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Abstract—In this paper, we propose a novel approach to
the enhancement of physical layer security for chaotic direct-
sequence spread-spectrum (DSSS) communication systems. The
main idea behind our proposal is to vary the symbol period
according to the behavior of the chaotic spreading sequence.
As a result, the symbol period and the spreading sequence
vary chaotically at the same time. This simultaneous variation
aims at protecting DSSS-based communication systems from the
blind estimation attacks in the detection of the symbol period.
Discrete-time models for spreading and despreading schemes
are presented and analyzed. Multiple access performance of
the proposed technique in the presence of additional white
Gaussian noise (AWGN) is determined by computer simulations.
The increase in security at the physical layer is also evaluated
by numerical results. Obtained results show that our proposed
technique can protect the system against attacks based on the
detection of the symbol period, even if the intruder has full
information on the used chaotic sequence.

Index Terms—Chaotic direct-sequence spread-spectrum
(DSSS); Chaos-based spread-spectrum; Physical layer security.

I. INTRODUCTION

In the two last decades, a large number of studies have been
devoted to the design and analysis of communication systems
based on chaotic direct-sequence spread-spectrum (DSSS) [1]-
[5]. The main goal of the application of chaotic sequences to
spread-spectrum communications is the enhancement of phys-
ical layer security [6]-[9]. However, several recent studies have
shown that chaotic sequences can be recovered by different
blind detection methods [10]-[13]. A detection method based
on nonlinear time series analysis is presented in [10], where
mutual information and false nearest neighbor methods are
used for establishing optimal embedding parameters for the
attractor reconstruction from the experimental time series. The
reconstruction of chaotic attractor is also investigated in [11]
by exploiting intrinsic geometry of chaotic attractor sets. Based
on the reconstructed attractor, the chaotic sequence used can be
recovered by an approximation algorithm. The study in [12]
shows that the equivariant adaptive separation via indepen-
dence (EASI) algorithm in fixed-point arithmetic can recover
successfully the chaotic sequences. The obtained results of the
above studies also pose a new security challenge, that is, if an
intruder can recover the chaotic spreading sequence, he will
employ the recovered sequence to detect the symbol period
[13, 14]. With the recovered sequence and detected period, he

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,

can totally recover the original data. It means that the security
of chaos-based DSSS systems is totally broken.

This paper proposes a novel chaos-based DSSS technique
for overcoming the security weakness aforementioned. In the
proposed technique, the period of the data symbol is varied
according to the behavior of the chaotic spreading sequence.
Because both the spreading sequence and the symbol period
vary chaotically at the same time, the bit energy also varies
according to the chaotic behavior. As a result, it is not easy
for an intruder to detect the symbol period by using energy
detection methods [13, 14]. In fact, the idea of chaos-based
variation of the symbol period in spread-spectrum commu-
nication systems has also been presented in [15] and [16].
However, the spreading sequences investigated in these studies
are binary sequences, i.e., PN and NRZ-chaos sequences,
which have only two levels, “+1” or “-1”. Obtained results
point out that the performance of multiple-access system
with the simultaneous variation of the symbol period and the
spreading sequence gets worse when the variation range of the
symbol period is increased. But in return, our technique can
protect the system from attacks based on detecting the symbol
period at the physical layer, even if the attacker fully knows
the chaotic sequence.

The rest of this paper is structured as follows: in Section II,
the proposed approach is described via the analysis of discrete-
time models for spreading and despreading schemes. Multiple
access performance over the AWGN channel is estimated
by numerical results in Section III. Section IV presents an
investigation using computer simulations on the ability of the
proposed technique in resisting the symbol period detection
attacks. Finally, our conclusion with remarks is given in
Section V.

II. DESCRIPTION OF PROPOSED APPROACH

A. Spreading Scheme with Variable Bit Period

The block diagram of the spreading scheme is shown in
Fig. 1(a). The pulse chain with variable inter-pulse intervals,
denoted by {p;} is generated by the variable interval pulse
generator (VIPG) whose input is the chaotic sequence {x }. In
the VIPG, the input sequence {xz} is sampled at each instance
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triggered by the input pulse, i.e.,

p=P(t=t), (1)
with
1 0<t<r,
P(t) = { 0 otherwise, 2

where t; is the instance to generate the ! pulse. The output
sample x; is then converted into a positive integer 3; by using
a transformation function, i.e., 5; = f(z;). Here, the function
f(-) is determined so that when the sequence {x;} varies in
a known range of [Zyin, Tmaz), {1} also varies in a corre-
sponding range of [Bmin = f(Tmin) =0, Bmaz = f(Tmaz) =
Bm]- In order to determine the function f(-), we first choose a
fixed value for (3,,. The range of [Zin, Tmaz] is then divided
into (B, +1) value intervals, i.e., [Zmin+77Y; Tmin+ (G +1)7],
with j varying from O to f3,,. 7y is a constant defined by

v = (Tmaz — Tmin)/(Bm + 1). (3)

If the input value z; falls into the range of [Zin + 7, Tmin +
(j + 1)4], the corresponding output value f3; is determined by
the function f(-) as follows:

B = f(x1) = Vl—xan ) “)

v

with |-] being the floor function. Depending on the value of
By, the (I + 1)*" pulse is generated at the output of VIPG at
the instance ;41 given by

iy =t + (B+ 607, &)

here 7 is chip period of the chaotic sequence {z;} and S is a
fixed integer whose value is predetermined. We can see from
Eq. (5) that the intervals between inter-pulses of {p;} vary
according to the chaotic sample values {x;} and always equal
to a multiple of chip period 7.

With the trigger of each pulse of {p;}, the data buffer shifts
the binary value of next symbol, i.e., b, = {£1}, to its output.
It means that the period of [*" symbol, denoted by Tj, is
determined from Eq. (5) as follows:

Ts, =tip1 —ti = (B+ Bi)T. (6)

The spread-spectrum process is performed by directly multi-
plying the variable-period bits {b;} with the chaotic sequence
{z1}. Eq. (6) shows that there are (S + (5;) chips in the period
of I*" bit. Tt means that the sum, i.e., (8 + /3;) is also the
spreading factor of the I*" bit. In the spreading process, the
number of symbol [ tends to infinite, §; varies in the range
of [0, By, thus the spreading factor, (8 + ;), varies in the
range of [, 8,,]- The predetermined constants, § and [3,,, are
considered as the initial value and the variation width of the
spreading factor, respectively.

The output signal of the spreading scheme in the period of the
Ith bit can be expressed as

er = biwy. @)
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Fig. 1. Block diagrams of (a) Spreading scheme, (b) Despreding scheme, and
(c) DS-CDMA system.

It is noted that in the special case of the variation width
Bm = 0, the symbol period Ty = 7 is unvaried in
the spreading process. The proposed technique in this case
becomes the conventional chaotic DSSS technique.

B. Despreading Scheme

The block diagram of the despreading scheme is displayed
in Fig. 1(b). The local chaotic sequence is regenerated and
synchronized with the incoming signal by means of the
synchronized chaotic generator (SCG) whose scheme is shown
in Fig. 1(c). This synchronization scheme relies on the scheme
presented in [30] for the conventional chaotic DSSS technique
with a modification. In particular, instead of repeating the
correlation process after a fixed symbol period as usual, the
correlation process is controlled by the trigger pulses from the
VIPG. In the SCG, the chaotic generator and the VIPG are
identical to those of the spreading scheme. The synchronized



chaotic sequence is used for the despreading process and data
recovery.
The incoming signal is the sum of the transmitted signal and
the noise of AWGN channel, we have
T = €g + N, (¥
here n; is an AWGN sample with zero mean and variance
Ny /2. The despreading process is simply performed by using
a correlator. The output signal of the correlator is sampled
by the trigger of each pule of {p;}. The sample value at the
instance ¢; is determined by

B+pi B+5
S = Z Tl = Z (ek + nk)xk
k=1 k=1
B+Bi B+B1 B+B1 ®)
= Z (bll‘k + nk)xk = Z (l'k)2 + Z NETk.
k=1 k=1 k=1

Based on this sample value s;, the binary value of [*" symbol
is recovered by
1
- { !

At the trigger instance of each pulse of {p;}, the recovered
bits are shifted into the buffer.

5l207

51 < 0. (19)

C. Multiple-access Operation

Fig. 1(c) shows a typical DS-CDMA communication system
based on the proposed DSSS technique. K users are distin-
guished from each other by different chaotic sequences, which
can be produced by using the same chaotic map with different
initial values. At the input of the ‘" receiver, the incoming
signal is expressed as

K K
o= e = bz +ny (11)
i=1

i=1
The correlation value at output of the sampler is given by

) B+B .
Sl(z) _ Z Tkx,(;)
k=1

B+pL /K )
=S (S ) o
k=1 \i=1

5 (S o)
k=1 i=1
BEBe B+B K o B+8 )
_ bl(z) Z (xéz))Q + Z Z bl(l)ili;(;)xg) + Z nka;(;)
k=1 k=1 i=1,i#j k=1

. (12)
Similarly, based on this sample value sl(z), the value of bl(l) is
recovered by the comparison as in Eq. (10).
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Fig. 2. Results obtained by numerical computation: (a) Variation of symbol
energy, (b) Histograms of symbol energy distribution.

III. SIMULATION RESULTS

In this section, PC simulations for the chaotic DS-CDMA
system based on the proposed DSSS technique are carried
out with different system parameters. The chaotic map used
for generating chaotic sequences is the Chebyshev polynomial
function of order 2 given by

wp = flepor) =207, — 1, (13)
with [Im,in7xm,(m?] = [717 1] and
o) 1
E.=E|z}] = / w? p(a)da = /xzédﬂf = 1,
71— 22 2
—oo ! (14)

Fig. 2(a) and Fig. 2(b) show respectively the variation of
bit energy and the histograms of the bit energy distribution,
obtained by numerical computations for cases of § = 16,32
with 8,, = 0,5,10. Each histogram is plotted by means of
1000 classes which are calculated statistically from 100000
samples of bit energy. It can be clearly observed that the bit
energy varies aperiodically, where the average energy increases
along with the increment of the initial spreading factor (3, and
the variation range of the bit energy becomes wider with the
increment of variation width 3,,.

In Fig. 3(a), we evaluate the effect of two parameters, i.e.,
B and (,,, on the performance of the mono-user system
under the same value of E“Ob = 9dB. We can find that the
calculated results totally agree with the simulated ones. Both
of them point out that the system performance increases with
the value of 3. For example with the same (3, = 10, when 3
increases from 4 to 64, the BER value reduces from 2 - 1073
to 6 - 1072, respectively. In contrast, when [, increases,
the system performance gets worse. Specifically, at the same
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Fig. 3. BER performance of the DS-CDMA system using the proposed DSSS
technique: (a) Mono-user system with increment of 8 and f,, at the same
E.,/No = 9dB; (b) Multi-user system with increment of K at 8 = 16 and
Bm = 10.

B = 16, the BER value increases from 8 - 1075 to 1073
corresponding to 3, varying from O to 40. In return, the
increment of /3, contributes to enhance the system security
at the physical layer. This enhancement will be analyzed in
Section IV.

The dependence of the system performance upon the number
of users K for 8 = 16, 3,, = 10 is displayed in Fig. 3(b).
It can be clearly observed that the system performs worse
with the increment of K. For example with the same value
of E‘“’ = 10dB, the BER value increases from 3 - 10~° to
6 - 10 2 corresponding to K increasing from 1 to 5.
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Fig. 4. Fluctuation graphs obtained by PC simulations for the first scenario
in cases of (a) PN-DSSS technique, (b) Chaotic DSSS technique, and (c)
Proposed DSSS technique.

IV. IMPROVEMENT OF PHYSICAL LAYER SECURITY

In this section, we investigate the security ability of the
proposed chaos-based DSSS technique by means of PC simu-
lations. Let’s suppose that an intruder uses the well-known
attack method proposed in [13, 14] to detect the typical
parameters, i.e, symbol period 7Ts and sequence period T,
of the spreading sequence from the received signal r(t).
The attack method used relies on the computation of the
fluctuation of the auto-correlation value. In order to compute
the fluctuations, the received signal is divided into L temporal
windows with W being the window width. By applying an
autocorrelation estimator to each window, the correlation value

is computed by
) w
= W/r(t)r*
0

(t — a)dt, (15)
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where R” («) is the correlation value of the n'" window,
(t — «) is the complex conjugate of r(t — «), and « is

the shifted duration. The fluctuation value is then determined

as follows:
(] —— 2 L-1. 9
—E{[m@l - 1 T |me)

By plotting the graph of p(a) versus «, called fluctuation
graph, the symbol period or sequence period can be deter-

mined by measuring the duration between peak values in the
graph.

pe)

(16)

To compare the security level, we simulate the attack process
of the intruder with respect to three techniques, i.e., PN-
DSSS, chaotic DSSS, and chaotic DSSS with variable symbol
period. The simulation parameters are chosen as follows: fixed
spreading factor 8 = 32 for the cases of PN and chaotic DSSS
techniques, 8 = 32 and f,, = 5,10,20,40 for the case of
the proposed technique, sequence period T's = 1277, window
width W = 10007, and window number L = 4000. Here, the
attack simulations are carried out for two scenarios: (1) the
intruder has no information about the transmitting side. He
performs a blind detection using the aforementioned method;
(2) the intruder has full information on the spreading sequence.
The received signal is multiplied with this known sequence.
The output product is then used as the input signal of the
detection method above.
Fluctuation graphs obtained by the simulations for the first
scenario are shown in Fig. 5. For the case of the PN-DSSS
technique, by measuring the cycle of periodic the curve of the
graph in Fig. 4(a), the intruder can easily detect the symbol
period, T = 327, and the sequence period, Ts = 1277. With
respect to the cases of the chaotic DSSS and our proposed
techniques with 3, = 10, Fig. 4(b) and Fig. 4(c) clearly show
that the intruder just detects the sequence period Ts = 1277
and there is no sign of the symbol period. These results
point out an important feature, that is, the DSSS systems are
protected from the attack method described above by replacing
PN sequences by chaotic ones.
Fig. 5 presents the simulated fluctuation graphs for the second
scenario. We can see from Fig. 5(a) that the intruder can
detect both of the symbol and sequence periods in the case
of the conventional chaotic DSSS technique. For the case
of the proposed DSSS technique, Fig. 5(b), Fig. 5(c), Fig

5(d), and Fig. 5(e) show that the intruder can detect the
sequence period T

1277 but cannot detect exactly the
variation of the symbol period. With respect to the case of

Bm = 5, the intruder may detect the average symbol period,
ie., Tys = (B + Bm/2)T = 34.57, even so this average value
is not enough to recover the original data. For the case of
Bm = 10, the sign of the average period starts to disappear.
There is no sign of the symbol period for the cases of 3,, = 20
and f,, = 40. It means that our technique can hide the
information of the symbol period, thus its security cannot be

broken by the intruder who has full information on the chaotic
sequence used.



V. CONCLUSIONS

This study has proposed and investigated a novel chaos-
based DSSS technique, where the symbol period is varied
according to the behavior of the chaotic spreading sequence
used. Mathematical models in discrete time domain for the
spreading scheme with variable symbol period and the de-
spreading scheme with sequence synchronization are presented
and analyzed. The BER performance of the proposed tech-
nique in DS-CDMA communication systems over an AWGN
channel is estimated with the use of numerical simulation.
The robustness against the attack of symbol period detection
of the proposed technique in comparison with that of the
conventional techniques is evaluated in two different scenar-
ios by means of the numerical simulations. The obtained
results show that: (1) the use of chaotic sequences instead
of PN sequences helps to protect DSSS-based communication
systems from blind estimation attacks to detect the symbol
period; (2) the multiple access performance gets better when
the initial spreading factor [ is increased. With the chip
period being fixed, this increment leads to the reduction of
the symbol rate. On the other hand, the increment of variation
width of the spreading factor, i.e., 3,,, makes the performance
worse, but in return the physical layer security is enhanced
significantly. Therefore, the values of 5 and f,, have to be
properly predetermined to guarantee the trade-off between
performance, data rate and security of the system; (3) it is clear
that the spreading, despreading and synchronization schemes
of the proposed technique are more complicated than those of
the conventional ones and they operate based on the process
of discrete-sample processing. Therefore, these schemes are
suitable to be implemented easily on high speed programmable
integrated circuits. All the noticeable remarks above make the
chaos-based DSSS with variable symbol period be a promising
and robust technique for enhancing the physical layer security
of DS-CDMA communication systems.
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