
Modulo Scheduling for a Fully-Distributed Clustered VLIW Architecture

Jes6s SQnchez and Antonio GonzQlez

Dept. of Computer Architecture
Universitat Politbcnica de Catalunya

Barcelona - SPAIN

E-mail: {fran,antonio)@ac.upc.es

Abstract
Clustering is an approach that many microprocessors are
adopting in recent times in order to mitigate the increasing
penalties of wire delays. In this work we propose a novel
clustered VLIW architecture which has all its resources
partitioned among clusters, including the cache memory. A
modulo scheduling scheme for this architecture is also pro-
posed. This algorithm takes into account both register and
memory inter-cluster communications so that the jinal
schedule results in a cluster assignment that favors cluster
locality in cache references and register accesses. It has
been evaluated for both 2- and 4-cluster conjigurations and
for differing number and latencies of inter-cluster buses.
The proposed algorithm produces schedules with very low
communication requirements and outperforms previous
cluster-oriented schedulers.

1. Introduction

Technology projections point to wire delays as being one of
the main hurdles for improving instruction throughput of
future microprocessors [23]. As wire delays grow relative
to gate delays and feature sizes shrink, the percentage of
on-chip transistors that can be reached in a single cycle will
decrease, and microprocessors will become communica-
tion bound rather than capacity bound [11 [141.

Techniques to solve this problem at all levels, from
applications to technology, will be crucial for performance.
Clustering is an effective microarchitectural approach to
mitigate the negative effect of wire delays. The main idea
is to have a hierarchical organization of the interconnection
wires such that units that communicate frequently are inter-
connected through short and fast wires. On the other hand,
units that rarely communicate can use longer and slower
wires. In other words, the microarchitecture exploits what
we may call communication locality. Several commercial
microprocessors have adopted this approach, such as the
Alpha 21264 [lo] , which is a superscalar processor, but this

trend is even more common for VLIW processors used in
the embeddediDSP domain. Examples of the latter are
Texas Instrument’s TMS32OC6000 [24], Equator’s
MAP1000 [15] and Analog’s TigerSharc [8].

Clustering can be applied to different parts of the
microarchitecture. Cluster microarchitectures proposed so
far, both in the commercial and research arena, distribute
the functional units and register files, but the data cache is
considered a centralized resource. This centralized organi-
zation challenges the scalability of these architectures.
Besides, some studies point out that the access time (in
number of cycles) to the memory structures is likely to
increase with future technologies, even when their capacity
is kept constant [11. This suggests that short latency mem-
ory structures should be even smaller than they are today.
Because of these two reasons, we believe that a distributed
cache memory architecture is key for increasing the perfor-
mance of future microarchitectures.

In this work we propose a clustered VLIW microarchi-
tecture with a distributed cache memory. This architecture
has all the resources distributed: instruction fetch, execute
and memory units. It resembles very much a multiproces-
sor, with the exception that all the clusters progress in a
lockstep mode, and inter-cluster register communications
are controlled by the compiler by means of certain fields in
the ISA. Because of this resemblance we refer to this archi-
tecture as a multiVLIWprocessor:

The effectiveness of this microarchitecture strongly
depends on the ability of the compiler to generate code that
balances the workload of the different clusters and result in
few inter-cluster communications. In this work we propose
a modulo scheduling technique for multiVLIWprocessors.
The proposed scheduler includes some heuristics for mini-
mizing inter-cluster register communication, based on the
information provided by the data dependence graph.
Besides, it implements a powerful memory locality analy-
sis based on Cache Miss Equations [9], which guides the
scheduling of memory instructions with the objective of
minimizing inter-cluster memory communications.

0-7695-0924-WOO $10.00 0 2000 IEEE 124

Reqisler buses

M

I MAINMEMORY I i II
Figure 1. Microarchitectures of a MultiVLlWProcessor

Some previous work related to scheduling of instruc-
tions for clustered VLIW architectures can be found in the
literature for non-cyclic [6][4][11][181 and cyclic code
[17][7][22], but to the best of our knowledge this is the first
study that deals with a clustered VLIW architecture that
has a distributed data cache.

The rest of this paper is organized as follows. Section
2 describes the architecture of the multiVLIWprocessor and
some basic background on modulo scheduling. An exam-
ple that motivates the proposed algorithm is shown in Sec-
tion 3. In Section 4, the proposed algorithm is described
and Section 5 shows performance results obtained for dif-
ferent configurations. Finally, the main conclusions of the
work are drawn in Section 6.

2. MultiVLIWProcessors

In this section we first describe the microarchitecture of
multiVLIWprocessors and then we review some basic con-
cepts of modulo scheduling for the proposed architecture.

2.1. Microarchitecture

Our base architecture (see Figure 1) is composed of several
clusters, each one executing a fixed part of each VLIW
instruction. All clusters work in lockstep mode, i.e., any
stall in one cluster also stalls the other clusters. Every cycle,
all clusters fetch their corresponding parts of a new VLIW
instruction from their local instruction caches. Each cluster
consists of several functional units, a register file and a
local data cache memory in addition to the local instruction
cache. Functional units can be of three different types: inte-
ger arithmetic, floating-point arithmetic or memory access.
For the sake of simplicity, we consider that all clusters are
homogeneous (i.e., with the same number and type of func-
tional units), but the proposed techniques can be general-
ized for heterogeneous clusters.

Register values generated by one cluster and needed
by another one are communicated through a set of buses
that are shared by all clusters (called register buses). A
value that is put in a register bus can come from either the
local register file or the output of a functional unit through
a short-circuit. On the other hand, a value that is read from
the bus can be stored in a register file, feed a functional unit
or both. Thus, instruction register operands can be read
from either the local register file or any bus, and instruction
results can be written into the register file and to any regis-
ter bus. All register communication operations are explic-
itly encoded in the appropriate fields of the VLIW
instruction, which are set at compile time. Thus, no addi-
tional hardware is needed to manage and arbitrate register
buses. The detailed VLIW instruction format is shown in
Figure 2. Each instruction for a particular cluster consists
of the following fields. An operation for each functional
unit in that particular cluster (FUj) and the source (IN BUS)
and target (OUT BUS) of the bus (there are as many INlOUT
fields as number of buses). The IN BUS field indicates, if
necessary, the register in the local register file in which the
value that is in IRV has to be stored. The IRV (Incoming
Register Value) is a special register in each cluster that
latches the value that comes from the bus. The OUT BUS
field indicates from which local register a value has to be

VLIW Instruction CtusrERl CLUSTER2 5=4=
FU Input Mux

*Register
Bus

*Constant
*Unused

4 *Register

*Null
FU Output

*Register

Figure 2. VLIW instruction format

125

issued to the bus, if any. If the register is being written in
that cycle, the data will be bypassed from the output of the
corresponding functional unit. Since a bus is a resource
shared by all the clusters, when one particular cluster places
a data on the bus (OUT BUS), this bus will be busy during
the entire bus latency and no other instruction can use it (a
bus is considered by the scheduling algorithm as another
resource in the reservation table).

Regarding memory accesses, a loadstore issued by a
cluster first tries its local L1 data cache. If the data is found,
the access is satisfied with minimum latency. Otherwise,
the hardware tries the cache of the other clusters or, finally,
the access is solved by the main memory. Both local mem-
ories and main memory are interconnected through one or
several buses (that are called memory buses). As the cache
is physically partitioned among the clusters, coherence
among the local caches and the main memory has to be
kept. For this reason, a snoopy MSI protocol [5] has been
implemented. This protocol is completely transparent to the
ISA, and further, both the coherence and the bus arbitration
are managed by the hardware. When a memory access
misses in its local cache, the miss request is queued in a
local MSHR (Miss informatiodstatus Handling Register)
structure, since the L1 data cache is non-blocking [12].
Then, the access has to compete for a free memory bus in
order to access a remote cache or the main memory.

All the dependences with memory operations are
dynamically checked, since the scheduler may have consid-
ered an optimistic latency for these instructions (i.e., hit in
the local cache). If any dependence is not met, the depen-
dent instruction stalls in all clusters until the hazard is
resolved.

2.2. Background on Modulo Scheduling

Software pipelining is a very effective technique to stati-
cally schedule loops. The most popular scheme to perform
software pipelining is called modulo scheduling [20][131.
The two main parameters that statically characterize a mod-
ulo scheduled loop are the initiation interval (11) and the
stage count (SC). The former reflects the number of cycles
that a kernel iteration takes (assuming no stalls), whereas
the latter shows how many iterations are overlapped, and
determines the length of the prolog and epilog.

For a clustered VLIW architecture, both I1 and SC can
be affected by inter-cluster register communications. If the
communication buses become saturated, a higher I1 is
required. Moreover, communication operations may
increase the length of the schedule, and therefore the SC
may be increased. Thus, the IPC of a clustered VLIW archi-
tecture will be lower than that of an equivalent unified
VLIW architecture with the same resources in general. On

the other hand, a clustered architecture may reduce the crit-
ical delays such as the register file access time and the
bypass latency [191, and allow for faster clock rates.

For this paper, which focuses on modulo scheduling
for multiVLIWprocessors, the number of cycles needed to
execute a particular modulo scheduled loop can be modeled
through the following expression [21]:

NCYCLETotal = NCYCLEcompute t NCYCLEsta l l

Where NCYCLECOmp,,, represents a fixed number of
cycles that depends on the particular static scheduling pro-
duced by the compiler. During these cycles the processor is
doing useful (or at least scheduled) work. NCYCLE,,,,, rep-
resents the number of cycles where the processor is stalled
and depends on several factors as we detail below. The
value of NCYCLECOmput, can be computed before executing
the loop if the number of times the loop is executed
(NTIMES) and the number of iterations of each execution
(NITER) are known, as shown by the next expression:

NCYCLECompute = NTIMES * ((NITER t SC -1) * II)

The value of NCYCLEstall cannot be computed stati-
cally. It represents the number of stall cycles due to incom-
plete information managed by the compiler. For instance,
some memory instruction latencies may be unknown since
the compiler does not know whether they will hit in the first
level cache. If the value loaded by a memory instruction
feeds another operation (i.e., the latter depends on the
former) but the latter was scheduled using an underestima-
tion of the memory latency, it will stall until the memory
access is finished. In the assumed microarchitecture, the
final latency of a memory instruction depends on three fac-
tors:

Latency of memory accesses, which depends on the
memory level that satisfies the access: local cache,
remote cache or main memory.
Number of entries in the MSHR of the lockup-free
caches. If there is no available entry for a new miss
request, the instruction stalls until there is a free entry.
Cycles waiting for a free bus and bus latency.

Thus, considering all of these factors, the total latency
of a memory access can be represented by this formula:

LATMemAccess = LATCache

MissLC (NCWaitingEntry NCWailingBus LATMemoryBus +

max (LATCache MISSRC ' LATMainMemory

Where both MISSLc and MISSRc represent binary val-
ues that are 1 if the access misses in local cache and all
remote caches respectively, or 0 otherwise. NCWaitingEntry
represents the number of cycles that a miss access is wait-

126

DO I = 1, N, 2
A (I) =;BcIC*C(I) +

B(I+l)*C(I+l)
ENDDO

ausm I CLUSTER 2

I1 = 3 , SC = 4

Figure 3. Motivating example

ing for an available entry in the MSHR. NCWaitingBus is the
number of cycles that the access is waiting for a free bus.
Note that a bus can be also busy for coherence operations
and this is taken into account by our simulator. Finally,
although we have considered LATMainMemory as a fixed
parameter, in the above expression note that for some ref-
erences this number could be smaller if an earlier miss has
already started loading the relevant cache line. This fact has
also been accounted for our simulator.

3. Motivating Example for the Proposed
Scheduler

The objective of this study is twofold: first, demonstrate
that when the data cache is partitioned among the different
clusters, the selection of the cluster where each memory
instruction is scheduled is very important and can dramati-
cally affect the final performance of a program (the same
holds for register values, but this has already been shown
by previous papers). Second, we propose a modulo sched-
uler that takes into account both register and memory inter-
cluster communications.

In this section, we illustrate through an example how
the cluster selection can affect the total number of cycles in
which a code section is executed. Consider that we want to
perform modulo scheduling of a loop whose code and
dependence graph are shown in Figure 3. Assume the pro-
cessor consists of 2 clusters, each one with its local register
file and data cache (direct-mapped), and 2 functional units:
one for arithmetic operations (with 2-cycle latency) and
one for memory operations. There is one inter-register bus
with a 2-cycle latency. The latencies for memory accesses
are: 2 cycles for a local cache, 2 cycles for a bus transaction
and 10 cycles for an access to main memory.

For this loop, the minimum initiation interval (mII) for
an equivalent unified architecture with the same resources
is 3 cycles. The partition and scheduling that minimizes the
number of register communications between clusters and,
thus, that achieves the same I1 as the equivalent unified
architecture is shown in Figure 3(a). In this figure, the left
part represents the partition of the operations between the
clusters whereas the right part shows the modulo reserva-
tion table obtained after modulo scheduling. Each opera-
tion is scheduled in a particular slot and the number in
brackets represents the stage at which this operation is
scheduled. The usage of the register bus is also shown in
this table. Whenever a bus transaction takes place, the cor-
responding bus time slot is reserved and it is indicated by a
C in the reservation table.

Then, the NCYCLEC,,put, of the resulting loop can be
computed as:

NCYCLEcOmp,~,(,) = NTIMES ((N t 4 -1) ' 3) = NTIMES (N t 3) * 3

However, suppose that both arrays B and c are located
in memory at a distance that is a multiple of the local cache
memory size. This means that we will have ping-pong
interferences between LDl and LD2, and between LD3 and
LD4. Thus, the spatial locality exhibited by the four instruc-
tions cannot be exploited and the four accesses always
miss. The result is that the instruction(s) that consume the
memory values suffer many stalls. In the example, the
VLIW instruction that contains the multiplications cannot
continue its execution until the misses are satisfied. Assum-
ing that we have sufficient memory buses, the number of
cycles that the instruction stalls is the latency of a bus trans-
action plus an access to main memory, since the latency to

127

the local cache was taken into account by the scheduler.
Then, the number of stall cycles is:

NCYCLESt,ll(,) = NTIMES N * (2t10) = NTIMES * N * 12

An alternative scheduling is shown in Figure 3(b).
Based on the locality properties previously observed, in
this second alternative cluster assignment is selected in
order to take advantage of the locality exhibited by memory
instructions. For this reason, LDl and LD3 are scheduled in
the same cluster in order to profit from its group reuse, and
the same applies for LD2 and LD4 which are scheduled in
the other cluster. In this way, ping-pong interferences are
removed and we can take advantage of the spatial reuse.
However, as we can see in the example, for this case two
communications between register values are needed per
iteration, and then the I1 has to be increased from 3 to 4.
Thus, NCYCLECompUte is computed as:

NCYCLECompute(b) = NTIMES * ((N t 3 - 1) * 4) = NTIMES (N t 2) * 4

However, the miss rate of LD3 and LD4 is 25% (assum-
ing eight data elements per cache block), and LDl and LD2
always hit (excepting the first iteration). Thus, the number
of stall cycles is:

NCYCLEStall(b) = NTIMES * N ' (2'(2t10)* 0.25) = NTIMES * N * 6

Then, putting all together, we have that the total num-
ber of cycles in both strategies as:

NCYCLET0tal(,) = NTIMES ' (15 N + 9)

NCYCLET~~,~(~) = NTIMES (10 * N t 8)

Therefore, we can conclude that the second strategy,
which takes into account both register and memory com-
munications, achieves a schedule that is 1.5 times faster
than the original one, which is optimized only for register
communications.

4. Register and Memory Communication-
Aware Modulo Scheduler

In this section we present a modulo scheduler that tries to
minimize both register and memory inter-cluster communi-
cations and at the same time balance the workload. We first
review a previously proposed scheduler, which is very
effective at minimizing register communications, and
which we will use as a baseline for comparisons. Then, we
present the data locality analysis framework that is used by
the scheduler. Finally, the modulo scheduler is described.

4.1. Baseline Algorithm

We use as the baseline algorithm the one proposed in our
previous work [22], which was shown to be very effective
at minimizing register communications and maximizing
the workload balance. In that work, the target architecture
was similar to the one proposed in Section 2.1, but in that
case all clusters accessed a shared L1 cache. Below, we
briefly review the algorithm proposed there. For more
details, the interested reader is referred to the original paper
[221.

The algorithm employs a unified assign-and-schedule
approach, that is, cluster selection and scheduling of oper-
ations is done in a single step. The heuristic for selecting a
cluster is the number of edges that exit from the depen-
dence subgraph corresponding to all the nodes already
scheduled in a particular cluster. This value represents a
measure of the number of register communications. An
attempt is made to schedule an operation (i.e., a node in the
dependence graph) in all the clusters in which there is an
available slot. The one chosen is the one in which the best
profit from output edges is achieved (that is, the difference
between output edges before and after including this oper-
ation in the partial schedule). All the operations are sched-
uled using the same algorithm and following a particular
order that is crucial for performance. If an instruction can-
not be scheduled (because no issue slot is available, or there
are not enough registers, or the register buses are satu-
rated), the I1 is increased and the whole process is re-started
(except the ordering).

4.2. Overview of the Cache Miss Equations

Cache Miss Equations (CME) is an analytical framework
to model the cache behavior that is very accurate for codes
that make use of scalar variables and affine' array refer-
ences, which is very common in numeric applications. This
framework was proposed by Gosh, Martonosi and Malik
[9]. CME describes the precise relationship among the iter-
ation space, array sizes, base addresses and cache parame-
ters for a loop nest.

A direct solution of the CME is an NP problem, which
makes it infeasible for many practical cases. The problem
can basically be stated as counting integer points inside an
exponential number of polyhedra. However, Bermudo et al.
[3] proposed some techniques to speed-up the counting
process by exploiting some intrinsic properties of the par-
ticular type of polyhedra generated by the CME. Further,
Vera et al. [25] proposed a sampling scheme in order to
estimate the solution by means of confidence intervals.

1. An array reference is affine if the expressions that indicate the referenced el-
ement in each dimension are linear functions of the loop induction variables.

128

I Sortnodes

Figure 4. RCMA modulo scheduling step by step

These two techniques together drastically reduce the com-
puting time to just about a few seconds per loop for most
programs, and then the time required to compute and solve
the equations is comparable to the time required by other
typical optimizations of the compiler. In this paper, we use
this implementation of the CME to estimate the amount of
reuse that is exploited by any subset of memory instruc-
tions. CME will allow the scheduler to estimate the amount
of memory communications among clusters or between
clusters and main memory. The scheduler uses this infor-
mation to guide its scheduling decisions. For instance,
given a memory instruction, it is beneficial to schedule it in
a cluster where there already are other instructions from
which it reuses data (group reuse). On the other hand, it is
detrimental to schedule the instruction in a cluster where
there already are other instructions that cause many cache
conflicts with the current one. CME allow the schedule to
quantify the amount of reuse and conflicts among any
group of instructions of the same loop nest. CME are used
to produce the following statistics:

The number of misses incurred by a set of memory
references for a particular cache configuration (capac-
ity, block size and associativity)
The miss ratio of a particular memory instruction in
this set.

4.3. Scheduler for a Distributed Cache

The proposed algorithm is called RMCA (which stands
for Register and Memory Communication-Aware) modulo
scheduling. It is an evolution of the algorithm reviewed in
Section 4.1 and its main steps are depicted in Figure 4 (new
features are shown in gray boxes). All nodes in the data
dependence graph are first sorted according to the criteria
used by the original paper [22]. This ordering minimizes
the number of nodes that have both predecessors and suc-
cessors in the set of nodes that precede it in the order. Then,
cluster selection and scheduling is performed in a single
step following that order. However, there is now a distinc-

tion between two types of nodes: (a) memory operations,
and (b) non-memory operations. For operations of the latter
group, the algorithm does not change. However, when a
memory operation is scheduled, a different strategy is used.
Instead of choosing the cluster where the gain from output
register edges is maximized, the cluster selection depends
on the profit from cache misses. In other words, each time
a memory operation is scheduled, all clusters are tried, and
for each one, the number of cache misses contributed by
memory operations scheduled in that cluster, before and
after introducing the current operation, is computed
through the CME. Then, the cluster(s) where this gain is
maximized is chosen. If more than one cluster is optimal
with respect to cache misses, the scheduler selects one of
them using the same strategy as for non-memory opera-
tions. Although the solver of the CME have to be repeat-
edly invoked, the method is very fast due to the
optimizations mentioned in Section 4.2., and the time
required by the scheduler is a small percentage of the total
compilation time.

This algorithm tries to minimize the number of cache
misses, and thus it attempts to minimize the inter-cluster
memory communications. However, the latency of these
communications can be hidden by scheduling some load
instructions using the cache-miss latency (binding
prefetching, as proposed in [21]). When a load is scheduled
using the cache-miss latency, the operation that consumes
the data read by the load will not be stalled because it is
scheduled assuming the worst-case latency. However,
scheduling instructions using a larger latency can have a
negative effect on both register pressure and length of the
schedule. On one hand, the lifetime of the load destination
register is increased. On the other hand, the I1 can be
increased if this instruction belongs to a recurrence and this
increased latency makes the recurrence the most restrictive
constraint on the 11. Besides, the length of the schedule for
a single iteration may increase, which may cause an
increase in the SC, which in turn affects the durations of the
prologue and epilogue. Therefore, as shown in [21], it may

129

be much more effective to schedule with a miss latency
only those loads that are likely to miss. This can be done as
long as the latency does not increase the I1 with respect to
the schedule produced when loads are scheduled with a hit
latency. Thus, the proposed scheme includes another step:
once the target cluster of an instruction is determined, it is
scheduled using the cache-miss latency if the miss ratio of
this instruction in this particular cluster (considering the
partial schedule produced so far) is greater than a certain
threshold, and provided that this latency does not increase
the I1 if the operation is in a recurrence. The assumed miss
latency is the time to access main memory, that is, LATCache
+ L A T M ~ ~ ~ ~ B ~ ~ + L A T M ~ ~ ~ M ~ ~ ~ ~ (note that we do not con-
sider the memory bus contention since it is not known at
this moment, although it could be estimated).

Note that with this scheme some memory instructions
are scheduled with the miss latency even if their miss ratio
is lower than 100%. This may happen for instance for
instructions with spatial locality. In this case, loop unroll-
ing could be used to generate multiple instances of the
same instruction such that one of them always miss and the
other always hit [161. However, we have not considered this
optimization in this paper.

5. Performance Results

This section analyzes the performance of the proposed
scheduler. The main performance metric that we use is the
number of cycles executing instructions of modulo sched-
uled loops. Note that this metric does not include the effect
of clustering on the cycle time, thus, differences observed
for different schedulers and the same architecture directly
translate into differences in execution time. However, the
number of cycles for different architectures should be
divided by cycle time to measure differences in execution
time. Since we are concerned with differences among alter-
native schedulers, we prefer not to include the effect of
cycle time in our metric, to isolate the effect of the sched-
ulers. A study of the impact of clustering on cycle time can
be found elsewhere [191 as well as on energy consumption
[26], which is another important factor that can be reduced
through clustering.

5.1. Configurations and Benchmarks

The scheduling algorithm has been evaluated for three dif-
ferent configurations of the multiVLIWprocessor architec-
ture. These configurations are shown in Table 1.The first
configuration is called Unijied and it is composed of a sin-
gle cluster with four functional units of each type (integer,
floating point and memory) and a unique register file of 64
general-purpose registers.

Table 1. MultiVLlWProcessor configurations and
operation latencies

This configuration represents our baseline. Both the 2-clus-
ter and 4-cluster configurations have the register file parti-
tioned (into two and four partitions respectively). The
former has 2 functional units of each type and 32 register
per cluster and the latter includes 1 functional unit of each
type and a register file of 16 registers per cluster. The three
configurations are 12-way issue.

For all configurations, the total LI cache size is 8KB,
divided into equal-sizes among the different clusters. This
cache capacity is realistic for embedded/DSP processors.
For instance, the TI TMS320C6711 has an L1 data cache
of 4Kbytes [24]. In our architecture, each local cache is
direct-mapped, non-blocking with 10 entries in the MSHR.
An access to a local cache is satisfied in 2 cycles, whereas
an access to main memory takes 10 cycles. For the clus-
tered configurations we will present results for different
number and latency of both register and memory buses.

The modulo scheduling algorithm has been imple-
mented in the ICTINEO compiler [2] and some SPECfp95
benchmarks have been evaluated: tomcutv, swim, su2cor,
hydro2d, mgrid, upplu, turb3d and apsi . Note that modulo
scheduling is an effective technique for both numeric and
multimedia applications, but it is not so effective for appli-
cations such as SPECint95 due to the small number of iter-
ations for each loop execution and the abundance of
conditionals.

The performance figures shown in this section refer to
the modulo scheduling of innermost loops with a number
of iterations greater than four. Our measurement shows that
code inside such innermost loops represents about 90% of
all the executed instructions, so that the statistics for inner-
most loops are quite representative of the whole program.
Only instructions that belong to modulo scheduled loops
are taken into account by the simulator. Thus, the programs
were run until the first 100 million memory instructions in
these loops using the ref input data set.

130

4 2 4 1 2 4
2 4

BUS Configuration

(a) 2-cluster
Latency of Register y\ Buses Latency of Memory Buses

2.0 -I

LMB= 1 2 4 1 2 4 1 2 4
LRB = 1 2 4

Bus Configuration

(b) 4-cluster
Figure 5. Results obtained for an unbounded number of buses (averaged for all benchmarks)

5.2. An Unbounded Number of Buses

Before considering realistic configurations, we have evalu-
ated an architecture with an unbounded number of buses to
test the performance of the proposed algorithm under
extreme situations where bus bandwidth in not a problem.
The remaining parameters of the architecture are those
listed in Section 5.1 and the latency of the buses is param-
etrized. Figure 5 shows the normalized number of cycles
averaged for all benchmarks, for 2 and 4 clusters and the
different latencies considered. The first set of four bars rep-
resents the results for the unified configuration. The rest
represent the results for the clustered configuration for dif-
ferent latencies of register buses (LRB - Latency of Register
Buses) and memory buses (LMB - Latency of Memory
Buses). For the different sets, we have evaluated two differ-
ent schedulers:

The baseline scheduler outlined in Section 4.1, which
is very effective at minimizing register communica-
tions.
The proposed algorithm, that takes into account both
register and memory communications, which is
labeled as RMCA.

Each set of four bars represents the results obtained for
different values of the cache miss threshold (from 1.00 to

0.00) that determines whether a load is attempted to be
scheduled with a miss latency. Note that threshold 1 .OO rep-
resents the traditional scheme, that is, using always the
cache-hit latency for memory operations. On the other
hand, threshold 0.00 is most similar to the one proposed in
[21], where all operations that do not cause an increment in
the I1 (due to recurrences) are scheduled using the cache-
miss latency. The only difference is the locality analysis
employed, which is more powerful in this paper. Each bar
is split into two parts: the compute time (or NCYCLE,,,-
pure) is the blacwgrey part, whereas the stall time (or NCY-
CLE,,,,,) is the white one.

From these graphs we can see that for all configura-
tions (number of clusters, latencies and thresholds) the
scheme that takes into account memory communication
(RMCA) outperforms the one that ignores this feature
(Baseline). As expected, for smaller values of the threshold
the compute time increases (since it may increase both the
I1 due to register requirements, and the SC due to an
increase in the length of the schedule) but the stall time
decreases. Note that with a threshold of 0.00 the stall time
is almost zero for all configurations and the number of
cycles for the multiVLIWprocessor are comparable to those
of the unified configuration. We can also observe that for
small thresholds (0.25 or 0.00) both Baseline and RMCA

13 1

2.0,

p

0 Threshold

s

g 15 -
1.00

m 0.75
m 0.25
0 0.00

B I O

0 5
b

Latency of Memory Buses 0 0 - -..- h m . d 8.sd1n. RMCA as suns RMCA 8.d1m RMCA B a d k m RMCA
\ L M B = 1 4 1 4

1 2
/NMB- Bus Configuration

Number 01 Memory Buses
(a) 2-cluster

2 0

b?

0
-

1 5 -
0 Threshold
tJ 1.00

0.00

0.75 g 10 0.25 z
0 3

0 5

0 z

O 0 Un1fl.d Basdb. RMCA Bassllm RMCA Bassllrm RMCA Bassllne RMCA
LMB. 1 4 1 4
NMB D 1 2

Bus Configuration

(b) 4-cluster

Figure 5. Results obtained when the number of buses is limited (averaged for all benchmarks)

strategies achieve similar performance, since the latency of
cache misses is hidden by scheduling loads with the cache-
miss latency. Nevertheless, note that for an unbounded
number of buses the time waiting for a free bus (NCWaiting-
Bus) is zero, and hence, if the latency is hidden, the number
of misses has no effect. However, as we will see in next sec-
tion, when the number of memory buses is limited, the dif-
ference between both schemes will be notable, since the
schedules produced by the RMCA scheme require much
less communications.

5.3. Evaluation of Realistic Configurations

We have shown the potential benefits that can be achieved
when memory communication are taken into account by
the scheduler. In this section we study the results when a
realistic inter-cluster communication network is consid-
ered.

We have evaluated configurations with a fixed number
and latency of register buses (2 buses with 1-cycle latency)
and for a different number and latency of memory buses. In
Figure 6 we can see the results for both 2 and 4 clusters.
Each set of four bars has the same meaning as in the previ-
ous section. The first set represents the results for the uni-

fied configuration. The rest are the averaged results for the
different strategies (Baseline and RMCA) for 1 and 2 buses
(NMB - Number of Memory Buses) and 1 and 4 cycles of
latency (LMB - Latency of Memory Buses). We can observe
in these graphs that, as in the unbounded study, the RMCA
strategy outperforms the Baseline for all configurations.
However now, for small values of the threshold, the differ-
ence between both strategies is more remarkable, mainly
for 4 clusters. For the most effective threshold (O.OO), the
RMCA scheme outperforms the baseline scheduler by
about 5% for 2 clusters and 20% for 4 clusters. We have
observed that the reason for this difference is the time spent
waiting for an available bus in order to initiate a communi-
cation. When the number of memory buses is unbounded
this value is zero, because there is always an available bus.
However, when the number of buses is limited, reducing
the number of misses is also important since lesser the
number local cache misses, lesser the number of accesses
competing for a free bus time slot.

6. Conclusions

In this work we have proposed a novel microarchitecture
called multiVLIWprocessor, which has a fully-distributed

132

clustered VLIW organization. The main novelty of this
architecture with respect to previous proposals for clus-
tered VLIW processors is the distributed data cache, which
introduces new challenges to the instruction scheduler.

In this paper we have also presented a modulo sched-
uler designed for this particular architecture. This sched-
uler, by means of a powerful locality analysis based on the
Cache Miss Equations and an analysis of the register data
dependence graph, generates codes with very low inter-
cluster communication requirements. We have also shown
that the proposed scheduler outperforms previous schemes
that just focused on register communications.

Acknowledgements

This work has been supported by the Spanish Ministry of
Education under contract CICYT-TIC 51 1/98 and the
ESPRIT Project MHAOTEU (EP24942).

References

V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger,
“Clock Rate versus IPC: The End of the Road For Conven-
tional Microarchitectures”, in Procs. of the 27th. Int. Symp.
on Computer Architecture, pp. 248-259, June 2000
E. Ayguadt, C. Barrado, A. GonzBlez, J. Labarta, D. Lbpez,
S. Moreno, D. Padua, E Reig, Q. Riera and M. Valero, “Icti-
neo: a Tool for Research on ILP’, in Supercomputing’96
(SC’96), Research Exhibit “Polaris at Work”, 1996
N. Bermudo, X. Vera, A. Gonzilez and J. Llosa, “An Effi-
cient Solver for Cache Miss Equations”, in Procs. of Int.
Symp. on Pe$ormance Analysis and System Sof lare , April
2000
A. Capitanio, D. Dytt and A. Nicolau, “Partitioned Register
Files for VLIWs: A Preliminary Analysis of Tradeoffs”, in
Procs. of 25th. Int. Symp. on Microarchitecture, pp.’ 192-
300, 1992
D. Culler and J.P. Singh, “Parallel Computer Architecture.
A Hardwardsoftware Approach”, Morgan Kaujinann Pub-
lishers, Inc., 1999
J. R. Ellis, “Bulldog: A Compiler for VLIW Architectures”,
MIT Press, pp. 1 80- 184, 1986
M.M. Fernandes, J. Llosa and N. Topham, “Distributed
Modulo Scheduling”, in Procs. of Int. Symp. on High-Per-
formance Computer Architecture, pp. 130- 134, Jan. 1999
J. Fridman and Zvi Greefield, “The TigerSharc DSP Archi-
tecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000
S. Ghosh, M. Martonosi and S. Malik, “Cache Miss Equa-
tions: an Analytical Representation of Cache Misses”, in
Procs. of Int. Con$ on Supercomputing (ICS’97), pp. 317-
324, July 1997
L. Gwennap, “Digital 21264 Sets New Standard”, Micro-
processor Report, 10(14), Oct. 1996

[I I] S. Jang, S. Carr, P. Sweany and D. Kuras, “A Code Genera-
tion Framework for VLIW Architectures with Partitioned
Register Banks”, in Procs. of 3rd. Int. Con$ on Massively
Parallel Computing Systems, April 1998

[121 D. Kroft,” Lockup-Free Instruction FetchPrefetch Cache
Organization”, in Procs. 8th Int. Symp. on Computer Archi-
recture, pp. 81-87, 1981

[131 M. Lam, “Software pipelining: An Effective scheduling
technique for VLIW Machines”, in Procs. on Con5 on Pro-
gramming Languages and Implementation Design, pp. 258-
267, June 1993

[141 D. Matzke, “Will Physical Scalability Sabotage Perfor-
mance Gains”, IEEE Computer. Vol. 30, No. 9 , pp. 37-39,
Sept. 1997

151 “MAP1000 unfolds at Equator”, Microprocessor Report,
12(16), Dec. 1998

161 T.C. Mowry, M.S. Lam and A. Gupta, “Design and Evalua-
tion of a Compiler Algorithm for Prefetching”, in Procs. of
the 5th. Ann. Symp. on Programming Languages and Oper-
ating Systems (ASPLOS-V), pp.62-73, Oct. 1992

171 E. Nystrom and A. E. Eichenberger, “Effective Cluster Ass-
ingment for Modulo Scheduling”, in Procs. of 31th. Int.
Symp. on Microarchirecture, pp. 103-1 14, 1998

[I81 E. Ozer, S. Banerjia and T.M. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered
Register File Microarchitectures”, in Procs. of 3Ist Int.
Symp. on Microarchitecture, pp. 308-315, Nov. 1998

[19] S . Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, in Procs. of the 24th. Int.
Symp. on Computer Architecture, pp. 1-13, June 1997

[20] B.R. Rau and C.D. Glaeser, ‘Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High
Performance Scientific Computing”, in Procs. on the 14th
Ann. Workshop on Microprogramming, pp. 183-198, Oct.
1981

[21] J. Sinchez and A. Gonzilez, “Cache Sensitive Modulo
Scheduling”, in Procs. of 30th. Int. Symp. on Microarchitec-
ture, pp. 338-348, Dec. 1997

[22] J. Sinchez and A. Gonzilez, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW
Architectures”, in Procs. of the 29th. Int. Con$ on Parallel
Processing, pp. 555-562, Aug. 2000

[23] Semiconductor Industry Association, “The National Tech-
nology Roadmap for Semiconductors: Technology Needs”,
1997

[24] Texas Instruments Inc., “TMS320C62x/67x CPU and
Instruction Set Reference Guide”, 1998

[25] X. Vera, J. Llosa, A. Gonzilez and C. Ciuraneta, “A Fast
Implementation of Cache Miss Equations”, in Procs. of the
8th. Int. Workshop on Compilers for Parallel Computers,
pp. 3 19-326, Jan. 2000

[26] V.V. Zyuban, “Low-Power High-Performance Superscalar
Architectures”, PhD Thesis, Dept. of Computer Science and
Engineering, University of Notre Dame, Jan. 2000

133

