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ID15- IOBSERVER: SPECIES RECOGNITION VIA COMPUTER VISION

Fernando Martín-Rodríguez41, Mónica Barral-Martínez42, Ángel Besteiro-Fernández20, José Antonio Vilán-Vilán21

Abstract- This paper is about the design of an automated computer vision system 
that is able to recognize the species of fish individuals that are classified into a fish-
ing vessel and produces a report file with that information. This system is called iOb-
server and it is a part of project Life-iSEAS (Life program).A very first version of the 
system has been tested at the oceanographic vessel “Miguel Oliver”. At the time of 
writing a more advanced prototype is being tested onboard other oceanographic 
vessel: “Vizconde de Eza”. We will describe the hardware design and the algorithms 
used by the computer vision software.
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C++/OpenCV.

I. INTRODUCTION
As stated in the abstract, iObserver is part of a larger project called iSEAS (http://
lifeiseas.eu/el-proyecto/). iSEAS project is about appropriate management and 
reduction of discarded fish. iSEAS is funded by Life program. iObserver is part of 
iSEAS and tries to develop and test various technologies that can be installed 
on-board fishing (or oceanographic) vessels in order to collect useful data from 
fishing campaigns.
Particularly, this paper is about the part of iObserver that obtains a report on the 
number and species of captured fish, both useful captures and discards. For us, 
iObserver will be a computer vision system, installed over a conveyor belt inside 
a fishing or oceanographic vessel. This space is called the “processing room” and 
it is used to manually classify fish that is afterwards put into stowage facilities or 
discarded and thrown again to sea.
Nowadays, European authorities want to reduce (and even eliminate) discards 
as they can cause problems to ecosystems. iObserver is seen as a help in this 
process because it will be able to measure the amount of each species that en-
ters the vessel (useful or not).
iObserver consists of a industrial (computer vision) camera and a processing 
unit (industrial PC) equipped with our self-developed computer vision soft-
ware. Normally, it will be placed over the conveyor belt at its same beginning. 
Software is designed to need almost no user interaction. User only starts the 
capturing process and stops it when fish classification work has ended. At end 
of each capturing burst, system generates a report file (ascii-csv format) contain-
ing recognition results.

II. HARDWARE DESIGN
The first prototype installed in the “Miguel Oliver” ship in March 2015, was de-
signed trying to hold camera and lighting in the same box. This idea yielded an 
enormous, heavy and not very practical design. A second, more practical, proto-
type was designed for the second campaign (travel of “Vizconde de Eza” vessel 
to NAFO fish area). This new prototype is described below.

A. Main Box
Main system box is a steel waterproof box that contains the key elements of the 
system: processing unit (industrial PC), industrial camera, touchscreen and an 
auxiliary system to avoid water condensation (based on a peltier cell).
We have tested two different cameras: Basler ACE acA2040-25gc (GigEthernet 
interface) [1] and JAI GO- 5000C (USB3.0) [2]. Both of them have a big image 
sensor: 1” and C-mount for optics, resolution is above 5 Mpixels in both cases. 
Both are possible elections. Quality of optics and lighting is more important 
than camera for this system. Although we have performed tests with fixed focal 
length lenses, varifocal lenses are more practical here because belt width can be 
very variable from one ship to another (and also are environmental conditions 
like roof height that can make us to install camera nearer or further).
Industrial PC is a fanless model with solid state disk. The first prototypes are also 

equipped with an external disk to save captured images (to save disk space the 
system automatically discards void and/or repeated images, repeated images 
are frequent because of moments when belt is stopped). These images will be 
used later in refining the computer vision software.
Nowadays it is still pending the design of an auxiliary system that can measure 
belt speed generating a synchronization signal for capturing images at constant 
belt advances (just now, captures are launched at constant time intervals).

B. Lighting
Lighting is designed to provide a constant soft light rectangle on the belt. For 
that issue, we use a pair of LED strip lights at both sides of the belt (figure 1). 
Height and angle of these lights can be modified to minimize shadows and light 
variations.
Lights are embedded in steel waterproof boxes and are electrically fed from a 
power source inside the main box.

Fig. 1. Main Box and external lighting as they were mounted in the 
oceanographic vessel: Vizconde de Eza.

III. COMPUTER VISION SOFTWARE
Computer vision software was designed starting from test images captured 
at IEO (Instituto Español de Oceanografía: http://www.vi.ieo.es/) where we in-
stalled a conveyor belt and a camera. Software development is performed in 
two parallel stages: algorithms are tested and simulated (prototyped) using at-
lab [3], definite methods are then implemented using C++ [4] and OpenCV [5].

A. Initial Calibration
Calibration is mainly about finding out color characteristics of belt (we can find 
blue belts, but with different hues and also white ones). We also want to de-
termine the expectable maximum and minimum brightness values to perform 
color enhancing (basically white balance). Other important issue in calibration 
is stablishing a relationship between pixel coordinates and real distances (mil-
limeter per pixel in our images).
See that lighting conditions and camera position will be always constant, so that 
this process may be performed only one time (offline, with an auxiliary software 
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application) and we can rely on user’s manual help.
To calibrate, basically, user must put some object on the belt and run the calibra-
tion application. We have designed a calibration card (figure 2) that can be easily 
printed any time (the higher printing quality the better calibration).

Calibration card has absolute white (brightness=1) and absolute black (bright-
ness=0) inside so that calibration program can find out them. In fact, our appli-
cation searches for the value that only has 1% of image pixels above (in bright-
ness)  white and the value that has 1% pixels below  black.
After we know these two values, we can stretch color histograms [6] to lie always 
between both values, this is the color enhancement process that we will apply 
to all captured images.
After that, user is required to manually select background areas so that the ap-
plication can compute the interesting parameters: mean values of R, G and B 
and mean value of Hue (the H of the HSV color space [7]). User selects a rect-
angle on captured image. As background portion can be small if photographing 
the calibration card, user can remove it and capture an additional “background 
only” image. This process can be repeated so many times as convenient.
Size calibration (millimeter per pixel computation) is also done using the calibra-
tion card. Resolution of the TIFF file (CalibrationCard.tif ) is fitted to get exactly 
a 10 inches card (254 mm), obviously each of the four squares has 5 inches per 
side (127 m).

B. Conveyor Belt Removing
To remove background we use the mean values computed by the calibration 
application. Now we are in the main application and calibration values have 
been saved in a configuration file.
Other configuration file value that we must establish first is ROI. ROI in computer 
vision means “Region of Interest” and it is the part of the image where we are go-
ing to work. In this case ROI is constant because camera position also is. In figure 
3 (from tests at IEO), we see that we capture more than the desired belt and its 
contents. We define a central ROI to avoid dealing with irrelevant and possibly 
problematic objects.

Fig. 2. Calibration card.

Fig. 3. Image background (conveyor belt) removing.

To remove background, application computes four masks. A mask is a selec-
tion image that has zero value for nonselected points (background) and value 
one for selected “active” points. Masks are computed by mean Hue, mean R, 
mean G and mean B. A tolerance of 0.1 is used (in a scale from 0 to 1, a point 
is considered to be background if its value is between “mean - tolerance” and 
“mean+tolerance”). Masks are combined with this equation:

So basically masks are multiplied but using some coefficients (ci’s) that may be 
zero or one (activating or deactivating that criterion). This is so because we did 
not find a unique formula that could fit all the conveyor belt color/fish combina-
tions. User must see the masks and decide which the best segmentations are, 
assigning to the corresponding (ci’s) the active value. This is the last “manual 
calibration” that the system requires. Software can be optimized so that masks 
with a zero coefficient don’t need to be computed.
Resulting mask M is refined using mathematical morphology operations [8] that 
are useful to remove salt and pepper noise (black points in white background 
or vice versa).
Background removing is also used to compute the percentage of active (non-
background pixels) permitting to remove empty images. Previously, capture 
function has removed images that are equal to the previous one (previous im-
age, empty or not is stored in memory for this task). These two simple opera-
tions allow avoiding many unnecessary computations.

C. Object Segmentation
In this problem, object segmentation (Id EST: distinguishing between different 
overlapping fishes) is very difficult. Traditional methods based on derivatives or 
other kind of gradient operators do not work well. We have the help of hav-
ing detected the background but still any derivative is likely fooled by the local 
variations in fish skin (squama, dots…).
We have implemented an approximate method based on gray regions and in 
the watershed transform.
Method (explanation of stages):
- Compute the corresponding grayscale image (we tested also with the “value” 
or V component of HSV space).
- Apply two morphological operations [8]: first, open by reconstruction; second 
closing by reconstruction. This, basically, will erase strong local variations.
- Search for local peaks in gray level histogram. A peak is defined as a value 
higher than three times the mean histogram value. This will detect possible dif-
ferent objects. 
 Applying region growing [8] to the selected objects: this will make greater these 
objects and will possibly merge similar and near ones. 
- Compute a gradient operator for the original graylevelimage. Add to the de-
tected gradient points, those belonging to the boundaries of background de-
tection (frontiers between black and object in figure 3, right).
- Using the detected objects as seeds and the complete gradient of above, apply 
the watershed algorithm [6,8].
In figure 4, we can see the segmentation result for image of figure 3. We can 
see that it is not exact but it is mainly correct giving us big portions of fish to 
be classified.

D. Species Classification
As we have just seen in the previous section, objects (fish specimens) will over-
lap and will occlude each other, making almost impossible using contour or 
morphology descriptors. For this reason we have centered in using “skin” de-
scriptors: color and texture.
For a proper classification, user has to manage a “Fish Alphabet”. To add a species 
to the alphabet, user has to put specimens on the conveyor belt and use an “Add 
Fish Sample” application. The more samples we have, the better this species will 
be represented in the alphabet.
The “add-sample” application only removes background; it does not execute the 
object segmentation, assuming all active points come from true skin of the de-
clared species. User is responsible not to fool the application.
Once background pixels are removed, some characteristics about color and tex-
ture must be computed. At the time of writing, we only compute a 2D (10x10 in-
tervals) color histogram of the “a” & “b” color components (from Lab color space 
[7]).
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Fig. 4. Object segmentation: label image (left),
combined representation (right).

Fig. 5. Classification.

At recognition time, the same characteristics (again only color histogram) are 
computed from the segmented objects. Then these values (in fact, matrixes) are 
compared through Euclidean distance with the alphabet yielding a recognized 
species.
Our system also computes a self-confidence value for each segmented (and rec-
ognized) object. Self-confidence tries to determine how sure an automatic rec-
ognizer is of its own decision. It is computed using the minimum distance value 
(the lesser, the more confident), the relation between minimum distance and 
second best (the greater, the better) and object area (very small objects are typi-
cally segmentation errors and are not well classified). Combining all these values 
empirically we get a number between 0 and 100 (intuitively like a percentage) 
that measures recognizer self-confidence. Empirically we deduced that confi-
dences less than 10 are not reliable and these recognitions are removed from 
final report.
In figure 5, we see two recognition examples where recognized objects are con-
verted into color blobs. Color is assigned according to the recognized species. 
Low confidence blobs are removed. In the upper example, there are no errors: 
“Atlantic halibut” (Hippoglossus hippoglossus) gets red, species 2 gets green 
and “mackerel” (Trachurus trachurus) goes yellow. The image below is not so 
well recognized, the big fish above should get blue and it is misclassified as a 
mackerel.
Recognition stage still needs improving, adding texture descriptors (like, per-
haps, Gabor filters [9]) to the extracted feature vector (nowadays, this vector is 
only the “ab” matrix histogram). We must also test other classification methods 
because only Euclidean distance is very basic.

IV. CONCLUSIONS AND FUTURE LINES
We have designed a system for solving the problem of species classification. De-
velopment is still incomplete although we are already getting promising results.
Important conclusions are: the difficulty of overlapping objects segmentation, 
solved only approximately and the need to implement a “fish skin” recognizer 
that works based on color and texture. Perhaps objects get broken or merged in 
segmentation but the species percentage can still be computed correctly.
Main future lines are:
- Adding a speed sensor to the conveyor belt to fire an image when belt has 
moved a predefined length.
- Adding new, texture, features to the recognition stage.
- Testing new classification schemes that could be less prone to errors.
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