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Abstract 

Nanocontact loadings offer the potential to investigate crystal plasticity from surface slip 
trace emissions and distinct pileup patterns where individual atomic terraces arrange into 
hillocks and symmetric rosettes. Our MD simulations in FCC Cu and Al nanocontacts 
show development of specific dislocation interception, cross-slip and twin annihilation 
mechanisms producing traces along characteristic <011> and <112> directions. Although 
planar slip is stabilized through subsurface dislocation interactions, highly serrated slip 
traces always predominate in Al due to the advent of cross-slip of the surfaced population 
of screw dislocations, leading to intricate hillock morphologies. We show that the distinct 
wavy hillocks and terraces in BCC Ta and Fe nanocontacts are due to dislocation kinking 
and outward spreading of surfaced screw segments, which originate from dislocation 
loops induced by twin annihilation and twin-mediated nucleation processes in the 
subsurface. While increasing temperature favors terrace formation in BCCs, surface 
decorations are enhanced in FCCs limiting hillock definition. It is found that material 
bulging against the indenter-tip is a distinctive feature in nanocontact plasticity associated 
with intermittent defect bursts. Bulging is enhanced by recurrent slip traces introduced 
throughout the contact surface, as in the case of the strongly linear defect networks in 
FCC Al, and by specific twin arrangements at the vicinity of BCC nanocontacts. Defect 
patterning also produces surface depressions in the form of vertexes around FCC 
nanoimprints. While the rosette morphologies are consistent with those assessed 
experimentally in greater FCC and BCC imprints, topographical pileup due to extensive 
bulging becomes prominent at the nanoscale.  
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1. Introduction 

Surface slip trace emission is a fundamental manifestation from crystal plasticity. Slip 

trace emergence is concomitant to indentation testing, where plastic patterning leads to 

material pileup in the form of atomic terraces clustering into hillocks and symmetric 

rosette arrangements. Onset of different hillock topographies has been systematically 

reported in face-centered cubic (FCC) and body-centered cubic (BCC) metallic surfaces 

(e.g., [1-9]) as well as in ceramic surfaces (e.g., [10-12]).  

Understanding of plastic patterning is imposing because of its essential multiscale 

character, where dislocation slip and twinning come into play to produce entangled defect 

networks underneath the imprint [13] from which the pileup topographies originate. 

Patterning is intrinsically size-dependent, involving preexisting networks in large 

imprints or incepted networks under extreme pressures in minute nanoimprints. Onset of 

size-dependent deformation mechanisms, as twinning in FCC nanocrystals ([14,15]), may 

tentatively influence nanoscale patterning. Following onset of planar vs. wavy hillock 

morphologies and the development of different rosette symmetries in FCCs and BCCs 

[5,6,8], patterning arises as a crystalline-dependent phenomenon that is potentially 

affected by temperature, applied contact pressure and specific defect annihilation 

mechanisms at the surface [16,17].  

The objective of this work is to investigate slip trace patterning through comprehensive 

Molecular Dynamics (MD) simulations of nanocontact plasticity across a wide 

temperature range in different surface orientations. It is our purpose to furnish a 

fundamental understanding into the role of FCC vs. BCC plasticity mechanisms upon the 

development of different hillock morphologies and rosette symmetries. In particular, we 

seek to study how patterning is affected by (i) competition between twinning and 

dislocation slip, (ii) the stacking-fault energy that rules dislocation cross-slip in FCCs, 

and (iii) dislocation kinking in BCCs.  
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While the majority of investigations on nanocontact-induced plasticity concern analyses 

of the applied load-penetration depth (𝑃 − ℎs) curves in connection with defect network 

inceptions, little is known about defect patterning processes leading to material pileup 

(plastic bulging) at the nanocontact periphery. Since plastic bulging is a fingerprint of the 

mechanical response fundamentally contributing to imprint formation [18-20], it is our 

objective to investigate the associated micromechanisms in FCC and BCC surfaces. We 

also seek to quantify plastic bulging in nanoimprints and to compare the results against 

those from greater imprint sizes.  

2. Computational methods 

The MD simulations were carried-out with the LAMMPS code under the Canonical 

(NVT) statistical ensemble using the Nosé-Hoover thermostat with timestep ranging from 

1 to 3 fs. The indented crystals were modelled through the embedded-atom method 

(EAM) potentials by Mishin et al. for Cu and Al [21], and the EAM potentials constructed 

by Li et al. for Ta [22] and Mendelev et al. for Fe [23]. Such EAM potentials have been 

extensively used in previous investigations of nanocontact plasticity [24-31].  

The indenter was modelled with a repulsive potential reproducing the displacement field 

of a spherical tip against a flat surface. The force applied to each surface atom is [32] 

𝐹 = −𝐾(𝐷/2 − 𝛿)2,                                                          (1) 

where 𝐾 is the indenter stiffness, 𝐷 is the indenter diameter and 𝛿 is the distance from the 

atom to the center of the repulsive sphere. The indenters had 𝐷 = 48 and 24 nm and were 

brought into contact to a maximum ratio between contact radius and tip diameter, 𝑎/𝐷, 

of 0.35 at a loading rate of 4 m/s. Stiffness K was set at 100 eV/Å3 where the resulting 

total applied indentation load (𝑃)—penetration depth (ℎs) curves for the early elastic 

contact responses are in accordance with those from complementary coarse-grained 

anisotropic linear-elastic finite element analyses (FEA). [The physically realistic range of 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 4 

𝐾 values is wide, as similar contact responses attain within 𝐾 = 1 − 100 eV/Å3 [33,34]. 

Increasing computational fluctuations in the 𝑃— ℎs curves arise for  𝐾 > 500 eV/Å3.]  

The indented domains had cuboidal shapes with top (indented) surfaces oriented along 

the [001], [011] and [111] directions. Periodic boundaries were applied to the four lateral 

sides while the atomic positions remain fixed for the bottom side. The MD domains 

indented with 𝐷 = 48 nm were of 70 (length) × 70 (width) × 40 (height) nm3; containing 

≈ 10 ×106 atoms for Ta and Fe, ≈ 11 × 106 atoms for Al, and ≈ 16 × 106 atoms for Cu. 

One massive simulation with 𝐷 = 100 nm was performed for a (001) Cu surface at 77 K 

(MD box of 105 ×105 × 40 nm3 with ≈ 40 × 106 atoms). Further simulations for 𝐷 = 24 

nm comprised domains of 36 × 36 ×16 nm3; containing ≈ 1.3 × 106 atoms for Ta and ≈

 1.8 × 106 atoms for Cu. All MD boxes were built at ≈ 0K and allowed to minimize 

energy by increasing temperature towards the target indentation value at a rate of 1 K/ps 

with timestep of 0.5 fs.  

The indentation response was modelled at 77 K for the differently oriented Cu, Ta and Fe 

surfaces. Further simulations were conducted at 400 K for Cu and at 900 K for Ta surfaces, 

yielding the same homologous temperature of 0.3 ×  𝑇m for both metals (where  𝑇m is 

the melting temperature). The role of cross-slip upon defect patterning was investigated 

by comparing the results from moderate stacking-fault energy Cu against a complete set 

of simulations performed in high stacking-fault energy Al at 300 K. 

Delaunay triangulation was used to compute the surface-projected contact area 𝐴 from 

the atomic coordinates, where the atoms in contact fulfill 𝐹 > 0 and 𝛿 ≤ 𝐷/2 in Eq. (1). 

The associated contact radius and tip penetration were then obtained from 𝑎 = √𝐴/𝜋 and 

ℎc = (𝐷/2 )– √(𝐷2/4) − 𝑎2, respectively. Note that penetration depth measured from 

the free surface ℎs differs from the above penetration depth ℎc (Section 4.1 and Fig. 7(a)).  
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3. Mechanisms for the onset of slip traces  

3.1. FCC nanocontacts  

Slip trace formation involves sweeping across the surface of dislocation segments 

decomposed into leading and trailing Shockley partials. A usual configuration is shown 

in Fig. 1(a) for the gliding of a surfaced screw segment with dislocation line vector 𝜉. The 

Burgers vector 𝑏  is the sum of the individual Burgers vectors from the constituting 

partials (𝑏1 + 𝑏2), where 𝜉 ∥ 𝑏 so as to produce a trace of varying height depending on 

the angle between 𝑏 and the surface normal. The equivalent pure edge construction, 𝜉 ⏊ 

𝑏, concerns surfacing of the same dislocation line 𝜉 =  𝜉1 =  𝜉2 as in Fig. 1 (a), where net 

vector 𝑏 is now rather parallel to the surface so that the step produced by the leading 

partial tends to vanish as the trailing partial sweeps behind. Our simulations show that 

while such edge dislocation lines emerge at the surface, the largest dislocation population 

has the predominantly screw character producing large trace heights.   

Preferential slip traces along <112> and <011> directions, marked in yellow in Fig. 2, 

naturally arise as a consequence of dislocation gliding in {111} planes intercepting the 

surface (Fig. 1(a)). In (011) surfaces (Fig. 2(b)), dislocation gliding involves slip planes 

that form 35.3º and 90º with the indented surface, producing <011> and <112> traces, 

respectively. In (001) surfaces (Fig. 2(a)), the traces are directed along <011> directions 

forming 54.7º with the surface. This is because the indented {001} planes cannot possibly 

contain <112> traces. The <112> slip traces are also missing in (111) surfaces (Fig. 2(c)) 

that may only contain <011> traces forming 70.5º with the {111} slip planes.  

Incipient dislocation surfacing occurs during the outward glide of prismatic loops 

nucleated underneath the indenter (Fig 1(b)). With increasing penetration, dislocation 

emissions from the entangled defect network in the subsurface contributes to further slip 

trace formation (Fig. 1(f)). A distinctive dislocation structure developing in all surface 
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orientations involves two or more segments, joined in the subsurface through stable 

collinear interactions, whose outward glide produces parallel slip traces (Fig. 1(h)). 

Nanoscopic twins are also found to induce marked slip traces in low stacking-fault energy 

Cu (Figs. 1(c), 1(h) and 2). Twin nucleation in FCCs is triggered under the large strain 

gradients and stresses imposed by the nanoindenter tip ([15,35,36]). This involves 

successive emission of leading partial dislocations at the vicinity of the indenter so as to 

form the distinctive arrangement of parallel {111} twined planes.  Our simulations show 

that the twin boundaries are normal to the surface for (011) indentation, and inclined at 

54.7º and 70.5º with respect to the surface for (001) and (111) indentations, respectively 

(Fig. 1(c)). The twinning crystallography ensures that all induced <011> and <112> traces 

simultaneously lie at the indented plane and a specific {111} habit plane.  

Twin annihilation entails when the energy associated with large stacking-fault ribbons 

favors nucleation of mating trailing partials in subsequent {111} planes (Figs. 1(d) and 

1(e)). Twin removal (i.e., detwinning) is produced by gliding of trailing partials at the 

twin boundaries, gradually introducing individual dislocation lines at the surface (Fig. 

1(e)). Annihilation of large monatomic twins is commonly encountered.  

The remarkably planar-like character of the defect network in Cu as compared to that in 

Al becomes evident from Figs. 3(f) and 3(g), where nanotwins are seldom formed in the 

latter because of its large stacking-fault energy. 

3.2. The role of dislocation cross-slip  

Serrated slip in FCCs involves cross-slip of surfaced dislocation lines. This requires 

constriction of partnering leading and trailing partials, producing a full non-dissociated 

screw segment that can freely glide in the intercepting cross-slip planes (Fig. 3(a) and 

3(b)). Although cross-slip naturally furnishes serrated traces, local cross-slip events may 

introduce seemingly straight traces along the non-crystallographic <001> slip directions 
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marked in red in Fig. 2. Associated mechanisms are illustrated in Figs. 3(c)—(e)). [Note 

that such straight traces could not possibly develop in the absence of cross-slip since 

following Section 3.1, none of the <001> traces can simultaneously lie on a {111} slip 

plane and the indented {001}, {011} or {111} surfaces.]  

Onset of serrated traces is strongly favored in Al as compared to in Cu because the much 

greater stacking-fault energy of the former facilitates dislocation constrictions. While 

cross-slip is therefore general to FCCs, it becomes more evident in Al where the totality 

of the surfaced screw dislocation population exhibits serrated glide. Increasing 

temperature from 77K to 400K in Cu surfaces does not significantly change the length of 

the stacking fault ribbons so that the planar nature of the traces is maintained. Such a 

temperature raise, however, produces increasing surface decorations (Section 4.3). 

A mechanism that hinders cross-slip in FCCs is the straightening of surfaced dislocation 

segments either by the  pinning action exerted by the dislocation  forest in the subsurface 

(Figs. 3(c)—(e)) or by the collinear interactions marked “iii” in Fig. 1(h).  

The hillock morphologies emerging in FCCs through the above surface defect glide 

mechanisms are shown in Fig. 4 (see Section 4.3 for a detailed discussion).  

3.3. BCC nanocontacts 

Low-temperature simulations for BCC Ta and Fe show that twinning predominates in the 

highly deformed (core) region underneath the indenter-tip. Dislocation loops however 

develop with increasing tip penetration at the indentation core as well as throughout its 

vicinity (Fig. 5(a)). This feature varies depending on surface orientation, where in the 

case of (111) surfaces, the nucleated three-fold twin structure always prevails irrespective 

of penetration (Figs. 5(h) and 5(i)). A mechanism for twin-mediated emissions of 

dislocation loops involves propagation of partial (detwinning) dislocations across the 

{112} boundaries of the precursory twins. The released (surface truncated) dislocation 
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loops are comprised by two screw segments emitted sideways from the precursory twin, 

and one frontal predominantly edge dislocation produced along the <111> growth 

direction of the twin (Fig. 5(a)) [17]. The reduced mobility of the laterally emitted screws 

hinders loop expansion while the frontal edge segment rapidly glides forward [37]. As 

opposed to the conventional kink-pair mechanism, the motion of the screws usually 

involves nucleation of a leading kink at the surface, which then spreads along the screw 

line. This is followed by surface nucleation and spreading of a second kink that trails 

behind, producing advancement of the screw segment by one Peierls barrier [38]. Wavy 

traces are introduced by the zigzag motion of the screws at the surface. 

Another important mechanism for slip trace emission involves heterogeneous defect 

nucleation at the surfaces of precursory twins (Fig. 5(b)). Although direct dislocation loop 

nucleation from the precursory twins is usually detected, emission of secondary twins 

may also entail. [Such secondary twins rapidly annihilate thus emitting further 

dislocations loops.] When the Burgers vector from the edge segments of the loops has net 

upward component, surface interceptions induces planar traces (Fig. 5(c)) which are then 

extended in a wavy fashion through kinking of the partnering screws (Fig. 5(d)).   

At elevated temperatures, homogeneous dislocation loop nucleation is promoted (without 

twin mediation), incepting highly linear dislocation networks at the indentation core (Fig. 

5(e)). Expansion of the surface truncated loops is again limited by the reduced mobility 

of the screw segments, where the conventional kink-pair nucleation mechanism [38] 

becomes more prominent and stochastically occurs along the lines. The screw lines 

acquire a wavier appearance as compared to that at smaller temperatures, a feature that 

appears to favor the kink-pair nucleation mechanism. Since the screw segments 

intercepting the surface from a given dislocation loop have the same Burgers vector 𝑏 

and opposite dislocation line vector 𝜉 , they become mutually attracted and finally 
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annihilate (Figs. 5(f) and 5(g)). This facilitates development of closed wavy terraces 

further injecting dislocation loops in the subsurface [30].  

At increasing penetrations and elevated temperatures, surface truncated dislocation loops 

are also introduced through unzipping of dislocation lines from the dense linear defect 

network in the subsurface. These processes produce large amounts of traces with planar 

or wavy morphologies depending on whether the surface emitted segments have edge or 

screw characters, respectively.  

Characteristic pileup topographies for BCCs are shown in Fig. 6 (see Section 4.3). 

 4. Defect localization and patterning around nanoimprints 

4.1. Deformation state at the imprint vicinity  

Bulging against the indenter tip is conventionally assessed through parameter 𝑐2, defined 

as the ratio between the two penetration depths marked in Fig. 7(a) [18-20]: 

𝑐2 = ℎc/ℎs .                                                           (2)  

Parameter 𝑐2 thus measures the vertical location of the contact boundary (along the 𝑧-

axis) with respect to the total imposed indenter-tip penetration. Following Fig. 7, 𝑐2 can 

be computed for (i) each individual material point around the contact boundary (i.e., 

throughout the circumferential 𝜙-axis), yielding parameter 𝑐𝜙
2 ; (ii) the vertical location of 

the effective (mean) contact radius 𝑎 (Section 2), yielding parameter 𝑐2̅̅̅; and (iii) the 

location of the maximum pileup height at the vicinity of the contact boundary upon tip 

removal, where 𝑐max2  ≡ ℎc,max ℎs⁄ . While the above mean and local values of 𝑐2  are 

under the applied indentation load, presently defined parameter 𝑐max2  accounts for the 

elasto-plastic rebound of the surface produced upon the unloading indentation stage.  

Extreme sinking-in attains within the elastic regime, where the mean value of 𝑐2̅̅̅ = 0.5 

as contact entails only throughout the bottom 50% of the imposed tip penetration [18]. 

This is consistent with present simulations for all elastically deformed FCC and BCC 
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surfaces (Fig. 8). A sustained raise of 𝑐2̅̅̅ from 0.5 indicates onset of plastic bulging with 

increasing tip penetration, marking interplay between elasticity and nanoscale plasticity 

(Fig. 8). A cross-sectional view of the displacement field is shown in Fig. 9, illustrating 

that all atoms displace downward during elasticity while the trajectory of the surface 

atoms changes to one with net upward component (uplift) during plastic deformation.  

Figure 8(a) demonstrates that the evolution of 𝑐2̅̅̅ with penetration in the nanoscale is a 

highly discontinuous process associated with the onset of plastic bursts (pop-in events) 

in the applied load (𝑃 )-penetration depth (ℎs ) curves. Sudden increases in material 

bulging (encasing the indenter-tip) are thus attendant with a surging of slip traces. Surface 

orientations exhibiting pronounced first pop-ins also undergo dense defect network 

development as measured through a marked raise in 𝑐2̅̅̅ from the elastic value of ≈ 0.5. 

For such orientations, the incipient elastic loading stage also spans over greater 

penetrations, which increases the elastic energy stored in the material and the abruptness 

of subsequent defect inception. Intermittent raises in 𝑐2̅̅̅ are further displayed throughout 

the entire penetration process, where any given abrupt raise in this parameter is directly 

linked with the occurrence of individual pop-ins in the 𝑃 − ℎs curves; the larger the load 

drop, the greater the raise in 𝑐2 (marked points in Fig. 8(a)). The evolution of 𝑐2̅̅̅ with 

penetration is therefore governed by the pop-in distribution, which varies as a function of 

surface orientation, crystalline structure and temperature.  

The large difference between the mean value along which 𝑐𝜙
2  fluctuates and the levels of 

𝑐max2  found for the different surfaces becomes evident in Figs. 7(b) and 7(c), further 

illustrating that extreme pileup effects (𝑐max2 = 1.3 − 1.5) are induced upon tip unloading. 

4.2. Defect mechanisms for plastic bulging 

Nanoscale plastic bulging in FCCs is greatly influenced by the onset of vertexes around 

the nanoimprints (Fig. 4), bounding topographical depressions from the surrounding 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 11 

uplifted surface. Vertex development emerges from twin localizations in low stacking-

fault energy Cu, whereas the vertexes primarily involve recurrent dislocation slip in high 

stacking-fault energy Al. Although the FCC vertexes produce local minima of 𝑐𝜙
2  in Fig. 

7(c), plastic localization in BCCs induces bulging and local peaks of 𝑐𝜙
2  in Fig. 7(b).  

The following discussion concerns the role of the defect network underneath the 

nanoimprint upon the development of plastic bulging. First, notice that the level of 𝑐2̅̅̅ at 

maximum penetration (ℎs/𝐷 ≈0.12) for (001) and (011) Ta surfaces, Fig. 8(a), is smaller 

than that found in Al counterparts, Fig. 8(c). This suggests that the increase in defect 

mobility associated with the less entangled linear indentation core networks prevailing in 

high stacking-fault energy FCCs, enhances slip trace recurrence throughout the imprint 

as compared to in BCCs containing more stationary planar networks. [Note that 𝑐2̅̅̅ for 

Cu (011) and (001) surfaces exhibits an apparent plateau for ℎs/𝐷 ≈ 0.10-0.12  (Fig. 

8(b)). It thus follows that FCC crystals with low stacking-fault energy may not exhibit 

large values of 𝑐2̅̅̅ at deep penetrations (see Section 4.4).]  

Increasing temperature in BCC Ta and Fe facilitates development of highly mobile 

(linear) defect networks (Fig. 5(e)), shifting 𝑐2̅̅̅ (ℎs/𝐷 ≈ 0.12) towards greater values in 

agreement with the above discussion. This is illustrated in Fig. 8(d) for Ta (011), where 

strong twin annihilation occurs at 900K. Since a temperature raise from 77 to 400 K in 

Cu –resulting in the same homologous temperature as in Ta at 900K– is not associated 

with significant variations in the balance between the planar/linear character of the 

network, the evolution of 𝑐2̅̅̅ remains essentially unaffected (Fig. 8(d)). 

Our MD simulations for Ta (111) nanoimprints interestingly show that bulging may not 

be necessarily restrained by the onset of planar indentation core networks. For this surface 

orientation, large plastic slips attain due to the development of a three-fold twin structure 
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(Fig. 5(h)), which strongly favors material bulging at surface projections from the 

preferential <111> growth directions of the twins (Fig. 6(g)). Since the slip carried by the 

twins thus produces large surface steps, this counteracts for the overall lack of network 

mobility so that the evolution of 𝑐2̅̅̅ with penetration becomes similar to that measured in 

FCC Al. (Compare Figs. 8(a) and 8(c) past early defect inception –i.e., for ℎ𝑠/𝐷 > 0.08.) 

4.3. Mechanisms for hillock development    

Plastic bulging around the indenter tip and hillock development are two distinct 

manifestations of nanocontact plasticity. The former arises from the upward displacement 

field associated with defect network inception underneath the imprint (Section 4.1) in 

conjunction with slip trace emergence at the contact surface, 𝑟 ≤ 𝑎 (Section 4.2), whereas 

the latter is essentially due to patterning processes that introduce surface pileup some 

distance away from the contact boundary, 𝑟 > 𝑎. This is evidenced in BCC surfaces 

where the hillocks faint for the (011) orientation even though parameter 𝑐2̅̅̅ increases from 

≈ 0.50 to 0.85 with tip penetration (see Figs. 6(c) and 8(a)). While there is always good 

correlation between the locations of the hillocks and those for which maximum bulging 

(pileup) entails in FCCs, this is not necessarily fulfilled in BCCs as explained below. 

Directing attention to Figs. 2 and 4, hillock formation in FCCs involves specific slip trace 

arrangements producing topographical pileup through (i) outwards gliding of dislocations 

from the imprint along <112> and <011> directions; (ii) cross-slip of such dislocations 

towards tangential <112> and <011> directions, which leads to serrated terrace patterns; 

and (iii) interceptions among surfaced dislocations producing terrace edges. Increasing 

temperature favors network intricacy and the emergence of a greater number of traces 

that produce decorated surfaces rather than arranging into specific pileup topographies. 

Consequently, the hillock patters in FCC Cu appear to be less defined (compare Figs. 4(b) 

and 4(c)). The role of cross-slip upon the hillock morphology becomes evident by 
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comparing Figs. 4(b) and 4(c) for Cu with Fig. 4(f) for high stacking-fault energy Al, 

where the enhancement of cross-slip in the latter yields highly serrated hillocks.  

The plastic hillocks in BCC Ta and Fe usually involve wavy terrace formations because 

of the multiple slip systems where the predominantly screw surfaced dislocation 

population glide through kinking mechanisms. Ta (001) and (011) surfaces are 

characterized by mild terrace development, where the surface truncated loops are 

primarily produced through twin annihilation and heterogeneous nucleation processes, 

respectively (Section 3.3). For these orientations, the terraces are located at the surface 

projections of the preferential <111> gliding direction of the dislocation loops in the 

subsurface, which coincides with the locations of maximum bulging. On the other hand, 

for the Ta (111) orientation, the surface truncated loops primarily arise through 

heterogeneous (twin-mediated) dislocation nucleation (Section 3.3). This orientation 

further exhibits remarkable lateral expansion of the surfaced screw segments, so that well-

developed rosette arms form at the surface at ~60º from the locations where the bulged 

(twinned) regions emerged (see Figs. 6(f) and 6(g)).   

At low temperatures, limited surface emergence and outward spreading of dislocations in 

BCCs is evidenced by the proximity of the hillocks to the contact boundary in (001) 

surfaces (Fig. 6(a)). Moreover, in the case of Ta (011), terrace formation vanishes at low 

temperatures as the heterogeneously nucleated dislocation loops remain in the subsurface 

(Fig. 6(c)). Increasing temperature favors attainment of highly linear defect networks 

emerging from recurrent homogeneous loop nucleation events (Fig. 5(e)) that facilitate 

terrace formation (Fig. 6(d)).  

4.4. Size effects and comparisons with experiments 

The presently found planar slip features and preferential <011> and <112> slip trace 

directions in FCC Cu reproduce experimental findings in low and moderate stacking fault 
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energy crystals [2,3,9]. Moreover, the rosette arrangement in FCCs (Fig. 4) replicates the 

four-fold rotational symmetry from micro and nano-indentation experiments in (011) 

surfaces [4,39]. While the experimental results also show that a similar four-fold 

symmetry emerges in (001) FCC surfaces, this feature only becomes apparent through 

massive MD simulations performed with 𝐷 = 100 nm (Fig. 4(h)). The simulations are 

not conclusive when it comes to mimic the experimentally found six-fold rotational 

symmetry of the rosettes in (111) surfaces [9], suggesting that such more elaborate 

patterns require enhanced defect clustering that may only attain for 𝐷 > 100 nm.  

Our simulations reproduce the salient features of the hillock arrangements found from 

nanoindentation experiments in BCC Ta [6]. In the case of (001) and (011) surfaces, the 

four-fold rotational symmetries of the terraces along <011> and <111> directions in Figs. 

6(a) and 6(d), respectively, closely match the experimentally observed morphologies. The 

elongated shape of the terraces (along the 𝜙-axis around the imprint) developing at the 

onset of defect inception from such nanoindentation experiments, is also in excellent 

agreement with that produced in the simulations (Fig. 6). Limited terrace formation is 

however characteristic of present BCC (001) and (011) nanocontacts as compared to the  

much more prominent rosettes found in greater BCC imprints [6].   

The experimentally found rosette morphology in (111) Ta surfaces exhibits the 

characteristic three-fold rotational symmetry that is herein shown to arise because of the 

lateral expansion of the surface truncated loops (see Fig. 6(f) upon unloading and Section 

4.3). Our results for such (111) surfaces are illustrative in that while pronounced defect 

patterning into rosette configurations may arise in BCC nanocontacts, the rosettes may 

lack some of the anticipated symmetrical features from greater imprints. While the 

location of any given two neighboring rosette arms from the experiments is consistent 

with that attaining in the MD simulations (see hillocks h1 and h3 in Fig. 6(g)), onset of 
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the third arm cannot be replicated within the size of present nanoimprints. Statistical 

variations in the nucleation process is found to alter slip trace localization at the onset of 

defect inception, leading to the development of the third previously missing rosette arm 

at the expense of one of the other two arms. In light of the above discussion, the 

enhancement of slip trace recurrence and patterning produced with greater tips (𝐷 > 100 

nm) would tentatively produce the full three-arm rosette configuration. 

The simulations also show that the early accumulation of elastic strains leads to marked 

surface rebound induced upon nanotip removal from maximum imposed penetration. 

Parameter 𝑐max2  thus becomes ≈ 1.4 for Cu which is much greater than the level of ≈ 1 

found in greater (macroscopic) imprints in the unloaded state [19]. Enhancement of defect 

patterning upon nanotip removal is further illustrated by the development of hillock h2 in 

Fig. 6(f) (see Supplementary Material). 

The good correspondence between surface topographies from MD simulations and 

experiments across the indentation scales suggests that irrespectively of the extreme 

hardness values and defect densities characterizing nanocontact plasticity, slip trace 

patterning is fundamentally governed by the same (size-independent) dislocation 

mechanisms –such as cross-slip and kinking of surfaced screw segments, and preferential 

slip system interactions. On the other hand, the presently found twin nucleation and 

annihilation mechanisms at the contact boundary –accurately reproducing distinctive 

bulging features from nanoindentation tests in (111) Ta [6]– are taken to exclusively 

represent nanocontact plasticity under extreme applied pressures.  

Although a transition in the defect nucleation mechanism from slip to twinning may also 

arise depending on loading rate in FCCs [40], this may not significantly affect the 

evolutionary character of the defect network governing hillock development away from 

the contact boundary. Moreover, since the dislocation free-flight velocity is already 
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several orders of magnitude greater than the displacement velocity of the tip, a 

hypothetical reduction to realistic (small) loading rates may not drastically change 

presently found defect glide mechanisms and slip trace patterning into hillock 

morphologies. Loading rate effects could thus be tentatively assimilated to those 

produced by a temperature increase in present simulations. In passing, note that the 

comparison between experiments and MD simulations in FCCs does not shed light into 

the debate on the transition between defect nucleation mechanisms, as both twinning and 

dislocation slip produce qualitatively similar vertex patterns (compare Al vs. Cu in Fig. 

4 where twinning occurs in the latter while dislocation slip prevails in the former). 

Finally, an interesting result is that 𝑐2̅̅̅ reaches similar values as those measured for greater 

imprints in FCC Cu at similar normalized penetrations ℎ𝑠/𝐷 [19,20], already indicating 

that extensive plastic flow is promoted at the nanocontact boundary (see Section 4.2). The 

apparent plateau in 𝑐2̅̅̅  (see Fig. 8(b) for Cu at ℎ𝑠/𝐷 ≈ 0.12 ) is in agreement with 

continuum plasticity analyses performed for greater (macroscopic) indentations, where 

plastic bulging becomes a signature of the uniaxial strain hardening response: the greater 

the strain hardening, the smaller the saturation level for 𝑐2̅̅̅ (see Fig. 14 in Ref. [20]). 

Bulging saturation in Cu nanocontacts would be therefore indicative of the prominent 

strain hardening behavior of low stacking-fault energy FCC metals; yielding to a plateau 

in 𝑐2̅̅̅ at smaller penetrations than for BCC Ta and FCC Al distinguished by milder 

uniaxial strain hardening responses.  

5. Concluding remarks 

1. Nanocontact plasticity in FCC crystals leads to surface emissions of dislocations and 

nanotwins whose preferential glide along <011> and <112> directions produces slip 

traces. The surfaced dislocation segments have predominantly screw character and 

originate from (i) prismatic loops emitted during the incipient defect nucleation stage; (ii) 
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junction unzipping processes occurring within the defect network; and (iii) recurrent 

nanotwin annihilation at the vicinity of the contact boundary. Increasing stacking-fault 

energy from that of pure Cu to Al facilitates cross-slip of the surfaced dislocations which 

enhances slip trace serrations. Cross-slip is affected by the straightening of the surfaced 

dislocation lines by the pinning action from the defect network in the subsurface.  

Depending on dislocation pinning, traces with globally straight appearance thus emerge 

along non-crystallographic <001> directions. These are produced by short-range cross-

slip processes along the above <011> and <112> directions.  

2. The slip traces in BCCs are the manifestation of the interplay between twinning and 

dislocation slip in the subsurface. At low temperatures, limited annihilation of the twin 

structure leads to the emergence of surface truncated dislocation loops lying in 

characteristic {112} planes. Loop expansion proceeds so that the edge segments glide 

towards the <111> frontal direction of the precursory twins and the screw segments 

expand sideways, usually intercepting the surface. Heterogeneous dislocation loop 

nucleation processes from the twin surfaces may also contribute strongly to the onset of 

slip traces. At increasing temperatures, homogeneous dislocation loop nucleation is 

favored (without twin mediation), which injects linear defect networks of greater mobility 

in the subsurface. Depending on temperature, two dislocation kinking mechanisms of the 

screw segments are found to produce characteristic wavy traces in BCCs.  

3. Topographical pileup around FCC nanoimprints involves terrace patterning into hillock 

morphologies whose rather planar sides denote interception of <011> and <112> slip 

traces. Development of increasingly serrated terrace morphologies is governed by cross-

slip and recurrent dislocation interceptions. Hillock morphology is thus affected by the 

stacking-fault energy of the crystal, so that more complex hillock shapes attain in high 

stacking-fault energy Al as compared to in moderate stacking-fault energy Cu. 
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Dislocation organization into hillocks becomes less evident at elevated temperatures, 

where the highly entangled defect networks in the subsurface produce prominent surface 

decorations. While similar four-fold symmetric rosette patterns as in micrometer-sized 

imprints emerge in both FCC and BCC nanocontacts depending on surface orientation, 

this feature is affected by indenter diameter. In some orientations, complex slip trace 

patterning only attains with tip diameters 𝐷 ≥ 100 nm at large normalized penetrations 

(ℎ𝑠/𝐷) that are 1.5 times greater than those marking early defect inception.  

4. Hillock waviness in BCCs is governed by dislocation kinking of the surfaced screw 

segments originating from the aforementioned dislocation loop emissions. Shift from 

homogeneous to heterogeneous dislocation loop nucleation is ruled by surface orientation 

and temperature. Terrace formation is mild in (001) and (011) indentations, emerging 

along the preferential <111> expanding direction of the defects underneath the imprint. 

Well-developed hillocks however arise away from the contact boundary in (111) 

indentations, where the surfaced screw dislocation population pronouncedly spreads 

outward from the imprint. Increasing temperature in BCCs favors onset of linear defect 

networks that always enhance terrace formation. Finally, it is found that characteristic 

extreme material uplift induced during nanotip removal facilitates delineation of the 

hillock topography, promoting development of the same symmetric rosette configurations 

as in greater (micrometer-sized) indentations.  

5. Plastic bulging of the material against the indenter tip produces well-developed 

nanoimprints. The mechanisms for nanoscale bulging are: (i) recurrent slip trace 

emergence throughout the contact surface, favored by the inception of highly mobile 

dislocation networks in large stacking-fault energy FCC crystals; (ii) pileup of the 

material around the imprint vertexes in FCCs; and (iii) surface emergence of nanotwin 

patterns in BCC nanoimprints –as in the case of (111) surfaces. These mechanisms 
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profoundly affect upon the atomic trajectories of the surface atoms, gradually leading to 

material bulging with tip penetration. Nanoscale bulging is characterized by a gradual 

increase in parameter 𝑐2̅̅̅ from the perfectly elastic lower limit of 0.5 prior to defect 

inception. While the value of 𝑐2̅̅̅ at presently imposed maximum penetration is usually 

greater in FCCs than in BCCs, attainment of the aforementioned twin structure in (111) 

BCC surfaces enhances bulging to a point where 𝑐2̅̅̅ becomes similar to that produced by 

recurrent slip in FCC Al. Our simulations in Cu nanocontacts further suggest that bulging 

saturation entails at different values of 𝑐2̅̅̅ depending on the uniaxial strain hardening 

response of the crystal. Finally, parameter 𝑐max2  is used in this work to account for the 

distinctive massive elasto-plastic rebound induced at the nanocontact boundary (𝑟 ≳ 𝑎) 

upon indenter tip removal.  
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Fig. 1: Onset of slip traces in FCC copper (" = 77	K). (a) Slip trace produced by the 
passage of a screw dislocation dissociated into leading (1) and trailing (2) segments 
separated by a stacking-fault (blue) ribbon. (b) Nucleation of prismatic loops producing 
<110> slip traces. (c) Cross-sectional view of a nanotwin underneath a (111) surface; 
yellow lines indicate parent and twined crystal orientations. (d) and (e) Nanotwin 
annihilation (marked in (d)) resulting in the emission of two dislocation segments 
(marked in (e)). (f) and (g) Surface dislocation emission involving four dislocation arms 
that revolve around junction “j”. The process involves gliding of marked dislocation in 
(f) producing marked trace in (g). (h) Interception of twins labelled “i” underneath a (001) 
surface, which results in strong slip trace localization at the surface. Development of 
dislocation structure labelled “ii” is further shown, where arrows indicate gliding 
direction, and label “iii” points at collinear interactions.  

 

Fig. 2: Slip traces in (001), (011) and (111) FCC Cu surfaces (" = 77 K;	& = 48 nm). 
Yellow arrows mark preferential slip directions, where twinning is labelled “t” and “cs” 
denotes cross-slip. Red arrows indicate apparent non-crystallographic slip traces.  
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Fig. 3: Cross-slip in FCC Al at 300 K. (a) Pure screw dislocation originally located at “1” 
cross-slips into location “2”. (b) Serrated trace introduced by the cross-slip event in (a). 
(c)—(e) Development of an apparently non-crystallographic <001> slip trace. Interaction 
of dislocation segments “3” and “4” in (c) forms segment “5” pinned at junction “j” in 
(d). Segment “5” is a constricted, full dislocation, that cross-slips producing a trace that 
is globally oriented along the [100] (non-crystallographic) direction. Dissociation of 
segment “5” into more energetically favorable Shockley partials “6” in (e) finally 
suppresses cross-slip. (f) Linear defect network in Al. (g) Planar-like network in Cu where 
the large staking fault ribbons (blue) limit cross-slip. 

 

 
Fig. 4: Pileup topographies in FCC Cu (a)—(d) and Al (e)—(g). Scale bar refers to surface 
elevations (red) and depressions (blue). Formation of four-fold rosette symmetries is 
shown for all	(011) indentations (& = 48 nm) and the (001) indentation with & = 100 nm 
in (h). Notice development of imprint vertexes (marked “v”) around the nanoimprints. 
The influence of the more serrated slip in Al as compared to in Cu is further illustrated 
by comparison between (b) and (f). Temperature is set at 77K for all Cu surfaces except 
part (c) that is for 400K. The Al surfaces are indented at 300K. 



	

 
Fig. 5: Slip trace formation mechanisms in BCC Ta (D = 48 nm). (a) Defect network 
where partial annihilation of {112} twins “(1)” leads to the lateral (lat.) emission of screw 
dislocations “(2)” intercepting the surface, as well as the frontal (fr.) emission of edge 
segments towards the subsurface. (b) Heterogeneous dislocation loop nucleation where 
precursory twins labeled “(1)” produce screw segments labeled “(3)”. (c) and (d) Surface 
interception of a nucleated loop, where the edge segment produces a straight trace that is 
extended by the partnering screws through dislocation kinking –marked by dashed yellow 
line. (e) Linear defect network incepted at elevated temperatures. (f) Expansion of a 
surface truncated dislocation loop in the direction of the arrows produces dislocation 
segment annihilation. Segment annihilation entails along the arrow in (g), introducing a 
closed slip trace at the surface and dislocation loop in the subsurface. (h) Bottom view of 
the three-fold twin structure that produces marked bulging in (111) surfaces. (i) Gliding 
of screw dislocations emitted from the twin structure in (h) introduces hillocks h1, h2 and 
h3 (further shown in Figs. 6(f) and 6(g)). 



Fig. 6: Pileup topographies in BCC nanocontacts at 77K (D = 48 nm). Scale bar denotes 
surface elevations (red) and depressions (blue). (a) Formation of confined hillocks in 
(001) nanoimprints through interplay between screw and edge dislocation gliding marked 
in (e). (b) Material pileup due to twinning and dislocation slip. (c) and (d) Influence of 
increasing temperature upon the outward spreading of dislocation loops, contributing to 
terrace formation. (f) and (g) Development of a three-fold symmetric rosette arrangement 
comprised by hillocks h1, h2 and h3 in loaded and unloaded states at ≈	60º from the 
regions of maximum bulging (pileup). The bulged regions are induced by the three-fold 
twin structure in Fig. 5(h). Hillock development is due to gliding of surfaced screw 
dislocations sideward from the bulged regions (also illustrated in Fig. 5(i)).  

         
Fig. 7: Plastic bulging around the indenter-tip (D = 48 nm; " =77K). (a) Associated 
nomenclature under material pileup and sinking-in effects. (b) and (c) Variation of pileup 
parameter ./0  around the imprint for Ta and Cu surfaces, respectively, at maximum 
imposed tip penetration. Angle 1 increases clockwise for all orientations following Fig. 
6(g). Parameter .2340  upon tip unloading is also shown. See text for details. 



  
Fig. 8: Evolution of .0 with increasing normalized penetration ℎ6/& for Ta (a), Cu (b) 
and Al (c) surfaces (D = 48 nm; " =77K). Inset to part (a) shows the associated applied 
load-penetration depth (8—ℎ6) curve, where the load drops marking plastic bursts lead 
to abrupt raises in .0. Part (b) includes results for & = 100 nm. Part (d) illustrates 
influence of temperature.  
	

 

Fig. 9: Atomic displacement fields for (011) Cu nanocontacts along the marked cross-
sectional views in the insets. Arrow length is proportional to atomic displacement. (a) 
Early elastic response with pronounced sinking-in, .0 = 0.5. (b) Uplift of the surface 
atoms due to the incepted defect network at maximum imposed penetration.  
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