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Abstract

The combination of Petri net (PN) modeling with AI-based heuristic search (HS) algorithms (PNHS) has been
successfully applied as an integrated approach to deal with scheduling problems that can be transformed into
a search problem in the reachability graph. While several efficient HS algorithms have been proposed albeit
using timed PN, the practical application of these algorithms requires an appropriate tool to facilitate its
development and analysis. However, there is a lack of tool support for the optimization of timed colored PN
(TCPN) models based on the PNHS approach for schedule generation. Because of its complex data structure,
TCPN-based scheduling has often been limited to simulation-based performance analysis only. Also, it is
quite difficult to evaluate the strength and tractability of algorithms for different scheduling scenarios due to
the different computing platforms, programming languages and data structures employed. In this light, this
paper presents a new tool called TIMSPAT developed to overcome the shortcomings of existing tools. Some
features that distinguish this tool are the collection of different HS algorithms, the event-driven exploration
of the timed state space including its condensed variant, localized enabling of transitions, the introduction of
a static place, and its easy-to-use syntax statements. The tool is easily extensible and can be integrated as a
component into existing PN simulators and software environments. A comparative study is performed on a
real-world eyeglass production system to demonstrate the usage of the tool for scheduling purposes.
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1. Introduction

In the manufacturing industry, companies are consistently faced with the challenge on how to maximize the
utilization of limited resources to perform a collection of tasks (jobs) while optimizing a certain performance
measure to meet customer due dates given the changing customers demands and tight production requirements.
Efficient planning and scheduling policies are critical to the survival of companies in today’s globally
competitive market. Due to the complexity and level of detail required by real-world systems, optimization
of scheduling problems are known to be NP-hard since the computation time to obtain an optimal schedule
grows exponentially with the problem size [70]. While most solution approaches are largely dominated by
optimization models based on mathematical programming, there has been a consistent rise in the use of formal
modeling techniques such as timed Petri nets (TPNs) [7, 63] and timed Automata (TA) [27, 54] for planning
and scheduling. Besides their capability to validate and verify the behavior of systems, the simulation
capabilities of these formal methods make it more flexible in combining them with solution approaches from
Operations Research, Artificial Intelligence (AI), and the Computer Science domains. Specifically, Petri
nets (PNs) are a powerful graphical and mathematical modeling tool, which have been extensively used
to model, simulate, and analyze discrete-event systems characterized by concurrency, parallelism, causal
dependency, resource sharing and synchronization [10, 52]. Since its inception in Carl Adam Petri’s PhD
dissertation on ”Communication with Automata” in 1962, it has gained recognition in the research community
in addressing manufacturing and logistic systems including its application in a number of different disciplines
like communications, transportation, robotics, engineering, business and air traffic management [80].

This paper presents a TIMed State space Performance Analysis Tool (TIMSPAT) for the modeling
and analysis of scheduling problems described by the timed colored PN (TCPN) formalism based on the
integrated PN and heuristic search (PNHS) scheduling methodology. TIMSPAT is a tool developed as part
of the PhD thesis in [4]. To the best of our knowledge, this is a first attempt at providing a scheduling tool
for the optimization of TCPN models with reachability graph search-based HS methods. Thanks to the
common data structure of AI HS methods, the tool is capable of incorporating several search algorithms in a
single executable. So far, nine algorithms have been implemented, ranging from the classical A∗ [60], hybrid
heuristic search [31, 49, 50, 59] to anytime algorithms [6, 9, 47, 74, 75].

In the PNHS approach, the main idea is to formulate the optimization of a scheduling problem as an
AI automated planning problem [14, 26] that takes as input the T(C)PN model, the initial state, and a
desired goal state, and then produces a sequence of actions to achieve the goal (complete schedule) using
heuristic search. Here, the scheduling problem is transformed into a search-based optimization problem in the
reachability graph (or state space) of finding the optimal or near-optimal sequence of transition firings from
some initial state to the goal state, which minimizes some performance measure. Reachability graph (RG)
analysis is a reliable and efficient method to obtain optimal schedules since it can be used as an automated
decision support tool to generate all the possible alternatives of the system configuration. A basic intuition
underlying the use of RG is that all the reachable states in the T(C)PN are represented as nodes, and the
transformation of these states that triggers a change in the system state, as edges. However, the state
explosion problem has limited its practical applicability.

AI HS methods [29, 42, 49, 59, 71, 72] have been proposed to simulate only the best scenarios by generating
partial RGs with heuristic functions (to guide the search) that rely on the knowledge of the production
plans. From Tuncel & Bayhan [63]’s review, the PNHS methodology has proved to be an efficient method for
solving production scheduling problems. However, majority of the works on PNHS have practically used
TPN only. Although the focus is on manufacturing systems, the methodology can be applied to a broad class
of scheduling problems since PN is not driven by a problem domain [20]. Recent studies have demonstrated
the capability of the PNHS approach to deal with realistic industrial engineering applications such as the
train rescheduling problem for a Dutch railway network [67] and resource-constrained project scheduling in
the animation and videogame industry [48].

Most model checking tools [35, 36] can be extended to solve the optimal reachability problem for scheduling,
where the goal state is the specification of the property to be verified in the model checking problem [17, 44].
However, these tools have not been enabled with optimization capabilities, because verification algorithms
are designed to perform an exhaustive exploration of the RG with untimed nets. Although HSF-SPIN [22] is

2



  

targeted at directed model checking with HS methods. On the other hand, PNHS scheduling requires only a
partial exploration of the state space of timed nets to find an optimal or near-optimal solution guided by
heuristic functions. The use of HS-RG algorithms appears to be a well-developed method (in tools) for other
modeling formalisms like TA and Promela. State-of-the art tools like SPIN [61], UPAAL-CORA [12, 13],
and TAOpt [55, 62] have been used for scheduling in job shops, process systems engineering and chemical
production. However, no attempt has been made for TCPN-based scheduling.

The optimization of stochastic nets is not considered in this paper due to the continuous time domain
and memoryless property of exponential time distributions [77] that does not make them amenable to
PNHS. An alternative approach that is well suited for stochastic nets is the optimization by means of
simulation [40] where tools like TIMENET [15, 77], GreatSPN [3], PIPE2 [21], and CPN Tools [32] can be
used. Notwithstanding, deterministic PNs have been proved to be successful for applications in uncertain
and dynamic environments [48, 67] both as simulation and optimization models using the reactive scheduling
strategy where rescheduling can be used to handle unexpected events or disruptions.

This paper is structured as follows. The remaining parts of Section 1 discusses the motivation and the
state-of-the-art review on PN-based tools. Section 2 describes the TIMSPAT architecture and its main
components in detail. Section 3 presents the case study of the flexible manufacturing cell and its corresponding
CPN model. Section 4 reports the computational and benchmarking results of the HS algorithms implemented
on the case study considering several production scenarios, while Section 5 concludes the paper and presents
the future plans in place to improve the tool’s robustness.

1.1. Motivation
In a dynamic manufacturing environment, production managers are usually confronted with constantly

changing scheduling scenarios in their day-to-day activities on the shop floor. Different scenarios may arise as
a result of changes in the production mix, product types, due dates, part shortages and unanticipated events
like machine failure. The availability of a number of solution algorithms can allow production managers
make better decisions considered acceptable for each scenario. However, not all existing algorithms can be
suited to all kinds of scheduling problems that arise on the shop floor. While it is possible to adapt an
algorithm to different production scheduling scenarios, it may turn out to be inefficient for some. Putting
different algorithms at the disposal of the production managers given the situations they are best suited for,
may go a long way to aid their decision making. Therefore, it is important to provide the decision makers
with a platform that supports a neutral representation in which the different solution algorithms could be
automatically tested to select the best solution reached or the best algorithm suitable to solve the given
problem at hand. However, there is a lack of decision support tools based on PNHS that can afford the
aforementioned concept.

One of the advantages presented by the PNHS approach is that different search algorithms can be
implemented to evaluate the best schedule of a particular manufacturing scenario. Several heuristic search
methods have been developed for PNHS [29–31, 42, 49, 59, 71, 72]. However, it is quite difficult to evaluate
and benchmark the efficiency of these algorithms in terms of time and solution quality due to the different
computing platforms, programming languages and data structures used.

In spite of the number of readily available software tools for TCPN simulation, not much has been done in
its combination with AI HS methods. Simulation is deemed insufficient to evaluate the different alternatives
of a system. For decision making purposes, it is only capable of exploring a limited number of scenarios when
applied to improve the system performance. Due to the inherent flexibility, using simulation solely for the
optimization of scheduling problems with a large number of decision variables would require a large number of
runs [66]. One of the issues frequently encountered with TCPN implementation is the handling of the complex
data structure for the computation of enabled bindings, transition firing, and storage [33]. This makes the
performance analysis of TCPNs quite difficult using state space analysis. Apart from simulation limitations,
existing tools have some drawbacks regarding the execution of TCPNs. The time concept defined in the
TCPN standard [33]uses the eagerness-to-fire property for transition firings based on the global clock (model
time) [25, 57]. This concept imposes synchronization constraints on event occurrence. As a consequence,
it limits the level of concurrency exhibited in asynchronous systems like flexible manufacturing systems
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Table 1: PN tools and features

Tool/Feature TPN-
Tools

MARIA PNetLab GPenSIM PN Tool-
box

CPN
Tools

ASAP COAST

Untimed net 3 3 3 3 3 3 3 3

Timed net 3 7 3 3 3 3 7 7

Colored net X – 3 X – X – 7 3 3 3

Simulation (global clock) 7 7 3 3 3 3 7 7

Simulation (event-driven) 3 7 7 7 7 7 7 7

Exhaustive search (RG) 3 3 3 3 3 3 3 3

Heuristic search (RG) 7 7 7 7 7 7 7 7

SS reduction methods 7 3 7 7 7 7 3 3

Model checking 3 3 7 7 7 3 3 7

Planning and scheduling 7 7 7 3 7 3 7 3

3- fully supported, 7- not supported, X –- partially supported, SS - state space

(FMSs), and thus, precludes the generation of firing sequences that would lead to an optimal schedule. The
occurrence of an event should not be restricted by time constraints.

1.2. Related PN tools
There are quite a handful of graphical and command line PN tools available for modeling and simulating

discrete-event systems. The PN tool database [56] lists most of the existing general and special purpose
tools. Owed to the large number, we do not intend to provide a comprehensive evaluation. Our aim is to
highlight those tools that closely matches the requirements of the PNHS approach. Four search criteria were
used for filtering the tool list using the following keywords from the database search tool: State spaces, Petri
nets with time, high level Petri nets, simple performance analysis. Of the 85 tools registered in the database,
only 32 implement state space analysis. Among these 32, 13 support timed nets, 6 of which support TCPN,
while 4 implement a kind of performance analysis technique. As the requirements get stronger, the list keeps
reducing. Most of the developed tools are graphical editors (66) that implements token game animation (46).
Only four tools passed the filter: CPN Tools [32], INA, JFern, Petruchio. However, none of these tools has
directly supported the PNHS approach. Some of these tools are no longer actively maintained. In general,
they implement RG analysis but mainly for model checking used in validation and verification [14]. Since
2011, the model checking contest for PNs [35] benchmarks the efficiency of several state-of-the-art tools on
verification techniques using RG for different classes of models. Among these tools are GreatSPN, SMART,
AlPINA, Cunf, ITS-Tools, LoLA, TAPAAL, MARCIE, Neco, SARA. The details of these tools can be found
on the model checking contest website [35]. Most of them have also been integrated in software environments
like Cosyverif and CPN-AMI. Our focus is on tools enhanced with RG capability as well supporting TCPN.
Here, PN editors do not fit in neither do token game simulators.

Table 1 shows examples of tools that support RG analysis and/or simulation, taking into account the
type of net supported, search algorithms, analysis, and their applications to planning and scheduling. Nearly
all the tools are well developed for simulation in addition to having a GUI editor. TPN-Tools [79] is one
of the earliest tools that contains several collection of tools developed for performance analysis of TPNs
using RG and structural (invariant) analysis. TPNsim [78] is used for event-driven simulation in case the
two previous analysis are not suited to solve some classes of models like stochastic nets. MARIA [46] is
a RG analyzer for high level algebraic system nets. Tools like PNetLab [11] and SimQPN [37] have been
employed for the control and scheduling of manufacturing systems, and queueing systems respectively. Tools
like GPenSIM [18, 19] and PN Toolbox [34] are embedded into third-party commercial software packages
like MATLAB. Users are required to learn the MATLAB language to develop models. While PNetLab is
standalone, it generates a simulator executable each time a new model needs to be run. The colored nets of
some PN simulators (PNetLab, GPenSIM) have lesser expressive power than the CPN standard in CPN
Tools [33] for example.
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CPN Tools stands out as an industrial strength tool that provides both a graphical editing interface and
an interactive simulator for constructing and analyzing models. CPN Tools has been used to analyze some
scheduling problems [1, 2, 28]. However, the literature reports its usage for simulation-based performance
analysis only. Notwithstanding, CPN Tools has a state space analysis plug-in but it has several limitations
to support the timed state space exploration of TCPNs [57]. In addition, the absence of efficient search
algorithms has limited its applicability. Only basic traversal algorithm like breadth-first search is implemented
in the tool, which cannot scale up to industrial-sized problems. Due to the limitations of the state space
plug-in, an extensible platform to CPN Tools called ASAP [68] was developed to provide an implementation
support for a wide range of advanced state space methods. Yet, the state space methods are primarily
aimed at model checking of untimed CPNs. Even with this extension, it is still difficult to integrate one’s
search algorithm. Both tools (CPN Tools and ASAP) rely heavily on a proprietary functional programming
language, the Standard Markup Language (SML). The steep learning curve of SML makes it hard to use the
platform to develop algorithms without having gotten a full grasp of the language.

COAST [38] is a closely-related PNHS tool integrated with CPN Tools for specification and scheduling
tasks in a course of action to support human planners. However, it employs untimed CPNs that may not be
appropriate for scheduling and implements exhaustive search algorithms that can be time-consuming as well
as prone to the state space explosion problem.

To overcome these shortcomings, TIMSPAT has the following distinguished features from the existing
ones:

• Dedicated standalone tool written in C++ for PNHS approach based on RG analysis.

• Implements an event-driven state space that overcomes the shortcomings of the global clock synchro-
nization for optimization. The state space can be explored either as an earliest timed state space (ESS)
or condensed ESS [6].

• Offers a localized enabling of transitions. Each transition structure is created as an object and only the
places required for enabling the transition are specified.

• Easy-to-write syntax expressions without the need to learn a programming language. Complex
mathematical expressions are supported in a plain language format. The syntax combines the standard
token expression of CPN and the strength of C++ syntax for marking description, mathematical and
customized function expressions.

• Implements a new feature called static place to avoid memory clogging and carrying over constant data
from one reachable state to the other.

• Collection of heuristic search algorithms (space, time and space-time efficient).

• Offers a portable and standalone modeling syntax specification that can be easily integrated with other
applications or used by anyone willing to implement its own search algorithm.

• Allows for interoperability and extensibility with existing PN simulators using an XML model-based
integrator.

2. TIMSPAT architecture

The architecture of TIMSPAT shown in Fig. 1 has three major blocks; the XML model integrator, the
simulator, and the search module.The TCPN serves as the input to the tool. Its structure is emulated using
text files whose definitions conform to the TIMSPAT syntax specification (TIMSPATLib). The solutions to
the TCPN are generated by the search algorithms via the state space storage. The main components are:

• Syntax checker: It validates the specification of the definition files to ensure that it is consistent with
the TIMSPATLib syntax instructions. The checker reports errors encountered in files and the files are
passed to the simulator only if they have been certified okay.
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Figure 1: The architecture of TIMSPAT.

• TIMSPATLib: It is a syntax description language implemented as a C++ library for the specification
of TCPNs in a textual format. TIMSPATLib interprets and stores the net structure in memory as
specified in the definition files.

• Simulator: It performs the discrete-event simulation of TCPNs and can act both as a simulator and a
successor generator. The execution is synchronized with the search algorithm module and interfaced
with the TIMSPATLib on a continual basis until termination. It uses the stored TIMSPATLib net
information to evaluate the states of the system required by the search algorithm.

• Search algorithm: It is used to construct the state space according to a defined objective function. The
search algorithm drives the exploration of the state space toward a near-optimal or optimal solution.
Solutions are generated from the state space as a sequence of transition firings when a goal marking
is reached. They are generated either continuously (when improved solutions are obtained) or at
termination depending on the search algorithm employed.

• XML2TIMSPAT: For interoperability, XML2TIMSPAT serves to support the integration of TCPN
representation in XML-based file formats from external PN tools for conversion into TIMSPAT
syntax format. It parses XML net files and generates their corresponding TIMSPAT definition files.
XML2TIMSPAT currently supports the CPN Tools XML and the Petri Net Markup Language (PNML)
standard [58]. The model integrator is a standalone executable since post-processing is still required
to include TIMSPAT’s specific features not currently supported by other tools, such as goal marking
representation, objective functions among others.

2.1. TIMSPATLib for TCPN modeling
A CPN is a directed bipartite graph with two node types called places and transitions where the nodes

are connected via directed arcs. CPN combines the modeling power of PNs with the strength of programming
languages through the definition of data types (color sets) and the manipulation of their data values (colors)
[33]. The use of colors allows a concise representation of the system by reducing the graphical complexity
of PN models as well as the specification of key characteristics and information flow. A place can contain
tokens and is used to describe resources in the system while a token consists of one or more colors describing
the entity attributes. Each token can carry a weight called cardinality. A transition describes the event
(the start or completion) that may occur (or fire) based on the preconditions of input arc expressions and
guards. Graphically, places, transitions, arcs, and guards are represented by circles, boxes, arrows, and
square brackets.

Evaluating the performance and investigating different scheduling strategies with ordinary PN or CPN
is usually not sufficient. Ordinary PNs/CPNs are extended with time representation where each token
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carries a time attribute called time stamp and time delays are associated with transitions, places, or arcs.
The time stamp describes the earliest time at which a token becomes available. The introduction of time
in CPN (TCPN) makes it possible to capture the temporal behavior in addition to describing the logical
behavior and structure of discrete-event systems in a concise manner. With TCPN, quantitative measures
like delays, durations and deadlines can be explicitly described. Time can be specified as either deterministic,
non-deterministic (interval timed), or stochastic [64]. We assume that the reader is familiar with TCPN
formulations and theory [33].

In TIMSPATLib, the TCPN specification for scheduling TCPNSCH is an extension of the TCPN standard
[33] with slight modifications on color set definitions and variables in addition to transition delays and goal
state.

Definition 1. Formally, a TCPNSCH for TIMSPAT is defined as TCPNSCH = (TCPN,M0, GM ) where
TCPN is the structure defined as a 9-tuple, TCPN = (P, T,A,

∑
, V, C,G,E,D) where:

1. P is a finite set of places {p1, p2, . . . , pm}.
2. T is a finite set of transitions {t1, t2, . . . , tn} such that P ∩ T = ∅.
3. A is a finite set of directed arcs {a1, a2, . . . , ak} such that A ⊆ P × T ∪ T × P .
4.

∑
is a finite set of nonempty types called colored sets that defines the number of token elements (colors)

and the operations and functions that can be used in the net inscriptions (i.e. arc and initialization
expressions). Each color set is either timed or untimed and an untimed set is either static or otherwise.

5. V is a finite set of variables of numeric data types (integer or real).
6. C : P →

∑
is a color set function that assigns a color set to each place. A place p is timed if C(p) is

timed; otherwise, p is untimed or untimed static.
7. G : T → EXPRv is a guard function that assigns a guard to each transition t such that Type[G(t)] =
true or false.

8. E : A→ EXPRv is an arc expression function that assigns an arc expression to each arc a such that
Type[E(a)] = C(p)MS if p is untimed or untimed static and Type[E(a)] = C(p)TMS if p is timed,
where p is the place connected to the arc and CMS denotes the set of all multisets over C.

9. D : T → R+
0 is a time-delay function associated with each transition t ∈ T . It describes the set of firing

durations (transition delays). R+
0 denotes the set of all positive real numbers including zero.

M0 is the initial timed marking defined by M0(p) = I(p)〈〉 ∀p ∈ P . I : P → EXPR∅ is an initialization
function that assigns an initialization expression to each place p such that Type[I(p)] = C(p)MS if p is
untimed or untimed static and Type[I(p)] = C(p)TMS if p is timed, and
GM is the set of untimed goal markings (or desired final markings) indicating the completion of a schedule,
defined by Mg(p) = F (p)〈〉 ∀p ∈ P . F : P → EXPR∅ is a finalization function that assigns a finalization
expression to each place p such that F (p) = C(p)MS.

As in CPN Tools, EXPR denotes the set of expressions provided by the TIMSPAT library, and Type[e]
denote the type of an expression e ∈ EXPR, i.e., the type of the values obtained when evaluating e. The set
of free variables in an expression e is denoted V ar[e]. A free variable is a variable which is not bound in the
local environment of the expression [33].

Note that in this definition, variables do not belong to
∑

since variable types (integer and real) are
handled by default in the library. As a result, variable definitions are not needed. Only the color set
description for each place is required.

The current state of the system is defined by the distribution of tokens over the places called marking.
An untimed marking Mu maps each place into a multiset of tokens M(p) ∈ C(p)MS [33]. TIMSPATLib
adopts the functional token expression of CPN Tools.

Definition 2. A multiset (MS) m over a non-empty set S = {s1, s2, s3, . . .} is a function m : S → R+ that
maps each element s ∈ S into a non-negative integer m(s) ∈ R+. It is written as a sum using a single + and
′: ∑

s∈S
m(s)′s = m(s1)′s1 +m(s2)′s2 +m(s3)′s3 + . . . (1)
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The non-negative integer m(s) is the number of appearances of the element s in the multiset m. m(s) is
also called the cardinality (weight) of the token s.

An element s is a member of a multiset m if the number of appearances m(s) of s in m is greater than
zero, i.e., if m(s) > 0. The size of a multiset |m| is the sum of the number of appearances of the elements in
m, the number of tokens in a place p.

The other operations like addition, scalar multiplication, comparison and subtraction are defined in [33].
The set of all multisets over S is denoted as SMS. The empty multiset over a set S, ∅MS is defined as
∅MS(s) = 0, ∀s ∈ S.

The multiset of tokens in an untimed place is constructed using the single sum operator + rather than
the double ++ in CPN Tools. A timed place attaches a time stamp to each token. For scheduling purposes
(see Section 2.3), the time stamps of tokens in a timed place are also constructed as a multiset using the
single sum operator + and the @ symbol. Here, the timed multiset of CPN Tools is not used.

The multiset of token time stamps is expressed as:∑
s∈S

m(s)@tm[s] = m(s1)@tm[s1] +m(s2)@tm[s2] +m(s3)@tm[s3] + . . . (2)

where tm[s] is the ordered time stamp list of s, tm[s] = [ts1, ts2, . . . , tstm(ts)] and tsi ≤ tsi++,∀i ∈
{1, . . . , tm(s)}. It contains the time values ts ∈ TS for which m(s) 6= 0. The @ symbol is omitted if m(s) = 1
or tm[s] contains unique values.

As a consequence, the description of tokens in a place has two parts: the set of tokens and the set of
time stamps. For example, using CPN Tools, the tokens in a timed place represented by 2‘(4, 3)@5, 6 + + +
1‘(2, 3)@3 + + + 3‘(5, 5)@0 are expressed in TIMSPATLib as:

2′(4, 3) + 1′(2, 3) + 3′(5, 5);
5, 6 + 3 + 3@0;

A timed marking M is defined as a triple (Mu, TS) which consists of the untimed marking Mu, the time
set TS, a set of time values called time stamps, TS = R+

0 . The initial timed marking M0 represents the
initial state of the system.

The TCPNSCH definition given in Def. 1 considers timed transitions only, where transitions are associated
with a delay D(t) interpreted as the duration of the activity modeled in the event. A transition delay can
correspond to machine processing or transportation time in a manufacturing environment. The delay uses the
holding duration concept described in [57] for modeling the performance optimization of scheduling problems.
In this concept, a timed transition is fired instantaneously but the output tokens will not be available for
other transitions until the delay has elapsed. This makes the transition behave as an operation with start
and release times.

The TCPNSCH definition introduces an important feature called static place which can be very useful
when exploring the state space.

Definition 3. A static place pf is an untimed place with a static color set that does not change during
the evolution of the system. The token colors are never affected by transition firing. For a place to be
considered static in a TCPN, it must have two directed arcs (input and output) such that when connected to
any transition in the TCPN, the input and output arc expression is the same i.e. ∀A(a1, a2) E(a1) = E(a2)
where a1 ∈ (pf × t) and a2 ∈ (t× pf ), t ∈ T .

The standard CPN formalism allows one to add as many colors as required by the model for simulating
a system, be it static or dynamic information. While this is suitable for simulation purposes, it seems
impractical for state space construction particularly in the case of static data. These data are commonly
found in the problem definition of most manufacturing and transport systems. Examples are: deterministic
processing times, transportation times, AGV routing information, etc.
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In the state space exploration of CPN models, all the information required to enable or fire the transitions
must be kept in the marking. Unfortunately, static data become redundant since they are propagated from
one marking to the other in the state space. The place information is carried over in the marking description
and repeated in every reachable state in the state space. As a consequence, the state space can get blown up
as quickly as possible, leading to a premature explosion. In TIMSPAT, the static place tokens are stored
once in a fixed memory location.

The static place offers a kind of flexibility to users if the information is too large to be written as an
if-then-else expression. The command if-then-else can be used in some cases, however, it cannot completely
replace the static place. For example, it is difficult to model alternative routings with if-then-else when the
firing of a transition is expected to generate more than one successor.

2.1.1. TIMSPATLIb TCPN structure
The input definition files used to specify the TCPNSCH structure consist of a main file MDF (main.txt)

and a set of N transition files TDF (transition1.txt,...,transitionN.txt). Each transition in the TCPNSCH
is written into a separate file. The MDF specifies the initial marking M0 (Mu and TS), the color set, the
goal marking definition Mg, the time information required for heuristic evaluation (shared with the search
algorithm module), constants (optional), and functions (optional) used in the transition files. Each TDF
lists the arc expressions of places (both input and output where applicable) acting on a transition, guard
expressions and time delay. TIMSPATLib assumes the following for TCPN modeling:

1. Place identifier: Place labels are numeric and sequential.
2. Data types: The domain of the data types are restricted to two numeric types only: integer (including

large integer) and real data types. Restrictions are placed on color domains and set to facilitate an
efficient exploration of the state space. As such, neither color variable and token type declaration nor
initialization is required by the user. The real type is fixed at a precision of 3 decimal places using a
built-in function radiusdp() to differentiate an integer computation from a real one. Complex data
types like strings, and Boolean among others are not suitable to optimize the marking storage. These
variables can be expressed numerically since most models are usually accompanied by an interpretation
of the places and transitions including the meaning of the colors and data types. For instance, if a
token color must take the string values ’heavy’, ’medium’, and ’light’, the three possible values can be
represented as 1, 2, and 3, respectively. Same applies to Boolean colors.

3. Color set: The library uses an n-tuple definition for token description; a product color set of integer
and/or real where n ≥ 2 or a simple integer or real where n = 1. It is only necessary to define n, a
non-negative integer which describes the number of colors that will reside in a place. List, union and
enumeration color sets are not supported for state space analysis.

4. Input arc expressions: The tokens used for input arc expressions are restricted to an explicit definition of
free variables only. TIMSPATLib does not allow numeric values, conditional expressions or computations
to be specified for input arc expressions. Also, the variables must be unique on all input arcs. Numeric
values or equivalent variables intended to be used on input arc expressions can be expressed as guards.
This assumption allows quick evaluation of transition bindings [33].

5. Free variables are local to a transition file and can be reused by other token colors in the other files
without prior declaration.

Due to space considerations, we cannot provide a detailed explanation of the syntax description. Interested
readers can consult the user guide on the tool’s website [5].

2.2. Simulator – TCPN Execution
The execution of TCPNSCH is controlled by the simulator module. It involves the enabling and firing

of transitions according to the input arc expressions, preconditions (guards) and estimated duration. Also,
TIMSPAT includes the goal marking check in the simulator.

The simulator uses the TIMSPAT’s net structure to evaluate markings using an event-driven approach
[6, 57] for the generation of successors (See Section 2.3). Each time it receives a marking from the search
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algorithm, it checks whether or not the transitions of the TCPN can be enabled given the guard conditions
and input arc expressions. Once the enabled markings are fired, the simulator determines which marking has
reached the goal given the TIMSPATLib Mg syntax. It then sends the reachable markings as successors with
a goal marking header to the search algorithm for further evaluation. The interaction between the three
TIMSPAT components is based on a continuous evaluation of markings until the search algorithm terminates
the exploration. The steps of the simulator algorithm are given as follows:

1. Get a new marking from the search algorithm module.
2. For each transition in the TCPN:

(a) Preprocessing: check if the number of tokens in each place can be reduced by evaluating the
guards with at most two variables.

(b) If one of the input places is empty or the number of tokens is less than the cardinality or the
multiset of tokens in the input arc expression, exit.

(c) Generate all the possible combinations of tokens (subsets) for all the input places.
(d) For each token combination subset:

i. Bind the colors of each token to their variables.
ii. Check to ascertain whether or not it can enable the transition by evaluating the entire guard

expression.
iii. If the guard evaluates to true, go to Step 2e, else go to Step 2d.

(e) Fire the transition with the binding:
i. Remove the tokens from the input places of the marking and store their timestamps if color

set of the place is timed.
ii. Calculate the enabling time tauk by taking the maximum of all token time stamps in the

enabled token subset.
iii. Calculate the firing time by adding the transition delay d to tauk, (tk + d).
iv. Generate a new marking by adding new tokens to the output places by evaluating the output

arc expressions and attaching the computed time stamp (firing time) to each token in a timed
place.

v. If the new marking is a goal marking, mark as goal.
3. Send the computed successors to the HS module.

The enabling of transitions in a CPN is usually quite expensive [69]. It has been a subject of much
research in [23, 24, 33, 45]. The simulator must first compute the set of all possible bindings B for a transition
t, denoted as B(t) [33]. A binding b of a transition t, b ∈ B(t) assigns a value b(v) to each variable v of the
transition t. It binds the tokens in the input places of transitions to the input arc expressions and guards.
The variables of a transition t, denoted as V ar(t) ∈ V , consist of the free variables specified in the guard and
in any of the arc expressions of any arcs connected to the transition t. For example, the variables of transition
t1 in Fig. 3 is V ar(t1) = {j, op,m, j1,m1, opp, t}. A transition is enabled if the input places contain the
multiset of tokens specified and the guard of the binding G(t)〈b〉 is true.

For simulation-based performance analysis, only one successor needs to be computed in which an enabled
transition and corresponding binding can be chosen based on priority, random or fair selection. To reduce
the combinatorial effects of transition bindings in TIMSPATLib, we adopt the following rules: 1. The token
multiset of input arc expressions must be limited to two for input places with a large number of tokens,
2. Before evaluating the bindings, the simulator first removes ineligible tokens from the input places with
guards having at most two variables. This is done to reduce the number of tokens to use in the combinatorial
process, and 3. When a static place is used, there must be sufficient guard conditions to trim down the
number of tokens in the place. If this is not possible, an if-then-else operator is recommended.

An enabled transition may fire. Firing means that the tokens are removed from the input places and
added to the output places of the firing transitions. In a TCPN, a transition t is time-enabled at time τk in a
marking M denoted by M [t〉τk

if all the tokens to be consumed from the input places have a time stamp
not later than time τk [64]. If a transition t fires at time τk, it changes M to a new marking M ′ denoted
by M [t〉τk

M ′. M ′ is said to be reachable from M . In TCPNSCH , a transition delay applies to all output
tokens created at transition firing. The time stamp of a token is defined at its generation time. Firing a
transition t at time τk with a delay d, time stamps the output tokens with the time value τk + d.
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2.3. Timed state space exploration
The performance analysis of TCPN using the RG involves the generation of a timed state space (TSS)

and the traversal of the state space with a search algorithm. A TSS can be defined as a reachability set
R(TCPN,M0) that comprises the set of all possible markings reachable from M0 which minimizes a given
objective function. The TSS is represented as a directed graph TSS = (N,E,M0) where N is the set of
nodes and E is the set of directed edges E = {(M, t,M ′)τk

∈ N × (T ×R)×N |M [t〉τk
M ′}. A node contains

a reachable marking M including the parent identifier and any other information required by the search
algorithm. A marking M ′ ∈ V is a successor of (or reachable from) marking M ∈ V if (M, t,M ′)τk

∈ E.
The edges represent the transition bindings used to generate the successor marking. A path between two
markings M0 and Mg is a sequence of markings σ = M0[t0〉,M1[t1〉, . . . ,Mn−1[tn−1〉,Mg ∈ O connected by
a sequence of edges with enabling times such that ∀i ∈ [0, n − 1], (Mi, ti,Mi+1) ∈ E. σ corresponds to a
schedule, and O is a space of feasible schedules.

Lakos & Petrucci [39] identify two different approaches to TSS generation based on their firing rules: the
conservative and the optimistic approach. The conservative approach called the reduced earliest time state
space (RSS) is the TSS generation method adopted by CPN Tools. It uses the eagerness-to-fire property
[25] based on the global clock synchronization such that a transition is only allowed to fire if τk ≤ r∗. As
a consequence, the firing of a transition t′ enabled at τ ′k > r∗ for a particular operation is delayed until
the global clock r∗ advances to τ ′k or to a much later time than τ ′k depending on the prior firing sequences.
When used for the optimization of inherent asynchronous systems which exhibit a high level of concurrency
and parallelism [57], this property may preclude the generation of firing sequences that would lead to an
optimal schedule. Since there are activities that can be performed concurrently, delaying the execution of the
operation to a later time can have a negative impact on the overall performance of the system. RSS is defined
as a tuple RSS = (N,E,M0) where E = {(M, t,M ′)τk

∈ N× (T ×R)×N |M [t〉τk
M ′,@t′, τk′ < τk : M [t′〉τk′}

The optimistic approach called the earliest time state space (ESS) allows the firing of transitions as
soon as they are enabled i.e. it includes the transition firings with τk > r∗ in addition to those of the RSS
without the global clock constraint. As a result, the firing of transitions no longer depends on the behavior
of the global clock, hence, leading to an event-driven approach. ESS is a tuple ESS = (N,E,M0) where
E = {(M, t,M ′)τk

∈ N × (T × R)×N |M [t〉τk
M ′,@τk′ < τk : M [t〉τk′}. Piera & Music [57] investigated the

use of the two approaches for production scheduling, highlighting the shortcomings of RSS for optimization.
ESS can be explored either in a classical manner, by evaluating both the untimed marking and time

stamp together as one set for comparison in duplicate detection [8] or in a compact form, as a condensed
state space (CSS) [9, 16]. In the CSS, nodes are represented as state classes using the notion of untimed
marking equivalence. TIMSPAT uses the CESS as a reduced size of ESS for detecting duplicate untimed
markings. During the search process, it excludes the time stamps from the duplicate detection process to
avoid exploring a large state space containing several markings with the same untimed marking but different
time stamp set. The CSS was originally proposed by Christensen et al. [16] using the timed equivalence (TE)
method. Unlike TE, the absolute values of time stamps are not replaced with relative values. Rather, the
time stamps are used for calculating the firing times of transitions and the creation times of new tokens, and
to evaluate performance with respect to the objective function. TIMSPAT implements both the ESS and its
condensed version (CESS) in the HS algorithms. The CESS justifies the separation of the timed marking
into untimed marking and time stamp set in the descriptor used in Section 2.1. For large state space graphs,
it is impractical to keep the time stamp set of all equivalent untimed markings in a class. An additional
measure is required to select the most promising time stamp set to be used for exploration [6].

2.3.1. Heuristic search algorithms for TSS
A classical HS algorithm like A∗ [60] can be used to construct the TSS of a TCPN. A∗ is a best-first

search that searches through the TSS by systematically expanding the most promising marking one at a time
in order to find the shortest path from M0 to Mg. It guarantees that the first solution obtained is optimal
when all the markings with cost less than the optimal goal marking cost have been expanded. The search is
guided by an evaluation function f(M) = g(M) + h(M) that determines the cost of each marking in the
search space. Cost function g(M) is the actual cost to reach a marking M from M0 and h(M) is a heuristic
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Algorithm 1 A∗ search with TCPN execution
Require: TCPN , M0, Mg

1: dm ← 0
2: g(M0)← 0, f(M0)← h(M0)
3: OPEN ← {M0}, CLOSED ← {M0, dm}
4: while OPEN 6= ∅ do
5: M ← OPEN \ {Mbest}
6: if IsMg(M) then
7: Mf ←M ′, construct firing sequence

exit
8: else
9: for all enabled transitions t ∈ T : M [t〉τkM

′, @τk′ < τk : M [t〉τk′ } do
10: if M ′(M ′u) 6∈ CLOSED then
11: CLOSED ← CLOSED ∪ {M ′, i+ 1}
12: OPEN [i+ 1]← OPEN [i+ 1] ∪ {M ′}
13: else
14: CSS((f(Mstored), g(Mstored)), (f(M ′), g(M ′)))

15: return Mf and firing sequence (solution path)

function that estimates the remaining cost to reach Mg from M . A∗ guarantees that the search always finds
an optimal solution if h(M) is admissible i.e. it is a lower bound that does not overestimate the cost to goal,
h(M) ≤ h∗ (M), ∀M where h∗ (M) is the cost of the optimal path from M to Mg.

Like A∗, most HS algorithms employ two data structures: open list and closed list. The open list (OPEN)
is a queue that stores the markings that have been generated but not yet expanded, whereas the closed list
(CLOSED) which is usually represented by a hash table, stores the already-expanded (visited) markings.
The heuristic search algorithm determines how OPEN is implemented, as a priority or non-priority queue.
A∗ uses a priority OPEN in which markings are sorted in the increasing values of f(M). Contrary to the
standard approach, TIMSPAT implements CLOSED as a list that keeps both the open and closed markings.
This is due to the high run-time cost incurred on performing duplicate detection on a queue. To avoid
duplicating markings on both lists, TIMSPAT keeps only the pointers to the open markings in OPEN and
their corresponding heuristic cost values. The common data structure allows TIMSPAT to integrate different
heuristic search algorithms in the tool.

The pseudocode for the A∗ search combined with TCPN execution is given in Algorithm 1. Here, the algo-
rithm uses both f(M) and g(M) for the CSS duplicate detection procedure
CSS((f(Mstored), g(Mstored)), (f(M ′), g(M ′))) to provide a more accurate estimate in selecting the most
promising time stamp set [7].

A∗ offers completeness and optimality guarantee. However, for sizable problems, it might require a
large amount of search space and computational time effort before an optimal solution can be reached [9].
Besides A∗, eight other algorithms have been implemented: 1. Breadth-first iterative deepening A∗ search
(BFIDA∗) [9, 76], 2. BFIDA∗ with scalable layered duplicate detection (BFIDA∗-SLDD) [8], 3. Beam A∗

search (BAS) [49], 4. A∗ with backtracking (A∗-BT) [31], 5. Dynamic window search (DWS) [50, 59], 6.
Anytime layered search (ALS) [9], 7. Anytime column adaptive search (ACAS) [6], and 8. Depth-first branch
and bound (DFBnB) [47, 74, 75]. Each algorithm is classified according to the space/time tradeoff criterion
as space-efficient (SE), time-efficient (TE) or space/time-efficient (STE). ESS and CESS form the base classes
of the heuristic search algorithms in TIMSPAT despite the fact that BAS and DWS selects only a subset of
successors generated at each marking. The details of each algorithm can be found in its respective citation.

For an algorithm to be considered SE, the reduction of the memory requirements must not affect the
optimality of the schedule i.e. the heuristic function must be admissible and no inadmissible pruning technique
should be adopted. These algorithms are oriented toward obtaining optimal solutions if given sufficient time,
in addition to an efficient use of memory. Upper bounds are used to remove paths whose markings will not
lead to a better solution. The SE algorithms do not terminate the search until the optimal solution is found.
BFIDA∗ and BFIDA∗-SLDD fall under the SE class. Like A∗, these algorithms are oriented towards obtaining
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Figure 2: Relationship between the three components and the classes used in TIMSPAT.

optimal solutions.
For time efficiency, the only criterion is that the algorithm returns a solution (either optimal or near-

optimal) in a reasonable amount of time irrespective of the type of heuristic function and the pruning
technique employed. The TE class includes hybrid HS (HHS) algorithms like BAS, A∗-BT, and DWS. These
algorithms use predefined pruning rules to limit the memory consumption of the search space and to find
feasible solutions in a reasonable amount of time. Basically, they limit the frequent backtracking of the A∗

search to prevent the search space from degenerating into a breadth search. A controlled deepening search
is usually favored to drive the search towards a suboptimal solution quickly. Here, optimality is sacrificed
for computation time and memory reduction. The TE algorithms terminate the search as soon as the first
solution is obtained.

STE algorithms must meet the SE requirements in addition to returning solution at a reasonable amount
of time. Basically, they consist of anytime algorithms that report solution at different time intervals and
are guaranteed to provide the best solution obtained so far whenever interrupted. STE algorithms can be
considered as a special class of HHS methods. Examples are: ALS, ACAS, and DFBnB. They do not stop the
search at the first solution. Instead, the solution is continuously improved over time until the search obtains
the optimal solution provided the available memory is sufficient to guarantee optimality. The algorithms
trade off solution quality and computational time. The incumbent best solution is used as an upper bound
to restrict the number of generated successors and to periodically prune markings that will not lead to a
better solution.

Fig. 2 shows the interaction between the three components and the relationships between the classes used
in TIMSPAT. The evaluator class is used to evaluate and compute guard conditions, functions, and other
mathematical expressions in the output arc.

2.3.2. Heuristic functions
Three admissible heuristic functions are commonly used in PNHS approach. The first one sets h1(M) = 0

assuming no heuristic information is available. This is suitable for manufacturing systems with routing
flexibilities or alternative routings and in cases where the run-time overhead for heuristic computation is
quite high. However, the resulting lower bound f(M) might be too weak to reach an optimal schedule in a
reasonable time. On the other hand, it can be very useful in cases where the algorithms are designed to
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Figure 3: TCPN of a 2× 2 job shop instance.

return suboptimal solutions quickly [9]. The second one is called the job heuristic function [41, 43]: h2(M) =
maxk{ξk(M), k = 1, 2, . . . , N} where ξk(M) is the sum of operation times on uncompleted processing stages
to be undergone by each kth job when the current system marking is represented by M , and N is the total
number of jobs. The third is called the machine heuristic function [71]: h3(M) = maxi{ξi(M), i = 1, 2, . . . , R}
where ξi(M) is the sum of operation times of those remaining operations for all jobs which are planned to be
processed on the ith resource, and R is the total number of resources. These three functions have been used
in [6, 8, 9].

In the formulations of h2(M) and h3(M), the timed marking information is not used in the computation.
To this effect, Li et al. [43] propose tighter lower bound estimates for TPN that consider the earliest available
time of machines and jobs based on the information from the timed marking. The individual time stamps of
tokens are used to calculate the lower bound. The equivalent expression f2m(M) for a TCPN (Fig. 3 as an
example) proposed in [43] is as follows: Given a token sj of a job Jk in place pn of color set JOB containing
color variables j(job identifier) and op(operation identifier) to be processed on a list of machine tokens smi

in place pm, where i = {opc, opc + 1, . . . , opf}. mi is the machine list to be used for the job’s remaining
operations starting from the current operation opc to the final operation opf . Then, the fJk

(M) of a job Jk
is estimated as:

fJk
(M) = max

ts1 j +
∑

opc≤i≤opf

Di (t, b), ts1mopc +
∑

opc≤i≤opf

Di (t, b),

ts1
mopc+1 +

∑
opc+1≤i≤opf

Di (t, b), . . . , ts1
mopf +Dopf (t, b)


(3)

where max(ts1j , ts1mopc ) corresponds to gJk
(M), the earliest available time (firing time) of job Jk and

Di (t, b) is the transition delay for bindings b(j) = k and b(op) = i, the processing time of the job for each
operation. This expression assumes a single lot size m(sj) = 1 for all jobs.

The overall lower bound f2m(M) for h2m(M) is given as:

f2m(M) = max {fJk
(M)} , k = 1, 2, . . . , N (4)

A similar modification is made to f3(M) where the earliest start time of the next job operation on a
machine is computed using fJk

(M) before adding the sum of operation times. To show the effectiveness of
these heuristic functions, Fig. 4 depict the A∗ search of the CESS graph (TCPN in Fig. 3) given in [6] using
the previous f2(M) and modified f2m(M) job heuristic functions, while Fig. 5 shows those of the machine
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Figure 4: A∗ search using (a) f2(M), and (b) f2m(M).
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Figure 5: A∗ search using (a) f3(M), and (b) f3m(M).

heuristic functions. The x and y variables in the marking identifier Mx−y represent the order of expansion of
the CESS by BFS and A∗ respectively. As observed in the graphs, the improved heuristic functions proved to
be more informed than the previous ones, expanding and storing fewer markings i.e. h2(m) ≤ h2m(M) and
h3(m) ≤ h3m(M). Also, Fig. 4a shows the importance of a good estimate as the A∗ search degenerated into
a breadth-first.

While the job and machine heuristic functions can be used separately, they can also be formulated as
f(M) = max(f2m(M), f3m(M)) [43] to give a more accurate lower bound. The computation may become
more time consuming, especially for TCPNs. However, in systems with alternative routings in which more
than one machine can be used to process the operation (with different processing times) of some jobs, only
the job heuristic function and f1(M) seem applicable. Functions f2m(M) and f3m(M) are not admissible.
Here, we propose a modified job heuristic function for alternative routings by replacing the processing time of
each operation and the time stamp of machines with the minimum processing time and the earliest available
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time, respectively.

fJk

alt (M) = max

ts1 j +
∑

opc≤i≤opf

miniδi,minsmopc
∈Sm

(tm[smopc
]) +

∑
opc≤i≤opf

miniδi,

minsmopc+1∈Sm(tm[smopc+1 ]) +
∑

opc+1≤i≤opf

miniδi,

. . . ,minsmopf
∈Sm

(tm[smopf
]) +minopf

δopf

}
(5)

where tm[smi ] is the time stamp list of machines that can be used to process a job at a given operation,
and δi = {D1 (t, b), . . . , Dl (t, b)} is the list of transition delays for l number of alternative machines that can
process Jk at operation i.

Theorem 1. f2malt (M) ≤ f ∗ (M) where f ∗ (M) is the cost of the optimal solution from M

Proof. Let gJ(M) = ts1
j , the current time stamp of the job token, and τk = max(ts1j , tsmopc ) represents

the firing time of the enabled transition t, the minimum start time of the job processing, where tsmopc =
minsmopc

∈Sm
(tm[smopc

]) is the minimum available time of the set of machines that can be used for processing.
The processing will finish at the earliest time τi = τk + δk where δk is the minimum processing time miniδi
of the job assuming that it undergoes operation at the machine with the least processing time. Then,
τi
∗ ≤ τk

∗ +D∗ (t, b), the time stamp of the actual selected machine tsmopc∗ ≥ tsmopc , and D∗ (t, b) is the
corresponding transition delay D∗ (t, b) ≥ δk. The completed time at the next processing stage i+ 1 then
becomes τi+1 = max(τi, tsmopc+1) + δi+1, which will be less than or equal to τi+1

∗. The job processing is
estimated to always start at the earliest available time on one of the machines and finishes with the least
processing time, i.e. the minimum completion time at each stage will always be less than or equal to the actual
completion time, τi ≤ τi

∗. Therefore, fJk
alt (M) guarantees that f2malt (M) is an admissible lowerbound

that will always be less than or equal to f ∗ (M).

Note that, in this expression, the time stamp of the selected machine is updated at each iteration to
avoid reusing the same machine if it were to be available for more than one processing stage. The machine
will be considered to have processed an operation in case it is part of another set of alternative machines to
be used for subsequent operations. This ensures that the calculation of the lower bound advances without
overloading a machine, and resource utilization is spread out to the other machines.

3. Case study

We consider a case study of a real flexible manufacturing cell (FMC) of an eyeglass production system
[53]. The system consists of three computer numerical controlled machines M1, M2, and M3, an automated
dual-gripper crane R(G1, G2), and a conveyor. The layout of the cell is shown in Fig. 6. There are three
types of eyeglasses E1, E2, and E3 in which each eyeglass is composed of two lenses (left and right). Each
lens must be processed separately since the machine processing time of some operations depends on the lens
type. Hence, the total number of part types to be processed is six: J1 and J2 for E1, J3 and J4 for E2, and
J5 and J6 for E3.

Parts undergo two machining operations in the same sequence as in a flow shop. The first operation is
performed on M1, and the second on either M2 or M3. Machine M1 is used to verify whether the lenses
have the correct dimension specification, whereas machines M2 and M3 perform the same function and are
used to bevel the lenses. All the part types have the same processing time of 4 s in the first operation but
the beveling operation varies depending on the part type: 120 s for E2, 540 s for E3, and 215 s and 220 s for
J1 and J2 of E1 respectively. Each machine can process at most one operation at a time.

Parts arrive in buckets of a pair of lens (B1(E1), B2(E2), and B3(E3)) on the conveyor to the load/unload
(L/U) area. Each bucket contains an eyeglass type, and the L/U area is the working area of the crane
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operations on the conveyor. The crane is used to transfer the parts (in a horizontal movement) between the
conveyor and the machine and back to the L/U area after the part processing is completed. However, the
L/U area is constrained to three buckets. This is due to the restricted working area of the crane’s gripper to
load and unload parts. A slot is freed only when the two parts in a bucket are fully processed and moved out
from the working area. The crane can load and unload parts at four pickup/delivery (P/D) points: 1. 0 -
conveyor loading position, 2. 1 - M1, 3. 2 - M2/M3, and 4. 3 - conveyor unloading position. The movement
time of the crane from one position to the other, and the loading and unloading of parts takes 4 s each. Both
arms of the crane can be used to load and unload parts. The operation of the dual-gripper crane works more
like a multi-load AGV that performs empty and loaded trips [7].

Each job has a total of eight operations (six handling and two machining operations): 1. Unload or
pickup from bucket, 2. Transport and delivery or load to M1, 3. Processing in M1, 4. Unload from M1,
5. Transport and delivery to M2 or M3, 6. Processing in M2 or M3, 7. Unload from M2 or M3, and 8.
Transport and delivery to bucket. The scheduling problem is formulated as follows: Given the FMC layout
and the production mix, determine the starting and completion times of each part on each machine and the
movement operations of the crane between machines together with the assignment according to the makespan
minimization objective Cmax.

Figure. 7 shows the TCPN model of the manufacturing cell. The TCPN has six places and seven
transitions. The meaning of the places together with the color set and variables, and transitions is given in
Table 2 and Table 3 respectively. The main file contains the initial marking of the production mix E1 = 1,
E2 = 1 ,and E3 = 1 with zero starting times. For dynamic scheduling purposes, the starting times can be
changed to reflect the current state of the system.

1 1′(1, 1, 2, 1) + 1′(2, 3, 4, 1) + 1′(3, 5, 6, 1); 2 1′(0); 3 ; 4 1′(0, 0, 0, 0, 0, 0, 0); 5 1′(1, 0, 1, 0, 0, 3)
+1′(2, 0, 2, 0, 0, 6) + 1′(3, 0, 2, 0, 0, 6); 6 ; / ∗ initial Mu ∗ /
0 + 0 + 0; 0; ; 0; 0 + 0 + 0; ; / ∗ initial time stamp set ∗ /

CS WKL;CNT ;BCK;CRN ;MCH;OUT ; / ∗ place color set ∗ /
EF #; 1′(0); #; 1′(0, 0, ∗, 0, 0, 0, 0); 3′(∗, 0, ∗, 0, 0, ∗); 3′(∗, ∗, ∗, 9); / ∗ goal marking ∗ /

A P/D request involves 5 operational sequence: the prior assignment of the crane to the part, the
movement of the crane to the resource location (conveyor or machine) for pickup if its current position is
different from the P/D location, the unloading of the part from the resource, the delivery of the part to the
destination resource, and the loading of the part to the resource. Transitions T2 and T5 execute the first

Figure 6: The layout of the flexible manufacturing cell.
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Figure 7: The TCPN model of the FMC developed using TIMSPAT syntax library.

Table 2: Interpretation of places and colors.

Place Color set (CS) Color(s) Description

P1 WKL = 4, timed; 〈b, j1, j2, op〉 Production mix workload: Left lens j1 and right
lens j2 in bucket b with starting operation sequence
identifier op

P2 CNT = 1, timed; 〈c〉 Counter for the number of unprocessed buckets on
the conveyor in the loading area

P3 BCK = 3, timed; 〈j, b, op〉 Buckets on the conveyor: Unprocessed lens j in
bucket b if op=1, otherwise processed if op=9

P4 CRN = 7, timed; 〈g1, g2, gpos, og1, og2,
bg1, bg2〉

Crane status: Crane at position gpos with grippers
g1 and g2 (free = 0, busy > 0), and operation
sequence identifiers og1, og2 and bucket identifiers
bg1, bg2 for each gripper. og1, og2, bg1, bg2 > 0 if
parts (lens) are held in grippers

P5 MCH = 6, timed; 〈m,ms,mpos, j, b, op〉 Machine status: Machine m at position mpos with
status ms (0 - available, 1 - busy, 2 - waiting for
part to be picked up). j, b, op > 0 if ms > 0

P6 OUT = 3, timed; 〈b, j1, j2, op〉 Processed buckets moved out from the working
area

three operations concurrently for conveyor and machine pickup respectively, while T3 and T6 perform the last
two operations for machine and conveyor delivery respectively. The production flow of a single part in the
system gives the sequence of transition firings: T1→ T2→ T3→ T4→ T5→ T3→ T4→ T5→ T6→ T7.

The TCPN model is quite different from the nets proposed by Narciso et al. [53] and Mujica & Piera [51].
In the previous nets, the movement of the crane is not properly controlled as the source or destination of a
P/D request is not included in the crane’s behavior. The crane can move to either of the potential P/D
positions without a prior assignment for P/D request. Since the studied FMC is a bufferless system, the
TCPN minimizes blocking using P/D assignment together with the status of the machines as specified in the
guards of transitions T2 and T5. However, deadlock occurrence is still inevitable if the crane grippers are
holding parts whose destination machines have parts that are waiting to be picked up by the crane. The
deadlock-free scheduling approach used in this thesis has been treated in [9].
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4. Performance evaluation and benchmarking

This section evaluates the performance of the nine algorithms on the case study. We consider 15
different production mix scenarios, shown in Table 4. The instances contain 5 small (BGS1–BGS5), 6
medium (BGM1–BGM6), and 4 large (BGL1–BGL4) workload mixes. The first large instance BGL1
(30% E1, 60% E2, 10% E3) represents a real mix for the manufacturing cell. The experiments were conducted
on a 2.60GHz AMD Opteron processor PC with 4GB RAM.

Each algorithm is benchmarked against the others in its category, and the best performing in each class
is then compared with those of the other classes. Since each class has its own trade off, CPU time of 3600 s
and 4GB RAM limits were set for the TE and STE classes whereas only the maximum memory limit was set
for the SE class. A∗ is not considered for comparison as it was only able to solve the small instances, even
with the CESS.

4.1. SE class
The SE algorithms use the cost threshold CT as a bound to prune markings with f(M) > CT in each

iteration of the breadth-first branch and bound search. The algorithms start with f(M0) as the initial
CT . If no goal marking is found, the search is repeated with a new CT value until a solution is reached.
Successive values of CT relies on the minimum f(M) (fmin) of the unexpanded markings in the previous
iteration. However, it comes with an overhead of marking re-expansion each time the search is restarted. If
the increments are too small to reach f(Mg) in a reasonable amount of time, it may result in a large number
of iterations. To circumvent this problem, [65] propose to double CT after each iteration for the classical
IDA∗. This measure can degenerate to a breadth-first search. To achieve a good space-number of iteration
trade-off, we computed successive CTs as CT = max(fmin, ubf ∗ fmin),∀ubf ∈ {1.0, 2.0} where ubf is a
multiplier. We experimented with different values of ubf to determine a good factor for the instances. From
the preliminary results obtained, a ubf value of 1.4 achieves a good trade-off.

Table 5 shows the scheduling results of the two SE algorithms on the 15 instances. The two are practically
the same. They expand the same of number of markings (EM ) and have an almost equal CPU time but
differ in the number of stored markings as shown in the Peak column. BFIDA∗-SLDD leverages the regular
structures found in manufacturing systems to reduce the number of stored markings. The Depth is the total
number of operations or fired transitions required to reach the optimal Mg from M0, where each operation
corresponds to a level in the state space.

As observed on the result table, the ubf of 1.4 significantly reduces the number of search iterations across
all instances. As a result, the computational times were also reduced for the small and medium instances. For
example, the BFIDA∗ search of BGS1 using the standard increment of ubf = 1 solved the instance in 156
iterations with a CPU time of 3753 s and EM of 9.6× 106. As the instance size becomes larger, the standard
BFIDA∗ ran out of memory (o.o.m) starting from the BGM3 instance due to the exponential increase of
the state space size. BFIDA∗-SLDD solved all the instances with a minimal amount of memory space. It
used less than 2GB RAM for the largest instance that would require over 200GB RAM if the entire state
space were to be stored in memory. The CPU times can be considered reasonable up to instance BGL1
considering the fact that it is an optimal algorithm. However, it took over 38 h, 64 h, and h to solve BGL2,

Table 3: Transitions and their meanings

Transition Description

T1 Conveyor move in of unprocessed buckets in the L/U area
T2 Unloading of parts from bucket for P/D including the empty move of the crane if applicable
T3 Movement of crane to the destination machine for delivery including the loading of parts
T4 Processing of parts in machines
T5 Movement of crane to the destination machine for pickup including the unloading of parts
T6 Final delivery of processed parts to bucket in the conveyor’s L/U area including unloading of

parts
T7 Conveyor moves out processed buckets
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Table 4: Production mix instances for the three eyeglass types.

Instance
Number of eyeglass types

Number of parts
E1 E2 E3

BGS1 1 1 1 6
BGS2 2 2 0 8
BGS3 4 0 0 8
BGS4 4 2 1 14
BGS5 3 3 3 18
BGM1 2 5 3 20
BGM2 7 4 2 26
BGM3 4 7 4 30
BGM4 4 8 5 34
BGM5 7 5 5 34
BGM6 6 10 4 40
BGL1 7 13 2 44
BGL2 10 17 5 64
BGL3 15 20 7 84
BGL4 20 20 20 120

Table 5: Scheduling results of SE algorithms.

Instance
State space BFIDA∗ BFIDA∗-SLDD DFS-CSS [53]

Itr Depth EM Peak
CPU
(s)

Peak
CPU
(s)

Reduction
(%)

Cmax Cbest
CPU
(s)

BGS1 4 54 150,548 114,371 59.8 4,869 59.1 95.74 975 1027 45077
BGS2 5 72 171,140 117,869 71.9 4,932 71.4 95.82 783 911 54207
BGS3 3 72 19,905 18,297 7.9 496 7.9 97.29 978 1111 2978
BGS4 5 126 1,608,257 1,014,911 718.2 21,237 715.8 97.91 1794
BGS5 5 162 4,735,124 3,000,133 2216.9 57,783 2211.7 98.07 2802
BGM1 5 180 5,211,153 3,363,369 2436.2 55,308 2431.2 98.36 2835
BGM2 5 234 11,718,087 6,104,427 5663.3 73,095 5583.1 98.80 3301
BGM3 5 270 29,217,707 131,865 14463.4 4110
BGM4 5 306 32,719,717 163,967 16060.0 4794
BGM5 5 306 32,228,078 186,191 16056.4 5089
BGM6 6 360 52,626,061 201,008 26330.5 4965
BGL1 5 396 30,251,710 125,448 15030.2 4489 6790 513540
BGL2 6 576 179,031,180 406,956 93592.5 7359
BGL3 5 756 274,552,404 820,818 159148.0 10009
BGL4 4 1080 1,061,683,289 2,295,016 649915.0 18330

Itr - Number of iterations

BGL3, and BGL4 respectively. When compared with the depth-first search (DFS-CSS) algorithm proposed
by [53] where some instances coincide, it is a significant improvement in terms of both CPU time and best
makespan (Cbest) obtained.

4.2. TE class
Each algorithm in the TE class has its own input parameter settings, used as a measure to reduce the

memory and computational time complexity. However, they share a common parameter that determines
a priori the number of markings to be stored. Since increasing the input values do not guarantee a high
solution quality, different values must be experimented to achieve a good solution quality-time trade-off.

The A∗-BT algorithm requires only one input parameter called threshold, Mmax which is used to control
the maximum number of markings stored in OPEN. It starts exploring the state space in a best-first order
using A∗. Each time Mmax is reached, it creates a new search region or level by initiating a backtracking
to the previous level where the best marking in OPEN is used as a root node for another A∗ search until a
solution is found.

BAS requires two inputs: 1. beam width bw, and 2. cutoff co. The beam width is used to limit the
number of markings expanded at each depth of the state space whereas cutoff limits the size of OPEN to a
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Table 6: Scheduling results of TE algorithms.

Instance
A∗-BT BAS DWS

Mmax Cbest CPU RPDC RPDCP Ubw Cbest CPU RPDC RPDCP U maxz Cbest CPU RPDC RPDCP U

BGS1 1000 1012 2.7 3.8 41.2 100 980 1.9 0.5 0.0 200 975* 3.9 0.0 106.0
BGS2 100 831 0.2 5.1 0.0 200 791* 5.2 0.0 2026.0 100 799 2.8 1.0 1072.3
BGS3 1000 1015 5.8 3.8 0.0 500 983 7.4 0.5 27.3 500 978* 12.2 0.0 110.0
BGS4 1000 1889 9.0 4.4 0.0 500 1822 25.2 0.7 180.3 1000 1809* 43.9 0.0 388.1
BGS5 100 2989 0.7 4.0 0.0 1000 2873* 68.8 0.0 9826.0 1000 2877 60.7 0.1 8665.2
BGM1 100 3079 0.8 3.8 0.0 500 2966* 39.2 0.0 5012.4 50 2974 4.7 0.3 509.5
BGM2 200 3580 1.9 2.1 0.0 200 3538 21.5 0.9 1032.3 50 3506* 8.1 0.0 326.9
BGM3 1000 5142 11.7 22.1 81.6 50 4212* 6.5 0.0 0.0 50 4270 49.4 1.4 664.0
BGM4 10 5172 0.2 3.1 0.0 10 5018* 1.6 0.0 561.9 50 5086 8.4 1.4 3321.0
BGM5 100 5527 1.6 3.5 0.0 10 5342* 1.6 0.0 1.6 100 5367 15.0 0.5 866.9
BGM6 10 5498 0.3 5.2 0.0 1000 5228* 170.2 0.0 50897.9 200 5396 33.6 3.2 9972.3
BGL1 10 4803* 0.3 2.3 0.0 200 4895 39.2 4.2 11970.7 500 4696 84.8 0.0 25967.5
BGL2 10 7954 0.5 0.5 0.0 10 7917* 3.2 0.0 486.5 10 7921 6.3 0.1 1065.6
BGL3 10 10507* 0.7 0.0 0.0 10 10803 4.3 2.8 499.3 50 11123 27.7 5.9 3760.3
BGL4 10 19215* 1.1 0.0 0.0 10 19306 6.5 0.5 504.7 50 19984 36.2 4.0 3285.4

Av. RPD 4.24 8.19 0.68 5535.12 1.18 4005.39

*-Best solution

certain value to avoid an exponential growth. On the other hand, DWS restricts the state space to a dynamic
search window between a minimum depth, bottom-depth bd and a maximum depth, top-depth td. For the
search window to advance, DWS constrains the number of markings generated at td to a certain value called
max-top maxt. Once maxt is exceeded, the values of bd and td are increased by one. To avoid exponential
growth, DWS also keeps the most promising markings to be explored at each depth of the search window to
a fixed size called max-size maxz. If a level becomes full (i.e. maxz has been reached), a new marking M is
added to the level only if there is a stored marking Ms with f(Ms) > f(M). As such, three input values
(td,maxt,maxz) are required for DWS to run. The bottom depth starts from zero and [50] propose to set
maxt = maxz.

To provide a fair comparison, we experimented the following values for the three algorithms: Mmax ∈
{10, 50, 100, 200, 500, 1000}, (bw, co) ∈ {(10, 150), (50, 750), (100, 1500), (200, 3000), (500, 7500), (1000, 15000)}
and (td,maxz) ∈ {(30, 10), (30, 50), (30, 100), (30, 200), (30, 500), (30, 1000)}. Since we are not restricting the
maximum number of successors to be generated at each marking, the input values must be large enough to
reach a goal marking. For the DWS, the proposed initial td = 15 did not generate a feasible solution for
most of the instances.

Table 6 presents the results obtained by the three algorithms for the 15 instances. For each algorithm, we
show the input parameter value that returned the best solution taking into account the CPU time and compare
the relative percentage deviation (RPD) from the best solution (RPDC) and CPU time (RPDCPU ) between
the three algorithms. The A∗-BT algorithm provided the best solution-time quality trade-off considering
the little computation time used to obtain the first solutions. Unlike the other algorithms, the CPU time
is somewhat maintained across all instances without exceeding 12 s. In terms of solution quality, BAS is
superior using the average deviation, albeit with a higher runtime overhead. Also, BAS proved to be more
time-efficient than the others in 8 of the instances.

4.3. STE class
Like the TE class, the STE algorithms also define some input parameter settings with the exception of

DFBnB. In ACAS, three parameters are needed before exploration: the initial column width ω, the column
width increment α, and the maximum column width ωmax. ACAS is an adaptive search that focuses on
improving the current best solution obtained in a minimal time whenever possible. It increases ω by α if
the solution is not improved after a certain number of iterations. The width increment is stopped when ω
reaches ωmax to avoid unnecessary memory usage if the solution cannot be improved within the time frame.
Once the solution is improved, the column width ω is reset to its initial value. On the other hand, ALS does
not require an input parameter a priori. However, to return solutions in a good time frame for problems
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Table 7: Scheduling results of STE algorithms.

Instance

ACAS-TCPN ALS DFBnB

First
solution

Best solution
(CPU=3600)

First
solution

Best solution
(CPU=3600)

First
solution

Best solution
(CPU=3600)

Cf CPUf Cbest CPUbestRPDC Cf CPUf Cbest CPUbestRPDC Cf CPUf Cbest CPUbestRPDC

BGS1 999 0.09 975 88.4 0.0 999 0.09 975 94.8 0.0 992 0.03 975 3476.1 0.0
BGS2 863 0.13 783 54.2 0.0 863 0.13 783 93.7 0.0 843 0.03 787 309.8 0.5
BGS3 1051 0.14 978 13.8 0.0 1051 0.17 978 19.4 0.0 1038 0.03 978 1881.3 0.0
BGS4 1846 0.23 1794 704.7 0.0 1846 0.25 1794 752.2 0.0 1820 0.06 1810 17.6 0.9
BGS5 2938 0.31 2802 510.0 0.0 2938 0.31 2802 1220.4 0.0 2858 0.08 2858 0.1 2.0
BGM1 2947 0.34 2835 2513.8 0.0 2947 0.34 2835 778.3 0.0 2895 0.08 2895 0.1 2.1
BGM2 3485 1.67 3324 3036.2 0.3 3392 0.59 3316 3045.4 0.1 3332 0.11 3313 223.8 0.0
BGM3 4748 0.73 4127 2332.4 0.0 4217 0.53 4135 1891.4 0.2 4170 0.13 4166 0.2 0.9
BGM4 4901 0.61 4804 2291.0 0.0 4901 0.61 4809 1866.9 0.1 4854 0.14 4850 0.2 1.0
BGM5 5161 2.34 5114 1123.1 0.2 5199 1.09 5119 1302.3 0.3 5120 0.14 5106 235.7 0.0
BGM6 5226 4.77 5000 2345.7 0.2 5114 1.20 4997 67.6 0.2 4996 0.17 4988 4.5 0.0
BGL1 4713 5.32 4544 109.8 0.7 4597 1.30 4519 2240.0 0.2 4520 0.19 4512 4.9 0.0
BGL2 7570 8.60 7430 141.4 0.5 7497 10.76 7424 1851.6 0.5 7400 0.28 7390 55.6 0.0
BGL3 10420 24.01 10099 3572.5 0.2 10334 74.99 10148 399.5 0.7 10094 0.37 10082 57.0 0.0
BGL4 19043 30.67 18645 1989.7 1.2 18919 143.51 18506 1671.3 0.5 18430 0.58 18418 66.3 0.0

Av. RPD 0.23 0.17 0.49

Bold solution - Converged to optimal

with large branching factor (number of successors), it is advised to limit the number of markings expanded
at each level called the expansion width eω. We set ω = eω = 5, α = 5, and ωmax = 50 [6].

The three algorithms differ in two aspects. The first is the number of markings expanded at each level
in an iteration. ACAS and ALS is determined by ω and eω respectively, whereas DFBnB defaults to 1 for
all iterations in the search. The second is the way in which backtracking is performed. Backtracking is
chronological in ACAS, best-first in ALS, and depth-first in DFBnB.

Table 7 shows the scheduling results of the STE algorithms for the 15 instances. While the average
deviation across all instances grants the ALS as the best out of the three algorithms, the varying degrees of
solution quality per instance class must be taken into account. From this perspective and benchmarking the
performance as the problem size increases, the DFBnB worked better for larger instances. It outperformed
the others in the medium and large instances obtaining the best solutions at a much reduced computation
time in 7 out of 10 instances. Evidently, this makes it more practical than others. ACAS and ALSS only
performed better in the small instances. Another reason DFBnB is the best fit for this problem is that the
CPU time required to return the first solution is more or less stable (< 1 s) for all the instances, unlike
the other two that experienced a sharp increase in time for the last three large instances. Also, all the first
solutions obtained by DFBnB are clearly better.

STE algorithms are designed to produce feasible solutions quickly, and regularly improve the incumbent
best solution Cbest over time. They are able to guarantee optimality provided that the memory available and
time allocated are large enough to reach the optimal solution. The incumbent best solution may have been
obtained but cannot be considered optimal until all the markings with f(M) ≤ Cbest have been expanded.
As such, the time gap between when the incumbent best solution was returned and the convergence time
varies depending on the number of markings remaining to be explored. For instance, DFBnB obtained the
optimal solution for BGS3 at 1881.3 s but converged at 3213.9 s, while the gap is lower for ACAS and ALS
that converged at 1370.3 s and 1364.7 s respectively for BGS4. On the other hand, both ACAS and ALS
obtained the optimal solutions for BGS5 and BGM1 but did not converge within the CPU time limit.

4.4. Discussion
Each algorithm class has its strengths and weaknesses. The SE algorithms trade space for time. They

are the best option when sufficient time is given for producing an optimal schedule. But it seems quite
impractical for highly demanding and dynamic environments in which solutions must be returned in a short
computation time. On the other hand, the STE algorithms offer an extra advantage in terms of both solution
quality and time efficiency such that they can adapt to different memory and time constraints. One of the
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Figure 8: Relative percentage deviation of the first solution returned by the TE and STE classes.

weaknesses of the STE class is that an additional running time does not necessarily lead to a better solution
[73].

The SE class cannot be directly compared with TE (or vice-versa) because each stands at two ends of a
continuum. However, the STE class can be benchmarked against SE in terms of the percentage of optimality
lost (RPD from optimal solution) and the computation time reduction, and also against TE on solution
quality and computation time comparison of the first solution obtained.

The optimality lost is quite low for the best performing algorithm in the STE class, DFBnB. It ranges
between 0.3% and 2.1% for the non-converged solutions. The CPU time savings is about 99% for most of
the instances excluding the first three. Figure 8 shows the RPD of the first solution returned by the TE
and STE classes. The algorithm that produces the best first solution for each instance takes a zero RPD
value. Clearly, the STE class outperforms the TE’s with the exception of the small instances. The DFBnB
performed better in nearly all the instances with the A∗-BT signaled as the least performing.

For the TE and STE algorithms, it is quite difficult to predict when the first solution will be returned, as
it largely depends on the problem size. Although DFBnB achieved a stable CPU time for all the instances.
Notwithstanding, these results are not conclusive and cannot be used as a benchmark for all systems. The
performance of each algorithm may be different for another problem set. Each system has its own behavior,
and an empirical evaluation may be required to determine the best-performing algorithm. With these results,
it is pretty straightforward to draw a conclusion on which algorithm can be adapted to an off-line or on-line
scheduling when the system deviates from its original schedule or in the event of a failure or disturbance.

While the overall computation time depends on how each search algorithm explores the RG, it is worth
benchmarking the time consumed on each computational task in the search exploration. To identify the
main source of bottleneck in TIMSPAT, the distribution of the run time of four algorithms is given in Fig. 9.
Clearly, the simulator dominates a larger proportion of the run time irrespective of the search algorithm
employed. More time is spent on tasks like the enabling and firing of transitions for marking generation,
and the computation of heuristic functions. This means that the overall efficiency of the tool relies on the
simulator, which confirms that it is computationally expensive to simulate CPN models due to the difficulty
in manipulating colors. The search part (OPEN and CLOSED) only consumes about 3% of the total time.
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Figure 9: Run time proportion of computational tasks for the BGL1 instance.

5. Conclusion

In spite of the capability of RG to perform the automatic analysis of a modeled system, there is a lack
of tool that supports the performance evaluation of TCPNs through timed state space analysis via HS
methods. This motivated the development of TIMSPAT to deal with the shortcomings of existing tools.
Most tools implementing the RG focus on the model checking of untimed nets. Other shortcomings include
simulation limitations, timed state space generation with global clock synchronization, absence of efficient
search algorithms, and reliance on third-party software applications.

The proposed tool provides a platform for describing CPN models as well as simulating the behavior of
the system, and optimizing scheduling problems. One of the benefits presented by TIMSPAT is its ability
to implement different heuristic search methods using the same syntax library and data structures. As
a result, different scheduling scenarios can be benchmarked to allow for correct conclusions to be drawn.
The tool is expected to support flexible decision making process without being over reliant on a particular
solution algorithm. Several experiments have been performed on a real system with different algorithms,
highlighting both their strengths and weaknesses. For real time scheduling purposes, the simulator can be
easily integrated with the shop floor database to collect information on the current state of the system. It is
worth mentioning that the tool is not limited to the already implemented algorithms.

Plans are already underway to incorporate metaheuristics such as genetic algorithms, ant colony opti-
mization among others. Other future improvements to make the tool more robust for model development
and execution includes:
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• For a full-fledged simulator, data collection will be implemented in addition to appropriate selection of
enabled transitions via random, priority or fair.

• A simulation-optimization framework to deal with uncertainties.

• The modeling approach allows the definition of new objective functions that can deal with scheduling
policies oriented to lean manufacturing in which non-added-value operations would be minimized or
a rapid manufacturing in which the total completion time would be minimized. This presents an
opportunity to explore multiobjective optimization using the developed methodology.

References

[1] Aized, T. (2009). Modelling and performance maximization of an integrated automated guided vehicle system using coloured
Petri net and response surface methods. Computers & Industrial Engineering, 57(3), 822–831, doi:10.1016/j.cie.2009.02.009.

[2] Aized, T. (2010). Modelling and analysis of multiple cluster tools system with random failures using coloured Petri net. The
International Journal of Advanced Manufacturing Technology, 50(9-12), 897–906, doi:10.1007/s00170-010-2592-8.

[3] Amparore, E. (2014). A New GreatSPN GUI for GSPN Editing and CSLTA Model Checking. In G. Norman & W. Sanders
(Eds.), Quantitative Evaluation of Systems, volume 8657 of Lecture Notes in Computer Science (pp. 170–173). Springer
International Publishing.

[4] Baruwa, O. T. (2015). A Timed State Space-Heuristic Search Framework for Colored Petri Net-based Scheduling of Discrete
Event Systems – An Application to Flexible Manufacturing Systems. PhD thesis, Autonomous University of Barcelona,
Barcelona, Spain.

[5] Baruwa, O. T. (2016). TIMSPAT. http://grupsderecerca.uab.cat/timspat/. Accessed: 16-Mar-2016.
[6] Baruwa, O. T. & Piera, M. A. (2014). Anytime heuristic search for scheduling flexible manufacturing systems: a timed colored

Petri net approach. The International Journal of Advanced Manufacturing Technology, 75(1-4), 123–137, doi:10.1007/s00170-
014-6065-3.

[7] Baruwa, O. T. & Piera, M. A. (2015a). A coloured Petri net-based hybrid heuristic search approach to simultane-
ous scheduling of machines and automated guided vehicles. International Journal of Production Research, 0(0), 1–20,
doi:10.1080/00207543.2015.1087656.

[8] Baruwa, O. T. & Piera, M. A. (2015b). Identifying FMS repetitive patterns for efficient search-based scheduling algorithm:
A colored Petri net approach. Journal of Manufacturing Systems, 35(0), 120–135, doi:10.1016/j.jmsy.2014.11.009.

[9] Baruwa, O. T., Piera, M. A., & Guasch, A. (2015). Deadlock-Free Scheduling Method for Flexible Manufacturing Systems
Based on Timed Colored Petri Nets and Anytime Heuristic Search. Systems, Man, and Cybernetics: Systems, IEEE
Transactions on, 45(5), 831–846, doi:10.1109/TSMC.2014.2376471.

[10] Basak, O. & Albayrak, Y. E. (2015). Petri net based decision system modeling in real-time scheduling and control of
flexible automotive manufacturing systems. Computers & Industrial Engineering, 86, 116126, doi:10.1016/j.cie.2014.09.024.
Applications of Computational Intelligence and Fuzzy Logic to Manufacturing and Service Systems.

[11] Basile, F., Carbone, C., & Chiacchio, P. (2007). Simulation and analysis of discrete-event control systems based on Petri
nets using PNetLab. Control Engineering Practice, 15(2), 241–259.

[12] Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., & Romijn, J. (2001). Efficient Guiding Towards
Cost-Optimality in UPPAAL. In T. Margaria & W. Yi (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of Lecture Notes in Computer Science (pp. 174–188). Springer Berlin Heidelberg.

[13] Behrmann, G., Larsen, K. G., & Rasmussen, J. I. (2005). Optimal Scheduling Using Priced Timed Automata. SIGMETRICS
Perform. Eval. Rev., 32(4), 34–40, doi:10.1145/1059816.1059823.

[14] Bensalem, S., Havelund, K., & Orlandini, A. (2014). Verification and validation meet planning and scheduling. International
Journal on Software Tools for Technology Transfer, 16(1), 1–12, doi:10.1007/s10009-013-0294-x.

[15] Bodenstein, C. & Zimmermann, A. (2014). TimeNET Optimization Environment: Batch Simulation and Heuristic
Optimization of SCPNs with TimeNET 4.2. In Proceedings of the 8th International Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS ’14 (pp. 129–133). ICST, Brussels, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[16] Christensen, S., Kristensen, L. M., & Mailund, T. (2001). Condensed State Spaces for Timed Petri Nets. In J.-M. Colom
& M. Koutny (Eds.), Applications and Theory of Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science (pp.
101–120). Springer Berlin Heidelberg.

[17] Cimatti, A., Edelkamp, S., Fox, M., Magazzeni, D., & Plaku, E. (2015). Automated Planning and Model Checking.
Dagstuhl Reports, 4(11), 227–245.

[18] Davidrajuh, R. (2015). Benchmarking GPenSIM. In K. Elleithy & T. Sobh (Eds.), New Trends in Networking, Computing,
E-learning, Systems Sciences, and Engineering, volume 312 of Lecture Notes in Electrical Engineering (pp. 373–379). Springer
International Publishing.

[19] Davidrajuh, R. & Lin, B. (2011). Exploring airport traffic capability using Petri net based model. Expert Systems with
Applications, 38(9), 10923–10931.
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 We present a reachability graph-based search optimization tool for scheduling. 

 Motivated by the lack of tool support for optimization of TCPNs. 

 Implements an event-driven timed state space with AI heuristic search algorithms. 

 Aimed at supporting flexible decision making process with algorithm portfolio. 

 Comparative study of nine search algorithms on real system demonstrates tool efficiency. 
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