept constant [ 11. This suggests that short latency mem- 
ory structures should be even smaller than they are today. 
Because of these two reasons, we believe that a distributed 
cache memory architecture is key for increasing the perfor- 
mance of future microarchitectures. 

In this work we propose a clustered VLIW microarchi- 
tecture with a distributed cache memory. This architecture 
has all the resources distributed: instruction fetch, execute 
and memory units. It resembles very much a multiproces- 
sor, with the exception that all the clusters progress in a 
lockstep mode, and inter-cluster register communications 
are controlled by the compiler by means of certain fields in 
the ISA. Because of this resemblance we refer to this archi- 
tecture as a multiVLIWprocessor: 

The effectiveness of this microarchitecture strongly 
depends on the ability of the compiler to generate code that 
balances the workload of the different clusters and result in 
few inter-cluster communications. In this work we propose 
a modulo scheduling technique for multiVLIWprocessors. 
The proposed scheduler includes some heuristics for mini- 
mizing inter-cluster register communication, based on the 
information provided by the data dependence graph. 
Besides, it implements a powerful memory locality analy- 
sis based on Cache Miss Equations [9], which guides the 
scheduling of memory instructions with the objective of 
minimizing inter-cluster memory communications. 
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Figure 1. Microarchitectures of a MultiVLlWProcessor 

Some previous work related to scheduling of instruc- 
tions for clustered VLIW architectures can be found in the 
literature for non-cyclic [6][4][ 11][ 181 and cyclic code 
[17][7][22], but to the best of our knowledge this is the first 
study that deals with a clustered VLIW architecture that 
has a distributed data cache. 

The rest of this paper is organized as follows. Section 
2 describes the architecture of the multiVLIWprocessor and 
some basic background on modulo scheduling. An exam- 
ple that motivates the proposed algorithm is shown in Sec- 
tion 3. In Section 4, the proposed algorithm is described 
and Section 5 shows performance results obtained for dif- 
ferent configurations. Finally, the main conclusions of the 
work are drawn in Section 6. 

2. MultiVLIWProcessors 

In this section we first describe the microarchitecture of 
multiVLIWprocessors and then we review some basic con- 
cepts of modulo scheduling for the proposed architecture. 

2.1. Microarchitecture 

Our base architecture (see Figure 1) is composed of several 
clusters, each one executing a fixed part of each VLIW 
instruction. All clusters work in lockstep mode, i.e., any 
stall in one cluster also stalls the other clusters. Every cycle, 
all clusters fetch their corresponding parts of a new VLIW 
instruction from their local instruction caches. Each cluster 
consists of several functional units, a register file and a 
local data cache memory in addition to the local instruction 
cache. Functional units can be of three different types: inte- 
ger arithmetic, floating-point arithmetic or memory access. 
For the sake of simplicity, we consider that all clusters are 
homogeneous (i.e., with the same number and type of func- 
tional units), but the proposed techniques can be general- 
ized for heterogeneous clusters. 

Register values generated by one cluster and needed 
by another one are communicated through a set of buses 
that are shared by all clusters (called register buses). A 
value that is put in a register bus can come from either the 
local register file or the output of a functional unit through 
a short-circuit. On the other hand, a value that is read from 
the bus can be stored in a register file, feed a functional unit 
or both. Thus, instruction register operands can be read 
from either the local register file or any bus, and instruction 
results can be written into the register file and to any regis- 
ter bus. All register communication operations are explic- 
itly encoded in the appropriate fields of the VLIW 
instruction, which are set at compile time. Thus, no addi- 
tional hardware is needed to manage and arbitrate register 
buses. The detailed VLIW instruction format is shown in 
Figure 2. Each instruction for a particular cluster consists 
of the following fields. An operation for each functional 
unit in that particular cluster (FUj) and the source (IN BUS) 
and target (OUT BUS) of the bus (there are as many INlOUT 
fields as number of buses). The IN BUS field indicates, if 
necessary, the register in the local register file in which the 
value that is in IRV has to be stored. The IRV (Incoming 
Register Value) is a special register in each cluster that 
latches the value that comes from the bus. The OUT BUS 
field indicates from which local register a value has to be 

VLIW Instruction CtusrERl CLUSTER2 5=4= 
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Figure 2. VLIW instruction format 
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issued to the bus, if any. If the register is being written in 
that cycle, the data will be bypassed from the output of the 
corresponding functional unit. Since a bus is a resource 
shared by all the clusters, when one particular cluster places 
a data on the bus (OUT BUS), this bus will be busy during 
the entire bus latency and no other instruction can use it (a 
bus is considered by the scheduling algorithm as another 
resource in the reservation table). 

Regarding memory accesses, a loadstore issued by a 
cluster first tries its local L1 data cache. If the data is found, 
the access is satisfied with minimum latency. Otherwise, 
the hardware tries the cache of the other clusters or, finally, 
the access is solved by the main memory. Both local mem- 
ories and main memory are interconnected through one or 
several buses (that are called memory buses). As the cache 
is physically partitioned among the clusters, coherence 
among the local caches and the main memory has to be 
kept. For this reason, a snoopy MSI protocol [ 5 ]  has been 
implemented. This protocol is completely transparent to the 
ISA, and further, both the coherence and the bus arbitration 
are managed by the hardware. When a memory access 
misses in its local cache, the miss request is queued in a 
local MSHR (Miss informatiodstatus Handling Register) 
structure, since the L1 data cache is non-blocking [12]. 
Then, the access has to compete for a free memory bus in 
order to access a remote cache or the main memory. 

All the dependences with memory operations are 
dynamically checked, since the scheduler may have consid- 
ered an optimistic latency for these instructions (i.e., hit in 
the local cache). If any dependence is not met, the depen- 
dent instruction stalls in all clusters until the hazard is 
resolved. 

2.2. Background on Modulo Scheduling 

Software pipelining is a very effective technique to stati- 
cally schedule loops. The most popular scheme to perform 
software pipelining is called modulo scheduling [20][ 131. 
The two main parameters that statically characterize a mod- 
ulo scheduled loop are the initiation interval (11) and the 
stage count (SC). The former reflects the number of cycles 
that a kernel iteration takes (assuming no stalls), whereas 
the latter shows how many iterations are overlapped, and 
determines the length of the prolog and epilog. 

For a clustered VLIW architecture, both I1 and SC can 
be affected by inter-cluster register communications. If the 
communication buses become saturated, a higher I1 is 
required. Moreover, communication operations may 
increase the length of the schedule, and therefore the SC 
may be increased. Thus, the IPC of a clustered VLIW archi- 
tecture will be lower than that of an equivalent unified 
VLIW architecture with the same resources in general. On 

the other hand, a clustered architecture may reduce the crit- 
ical delays such as the register file access time and the 
bypass latency [ 191, and allow for faster clock rates. 

For this paper, which focuses on modulo scheduling 
for multiVLIWprocessors, the number of cycles needed to 
execute a particular modulo scheduled loop can be modeled 
through the following expression [21]: 

NCYCLETotal = NCYCLEcompute t NCYCLEsta l l  

Where NCYCLECOmp,,, represents a fixed number of 
cycles that depends on the particular static scheduling pro- 
duced by the compiler. During these cycles the processor is 
doing useful (or at least scheduled) work. NCYCLE,,,,, rep- 
resents the number of cycles where the processor is stalled 
and depends on several factors as we detail below. The 
value of NCYCLECOmput, can be computed before executing 
the loop if the number of times the loop is executed 
(NTIMES) and the number of iterations of each execution 
(NITER) are known, as shown by the next expression: 

NCYCLECompute = NTIMES * ((NITER t SC -1) * II) 

The value of NCYCLEstall cannot be computed stati- 
cally. It represents the number of stall cycles due to incom- 
plete information managed by the compiler. For instance, 
some memory instruction latencies may be unknown since 
the compiler does not know whether they will hit in the first 
level cache. If the value loaded by a memory instruction 
feeds another operation (i.e., the latter depends on the 
former) but the latter was scheduled using an underestima- 
tion of the memory latency, it will stall until the memory 
access is finished. In the assumed microarchitecture, the 
final latency of a memory instruction depends on three fac- 
tors: 

Latency of memory accesses, which depends on the 
memory level that satisfies the access: local cache, 
remote cache or main memory. 
Number of entries in the MSHR of the lockup-free 
caches. If there is no available entry for a new miss 
request, the instruction stalls until there is a free entry. 
Cycles waiting for a free bus and bus latency. 

Thus, considering all of these factors, the total latency 
of a memory access can be represented by this formula: 

LATMemAccess = LATCache 

MissLC (NCWaitingEntry NCWailingBus LATMemoryBus + 

max ( LATCache MISSRC ' LATMainMemory 

Where both MISSLc and MISSRc represent binary val- 
ues that are 1 if the access misses in local cache and all 
remote caches respectively, or 0 otherwise. NCWaitingEntry 
represents the number of cycles that a miss access is wait- 
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DO I = 1, N, 2 
A ( I )  =;BcIC*C(I) + 

B(I+l)*C(I+l) 
ENDDO 

ausm I CLUSTER 2 

I1 = 3 ,  SC = 4 

Figure 3. Motivating example 

ing for an available entry in the MSHR. NCWaitingBus is the 
number of cycles that the access is waiting for a free bus. 
Note that a bus can be also busy for coherence operations 
and this is taken into account by our simulator. Finally, 
although we have considered LATMainMemory as a fixed 
parameter, in the above expression note that for some ref- 
erences this number could be smaller if an earlier miss has 
already started loading the relevant cache line. This fact has 
also been accounted for our simulator. 

3. Motivating Example for the Proposed 
Scheduler 

The objective of this study is twofold: first, demonstrate 
that when the data cache is partitioned among the different 
clusters, the selection of the cluster where each memory 
instruction is scheduled is very important and can dramati- 
cally affect the final performance of a program (the same 
holds for register values, but this has already been shown 
by previous papers). Second, we propose a modulo sched- 
uler that takes into account both register and memory inter- 
cluster communications. 

In this section, we illustrate through an example how 
the cluster selection can affect the total number of cycles in 
which a code section is executed. Consider that we want to 
perform modulo scheduling of a loop whose code and 
dependence graph are shown in Figure 3. Assume the pro- 
cessor consists of 2 clusters, each one with its local register 
file and data cache (direct-mapped), and 2 functional units: 
one for arithmetic operations (with 2-cycle latency) and 
one for memory operations. There is one inter-register bus 
with a 2-cycle latency. The latencies for memory accesses 
are: 2 cycles for a local cache, 2 cycles for a bus transaction 
and 10 cycles for an access to main memory. 

For this loop, the minimum initiation interval (mII) for 
an equivalent unified architecture with the same resources 
is 3 cycles. The partition and scheduling that minimizes the 
number of register communications between clusters and, 
thus, that achieves the same I1 as the equivalent unified 
architecture is shown in Figure 3(a). In this figure, the left 
part represents the partition of the operations between the 
clusters whereas the right part shows the modulo reserva- 
tion table obtained after modulo scheduling. Each opera- 
tion is scheduled in a particular slot and the number in 
brackets represents the stage at which this operation is 
scheduled. The usage of the register bus is also shown in 
this table. Whenever a bus transaction takes place, the cor- 
responding bus time slot is reserved and it is indicated by a 
C in the reservation table. 

Then, the NCYCLEC,,put, of the resulting loop can be 
computed as: 

NCYCLEcOmp,~,(,) = NTIMES ((N t 4 -1) ' 3) = NTIMES (N t 3) * 3 

However, suppose that both arrays B and c are located 
in memory at a distance that is a multiple of the local cache 
memory size. This means that we will have ping-pong 
interferences between LDl and LD2, and between LD3 and 
LD4. Thus, the spatial locality exhibited by the four instruc- 
tions cannot be exploited and the four accesses always 
miss. The result is that the instruction(s) that consume the 
memory values suffer many stalls. In the example, the 
VLIW instruction that contains the multiplications cannot 
continue its execution until the misses are satisfied. Assum- 
ing that we have sufficient memory buses, the number of 
cycles that the instruction stalls is the latency of a bus trans- 
action plus an access to main memory, since the latency to 
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the local cache was taken into account by the scheduler. 
Then, the number of stall cycles is: 

NCYCLESt,ll(,) = NTIMES N * (2t10) = NTIMES * N * 12 

An alternative scheduling is shown in Figure 3(b). 
Based on the locality properties previously observed, in 
this second alternative cluster assignment is selected in 
order to take advantage of the locality exhibited by memory 
instructions. For this reason, LDl and LD3 are scheduled in 
the same cluster in  order to profit from its group reuse, and 
the same applies for LD2 and LD4 which are scheduled in 
the other cluster. In this way, ping-pong interferences are 
removed and we can take advantage of the spatial reuse. 
However, as we can see in the example, for this case two 
communications between register values are needed per 
iteration, and then the I1 has to be increased from 3 to 4. 
Thus, NCYCLECompUte is computed as: 

NCYCLECompute(b) = NTIMES * ((N t 3 - 1) * 4) = NTIMES (N t 2)  * 4 

However, the miss rate of LD3 and LD4 is 25% (assum- 
ing eight data elements per cache block), and LDl and LD2 
always hit (excepting the first iteration). Thus, the number 
of stall cycles is: 

NCYCLEStall(b) = NTIMES * N ' (2'(2t10)* 0.25) = NTIMES * N * 6 

Then, putting all together, we have that the total num- 
ber of cycles in both strategies as: 

NCYCLET0tal(,) = NTIMES ' (15 N + 9) 

NCYCLET~~,~(~) = NTIMES (10 * N t 8) 

Therefore, we can conclude that the second strategy, 
which takes into account both register and memory com- 
munications, achieves a schedule that is 1.5 times faster 
than the original one, which is optimized only for register 
communications. 

4. Register and Memory Communication- 
Aware Modulo Scheduler 

In this section we present a modulo scheduler that tries to 
minimize both register and memory inter-cluster communi- 
cations and at the same time balance the workload. We first 
review a previously proposed scheduler, which is very 
effective at minimizing register communications, and 
which we will use as a baseline for comparisons. Then, we 
present the data locality analysis framework that is used by 
the scheduler. Finally, the modulo scheduler is described. 

4.1. Baseline Algorithm 

We use as the baseline algorithm the one proposed in our 
previous work [22], which was shown to be very effective 
at minimizing register communications and maximizing 
the workload balance. In that work, the target architecture 
was similar to the one proposed in Section 2.1, but in that 
case all clusters accessed a shared L1 cache. Below, we 
briefly review the algorithm proposed there. For more 
details, the interested reader is referred to the original paper 
[221. 

The algorithm employs a unified assign-and-schedule 
approach, that is, cluster selection and scheduling of oper- 
ations is done in a single step. The heuristic for selecting a 
cluster is the number of edges that exit from the depen- 
dence subgraph corresponding to all the nodes already 
scheduled in a particular cluster. This value represents a 
measure of the number of register communications. An 
attempt is made to schedule an operation (i.e., a node in the 
dependence graph) in all the clusters in which there is an 
available slot. The one chosen is the one in which the best 
profit from output edges is achieved (that is, the difference 
between output edges before and after including this oper- 
ation in the partial schedule). All the operations are sched- 
uled using the same algorithm and following a particular 
order that is crucial for performance. If an instruction can- 
not be scheduled (because no issue slot is available, or there 
are not enough registers, or the register buses are satu- 
rated), the I1 is increased and the whole process is re-started 
(except the ordering). 

4.2. Overview of the Cache Miss Equations 

Cache Miss Equations (CME) is an analytical framework 
to model the cache behavior that is very accurate for codes 
that make use of scalar variables and affine' array refer- 
ences, which is very common in numeric applications. This 
framework was proposed by Gosh, Martonosi and Malik 
[9]. CME describes the precise relationship among the iter- 
ation space, array sizes, base addresses and cache parame- 
ters for a loop nest. 

A direct solution of the CME is an NP problem, which 
makes it infeasible for many practical cases. The problem 
can basically be stated as counting integer points inside an 
exponential number of polyhedra. However, Bermudo et al. 
[3] proposed some techniques to speed-up the counting 
process by exploiting some intrinsic properties of the par- 
ticular type of polyhedra generated by the CME. Further, 
Vera et al. [25] proposed a sampling scheme in order to 
estimate the solution by means of confidence intervals. 

1. An array reference is affine if the expressions that indicate the referenced el- 
ement in each dimension are linear functions of the loop induction variables. 

128 



I Sortnodes 

Figure 4. RCMA modulo scheduling step by step 

These two techniques together drastically reduce the com- 
puting time to just about a few seconds per loop for most 
programs, and then the time required to compute and solve 
the equations is comparable to the time required by other 
typical optimizations of the compiler. In this paper, we use 
this implementation of the CME to estimate the amount of 
reuse that is exploited by any subset of memory instruc- 
tions. CME will allow the scheduler to estimate the amount 
of memory communications among clusters or between 
clusters and main memory. The scheduler uses this infor- 
mation to guide its scheduling decisions. For instance, 
given a memory instruction, it is beneficial to schedule it in 
a cluster where there already are other instructions from 
which it reuses data (group reuse). On the other hand, it is 
detrimental to schedule the instruction in a cluster where 
there already are other instructions that cause many cache 
conflicts with the current one. CME allow the schedule to 
quantify the amount of reuse and conflicts among any 
group of instructions of the same loop nest. CME are used 
to produce the following statistics: 

The number of misses incurred by a set of memory 
references for a particular cache configuration (capac- 
ity, block size and associativity) 
The miss ratio of a particular memory instruction in 
this set. 

4.3. Scheduler for a Distributed Cache 

The proposed algorithm is called RMCA (which stands 
for Register and Memory Communication-Aware) modulo 
scheduling. It is an evolution of the algorithm reviewed in 
Section 4.1 and its main steps are depicted in Figure 4 (new 
features are shown in gray boxes). All nodes in the data 
dependence graph are first sorted according to the criteria 
used by the original paper [22]. This ordering minimizes 
the number of nodes that have both predecessors and suc- 
cessors in the set of nodes that precede it in the order. Then, 
cluster selection and scheduling is performed in a single 
step following that order. However, there is now a distinc- 

tion between two types of nodes: (a) memory operations, 
and (b) non-memory operations. For operations of the latter 
group, the algorithm does not change. However, when a 
memory operation is scheduled, a different strategy is used. 
Instead of choosing the cluster where the gain from output 
register edges is maximized, the cluster selection depends 
on the profit from cache misses. In other words, each time 
a memory operation is scheduled, all clusters are tried, and 
for each one, the number of cache misses contributed by 
memory operations scheduled in that cluster, before and 
after introducing the current operation, is computed 
through the CME. Then, the cluster(s) where this gain is 
maximized is chosen. If more than one cluster is optimal 
with respect to cache misses, the scheduler selects one of 
them using the same strategy as for non-memory opera- 
tions. Although the solver of the CME have to be repeat- 
edly invoked, the method is very fast due to the 
optimizations mentioned in Section 4.2., and the time 
required by the scheduler is a small percentage of the total 
compilation time. 

This algorithm tries to minimize the number of cache 
misses, and thus it attempts to minimize the inter-cluster 
memory communications. However, the latency of these 
communications can be hidden by scheduling some load 
instructions using the cache-miss latency (binding 
prefetching, as proposed in [21]). When a load is scheduled 
using the cache-miss latency, the operation that consumes 
the data read by the load will not be stalled because it is 
scheduled assuming the worst-case latency. However, 
scheduling instructions using a larger latency can have a 
negative effect on both register pressure and length of the 
schedule. On one hand, the lifetime of the load destination 
register is increased. On the other hand, the I1 can be 
increased if this instruction belongs to a recurrence and this 
increased latency makes the recurrence the most restrictive 
constraint on the 11. Besides, the length of the schedule for 
a single iteration may increase, which may cause an 
increase in the SC, which in turn affects the durations of the 
prologue and epilogue. Therefore, as shown in [21], it may 
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be much more effective to schedule with a miss latency 
only those loads that are likely to miss. This can be done as 
long as the latency does not increase the I1 with respect to 
the schedule produced when loads are scheduled with a hit 
latency. Thus, the proposed scheme includes another step: 
once the target cluster of an instruction is determined, it is 
scheduled using the cache-miss latency if the miss ratio of 
this instruction in this particular cluster (considering the 
partial schedule produced so far) is greater than a certain 
threshold, and provided that this latency does not increase 
the I1 if the operation is in a recurrence. The assumed miss 
latency is the time to access main memory, that is, LATCache 
+ L A T M ~ ~ ~ ~ B ~ ~  + L A T M ~ ~ ~ M ~ ~ ~ ~  (note that we do not con- 
sider the memory bus contention since it is not known at 
this moment, although it could be estimated). 

Note that with this scheme some memory instructions 
are scheduled with the miss latency even if their miss ratio 
is lower than 100%. This may happen for instance for 
instructions with spatial locality. In this case, loop unroll- 
ing could be used to generate multiple instances of the 
same instruction such that one of them always miss and the 
other always hit [ 161. However, we have not considered this 
optimization in this paper. 

5. Performance Results 

This section analyzes the performance of the proposed 
scheduler. The main performance metric that we use is the 
number of cycles executing instructions of modulo sched- 
uled loops. Note that this metric does not include the effect 
of clustering on the cycle time, thus, differences observed 
for different schedulers and the same architecture directly 
translate into differences in execution time. However, the 
number of cycles for different architectures should be 
divided by cycle time to measure differences in execution 
time. Since we are concerned with differences among alter- 
native schedulers, we prefer not to include the effect of 
cycle time in our metric, to isolate the effect of the sched- 
ulers. A study of the impact of clustering on cycle time can 
be found elsewhere [ 191 as well as on energy consumption 
[26], which is another important factor that can be reduced 
through clustering. 

5.1. Configurations and Benchmarks 

The scheduling algorithm has been evaluated for three dif- 
ferent configurations of the multiVLIWprocessor architec- 
ture. These configurations are shown in Table 1.The first 
configuration is called Unijied and it is composed of a sin- 
gle cluster with four functional units of each type (integer, 
floating point and memory) and a unique register file of 64 
general-purpose registers. 

Table 1. MultiVLlWProcessor configurations and 
operation latencies 

This configuration represents our baseline. Both the 2-clus- 
ter and 4-cluster configurations have the register file parti- 
tioned (into two and four partitions respectively). The 
former has 2 functional units of each type and 32 register 
per cluster and the latter includes 1 functional unit of each 
type and a register file of 16 registers per cluster. The three 
configurations are 12-way issue. 

For all configurations, the total LI cache size is 8KB, 
divided into equal-sizes among the different clusters. This 
cache capacity is realistic for embedded/DSP processors. 
For instance, the TI TMS320C6711 has an L1 data cache 
of 4Kbytes [24]. In our architecture, each local cache is 
direct-mapped, non-blocking with 10 entries in the MSHR. 
An access to a local cache is satisfied in 2 cycles, whereas 
an access to main memory takes 10 cycles. For the clus- 
tered configurations we will present results for different 
number and latency of both register and memory buses. 

The modulo scheduling algorithm has been imple- 
mented in the ICTINEO compiler [2] and some SPECfp95 
benchmarks have been evaluated: tomcutv, swim, su2cor, 
hydro2d, mgrid, upplu, turb3d and apsi .  Note that modulo 
scheduling is an effective technique for both numeric and 
multimedia applications, but it is not so effective for appli- 
cations such as SPECint95 due to the small number of iter- 
ations for each loop execution and the abundance of 
conditionals. 

The performance figures shown in this section refer to 
the modulo scheduling of innermost loops with a number 
of iterations greater than four. Our measurement shows that 
code inside such innermost loops represents about 90% of 
all the executed instructions, so that the statistics for inner- 
most loops are quite representative of the whole program. 
Only instructions that belong to modulo scheduled loops 
are taken into account by the simulator. Thus, the programs 
were run until the first 100 million memory instructions in 
these loops using the ref input data set. 
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Figure 5. Results obtained for an unbounded number of buses (averaged for all benchmarks) 

5.2. An Unbounded Number of Buses 

Before considering realistic configurations, we have evalu- 
ated an architecture with an unbounded number of buses to 
test the performance of the proposed algorithm under 
extreme situations where bus bandwidth in not a problem. 
The remaining parameters of the architecture are those 
listed in Section 5.1 and the latency of the buses is param- 
etrized. Figure 5 shows the normalized number of cycles 
averaged for all benchmarks, for 2 and 4 clusters and the 
different latencies considered. The first set of four bars rep- 
resents the results for the unified configuration. The rest 
represent the results for the clustered configuration for dif- 
ferent latencies of register buses (LRB - Latency of Register 
Buses) and memory buses (LMB - Latency of Memory 
Buses). For the different sets, we have evaluated two differ- 
ent schedulers: 

The baseline scheduler outlined in Section 4.1, which 
is very effective at minimizing register communica- 
tions. 
The proposed algorithm, that takes into account both 
register and memory communications, which is 
labeled as RMCA. 

Each set of four bars represents the results obtained for 
different values of the cache miss threshold (from 1.00 to 

0.00) that determines whether a load is attempted to be 
scheduled with a miss latency. Note that threshold 1 .OO rep- 
resents the traditional scheme, that is, using always the 
cache-hit latency for memory operations. On the other 
hand, threshold 0.00 is most similar to the one proposed in 
[21], where all operations that do not cause an increment in 
the I1 (due to recurrences) are scheduled using the cache- 
miss latency. The only difference is the locality analysis 
employed, which is more powerful in this paper. Each bar 
is split into two parts: the compute time (or NCYCLE,,,- 
pure) is the blacwgrey part, whereas the stall time (or NCY- 
CLE,,,,,) is the white one. 

From these graphs we can see that for all configura- 
tions (number of clusters, latencies and thresholds) the 
scheme that takes into account memory communication 
(RMCA) outperforms the one that ignores this feature 
(Baseline). As expected, for smaller values of the threshold 
the compute time increases (since it may increase both the 
I1 due to register requirements, and the SC due to an 
increase in the length of the schedule) but the stall time 
decreases. Note that with a threshold of 0.00 the stall time 
is almost zero for all configurations and the number of 
cycles for the multiVLIWprocessor are comparable to those 
of the unified configuration. We can also observe that for 
small thresholds (0.25 or 0.00) both Baseline and RMCA 
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Figure 5. Results obtained when the number of buses  is limited (averaged for all benchmarks) 

strategies achieve similar performance, since the latency of 
cache misses is hidden by scheduling loads with the cache- 
miss latency. Nevertheless, note that for an unbounded 
number of buses the time waiting for a free bus (NCWaiting- 
Bus) is zero, and hence, if the latency is hidden, the number 
of misses has no effect. However, as we will see in next sec- 
tion, when the number of memory buses is limited, the dif- 
ference between both schemes will be notable, since the 
schedules produced by the RMCA scheme require much 
less communications. 

5.3. Evaluation of Realistic Configurations 

We have shown the potential benefits that can be achieved 
when memory communication are taken into account by 
the scheduler. In this section we study the results when a 
realistic inter-cluster communication network is consid- 
ered. 

We have evaluated configurations with a fixed number 
and latency of register buses (2 buses with 1-cycle latency) 
and for a different number and latency of memory buses. In 
Figure 6 we can see the results for both 2 and 4 clusters. 
Each set of four bars has the same meaning as in the previ- 
ous section. The first set represents the results for the uni- 

fied configuration. The rest are the averaged results for the 
different strategies (Baseline and RMCA) for 1 and 2 buses 
(NMB - Number of Memory Buses) and 1 and 4 cycles of 
latency (LMB - Latency of Memory Buses).  We can observe 
in these graphs that, as in the unbounded study, the RMCA 
strategy outperforms the Baseline for all configurations. 
However now, for small values of the threshold, the differ- 
ence between both strategies is more remarkable, mainly 
for 4 clusters. For the most effective threshold (O.OO), the 
RMCA scheme outperforms the baseline scheduler by 
about 5% for 2 clusters and 20% for 4 clusters. We have 
observed that the reason for this difference is the time spent 
waiting for an available bus in order to initiate a communi- 
cation. When the number of memory buses is unbounded 
this value is zero, because there is always an available bus. 
However, when the number of buses is limited, reducing 
the number of misses is also important since lesser the 
number local cache misses, lesser the number of accesses 
competing for a free bus time slot. 

6. Conclusions 

In this work we have proposed a novel microarchitecture 
called multiVLIWprocessor, which has a fully-distributed 
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clustered VLIW organization. The main novelty of this 
architecture with respect to previous proposals for clus- 
tered VLIW processors is the distributed data cache, which 
introduces new challenges to the instruction scheduler. 

In this paper we have also presented a modulo sched- 
uler designed for this particular architecture. This sched- 
uler, by means of a powerful locality analysis based on the 
Cache Miss Equations and an analysis of the register data 
dependence graph, generates codes with very low inter- 
cluster communication requirements. We have also shown 
that the proposed scheduler outperforms previous schemes 
that just focused on register communications. 
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