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Abstract

We define a subdivision network ΓS of a given network Γ, by inserting a new vertex in every
edge, so that each edge is replaced by two new edges with conductances that fulfill electrical
conditions on the new network. In this work, we firstly obtain an expression for the Green kernel
of the subdivision network in terms of the Green kernel of the base network. Moreover, we also
obtain the effective resistance and the Kirchhoff index of the subdivision network in terms of
the corresponding parameters on the base network. Finally, as an example, we carry out the
computations in the case of a wheel.
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1 Introduction

Many recent papers are devoted to the study of different parameters of the subdivision graphs. For
instance, Chen in [9], obtained a formula for the effective resistances of the subdivision graph in terms
of the effective resistances of the original graph by using some nice sum rules. The Kirchhoff index
of the subdivision graph is considered in different works under several hypothesis such as regular
graphs in [12], general graphs in [16], or operations between graphs that involve the subdivision
concept as well, see [6, 14] for instance.

In [18], the author extended the results in [6] and computed the Kirchhoff index of subdivision
graph in terms of the Kirchhoff index, the multiplicative degree–Kirchhoff index, the additive degree–
Kirchhoff index, the number of vertices, and the number of edges of Γ. Simultaneously, Sun et alt.
gave the formulae for the Kirchhoff index in terms of a {1}–inverse of the combinatorial Laplacian,
see [16]. The case of some composite graphs is treated in [14], in particular the edge–corona and
deletion of former edges graph (which is a way to achieve the subdivision graph).

In[3, 4] the authors introduced a generalization of the Kirchhoff index of a finite network that
consists in defining the generalitzation of the effective resistance between any pair of vertices with
respect to a value λ ≥ 0 and a vertex weight ω on the vertex set and this concept has been used to
the study of composite networks, [1, 5].

The Kirchhoff Index is defined as the sum of all effective resistances between any pair of
vertices of a network and it is also known as the total effective resistance, see [13]. It measures
how well connected a network is. It was introduced in Chemistry as a better alternative to other
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parameters used for discriminating among different molecules with similar shapes and structures,
see [15]. It also arises in other fields as, for instance electrical networks where is in connection with
power dissipation and in a Markov chain scenario, where it describes the average hitting time, see
[13] and references therein.

The most important property of the effective resistance between vertices, [15], is that it defines
a distance function between vertices in a graph. It is a valuable tool in the analysis of network
problems. The resistance distance has been extensively studied not only in mathematical papers
but also in physical and chemical, see [19].

In the present paper, we introduce the subdivision of a network. Our approach consists in
interpreting a network as an electric circuit, and hence each edge has got assigned a positive number
that corresponds with the conductance of a wire connecting two nodes, its inverse is the resistance.
When we perform the subdivision operation we interpret that we introduce a rheostat in every edge,
that is a device that may change the resistance without opening the circuit in which it is connected.
Thus, we decompose each edge in two new edges taking into account electrical compatibility of
the circuit, specifically, the series sum rule for resistances. As a consequence, we would get that
after the subdivision process, the effective resistance between any pair of old vertices should remain
unchanged.

Our methodology comes from discrete Potential theory and hence, we express all the pa-
rameters in terms of the Green kernel of the network. That can be seen in matrix terms, as the
computation of the Group inverse of the combinatorial Laplacian of a subdivision network in terms
of the Group inverse of the combinatorial Laplacian of the base network.

In Section 2 we first obtain a solution of the Poisson problem in the subdivision network in
terms of the solution of an appropriate Poisson problem on the base network and hence we compute
the Green kernel of the subdivision network. Next, we give an expression for the effective resistance
between any pair of vertices of the subdivision network and its corresponding Kirchhoff index. For
all the results we compare ours with the previously known for the case of graphs, and in particular
for k–regular graphs.

The last section contains the expressions for the Green kernel, the effective resistance and the
Kirchhoff index of the subdivision network of a wheel as an illustration of the obtained results.

We end the present section by introducing the basic notation and results.
In the whole work, a network is the triplet Γ = (V,E, c) where (V,E) stands for a finite and

connected graph, without loops nor multiple edges; and c : V × V −→ [0,+∞) is a symmetric
function called conductance satisfying c(x, y) > 0 iff x ∼ y which means that {x, y} ∈ E. Let n be
the number of nodes and m the number of edges.

On the other hand, C(V ) is the set of real functions on V . For any vertex x ∈ V, εx ∈ C(V ) is
the Dirac function at x and k ∈ C(V ) defined as k(x) =

∑
y∈V

c(x, y), is the degree of x. The standard

inner product in C(V ) is denoted by 〈·, ·〉; that is, if u, v ∈ C(V ) then, 〈u, v〉 =
∑
x∈V

u(x)v(x).

The Laplacian of Γ is the linear operator L : C(V ) −→ C(V ) defined, for each u ∈ C(V ) and
x ∈ V as

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
.

The Laplacian of Γ is a self–adjoint and positive semi–definite operator. Moreover, L(u) = 0 iff u is
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constant and hence, ker(L) = span(1), where 1 ∈ C(V ) is the function that assigns 1 to any vertex.
Therefore, L defines an isomorphism on ker(L)⊥.

A Poisson problem consists in, given f ∈ C(V ), finding u ∈ C(V ) such that

L(u) = f on V. (1)

From the above properties, the Poisson equation has solution iff 〈f, 1〉 = 0, and there is a unique
solution of (1) satisfying 〈u, 1〉 = 0.

The operator that assigns to every function f ∈ C(V ) the unique solution of L(u) = f−〈f, 1〉1,
such that 〈u, 1〉 = 0, is called the Green operator and it is denoted by G. The operator G is self–
adjoint and positive semi–definite. Then the symmetric function G, defined as G(x, y) = G(εy)(x)

for every pair x, y ∈ V, is called the Green kernel on V. Moreover, G(f)(x) =
∑

x,y∈V
G(x, y) f(y) and

〈G(f), f〉 = 0 iff f = a1, a ∈ R.
The relation between an integral operator and its associated kernel enables us to characterize

the Green kernel for Γ as solutions of suitable boundary value problems. For all y ∈ V , the function
Gy = G(·, y) is characterized by equations

L(Gy) = εy −
1

n
1 and 〈Gy, 1〉 = 0. (2)

See [8] and references therein for more details. Notice that, if we label the vertices of Γ, both the
Laplacian and the Green operator can be interpreted as matrices and hence, the Green kernel can
be identified as the Group Inverse of the combinatorial Laplacian.

The effective resistance between vertices x and y is defined as R(x, y) = u(x) − u(y), where
u ∈ C(V ) is any solution of the Poisson problem L(u) = εx − εy. The effective resistance can be
interpreted as the voltage measured in the nodes x and y when a unitary current is applied between
them. Actually, R defines a distance on Γ, usually referred as resistive distance, see [2, 15], and
gives a measure of how much two different nodes of a network are connected. Thus, the more well
connected are vertices x and y, the less is R(x, y). Moreover, for any x, y ∈ V the following relation
holds

R(x, y) = G(x, x) +G(y, y)− 2G(x, y). (3)

The Kirchhoff Index k of a network Γ, also called its total resistance, is defined as

k =
1

2

∑
x,y∈V

R(x, y) = n
∑
x∈V

G(x, x) (4)

and gives a measure of the global connectivity of the network. The Kirchhoff index is a descriptor
of the structure of the network and exhibits many interesting interpretations, see [13, 17].

2 The Poisson Problem on a Subdivision Network

A subdivision network ΓS = (V S , ES , cS) of a given network Γ = (V,E, c), is obtained by inserting
a new vertex in every edge, so that each edge {x, y} ∈ E is replaced by two new edges, say {x, vxy}
and {y, vxy} where vxy is the new inserted vertex. We denote by V ′ the new vertex set assuming
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that, vxy = vyx. Thus, V S = V ∪ V ′, the order of the subdivision network is n + m, whereas the
size is 2m. Moreover, according to the well–known rule that express the equivalent resistance of
two resistors connected in series, we define the conductance function cS : V S × V S −→ [0,+∞) by
choosing, for every pair of adjacent vertices, non–null values cS(x, vxy) and cS(y, vxy) such that

1

c(x, y)
=

1

cS(x, vxy)
+

1

cS(y, vxy)
. (5)

The definition of cS cannot be misunderstood as all the edges in ES have both kind of vertices, one
in V and the other in V ′. Hence, by the sake of simplicity, it will be denoted as c. Moreover for each
edge, there exist infinitely many different choices of conductances fulfilling (5), so that different
choices will lead to different subdivision networks.

Up to our knowledge, the only case that has been studied in the literature, ([9, 12, 16, 18]), is
c(x, y) = c(x, vxy) = c(y, vxy) = 1, that not fulfills the electrical compatibility condition (5). In the
present work, and in order to compare with the known results, we will consider as a particular case
c(x, y) = 1 and c(x, vxy) = c(y, vxy) = 2 and we call it standard subdivision graph.

Observe that ΓS is also a connected, finite, with no loops, nor multiple edges network.
If LS denotes the combinatorial Laplacian of ΓS , then for any u ∈ C(V S) we have that

LS(u)(x) =
∑
y∈V

c(x, vxy) (u(x)− u(vxy)) , for any x ∈ V ;

LS(u)(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) , for any vxy ∈ V ′.

The aim of this section is to obtain a solution of the Poisson problem in ΓS in terms of the
solution of an appropriate Poisson problem on Γ.

It is helpful for the sequel to define, for each pair x, y ∈ V with x ∼ y, the coefficient

α(x, y) =
c(x, vxy)

c(x, vxy) + c(y, vxy)
=
c(x, vxy)

k(vxy)
,

where k(vxy) = c(x, vxy) + c(y, vxy), is the degree of vxy in ΓS . Notice that α(y, x) = 1 − α(x, y).
Moreover, α(x, y) is nothing else but the transition probability from vxy to x of the reversible Markov
chain associated with ΓS . In additon, if x 6∼ y we define α(x, y) = α(y, x) = 0. Notice that, for any
x, y is α(x, y) = α(y, x) iff c(x, vxy) = c(y, vxy) = 2c(x, y).

We also define, for each h ∈ C(V S) and u ∈ C(V ), the contraction of h to V, h ∈ C(V ), as

h(x) = h(x) +
∑
y∼x

α(x, y)h(vxy), x ∈ V, (6)

and, the extension of u to V S with respect to h, uh ∈ C(V S), as

uh(x) = u(x), for all x ∈ V ;

uh(vxy) =
h(vxy)

k(vxy)
+ α(x, y)u(x) + α(y, x)u(y), for all vxy ∈ V ′.

(7)

Notice that the extension of u to V S with respect to h, has been defined in order to satisfy
LS(uh)(vxy) = h(vxy).
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Theorem 2.1. Given h ∈ C(V S) such that 〈h, 1V S 〉 = 0, then 〈h, 1V 〉 = 0. Moreover, u ∈ C(V S) is
a solution of the Poisson equation LS(u) = h in V S iff u = u|V is a solution of the Poisson equation
L(u) = h in V. In this case, the identity u = uh holds.

Proof. Firstly we note that 〈h, 1V 〉 = 〈h, 1V S 〉 as∑
x∈V

h(x) =
∑
x∈V

h(x) +
∑
x∈V

∑
y∼x

α(x, y)h(vxy) =
∑
x∈V

h(x) +
∑

vxy∈V ′

h(vxy).

So the first statement holds.
Given h ∈ C(V S) such that 〈h, 1V S 〉 = 0 and u a solution of the Poisson equation LS(u) = h

in V S , then

h(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) , for any vxy ∈ V ′;

h(x) =
∑
y∼x

c(x, vxy) (u(x)− u(vxy)) , for any x ∈ V.

The first identity implies u(vxy) = uh(vxy), assuming u = u|V . Then, substituting the expression of
u(vxy) in the second one, we obtain that

LS(u)(x) =
∑
y∼x

c(x, vxy)

(
u(x)− h(vxy)

k(vxy)
− α(x, y)u(x)− α(y, x)u(y)

)
=
∑
y∼x

c(x, vxy)α(y, x) (u(x)− u(y))−
∑
y∼x

c(x, vxy)

k(vxy)
h(vxy)

=
∑
y∼x

c(x, y) (u(x)− u(y))−
∑
y∼x

α(x, y)h(vxy)

= L(u)(x)− h(x) + h(x),

for every x ∈ V.
Therefore, LS(u) = h in V S iff L(u) = h in V.
Next result shows how to obtain the unique solution of a Poisson problem on the subdivision

network ΓS orthogonal to 1V S .

Corollary 2.2. Given h ∈ C(V S), such that 〈h, 1V S 〉 = 0, let h ∈ C(V ) be its contraction to V,
u ∈ C(V ) be the unique solution of L(u) = h that satisfies 〈u, 1V 〉 = 0 and the constant

λ = − 1

(n+m)

∑
x∼y

h(vxy)

k(vxy)
− 1

(n+m)

∑
x∼y

[α(x, y)u(x) + α(y, x)u(y)].

Then, u⊥ = uh + λ is the unique solution of LS(u⊥) = h that satisfies 〈u⊥, 1V S 〉 = 0.

Proof. As two solutions differ on a constant, we have that u⊥ = uh + γ1V S , γ ∈ R. Then,

0 = 〈u⊥, 1V S 〉 = 〈uh, 1V S 〉+ (n+m)γ =
∑
x∈V

u(x) +
∑
x∼y

uh(vxy) + (n+m)γ

=
∑
x∼y

h(vxy)

k(vxy)
+
∑
x∼y

(α(x, y)u(x) + α(y, x)u(y)) + (n+m)γ,

because 〈u, 1V 〉 = 0, and the result follows taking γ = λ.
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3 The Green kernel of a subdivision network

Taking into account the relation between Poisson problems on ΓS and Γ, we obtain the expression
of the Green kernel of a subdivision network, GS , in terms of Green’s kernel of the base network.
From now on we consider the function on C(V ), πS(x) =

∑
y∼x

α(x, y) and the constant

β =
1

(n+m)2

∑
x,y∈V

G(x, y)πS(x)πS(y) +
1

(n+m)2

∑
x∼y

1

k(vxy)
.

Proposition 3.1. Let ΓS be the subdivison network of Γ, then for any x, z ∈ V and vxy, vzt ∈ V ′,
the Green kernel of ΓS is given by

GS(x, z) = G(x, z)− 1

n+m

∑
`∈V

[
G(x, `) +G(z, `)

]
πS(`) + β,

GS(vxy, z) = α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `) +G(z, `)

]
πS(`)− 1

(n+m)k(vxy)
+ β,

GS(vxy, vzt) = α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `) + α(z, t)G(z, `) + α(t, z)G(t, `)

]
πS(`)

+
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)
− 1

(n+m)k(vzt)
+ β.

Proof. Suppose z ∈ V, and let hz = εz −
1

n+m
. Then, for every x ∈ V

hz(x) = εz(x)− 1

n+m
− 1

n+m

∑
y∼x

α(x, y) = εz(x)− 1

n+m
(1 + πS(x)).

Hence, from Equation (2), the Poisson problem to solve is L(uz) = hz, and, using the Green kernel
for Γ, we obtain

uz(x) = G(εz)(x)− 1

n+m

∑
`∈V

G(x, `)πS(`) = G(x, z)− 1

n+m

∑
`∈V

G(x, `)πS(`).
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Then, from Corollary 2.2

GS
z (x) = uhz

z (x)− 1

(n+m)

∑
r∼s

hz(vrs)

k(vrs)
− 1

(n+m)

∑
r∼s

[α(r, s)uz(r) + α(s, r)uz(s)]

= G(x, z)− 1

n+m

∑
`∈V

G(x, `)πS(`) +
1

(n+m)2

∑
r∼s

1

k(vrs)

− 1

(n+m)

∑
r∼s

α(r, s)

[
G(r, z)− 1

n+m

∑
`∈V

G(r, `)πS(`)

]

− 1

(n+m)

∑
r∼s

α(s, r)

[
G(s, z)− 1

n+m

∑
`∈V

G(s, `)πS(`)

]

= G(x, z)− 1

n+m

∑
`∈V

[
G(x, `) +G(z, `)

]
πS(`) +

1

(n+m)2

∑
r,s

G(s, r)πS(r)πS(s)

+
1

(n+m)2
∑
r∼s

1

k(vrs)
.

Now, if z ∈ V for every vxy ∈ V ′

GS
z (vxy) =

hz(vxy)

k(vxy)
+ α(x, y)uz(x) + α(y, x)uz(y)

− 1

(n+m)

∑
r∼s

hz(vrs)

k(vrs)
− 1

(n+m)

∑
r∼s

[α(r, s)uz(r) + α(s, r)uz(s)]

= − 1

(n+m)k(vxy)
+ α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

+
1

(n+m)2

∑
r∼s

1

k(vrs)
− 1

(n+m)

∑
r∼s

α(r, s)

[
G(r, z)− 1

n+m

∑
`∈V

G(r, `)πS(`)

]

− 1

(n+m)

∑
r∼s

α(s, r)

[
G(s, z)− 1

n+m

∑
`∈V

G(s, `)πS(`)

]

= − 1

(n+m)k(vxy)
+ α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `) +G(z, `)

]
πS(`)

+
1

(n+m)2

∑
r∼s

1

k(vrs)
+

1

(n+m)2

∑
r,s

G(s, r)πS(r)πS(s).
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Suppose now vzt ∈ V, and let hvzt = εvzt −
1

n+m
. Then, for every x ∈ V

hvzt(x) = εvzt(x)− 1

n+m
+
∑
y∈V

α(x, y)

(
εvzt(vxy)− 1

n+m

)
= − 1

n+m
(1 + πS(x)) + α(z, t)εz(x) + α(t, z)εt(x).

Hence, the Poisson problem to solve is L(uvzt) = hvzt , and, using Green’s kernel for Γ, we obtain

uvzt(x) = − 1

n+m

∑
`∈V

G(x, `)πS(`) + α(z, t)G(x, z) + α(t, z)G(x, t).

Then, from Corollary 2.2

GS
vzt(vxy) =

hvzt(vxy)

k(vxy)
+ α(x, y)uvzt(x) + α(y, x)uvzt(y)

− 1

(n+m)

∑
r∼s

hvzt(vrs)

k(vrs)
− 1

(n+m)

∑
r∼s

[α(r, s)uvzt(r) + α(s, r)uvzt(s)]

=
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)

− 1

n+m

∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

+ α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

(n+m)k(vzt)
+

1

(n+m)2

∑
r∼s

1

k(vrs)

− 1

n+m

∑
`∈V

(
α(z, t)G(z, `) + α(t, z)G(t, `)

)
πS(`)

+
1

(n+m)2

∑
r,s∈V

G(r, s)πS(r)πS(s)

= α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

n+m

∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `) + α(z, t)G(z, `) + α(t, z)G(t, `)

)
πS(`)

+
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)
− 1

(n+m)k(vzt)
+

1

(n+m)2

∑
r∼s

1

k(vrs)

+
1

(n+m)2

∑
r,s∈V

G(r, s)πS(r)πS(s).

In particular, if Γ is a k–regular graph and we consider the standard subdivision graph; that
is c(x, vxy) = c(y, vxy) = 2, we get the following result.
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Corollary 3.2. Let ΓS be the standard subdivision graph of a k–regular graph, Γ; then for any
x, z ∈ V and vxy, vzt ∈ V ′, the Green kernel of ΓS is given by

GS(x, z) = G(x, z) +
k

2n(2 + k)2
,

GS(vxy, z) =
1

2

(
G(x, z) +G(y, z)

)
− 1

n(2 + k)2
,

GS(vxy, vzt) =
1

4

(
G(x, z) +G(y, z) +G(x, t) +G(y, t) + εvzt(vxy)

)
− (4 + k)

2n(2 + k)2
.

4 Effective Resistances and Kirchhoff Index on subdivision net-
works

We are now concerned with the relation between effective resistances in a base network Γ and the
effective resistances, RS , in a subdivision network ΓS .

Theorem 4.1. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its subdivision network, then

RS(x, y) = R(x, y),

RS(x, vzt) =
1

k(vzt)
+ α(z, t)R(x, z) + α(t, z)R(x, t)− α(z, t)α(t, z)R(z, t),

RS(vxy, vzt) =
1

k(vxy)
+

1

k(vzt)

− α(x, y)α(y, x)R(x, y)− α(z, t)α(t, z)R(z, t)

+ α(x, y)α(z, t)R(x, z) + α(x, y)α(t, z)R(x, t)

+ α(z, t)α(y, x)R(y, z) + α(y, x)α(t, z)R(y, t), for any vxy 6= vzt.

Proof. The proof is a direct consequence of Proposition 3.1 and Identity (3). Let us do the non–
trivial case 2. The case 3, can be proved similarly.
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RS(x, vzt) = GS(x, x) +GS(vzt, vzt)− 2GS(x, vzt)

= G(x, x)− 2

n+m

∑
`∈V

G(x, `)πS(`)

+ α(z, t)
(
α(z, t)G(z, z) + α(t, z)G(t, z)

)
+ α(t, z)

(
α(z, t)G(z, t) + α(t, z)G(t, t)

)
− 2

n+m

∑
`∈V

[
α(z, t)G(z, `) + α(t, z)G(t, `)

]
πS(`) +

εvzt(vzt)

k(vzt)
− 2

(n+m)k(vzt)

− 2α(z, t)G(z, x)− 2α(t, z)G(t, x)

+
2

n+m

∑
`∈V

[
α(z, t)G(z, `) + α(t, z)G(t, `) +G(x, `)

]
πS(`) +

2

(n+m)k(vzt)

=
1

k(vzt)
+G(x, x)− 2α(z, t)G(z, x)− 2α(t, z)G(t, x)

+ α(z, t)
(
α(z, t)G(z, z) + α(t, z)G(t, z)

)
+ α(t, z)

(
α(z, t)G(z, t) + α(t, z)G(t, t)

)
=

1

k(vzt)
+ α(z, t)

[
G(x, x) +G(z, z)− 2G(x, z)

]
+ α(t, z)

[
G(x, x) +G(t, t)− 2G(x, t)

]
− α(t, z)α(z, t)

[
G(z, z) +G(t, t)− 2G(z, t)

]
,

and hence, the result follows.
Observe that the effective resistance between vertices of the original network remains un-

changed, as expected. In particular for the standard subdivision graph we get the following re-
sult, which coincides with the obtained in [10, 16, 18], up to the factor 2 due to our (electrically
compatible)–choice of the conductances.

Corollary 4.2. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its standard subdivision
network, then

RS(x, y) = R(x, y)

RS(x, vzt) =
1 + 2R(x, z) + 2R(x, t)−R(z, t)

4

RS(vxy, vzt) =
2−R(x, y)−R(z, t) +R(x, z) +R(x, t) +R(y, z) +R(y, t)

4
, for any vxy 6= vzt.

Next we obtain an expression for the Kirchhoff index of the subdivision network, kS , in terms
of the Kirchhoff index, k, of the base network and other parameters.

Theorem 4.3. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its subdivision network, then

kS =
n+m

n
k + (n+m)

∑
x∈V

G(x, x)πS(x)−
∑

x,y∈V
G(x, y)πS(x)πS(y)

− (n+m)
∑
x∼y

α(x, y)α(y, x)R(x, y) + (n+m− 1)
∑
x∼y

1

k(vxy)
.
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Proof.

kS = (n+m)
∑
x∈V

GS(x, x) + (n+m)
∑

vxy∈V ′

GS(vxy, vxy)

=
(n+m)

n
k− 2

∑
x∈V

∑
`∈V

G(x, `)πS(`)

+ (n+m)
∑

vxy∈V ′

(
α(x, y)2G(x, x) + 2α(x, y)α(y, x)G(y, x) + α(y, x)2G(y, y)

)
− 2

∑
vxy∈V ′

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

+
∑

x,y∈V
G(x, y)πS(x)πS(y) + (n+m− 1)

∑
x∼y

1

k(vxy)

=
n+m

n
k + (n+m)

∑
x,y∈V

(
α(x, y)2G(x, x) + α(x, y)α(y, x)G(y, x)

)
−

∑
x,y∈V

G(x, y)πS(x)πS(y) + (n+m− 1)
∑
x∼y

1

k(vxy)

=
n+m

n
k + (n+m)

∑
x∈V

G(x, x)πS(x)− (n+m)
∑
x∼y

α(x, y)α(y, x)R(y, x)

−
∑

x,y∈V
G(x, y)πS(x)πS(y) + (n+m− 1)

∑
x∼y

1

k(vxy)
.

In particular, the Kirchhoff index of the standard subdivision graph has the following expres-
sion which, coincides with [16, Th 3.1]. In the case of k–regular graph the result coincides with [12,
Th 3.5].

Corollary 4.4. Let ΓS be the standard subdivision network of a graph, Γ; then

kS =
n+m

n
k + (n+m)

∑
x∈V

G(x, x)πS(x)−
∑

x,y∈V
G(x, y)πS(x)πS(y) +

m2 − n2 + n

4
.

In particular, if Γ is k–regular

kS =
(k + 2)2

4
k +

(k2 − 4)n2 + 4n

16
.

5 Subdivision network of a wheel

In order to illustrate the above results, we consider the wheel network with constant conductances
and a subdivision of it. Let Wn be the wheel network with vertex set V = {x0, x1, . . . , xn}, where
x0 has degree n, and conductances c(x0, xi) = a > 0 for any i = 1, . . . , n, c = c(xi, xi+1) if
i = 1, . . . , n− 1 and c = c(xn, x1), as can be seen in Figure 1. For the sake of simplicity we consider
that xn+1 = x1.
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x1

x2

x0

xn

z1

z2

zn

y1

y2

yn

2a

2a

2c

2c

Figure 1: Subdivision network of a wheel of n+ 1 vertices

It is known, see for instance [8], that the Green function of Wn is

G(x0, x0) =
n

a(n+ 1)2
,

G(x0, xi) =
−1

a(n+ 1)2
, i = 1, . . . , n,

G(xi, xj) = − n+ 2

a(n+ 1)2
+
Un−1−|i−j|(p) + U|i−j|−1(p)

2c
(
Tn(p)− 1

) , i, j = 1, . . . , n,

where p = 1 + a
2c and U`(x), T`(x) are the Chebyshev polynomials of 1st and 2nd order defined by

the recurrence Pm(x) = 2xPm−1(x) − Pm−2(x) m ≥ 0 provided that U0(x) = 1, U1(x) = x and
T−2(x) = −1, T−1(x) = 0, respectively.

Let us now define the standard subdivision of the wheel network. The new vertices are yi =
vx0xi and zi = vxixi+1 if i = 1, . . . , n. The conductances for the new edges are 2a = c(x0, yi) and
2c = c(xi, zi) for i = 1, . . . , n. Whereas, the conductance of the remaining edges follows taking into
account relation (5).

Observe that k(yi) = 4a and k(zi) = 4c for i = 1, . . . , n. Moreover, α(x, y) = 1
2 , for every pair

of adjacent vertices and πS(x0) = n
2 and πS(xi) = 3

2 , i = 1, . . . , n. Then, the expression of the Green
kernel for the subdivision network is given next.

Proposition 5.1. Let ΓS be the subdivision network of Γ, and for any i, j = 1, . . . , n consider

gij(p) =
Un−1−|i−j|(p) + U|i−j|−1(p)

2c
(
Tn(p)− 1

) .

Then, the Green kernel for ΓS is given by

GS(x0, x0) =
n(a+ 26c)

4ac(3n+ 1)2
, GS(x0, xi) =

1

4ac(3n+ 1)

(
n(a+ 26c)

3n+ 1
− 10c

)
,

GS(x0, yi) =
1

4ac(3n+ 1)

(n(a+ 26c)

3n+ 1
− 6c

)
, GS(x0, zi) =

1

4ac(3n+ 1)

(n(a+ 26c)

3n+ 1
− (a+ 10c)

)
,
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GS(xi, xj) = gij(p) +
n(a− 34c)− 20c

4ac(3n+ 1)2
,

GS(xi, yj) =
1

2
gij(p) +

n(a− 34c)− 20c

4ac(3n+ 1)2
+

1

a(3n+ 1)
,

GS(xi, zj) =
1

2

(
gij(p) + gi j+1(p)

)
+
n(a− 34c)− 20c

4ac(3n+ 1)2
− 1

4c(3n+ 1)
,

GS(yi, yj) =
1

4
gij(p) +

εyi(yj)

4a
+
n(a− 34c)− 20c

4ac(3n+ 1)2
+

2

a(3n+ 1)
,

GS(yi, zj) =
1

4

(
gij(p) + gi j+1(p)

)
+
n(a− 34c)− 20c

4ac(3n+ 1)2
− a− 4c

4ac(3n+ 1)
,

GS(zi, zj) =
p+ 1

2
gij(p) +

n(a− 34c)− 20c

4ac(3n+ 1)2
− 1

2c(3n+ 1)
+
εzi(zj)

4c
.

Proof. The expressions given in the proposition follow from the expression for the Green kernel
obtained in Proposition 3.1. We compute one of the cases in order to illustrate the methodology.

Firstly, we compute the constant

β =
1

(n+m)2

∑
s,r∈V

G(s, r)πS(r)πS(s) +
1

(n+m)2

∑
r∼s

1

k(vrs)
=

n

4a(3n+ 1)2

[(
n− 3

n+ 1

)2

+
a

c
+ 1

]
,

where we have taken into account that
∑
r∈V

G(s, r) = 0 and hence

∑
r∈V

G(s, r)πS(r) =
n− 3

2
G(s, x0).

Consider zi = vxixi+1 and zj = vxjxj+1 , then
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GS(zi, zj) =
1

4

(
G(xi, xj) +G(xi+1, xj) +G(xi, xj+1) +G(xi+1, xj+1)

)
− 1

2(3n+ 1)

n∑
`=0

[
G(xj , x`) +G(xj+1, x`) +G(xj , x`) +G(xj+1, x`)

]
πS(x`)

+
εzj (zi)

k(zi)
− 1

(3n+ 1)k(zi)
− 1

(3n+ 1)k(zj)
+ β

= − n+ 2

a(n+ 1)2
+

2U|i−j|−1(p) + U|i+1−j|−1(p) + U|i−j−1|−1(p)

8c
(
Tn(p)− 1

)
+

2Un−1−|i−j|(p) + Un−1−|i+1−j|(p) + Un−1−|i−j−1|(p)

8c
(
Tn(p)− 1

)
+

n− 3

(3n+ 1)(n+ 1)2
+
εzj (zi)

4c
− 2

(3n+ 1)4c
+ β

=
(a+ 4c)

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
8c2
(
Tn(p)− 1

) − n(5a+ 34c) + 2a+ 20c

4ac(3n+ 1)2
+
εzi(zj)

4c
.

To end up the section we compute the Kirchhoff index of the standard subdivision graph
associated with the wheel Wn.

Corollary 5.2. The Kirchhoff index of the standard subdivision network of Wn is

kS =
3n2(a+ c)− 25cn

4ac
+
n(3n+ 1)

(
7Un−1(p) + 2Un−2(p) + 2

)
8c
(
Tn(p)− 1

) .
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