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A new level-set model is proposed for simulating immiscible thermocapillary flows with variable fluid-
property ratios at dynamically deformable interfaces. The Navier-Stokes equations coupled with the en-
ergy conservation equation are solved by means of a finite-volume/level-set approach, adapted to a mul-
tiple marker methodology in order to avoid the numerical coalescence of the fluid particles. The tem-
perature field is coupled to the surface tension through an equation of state. Some numerical examples
including thermocapillary driven convection in two superimposed fluid layers, and thermocapillary mo-
tion of single and multiple fluid particles are computed using the present method. These results are com-
pared against analytical solutions and numerical results from the literature as validations of the proposed

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

When a fluid particle (bubble or drop) is placed in a second
fluid in which a temperature gradient is imposed, it will move
from the region with lower temperature to that with higher tem-
perature so that the surface energy is minimized, due to the sur-
face tension is usually a decreasing function of increasing temper-
ature. This effect is called thermocapillary or Marangoni migration.
It arises as a consequence of the local surface tension gradients on
the fluid-fluid interface caused by temperature distribution. In ad-
dition to its importance from a fundamental point of view, it pro-
vides a particularly attractive means for manipulation of continu-
ous fluid streams or fluid particles, in applications involving mi-
crogravity (Subramanian and Balasubramaniam, 2001) or microde-
vices (Darhuber and Troian, 2005; Karbalaei et al., 2016).

The thermocapillary migration of a drop was first examined
experimentally by Young et al. (1959), who also found an an-
alytical expression for the terminal velocity of a single spheri-
cal drop in the creeping flow limit, in which convective trans-
port of momentum and heat can be neglected. They derived the
named YGB theory for the prediction of the steady state migra-
tion velocity. The analysis of Young et al. (1959) was extended by
Subramanian (1981) and Subramanian (1983), who studied the mi-
gration velocity of a non-deformable gas bubble and liquid droplet
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in the limit of zero Reynolds number. Since then, many works
have been performed experimentally, analytically and numerically;
most of the research on this phenomenon has been summarized
by Subramanian and Balasubramaniam (2001).

Collections of fluid particles are usually encountered in practi-
cal applications, and the interaction between them will be more
important. Thus, the thermocapillary motion of multiple spheri-
cal drops and their interactions has been studied by Anderson
(1985) and Keh and Chen (1990; 1992) using analytical and com-
bined analytical-numerical methods, in the limit of zero Reynolds
and Marangoni numbers. Zhang and Davis (1992) studied the pair-
wise collision rate of small spherical drops undergoing thermocap-
illary migration in a dilute dispersion using a trajectory analysis.
Sun and Hu (2002) reported a theoretical study of the thermocap-
illary motion of two bubbles along their line of centers in a uni-
form temperature gradient, whereas Yin and Li (2015) presented
a numerical study on the interaction of two unequal and non-
merging spherical drops using an axisymmetric model. These stud-
ies demonstrated that the collective behavior of multiple droplets
is different from that of a single isolated drop. Further works
have been reported on the Marangoni migration of droplets in
the presence of neighboring boundaries, for instance Meyyappan
et al. (1981) and Sadhal (1983) solved the quasi-steady problem
of thermocapillary motion of a spherical gas bubble normal to
an infinite planar solid or free fluid surface of constant tempera-
ture, (Meyyappan and Subramanian, 1987) examined the thermo-
capillary motion of a gas bubble parallel to a rigid planar surface,
(Keh et al., 2002) have obtained numerical solutions and approxi-
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mate analytical solutions for the steady thermocapillary motion of
a fluid droplet parallel to two walls using a boundary collocation
method and the method of reflexions, whereas (Chang and Keh,
2006) extend previous work to the motion of a fluid drop per-
pendicular to two walls. In these cases the migration velocity was
found to decrease relative to the value given by Young et al. (1959).

The majority of the aforementioned investigations assume a
fixed spherical shape for the migrating bubble or drop, however,
this assumption is valid only in the limit of large surface tension,
without convective transport of momentum and energy. There-
fore, some numerical models have been proposed in order to
solve these issues. For instance, Haj-Hariri et al. (1997) reported
three-dimensional computations of the thermocapillary motion of
deforming droplet based on a continuum model for the fluid-
fluid interface, whereas Nas and Tryggvason (2003) and Nas et al.
(2006) have performed comprehensive numerical simulations of
the thermocapillary motion of multiple deformable droplets by
means of the front-tracking (FT) method (Tryggvason et al., 2001).
Maa and Bothe (2011) and Samareh et al. (2014) presented di-
rect simulations of thermal Marangoni effects at dynamically de-
formable interface of two-phase incompressible fluids, based on
modified versions of the volume-of-fluid (VOF) method (Hirt and
Nichols, 1981). Yin et al. (2012; 2008) studied an isolated spheri-
cal drop in thermocapillary migration for low and high Marangoni
numbers using a front-tracking scheme. Brady et al. (2011) and
Zhao et al. (2010) reported simulations of the thermocapillary mo-
tion of two- and three-dimensional fluid particles using the level-
set (LS) method (Osher and Sethian, 1988; Sussman et al., 1994).
Guo and Lin (2015) have presented a phase-field (PF) model for bi-
nary incompressible fluid with thermocapillary effects, which was
used to compute thermocapillary convection in a two-layer fluid
system and thermocapillary migration of a drop.

To the best of the authors’ knowledge, there are not previous
works on the numerical modeling of two-phase flows with vari-
able surface tension by means of the conservative level-set (CLS)
method (Balcazar et al., 2014; Olsson and Kreiss, 2005), moreover,
most of numerical research reported in the literature on thermo-
capillary motion of multiple deformable fluid particles has been
performed by means of the front-tracking method (Nas et al.,
2006; Nas and Tryggvason, 2003; Tryggvason et al., 2001), so that
the capability and accuracy of new interface capturing methods for
simulating this phenomena is still to be proven. Therefore, it is
the purpose of this work to develop a sufficiently general numeri-
cal technique for simulating thermocapillary motion of deformable
fluid particles, so that effects such as heat convection, container
walls or the presence of multiple fluid particles can be modeled.
In this regard, the present paper contains the modeling and im-
plementation of the thermal Marangoni stresses, within the frame-
work of the finite-volume/level-set method introduced by Balcazar
et al. (2014; 2015a), thus, using the conservative level-set method
(Balcazar et al., 2014; Olsson and Kreiss, 2005), mass conserva-
tion problem that is known to affect standard level-set formula-
tions (Osher and Sethian, 1988; Sussman and Puckett, 2000) is cir-
cumvented. Additionally, the present model is designed in the con-
text of a multiple marker CLS methodology introduced by Balcazar
et al. (2015b), which has the ability to solve the interaction of mul-
tiple interfaces at the same control volume, allowing for the colli-
sion of multiple bubbles or droplets, avoiding the numerical coa-
lescence of the fluid particles.

The present paper is organized as follows: The mathematical
formulation is presented in Section 2. Section 3 shows the numeri-
cal methods. Model validation and numerical experiments are pre-
sented in Section 4. Finally, concluding remarks and future work
are discussed in Section 5.

2. Mathematical formulation
2.1. Incompressible two-phase flow and energy equation

The conservation of momentum and mass of two immiscible in-
compressible and Newtonian fluids are described by the Navier-
Stokes equations defined on the spatial domain Q = @, U Q¢ with
boundary 9€2:

d .

37 (PVi) + V- (0V¥i) = V- Si + i in € (1
Sk = —pid + e (Vv + (Vv)T) (2)
V~Vk=0 in Qk (3)

where subscripts k = {d, c} denote the dispersed (d) and contin-
uous (c) fluid phases, I' = 02, N 32 is the fluid-fluid interface,
p and pu denote the density and dynamic viscosity of the fluid
phases, v is the velocity field, g is the gravity acceleration, p is the
pressure, S is the stress tensor and I is the identity tensor.

Assuming no mass transfer between the fluid phases yields a
continuous velocity condition at the interface:

V=V, inl" (4)

The jump in normal stresses along the fluid-fluid interface is bal-
anced by the surface tension. Considering the surface tension co-
efficient as function of the temperature, o (T), gives the following
boundary condition for momentum conservation at the interface:

(S;—So) -n=f, =0 (T)kn— Vro (T) in T (5)

where n is the unit normal vector outward to 924 « is the in-
terface curvature, and Vi =V —n(n- V) is the tangential surface
gradient operator.

The Navier-Stokes equations for the dispersed fluid in Q4 =
ngu...UQZd and continuous fluid in ., Egs. (1)-(5), can be
combined into a set of equations in €2, with a singular source term
for the surface tension force at the interface I' =17 U...ulhy,
(Brackbill et al., 1992; Peskin, 1977), defining the superscript n; as
the number of fluid particles in ;:

%(pv) +V.(pwW) = -Vp+ V. pu(Vv+ (Vv)T)
+pg+1f5 (T)dr (6)

V.v=0 (7)

where - is the Dirac delta function concentrated at the interface.
Since p and u are considered constant in each fluid phase with a
jump discontinuity at the interface, they can be defined as:

P = paHa + pc(1 — Hg) M= pgHg + e (1 = Hy) (8)

with H; the Heaviside step function that is one in ; and zero
elsewhere. At discretized level a continuous treatment of physical
properties is adopted in order to avoid numerical instabilities at
the interface, according to the CLS method (Balcazar et al., 2014;
2015a; Olsson and Kreiss, 2005).

In order to account for the temperature dependence of surface
tension in momentum equation, the temperature distribution must
be determined. This requires the solution of the energy equations
in the two fluid phases. If the contribution of viscous dissipation is
ignored, and heat sources or sinks are not present, these equations
can be written as
dTy 1

—4+V. (v T, ) =
at Kk Iokcp,k

V- (M VT in € 9)
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Fig. 1. (a) Fluid-fluid interfaces I';
on the same control volume.

with heat capacity ¢, and thermal conductivity A. These physical
properties are assumed to be constant at each fluid phase. Fur-
thermore, the temperature is considered to be continuous at the
interface,

T, =T, inT (10)

Assuming no phase change, the energy balance at the interface
yields the continuity of heat flux

(AgVTy —AVT) - n=0 inT (11)
Thus, Egs. (9)-(11) can be written in Q2 as

aT 1 .
W—FV-(VT):IO—CPV-()\VT) in Q (12)

with A and ¢, defined as

A =AgHg+ Ac(1 — Hy) Cp = CpaHa +cpc(1—Hy) (13)

At discretized level, thermal properties, A and cp, will be regular-
ized in the context of the CLS method, according to the Section 2.4.

2.2. Interface capturing and multiple marker level-set method

The two major challenges of simulating interfaces between dif-
ferent fluids are to maintain a sharp front and to compute the sur-
face tension accurately (Tryggvason et al., 2001). Regarding the first
issue, the CLS method introduced in Balcazar et al. (2014) is used
for interface capturing. Moreover, in order to avoid the numerical
coalescence of the fluid-fluid interfaces, a multiple marker level-
set method introduced in Balcazar et al. (2015a) is used to follow
the motion of each fluid particle at the dispersed phase. Therefore,
different level-set functions (markers), @1, ..., ¢n,, can be captured
in the same control volume, allowing for the collision of the fluid
particles, as illustrated in Fig. 1a-b.

In the CLS method (Balcazar et al., 2014; Olsson and Kreiss,
2005) the interface is implicitly represented by the 0.5 isosurface
of the regularized indicator function ¢;:

1 dj(x,t) .
d)i(x,t):z(tanh( P )+1>, i=1,...,n4 (14)

where d; is the signed distance function associated to the ith fluid
particle, and e a parameter that sets the thickness of the profile.
Eq. (14) is used to initialize the CLS functions ¢;, from the dis-
tance function d; generated for each fluid—fluid interface. Moreover,
the ith interface transport equation can be written in conservative
form provided the velocity field is solenoidal, V - v = 0, namely,

%+V~¢,~v:0,i=1,2,...,nd (15)

Furthermore, an additional re-initialization equation is introduced
in order to keep a sharp and constant interface profile

%-ﬁ-v-(f)i(l—qﬁ,-)n,—:V~8V¢,-,i:1,2,.‘.,nd (16)
This equation is advanced in pseudo-time t, it consists of a com-
pressive term, ¢;(1 — ¢;)n;|;—_g, which forces the level-set function
to be compressed onto the interface along the normal vector n;,
and of a diffusion term V . ¢V¢; that ensure the profile remains
of characteristic thickness & = 0.5h%°, with h defined as the grid
size (Balcazar et al., 2014).

2.3. Surface tension

Implementing surface tension in a numerical scheme involves
two issues: the curvature « needs to be determined and the re-
sulting pressure jump must be applied appropriately to the fluids.
Because a finite-volume approach is used for discretization of the
governing equations, the aforementioned problems can be conve-
niently addressed by means of the continuous surface force (CSF)
model (Brackbill et al., 1992), which is adapted to the multiple-
marker/level-set method introduced by Balcazar et al. (2015a), and
extended to take into account the temperature dependence of sur-
face tension

f08r = iferi

o (17)
= (o (T)ki(@)m; — Vo (T) +n(m; - V)o (T)) || Ve ||

io1

where «i(¢;) and n; are given by

”§£1“ ki(p)=-V -n;,i=1,2,...,n4 (18)

To obtain a cell averaged value, the curvature is integrated over
each finite volume 2p:

n;(¢;) =

Kl'pzfl V~n,~dV (19)
’ Ve Jo,

Applying the Gauss theorem yields

K,‘p:—l/ n; . dA (20)
' Vb Js,

Here V¢, is calculated by means of the least-squares method
(Balcazar et al., 2014; Kothe et al., 1996), A is the area vector, Vp is
the volume, Sp is the surface of ©2p, and the subindex P denote the
Pth control volume. Further details on the application of the least

Please cite this article as: N. Balcazar et al., A level-set model for thermocapillary motion of deformable fluid particles, International
Journal of Heat and Fluid Flow (2016), http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.09.015



http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.09.015

JID: HFF

[m5G;October 20, 2016;12:25]

4 N. Balcdzar et al./International Journal of Heat and Fluid Flow 000 (2016) 1-20

squares method for gradient evaluation are given in Balcazar et al.
(2014).

The surface tension coefficient is taken to be a linearly decreas-
ing function of the temperature

o=09—0r(T-Tp) (21)

where o1 = —do /dT = constant, o is the surface tension at the
reference temperature Ty. In general, the coefficient o7 is positive
and it depends of the temperature, however, a constant ot pro-
vides a very good approximation for most fluids in a range of small
temperature variation. This model can be extended to other equa-
tions of state.

2.4. Regularization of physical properties

Finally, fluid properties are regularized by means of a global
level-set function, according to the multiple-marker/level-set
method (Balcazar et al.,, 2015a):

¢d (Xv t) = max{¢1 (x7 t)v e ¢'nd—1 (X, t)v ¢nd (X, t)} (22)

Thus, physical properties are computed at the discretized level as
follow

P = PaPd + pc(1 - Pg) (23)
wt =g g+ pt (= da) (24)
PCp = PdCpaPd + PcCpc(1 = Pa) (25)
AU =2A71g + AT — dg) (26)

All physical properties of the respective phases are assumed to be
constant, moreover the local average dynamic viscosity and ther-
mal conductivity are calculated via harmonic averaging (Deen and
Kuipers, 2013; Patankar, 1980; Prosperetti, 2002).

3. Numerical method

The numerical algorithms presented in this paper are designed
in the context of the unstructured finite-volume/level-set method
introduced by Balcazar et al. (2014; 2015a). Thus, the Navier-
Stokes equations, Eq. (6), energy equation, Eq. (12), and inter-
face capturing equations, Eqs. (15)-(16), are solved with a finite-
volume discretization of the physical domain on a collocated un-
structured mesh, where both scalar and vector variables (p, v, T
and ¢) are stored in the cell centroids. Furthermore, the convective
term of momentum Eq. (6), energy Eq. (12) and interface trans-
port Eq. (15) is explicitly computed approximating the fluxes at cell
faces with a TVD-Superbee limiter scheme (Balcazar et al., 2014;
Sweby, 1984) (see Appendix A). Diffusive terms are centrally dif-
ferenced, whereas a distance-weighted linear interpolation is used
to find the cell face values of physical properties and interface
normals. Gradients are computed at cell centroids by means of
the least-squares method (Balcazar et al., 2014). Regarding the re-
initialization Eq. (16), a central difference scheme is used to dis-
cretize both convective and diffusive terms. The resolution of the
velocity and pressure fields is achieved by a standard fractional
step projection method (Chorin, 1968). Thus, the global algorithm
for thermal two-phase flows with variable surface tension is sum-
marized as follows:

1. Initialize v(xp, 0), ¢;(xp,0), T(xp, 0) physical properties and in-
terface geometric properties.

2. The time-step, At, which is limited by the CFL conditions
and the stability condition for the capillary force defined by
Brackbill et al. (1992), is calculated as

12
: h  ph? h P14+ p2\'?
At =Cmin| —, —, [ — ,h3/2(7) 27
f (||v|| m (||g||> iro 27)

where G = 0.1 unless otherwise stated. Recently, Denner and
van Wachem (2015a) have reported a revised capillary time-
step constraint, derived from numerical stability and signal pro-
cessing theory. In the present work, the minimum time-step
calculated according to Eq. (27), is multiplied by the coefficient
C; = 0.1, which results in a robust numerical solution for the
simulations reported in this research.

3. The fluid-fluid interfaces are advected by means of the CLS
method introduced by Balcazar et al. (2014; 2015a). Advection
Eq. (15) and re-initialization Eq. (16) are explicitly integrated
in time with a 3-step third-order accurate TVD Runge-Kutta
method (Gottlieb and Chi-Wang, 1998). Moreover, solving re-
initialization Eq. (16) to steady-state results in a smooth tran-
sition of ¢; at the interface that depends of the diffusion co-
efficient & = 0.5h9°, where h is the grid size (Balcazar et al.,
2014). This configuration leads to an interface thickness, with
a distance between contours of ¢ = 0.1 and ¢ = 0.9, of around
three times the grid size (Balcazar et al., 2014). Furthermore, &
is chosen as small as possible in order to keep a sharp rep-
resentation of the interface, while numerical stability of Eq.
(16) is not affected. In present simulations one iteration per
physical time step of re-initialization Eq. (16) was sufficient to
keep the profile of the CLS functions. The reader is referred to
the work of Balcazar et al. (2014; 2015a) for technical details on
the multiple marker CLS method.

4. The temperature field, T™*1, is calculated using an explicit Euler
scheme

Tn+1 _Tn
—x = AT+

where D;(T) =V, - (AV,T) represents the diffusion operator,

Aﬁ(T) =V}, - (vT) is the convective operator, and V|, represents
the gradient operator.

5. Physical properties (o, i, A, ¢p) are updated at each control vol-
ume, according to the Section 2.4, whereas surface tension co-
efficient, o (T), is calculated by Eq. (21).

6. The fractional-step method (Chorin, 1968) is used to solve the
pressure-velocity coupling. Indeed, a predictor velocity v* is
evaluated by

1

T 1n
T%Dh (T (28)

pv* _ pnvn
At

> (o (Dki(@im; — Vyo (T) +mi(n; - Vi)o (T)) || Vaepil|

i=1

3 1
= _jA‘g(,ov") + EA‘,;(,OV'H) + D} (V") + pg+
(29)

where DY(v) = V- u(Vyv + (th)T) is the diffusion operator,
and A} (pv) =V}, - (pwv) is the convective operator. Moreover,
an explicit Adams-Bashforth scheme has been used for the tem-
poral discretization of the convective term, V o is evaluated
by means of the least-squares method (Balcazar et al., 2014),
whereas n; and k; are calculated at each control volume ac-
cording to Eq. (18).

7. Substituting Eq. (31) into the Eq. (7) yields a Poisson equation
for pressure field

1 1
Vi (;vhw““)) = Vi () (30)

Discretization of Eq. (30) leads to a linear system, which
is solved by means of a preconditioned conjugate gradient
method.
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incompressibility constraint, Eq. (7). Thus, a corrected veloc-
ity field is obtained according to the fractional-step method
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v o - S0 ) 31)

9. In order to avoid pressure-velocity decoupling when the pres-
sure projection is made on collocated meshes (Felten and Lund,
2006; Rhie and Chow, 1983), a cell face velocity vy is calculated
so that Vj, - v =0 at each control volume (Balcazar et al., 2014).
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Namely in discretized form:

1 At At
Vi = - vn+1 + \v/ n+1 A v/ n+1
f Z 2( q p(¢q)( hP )q) pf( hP )f

qe{P,F}

(32)

where P and F are denoting the adjacent cell nodes with a com-
mon face f. The reader is referred to Appendix B or the work
introduced by Balcazar et al. (2014) for further details on the
origin of Eq. (32). This cell-face velocity is used to advect the
CLS function in Eq. (15), momentum in Eq. (6) and temperature
in Eq. (12).

10. Repeat steps 2-9 until time step required.

The numerical methods introduced in this work have been im-
plemented in the framework of a parallel C++/MPI code called Ter-
moFluids (Lehmkuhl et al., 2007). The code is run on the super-
computer MareNostrum III using 128 cores for 3D simulations of
single droplets (Section 4.2), up to 512 processors for 3D simula-
tions of multiple droplets (Section 4.3). The reader is referred to
the work of Balcazar et al. (2014) for additional technical details on
the finite-volume discretization of the general convection-diffusion
equation on unstructured meshes, including the Navier-Stokes and
CLS equations. Furthermore, verification and validation of the nu-
merical methods for isothermal two-phase flows with constant
surface tension have been reported in Balcazar et al. (2014, 2016,
2015a, 2015b).

4. Model validation and numerical experiments

A first test case is presented in Appendix C, in order to val-
idate the present numerical methods in the context of thermal
two-phase flow with constant surface tension. Next sections are
devoted to the verification and validation of the proposed level-
set model in thermocapillary flows, including the thermocapil-
lary driven convection of two superimposed planar fluids at small
Reynolds and Marangoni numbers, thermocapillary migration of
single fluid particles, and simulation of thermocapillary motion
and interaction of multiple fluid particles.

The dimensionless parameters controlling the thermocapil-
lary flow are the Marangoni number (Ma), Reynolds number
(Re), Capillary number (Ca) and the ratios of physical properties
(Mps N> Mo Mep)s defined as follow

Ma = UlrP<Coc. Re = UrlrPe. ca= Utk (33)
Ac Mc 0o
Od M Ag Cpd
_ Pa. _ Ha, _ M. = pd (34
Np O Nu i U e Ne, Cpe (34)

where the subindex c refers to the continuous phase, the subindex
d refers to the dispersed phase, L, and U, are the characteristic
length and velocity of the system, respectively. These characteristic
dimensions (L, Ur) will be defined if necessary according to each
test case introduced in next sections. The effect of gravity is ne-
glected, g = 0, and phase change is not taken into account.

Fig. 2. Computational set-up in thermocapillary convection of two superimposed
planar fluids.

4.1. Thermocapillary convection of two superimposed planar fluids

The computational domain is illustrated in Fig. 2 with —0.5Lg <
X <0.5Lg, —he <y < hy, Lg = 4Hq, and the interface I" located at
y = 0. The periodic boundary conditions are applied in the x direc-
tion, no-slip conditions are imposed on the upper and lower walls,
whereas the wall temperatures are specified as T(x, hy) = T; on the
top boundary and a sinusoidal temperature on the lower wall at
y=—hc

T(x,—h¢) =T, + ATycos(kx) (35)

with T, > T;, and k =2m /L, defined as the wave number. The
characteristic scales of length and velocity are L. = h, and U; =
o7 ATyhe/(Lotc), respectively. Therefore the dimensionless num-
bers defined in Eq. (33) can be written as
Ma = 0T AT e Pepe. g,
Lo e Ac
_ oT ATb hc

Ca =
¢ Lo 09

_ or ATb hg Pc .
Lou? (36)

When Re « 1, Ma « 1, and Ca « 1, the convective transport of
momentum and energy are negligible, and the interface remains
plane. The analytical solutions for the stream function ¥ (x, y) and
temperature field T(x, y) were obtained by Pendse and Esmaeeli
(2010) as follows

¥ (%, Y) = (Unax/k) (sin h* (@) — az)_l sin (kx) (ky sinh*(@)...
cosh(ky) — (1/2)(2a* + ky(sinh(2ar) — 2a)sinh(ky))) (37)
(Tt = Tp)y + m, Tehe + Tyhg

T(x.y) = hy + 77,\hc (38)
+ AT, f(a, B, 1) sinh(o — ky)cos (kx)

for the fluid in €4, and
¥ (%.y) = Unax/k) (sinh? (B) — /32)71 sin (kx) (ky sinh?(B)...
cosh(ky) — (1/2)(2% — ky(sinh(2B) — 28)sinh(ky))) (39)

T(x.y) = L Ui ﬁ]d)}_/i_—i;]%hf +Thy | AT,cos(kx)...
C

f(a, B, ) (sinh(a)cosh(ky) — nysinh(ky)cosh(c))

for the fluid in €. The parameters in the aforementioned equa-
tions are defined as

o = hgk; B =hck (41)

(40)

1
nysinh(B)cosh(ee) + sinh(a)cosh(B)

f(a’,BJ?A): (42)
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Fig. 4. Thermocapillary convection of two superimposed planar fluids. Streamline contours for 7, =1 (left) and n; = 0.1 (right). Analytical (red line) and numerical (black
line) results, h = Hu /120. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and

Unox = —(Mﬁ’f“)gw, B (e B0 (43)
where

gla, B, my) = f(a, B, my)sinh(a) (44)

h(a. B.1u) = (sinh?(«) — &?) (sinh?(B) — B?)...
(nu(sinh?(B) — B?)(sinh(2a) — 2ax) (45)
+(sinh? (ar) — &2) (sin k2 () — &?) (sinh(2B) — 28))

In addition the velocity field can be obtained from ¥(x, y) by tak-
ing v-ex=0v/dy and v-ey, = -9y /dx (Fig. 5).

Present simulations are performed on a uniform cartesian mesh
of {160 x 40, 320 x 80, 480 x 120} grid points with h =
{Hq/40,Hg /80, Hg/120}, respectively. The dimensionless param-
eters are Re = 0.01, Ma = 0.01, Ca = 0.01, whereas the ratio of
physical properties are set to unity, n, =1, 7, = 1, 1c, = 1, except
for thermal conductivity ratio which takes the values 1, = {1,0.1}.
Since Re « 1, Ma « 1, and Ca « 1, present cases correspond to
the creeping flow regime, indeed, the density ratio does not play a
role. Furthermore, since the simulations are carried out for steady
state, the results do not depend of the heat capacity ratio 7,.

The contours of stream function and temperature field are
shown in Figs. 3 and 4, for thermal conductivity ratio n; =1 and
n, = 0.1, respectively, using a grid size h = Hg/120. Fig. 6 shows

a further comparison between present simulations against ana-
lytical results for T and v-e, on the line x/Hg =0. From the
aforementioned results, it can be concluded that present simula-
tions are in excellent agreement with analytical solutions given by
Egs. (37)-(40). Additionally, in order to demonstrate the grid con-
vergence of the present model, Table 1 shows the E? norms of
the differences between the analytical results (¢f"““) and numeri-

cal solutions (¢™), defined as E? = (1/N&y) szfv [lpm — qbf"““”,
where N, is the number of control volumes in 2. It is observed
that as the grid size (h) decreases, the E? norm decreases for
both velocity field (¢ = {vx, v}) and temperature field (¢ = T). We
also note that differences ElT are slighter higher for the cases with
n; = 0.1 in comparison with 7, =1, which can be explained by
the jump in thermal conductivity at the interface when n; # 1.
Fig. 3 illustrates the contours of temperature field for n; =
{1,0.1}. It is observed, that for the case with n; =1 the temper-
ature contours present equal slopes at the fluid-fluid interfacial
zone, whereas, for 1, = 0.1 the temperature contours at the in-
terface are different at both fluid regions, reflecting the fact that
the ratio of the thermal conductivities of the fluids plays an im-
portant role in the strengthens of the thermocapillary convection.
Moreover, the cosine function used as boundary condition for the
temperature at the bottom wall leads to non-uniform distribution
of temperature at the interface. Indeed, the fluids are set in mo-
tion by the action of a shear force originated by the temperature
gradient at the interface, and directed from the symmetry axis
Xx/Hg = 0 toward both sides in €2, as is illustrated by streamlines
in Fig. 3. Furthermore, Fig 4 shows that the fluid flow consist of
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Table 1

Relative differences between the analytical solutions and the numerical results for Section 4.1.
Ef’ = (1/Nw) Zf’“’ [|prm — peract]|, where N is the number of control volumes, and ¢ =

{vx. vy, T}
=1 n,,=0.1
h ET EY EY ET EY EY
Ho/40  1.8x1075  85x10° 12x10° 31x10° 17x10*% 26x1075
Hof[80  92x10% 28x10° 39x10° 16x103 57x10° 9.0x10°°
Ho/120 85x10%  14x105 16x10° 96x10*% 30x10° 53x10°

4 regions with counter-rotating vortices, where the sense of fluid
circulation is given by the temperature gradient at the interface.
Since the domain is periodic in the x direction, the velocities de-
crease as they approach to the left and right boundaries, therefore,
the fluids are also forced to move upward in €4, or downward in
¢, which explain the circulation patterns illustrated in Figs. 3 and
4. Thus, present results are consistent with analytical solutions of
Pendse and Esmaeeli (2010), and with recent simulations reported
by Liu et al. (2012), Zheng et al. (2016), Guo and Lin (2015), where
the same problem was researched numerically by means of lattice
Boltzmann and phase field methods.

4.2. Thermocapillary motion of single fluid particles

Next sections are devoted to the simulation of Marangoni mi-
gration of single and multiple fluid particles. The characteristic
scales of length, velocity and temperature are denoted by L, =
d/2, Ur =o7||VTx||(d/2)/ e and T = (d/2)||VTx||, respectively.
Therefore, the dimensionless parameters defined in Eq. (33) are

written as follow

Moz LVl Eae g _orl VI |
ce e 46
o or I VI id 1o
1= — = "
20()

where the subindex c refers to the continuous phase, the subindex
d refers to the drop fluid phase, U, is the named thermocapillary
velocity, d is the initial droplet diameter, ||VTy]|| is the tempera-
ture gradient imposed in the continuous fluid, whereas the ratios
of physical properties are defined by Eq. (34). Additionally, the di-
mensionless velocity, V* = (ey - v¢)/Ur with vc = [, ¢pvadV/ [, ¢dV,
and dimensionless time, t* = 2tU,/d, are used to express the nu-
merical results.

The fluids are initially at rest without gravity and the temper-
ature linearly increases from the cold bottom wall toward the hot
top wall

T - T,
T y.2) =Ty + ==y =T+ |IVTxlly (47)
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Fig. 7. (a) Schematic diagram of the spatial domain. (b) Cross section of the mesh, plane perpendicular to the symmetry axis y.

Table 2

Mesh parameters used in 3D simulations of thermocapillary motion of isolated fluid
particles. Here Npjgnes is the number of planes in which the symmetry axis of € is

divided.
Mesh  (Dg, Hg)  Cells Cells/plane  Npjgnes ~ Cell geometry — h
M1 (84, 8d) 940 x 105 4700 200 hexahedral dJ25
M2 (8d, 8d) 1.79 x 105 7440 240 hexahedral d/30
M3 (84, 8d)  2.78 x 105 9940 280 hexahedral d/35
M4 (84, 8d)  4.09 x 106 12800 320 hexahedral d/40
with T; the temperature of the top wall and T}, the temperature of Table 3

the bottom wall. The computational setup is illustrated in Fig. 7a,
whereas a cross section of mesh used for 3D simulations is pre-
sented in Fig. 7b.

4.2.1. Thermocapillary migration in the limit of zero Marangoni
number

In the limit of zero Marangoni number and small Reynolds
number, Young et al. (1959) derived the named YGB theory for the
prediction of the steady state migration velocity (Uygg) of a drop
in an infinite domain with constant temperature gradient field,
[I[VT]|, such that the convective transport of momentum and en-
ergy are negligible

Yres _ 2 (48)
U (24 30a/1e) (2 + Xa/Ae)

where all the physical properties are assumed to be constant ex-

cept for the surface tension, which is assumed to vary linearly with

temperature.

In present simulations, a 3D cylindrical domain 2 of diame-
ter Do = 8d and height Hg = 8d is considered, as shown Fig. 7.
2 is divided by hexahedral control volumes generated by a con-
stant step extrusion h = Hg/Npjgnes, Of @ two-dimensional unstruc-
tured grid of quadrilateral cells along the symmetry axis of €2, as
is summarized in Table 2. In order to maximize the droplet res-
olution, the mesh was concentrated around the symmetry axis of
2 using a constant grid size, h, which grows exponentially to the
border where it reaches a maximum size, as Fig. 7b illustrates. A
spherical drop of diameter d is placed on the symmetry axis of
2, at 1.5d above the bottom wall. No-slip boundary conditions are
applied on the top and bottom walls, and Neumann boundary con-
dition is used on the lateral wall.

Table 3 shows the nondimensional parameters used in present
simulations. In addition, the theoretical migration velocity of a
spherical drop, Uygg/U;, is also included. Fig. 8 shows the tempo-
ral evolution of the dimensionless migration velocity, V*, versus

Dimensionless parameters used in simulations, and the corresponding theo-
retical migration velocity (Uygg).

Case Re Ca Ma np Ny 5 e, Uycp/Ur
A 0066 0066 0066 10 10 1.0 10 0.133
B 001 001 00166 05 05 05 05 0228

Table 4

Grid convergence of the migration velocity, &, = |(V* — v;:d/40)/v;:d/40|.
Case A: Re=Ma = Ca=0.066, 1, =1, =1, =1, = 1.0. Case B: Re =
Ma = 0.01, Ca =0.0166, 1, =1y =1, =1, =0.5.

Mesh h Case A Case B

Vv &r Vv &
M; dJ25 0.1241 1.9% 0.1946 7.9%
M, d/30 0.1259 1.5% 0.2057 2.6%
M; d[35 0.1271 0.9% 0.2088 1.1%
My d/40 0.1278 - 0.2112 -

dimensionless time, t*, using the present method with different
grid resolutions. The influence of the grid size, h, is summarized in
Table 4. It is found that the difference in the calculated migration
velocities is no more than 1% between the meshes with h = d/35
and h = d/40, therefore the finest mesh resolution h = d/35 is se-
lected for discussion of further numerical results unless otherwise
stated.

Fig. 8a shows that the present level-set model converges to an
asymptotic value V*/Uygg = 0.93 for Case A, which is consistent
with the data reported by Maa and Bothe (2011) and Nas and Tryg-
gvason (2003). Fig. 8b shows also an asymptotic convergence to
the value V*/Uygg = 0.96 which is comparable to the value 0.96
reported in Brady et al. (2011) using a level-set model, and the
value 0.97 calculated by Muradoglu and Tryggvason (2008) using
the front-tracking method. The slower rise velocities in the finite
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Fig. 9. Re =5, Ma =20, Ca = 0.01666. 1, = 1, =1, =1, = 0.5 (a) Migration velocity versus time. (b) Streamlines (left) and Isotherms (right) at t* = 25, with h = d/128.

domain simulations compared with the theoretical migration ve-
locity for the unbounded problem is probably due to the confine-
ment effect. Thus, the proposed method to include variable surface
tension in the framework of the finite-volume/level-set method
(Balcazar et al., 2014) yields to stable results, consistent in accu-
racy with previous numerical results from the literature.

4.2.2. Thermocapillary migration with finite Marangoni number

As further validation for thermocapillary migration with finite
Marangoni number, the level-set model is used to solve a 2D test
case introduced by Nas and Tryggvason (2003). The material prop-
erty ratios 1y, Ny, e, and n, are set to 0.5, whereas the nondi-
mensional parameters are chosen as Re =5, Ma =20, and Ca =
0.0166. The computational domain is a rectangle extending 4d in
the x direction and 8d in the y direction, where d is the drop di-
ameter. The drop is initially located to the distance d above the
bottom wall, on the vertical symmetry axis of the rectangular do-
main. The top and bottom walls are no-slip boundaries with con-
stant temperature, and the horizontal boundaries are periodic.

Fig. 9a presents the migration velocity of the droplet versus
time, computed by means of the present method, on uniform
cartesian meshes with 64 x 128 (h=d/32), 128 x 256 (h=d/64)
and 256 x 512 (h = d/128) grid points. Fig. 9b shows the stream-
lines and temperature contours at the time t* = 25. It is observed
that V* converges with mesh refinement, whereas the difference
in V* calculated with h=d/128 and h = d/64 using the present
model, is below 1.2%. Hence, it is clear from the aforementioned

results that present computations are in excellent agreement with
front-tracking simulation reported by Nas and Tryggvason (2003).

Once the accuracy of the level-set model has been demon-
strated by the previous benchmark case, a set of three-dimensional
simulations are carried out in order to study the effect of Re and
Ma on the thermocapillary migration of a fluid particle, for which
analytical solutions or reference results are not available. First, the
effect of grid size on the migration velocity and temperature field
is studied for the most stringent cases (Ma, Re, Ca) = (100, 5,0.1)
and (Ma, Re, Ca) = (500, 40, 0.04166), with physical property ratios
Np =MNu =N, =1, =1, as illustrated in Figs. 10 and 11, respec-
tively. Mesh parameters used in present study are summarized in
Table 2. It is observed that numerical results converge as the grid
size (h) is reduced, moreover, results using meshes M3 (h = d/35)
and My (h = d/40) are very close, thus the mesh Mj is selected for
discussion of next numerical simulations.

Fig. 12 shows the normalized migration velocity for a set
of Marangoni numbers, ie., Ma = {1, 10,50, 100,500}, at Re =
{1,5, 20, 40}, with physical property ratios equal to one. In addi-
tion, Fig. 13 illustrates the evolution of the temperature contours
and vorticity contours at four instants of time, on the symme-
try plane z =0, for Re = 40, Ma = 100, Ca = 0.04166 and physical
property ratios equal to one. For a fixed Reynolds number, the ini-
tial migration velocity increases at the same rate, for all the range
of Marangoni numbers studied, as shown Fig. 12, which is consis-
tent with results reported by Liu et al. (2012). When the thermo-
capillary convection is weak, i.e. Ma < 10, it is observed two stages
for the time evolution of V*: an initial accelerating stage and the
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Fig. 13. Temperature and vorticity ((V x v) - €,) contours on the plane z = 0 for Re = 40, Ca = 0.04166, Ma = {100}, Np =Ny =Ne, =N = 1.0.

final steady migration stage. As the thermocapillary convection is
stronger, i.e. Ma > 10, there is an additional overshoot stage, which
occurs at the beginning of the whole migration process because
the influence of the thermal convection is major than that of the
heat diffusion (Yin et al., 2008). Additionally, it is observed that V*
is a monotonically decreasing function of the Marangoni number,

which is consistent with numerical findings reported by Yin et al.
(2008) and Zhao et al. (2010). This dependence can be explained by
means of the temperature contours illustrated in Figs. 14 and 15,
where a redistribution of the temperature field inside the fluid par-
ticle is observed, because the velocity field is strongly coupled with
the temperature as Ma increases. Moreover, it is observed that the
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Fig. 15. Temperature and vorticity ((V x V) - e,) contours on the plane z = 0 for Re = 20, Ca = 0.04166, Ma = {1, 10, 100, 500}, 7, = 1, = Ne, =M = 1.0

enhanced convective transport of energy, results in the wrapping
of the temperature contours around the droplet interface, leading
to a reduction of the temperature gradient at the surface. Indeed,
a small average temperature gradient at the droplet interface leads
to a reduction of the driving force for the droplet migration be-
cause the surface tension o is a linear function of temperature,
which explain the inverse relation between Ma and V*.

The vorticity contours (e;-V x v) on the plane z =0, indicate
the presence of recirculation zones inside the droplets, as is il-
lustrated in Figs. 14 and 15. The center position of these vortexes
moves downstream with the increase of the Marangoni number,
while at Ma = 500 additional recirculation zones are also observed
inside the droplets. This fact can be explained by the correspond-

ing temperature distributions which are depicted in Figs. 14 and
15. Hence, at low Marangoni number the temperature gradient
is nearly uniform on the whole droplet interface, whereas a non
uniform distribution of temperature gradient arises as the Ma in-
creases, due that the temperature contours wrap around the inter-
face. As consequence, a faster motion is induced in the zone with
high temperature gradient, i.e., at the cold zone of the interface,
in comparison with the induced motion at the warm region where
temperature gradients are minor. Therefore, the vortexes inside the
droplets are displaced downstream as Ma increases.

Moreover, Figs. 12-15 show that the unsteady thermocapillary
migration of droplets depends of the Reynolds number. The most
obvious difference happens at the beginning part of the simula-
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Fig. 16. Interaction of two droplets. Re = 40, Ma = 40, Ca = 0.04166, Np =Ny =1, = N, = 0.5. Lines for present numerical results (h = {d/32.d/48, d/64}), and symbols for
results reported by Nas and Tryggvason (2003). (a) Migration velocity. (b) Vertical versus horizontal separation distance.

tions illustrated in Fig. 12, where it is clear that simulations with
the smaller Reynolds number tend to move faster at the initial
stage. These results can be explained because the tangential sur-
face stresses can only be balanced by viscous stresses associated
with fluid motion, as can be inferred from Eq. (5). It means, that
the motion induced at the interface in the direction of increasing
interfacial tension, lead to the motion of the fluids near to the in-
terface, through the effect of viscosity. Moreover, the force driv-
ing the droplet is the counterforce of the viscosity force that arises
from the aforementioned mechanism. Smaller values of Reynolds
numbers mean larger viscosities, and the droplets will have larger
acceleration. Indeed, for smaller Re the droplets can reach their
maximum velocities within shorter periods of time, in compari-
son with the thermocapillary motion of droplets at larger values
of Re.

4.3. Thermocapillary interaction of multiple droplets

In practical applications of thermocapillary flows, collections
of fluid particles in bounded domains are frequently encountered.
Thus, in order to validate the ability of the present method for sim-
ulating these systems, we solve the interaction effects between a
pair of droplets, using the same simulation parameters reported
by Nas and Tryggvason (2003). The ratio of material properties is
Np = Nu =N =N, = 0.5, with dimensionless parameters given by
Re = Ma = 40 and Ca = 0.04166. The spatial domain € is a rectan-
gle which extends 4d on the x — axis and 8d on the y — axis. 2 is
discretized by means of uniform cartesian meshes of {192 x 384,
128 x 256, 256 x 512} grid points, which are equivalent to the grid
sizes h = {d/32, d/48, d/64}, respectively. The initial position of the
droplet centroids are (x/d,y/d) = (0.95,2.0) for the right droplet,
and (x/d,y/d) = (2.05,2.9) for the left droplet, which are initially
defined as circular cylinders of diameter d. Periodic boundary con-
dition is used in the x direction, whereas the walls are treated as
no-slip boundaries. Furthermore, constant temperatures T; and T,
are fixed at the top and bottom boundaries, respectively, with T; >
Tp.

Fig. 16 a shows the migration velocity V* versus the dimension-
less time t* of the right droplet, left droplet, and droplets cen-
troid, furthermore, grid convergence is demonstrated using three
grid sizes h = {d/32,d/48,d/64}. Lines are used to represent nu-
merical results obtained by the present method, and symbols are
used to denote the reference results taken from Nas and Tryggva-
son (2003). This plot shows that both droplets start with a rapid
acceleration and deceleration stage, which lead to an overshoot in

their migration velocities. After this stage, it is observed that the
left droplet achieves a quasi-steady state at t > 60, whereas the
right droplet continues its motion with a new acceleration stage
at t* > 40. Additionally, Fig. 16b shows the vertical separation dis-
tance of the droplets versus its horizontal separation distance. At
the beginning, the horizontal separation is almost constant, while
the vertical separation is progressively reduced. It means that the
droplets approximate each other during their migration toward the
hot wall, but their trajectories hardly deviate from a straight line.
As consequence the droplets collide and then separate each other,
while the horizontal separation increases faster than its vertical
separation, which indicates that the droplets continue their mi-
gration in a side-by-side configuration. Fig. 16 shows that present
results obtained by the conservative level-set method are in excel-
lent agreement with front-tracking simulation reported by Nas and
Tryggvason (2003).

Figs. 17 and 18 show the isotherms and vorticity contours (e, -
V x v) during the thermocapillary interaction of the two droplets.
Regarding the vorticity contours, Fig. 17 shows that two asymmet-
ric thermocapillary vortices are formed inside each fluid particle
due to the imbalance in the surface tension on the droplet in-
terfaces. Moreover, the size and strength of the vortexes near the
warm region of the fluid-fluid interface are major than on the
cold region due that temperature gradients are higher in the warm
zone, as illustrated for instance in Fig. 18 at t* = 16. During the col-
lision of the droplets, at t* > 32, a pair of vortices with opposite
signs are observed near the collision zone, which interact between
them to lead the separation of the fluid particles as illustrated in
Fig. 17 at t* = {48, 64}.

Fig. 18 shows that at the beginning the isotherms of the whole
flow field are straight, therefore, this large temperature differ-
ence along the droplet interfaces leads to a large driving force on
the droplets. As the droplets move forwards, the isotherms wrap
around the droplet interface, which reduce the temperature differ-
ences of both drops in comparison with those at t =0, indeed,
their velocities begin to decrease. Moreover, after that droplets
start to interact, the left droplet accelerates in direction to the
right droplet, leading to the motion of hot fluid between them un-
til eventually the droplets touch each other. Because the present
level-set model has been designed to allow for the collision of fluid
particles, avoiding the numerical coalescence, any flow of continu-
ous fluid between them is blocked. As consequence, the droplets
move away from each other to continue their motion in side by
side configuration. Thus, the aforementioned results are consistent
with front-tracking simulations reported by Nas et al. (2006).
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Fig. 18. Temperature contours for the interaction of two drops. Re = 40, Ma = 40, Ca = 0.04166, Np =Nu =N, = N = 0.5. Uniform cartesian mesh with h = d/64 or 256 x

512 grid points.

With the confidence that the present model has been vali-
dated for the interaction of two droplets, now we study the three-
dimensional interaction of multiple droplets in a rectangular chan-
nel which extends 6d x 6d on the plane x —z, and 12d in the y
axis. A swarm of 18 droplets are placed randomly in two layers
of 9 droplets, close to the bottom wall, with a minimum distance
droplet-wall of 2d, and taken initially as spheres of diameter d.
At the beginning, the fluids are quiescent and the temperature in-
creases linearly from the bottom wall to the top wall, according to
Eq. (47). Present simulations are performed using a uniform carte-
sian mesh of 240 x 240 x 480 grid points, which is equivalent to
the grid size h = d/40. All the wall boundaries are treated as no-
slip, lateral walls (x and z directions) are adiabatic, whereas a con-
stant temperature T; and T, is fixed at the top and bottom bound-
aries (y direction), respectively, with T; > T),. The physical parame-
ters used in present 3D simulations are summarized in Table 5.

Figs. 19 and 20 illustrate the thermocapillary interaction of 18
droplets, with a set of isotherms and vorticity contours repre-
sented on the plane z =0 for the physical parameters summa-

Table 5
Physical properties used in 3D simulations of multiple
droplet interactions.

Case Re Ma Ca np n 5, Ne,
A 40 40 0.0416{5 05 05 05 05
B 20 60 0.04166 05 05 05 05

rized in Table 5 (case A). It is observed that the first layer of
9 droplets separates of the second layer, which is closer to the
bottom wall, and it moves ahead in direction to the warm wall,
whereas the droplets in both layers align horizontally as they move
across the channel. At the beginning, the trailing droplets (sec-
ond layer) approach each other until eventually some of them
collide, as illustrated in Figs. 19 and 20 (t* =39.2). Figs. 19 and
20 at t* = {78.4,117.6} depict that the droplets are also dispersed
in direction to the lateral walls, however they do not collide with
them. Fig. 20 shows that counter-rotating thermocapillary vortices
(e;-V xv) are formed inside each droplet, furthermore, vorticity
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Fig. 19. Re = 40, Ma = 40, Ca = 0.04166, Np =N =1Mc, =N, = 0.5, 18 droplets. Temperature contours at the plane z = 0.

is generated on the walls as the droplets approach to them, with
opposite sign compared to the vorticity generated around the fluid
particles. Inside the droplets, the cold fluid is pushed up, while the
higher temperature fluid flows back between the droplets in order
to conserve the mass, moreover, the isotherms wrap around the
fluid—fluid interfaces and concentrate in front of the droplets, as
shown Fig. 19.

Fig. 21 shows the migration velocity and vertical position of
the droplets. Examining the velocity of each droplet in Fig. 21,
it is clear that the velocity of the center of mass of the droplet
swarm achieves a steady state, before the effect of the top wall
arise, whereas each individual droplet presents oscillating migra-
tion velocities, for both cases summarized in Table 5. These os-
cillations are more evident for case B (Re = 20, Ma = 60), where
the amplitude of the initial overshoot in the migration velocity is
higher than case A (Re =40, Ma = 40), which is consistent with
the numerical findings described in Section 4.2.2. By moving in
the direction of the temperature gradient, both the leading and
trailing droplets form horizontal layers before they achieve the top
wall, moreover, it is observed that the droplets of the top layer
move faster than the droplets of the lower layer, indeed the ver-
tical separation between the two layers increases as the time ad-

vances. Furthermore, the formation of these horizontal structures
can be clearly inferred from the time evolution of the vertical loca-
tions of the droplets, which are depicted in Figs. 21b for both cases
summarized in Table 5. These results are consistent with numeri-
cal findings reported by Nas et al. (2006) using the front-tracking
method (Tryggvason et al., 2001).

These simulations demonstrate the feasibility of using the
present multiple level-set approach to examine the dynamics of
thermocapillary migration and interaction of multiple deformable
droplets without numerical coalescence of the fluid particles. To
the best of the authors’ knowledge, these simulations have been
affordable in the past only by means of the front-tracking method
(Nas et al., 2006; Nas and Tryggvason, 2003; Tryggvason et al.,
2001). On the other hand, in the framework of interface captur-
ing methods (e.g. VOF or LS), the interaction of multiple interfaces
when these are close enough, leads to the automatic coalescence
of the fluid particles. Therefore, the aforementioned limitation of
interface capturing methods is circumvented in the present model
by means of the multiple marker approach (Balcazar et al., 2015a).
In current implementation the CLS function of each fluid parti-
cle is computationally treated as one scalar field defined on the
whole spatial domain €2, indeed, the required memory storage and
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Fig. 20. Re = 40, Ma = 40, Ca = 0.04166, n, = n, =1, = 0, = 0.5,

computational effort associated with the interface representation
scales with n, x nj, where n;, is the number of fluid particles and
ny, is the number of control volumes. Consequently, the simulation
of thermocapillary interactions of multiple deformable droplets is
practical for a relatively low number of fluid particles, less than
0(100) (Balcazar et al., 2015a).

5. Conclusions

In this paper, a new level-set model for thermal two-phase
flows with variable surface tension has been introduced. The
present model includes th