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1. Introduction  27 

One of the most challenging problems in the field of pattern recognition (PR) is 28 

feature extraction (Guyon et al., 2006), which aims finding the most compact and 29 

discriminative set of properties or “features” presented in data.  Although many research 30 

in feature extraction has been addressed to automate such a process, it has traditionally 31 

been considered a task much more problem- or domain-dependent than others in PR 32 

(Duda et al., 2001) since a good knowledge of the domain could be used to obtain such 33 

features, at least tentatively.  34 

Fish age classification, a PR task of vital relevance among others for stock 35 

assessment and management (Girdler et al., 2010), usually relies on such manual 36 

procedures for feature extraction. In this direction, several fish features have been 37 

proposed for use in statistical fish age prediction and classification, with special 38 

emphasis in recent years to fish otolith features based on Fourier descriptors (Fablet and 39 

Le Josse, 2005; Galley et al., 2006) and different morphological parameters (Burke et 40 

al., 2008; Bermejo et al., 2007; Robotham et al., 2010; Hua et al., 2012). 41 

However, the generalization error of statistical classifiers –i.e. their ability to mistake 42 

new examples taken on the same problem– tends to increase as of the number of 43 

features (Raudys and Jain, 1991) and, accordingly, the use of an arbitrary number of 44 

them leads to poor performance. One example of such behavior was demonstrated in 45 

(Bermejo, 2014) using multi-class support vector machines for fish age classification of 46 

an Atlantic cod database. Hence, if automatic feature extraction methods were 47 

additionally employed for reducing the complexity of the feature space a better 48 

performance could presumably be obtained.  Other important benefits of such strategy 49 

includes speeding up computation (e.g. decreasing training times) and data 50 

understanding or reverse engineering (i.e. to increase knowledge about the problem, 51 

which can be of vital significance in natural sciences like fisheries science).   52 
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While some authors (e.g. Webb, 2002) consider feature extraction a process only 53 

concerning transformation of the original variables, it is generally agreed that feature 54 

extraction comprises the following steps: feature construction or generation that 55 

performs some kind of preprocessing –e.g. a linear or non-linear transformation– of the 56 

original raw variables (Theodoridis and Koutroumbas, 2008) and feature selection 57 

(Guyon and Elisseeff, 2003) that chooses a subset of the original or transformed 58 

variables.   59 

There are three main approaches to feature selection (Blum and Langley, 1997; 60 

Guyon and Elisseeff, 2003, 2006): filter methods, wrappers and embedded methods. 61 

While filters can be viewed as a preprocessing step since they select a subset of 62 

variables independently of the chosen predictor (e.g. a classifier), wrappers use it as a 63 

black box or subroutine to score subsets of variables and embedded methods perform 64 

variable selection in its training phase. In this way, wrappers are based on an arguably 65 

better estimate of accuracy obtained with the predictor that will employ the feature 66 

subset than a separate measure that may have a completely unrelated inductive bias, but, 67 

at the expense of a higher computational cost (Blum and Langley, 1997). However, the 68 

inherent variance (or instability) of feature subset selection methods (Guyon and 69 

Elisseeff, 2006) produces a plethora of very different subsets attained for different 70 

conditions, i.e. different parameter tuning, small perturbations of the dataset or presence 71 

of redundant features. 72 

In this paper, a novel wrapper that use a form of ensemble learning (Dietterich, 73 

2003), which are based on a strategic combination of several predictors, have been 74 

proposed to attain a greater stabilization and thus a better generalization of the feature 75 

selection process. Feature subsets obtained with the ensemble of wrappers which 76 

employ as base classifiers support vector machines and nearest neighbor classifiers 77 

allow achieving a classification performance that outperforms a previous study 78 
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(Bermejo, 2014). Moreover, these subsets that have very few features, e.g. only otolith 79 

weight and fish weight, are of relevance in accordance with recent findings in fisheries 80 

research.  81 

 82 

2. Materials and methods 83 

 84 

2.1. Atlantic cod database  85 

This dataset contains morphological and biological features for codfish age 86 

classification. Traditional methods for determining the age of fish usually focus on 87 

analyzing hard parts of the body, such as otoliths, which are small particles in the inner 88 

ear composed of a gelatinous matrix and calcium carbonate, since the macroscopic 89 

growth patterns of otholiths are correlated with the fish' age.  90 

The fish database consists of one hundred forty-five Atlantic cod of known age 91 

(varying from two to six years) from the Plateau stock that were hatched the same year 92 

and later kept and reared in pen cages. This dataset was created from originally fish of 93 

known-age sampled at different years in captivity since a number of samples were 94 

recaptured once a year.  Otoliths were taken from this stock and weighed and also four 95 

morphological features were recorded following an image analysis method defined in 96 

(Bermejo et al., 2007).  Additionally, fish length, weight and sex were available for each 97 

sample.   98 

The leave-one-out (LOO) error using a 1-NN rule (Devroye et al., 1996; pp. 407-99 

421) were computed for this set (19.31%) as a way to estimate the Bayes error, i.e. the 100 

minimum amount of classification error achievable. In a previous study with this 101 

database using SVMs (Bermejo, 2014), the minimum obtained error was 21.79% for 102 

otolith weight, fish length, weight and sex acting as features, which is lower than an 103 

error rate of 22% obtained for a related dataset, combining five experts’ readings, who 104 
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were given low and intermediate levels of information about fishes and the conditions 105 

that they were obtained (Doering-Arjes et al., 2008). According to the above 106 

considerations, some improvement in accuracy is still possible with SVMs taking the 107 

value of the LOO estimate as an approximate lower bound to the attainable 108 

misclassification rate. Table 1 displays the results of the LOO estimate and also 109 

includes other relevant information of this dataset. A more comprehensive description 110 

of the cod database is presented in (Bermejo, 2014). 111 

 112 

2.2. Ensemble of wrappers  113 

Ensemble learning methods, such as bagging, boosting and variants (Bauer and 114 

Kohavi, 1999) are based on the formation of a set of predictors   kDx;  trained on a 115 

sequence of learning sets {Dk}, which are typically generated from a single dataset D 116 

using a resampling technique such as bootstrapping (Efron and Tibshirani, 1994). The 117 

second core element of any ensemble method is a combination strategy: the most 118 

obvious and effective procedure for combining a sequence of K predictors  k  whose 119 

outputs are continuous is averaging (Breiman, 1996a), i.e. K
k k  . Ensembles 120 

have been built specifically to select features; for example, variants of AdaBoost for 121 

feature selection have been proposed using decision stumps (Long and Vega, 2003) and 122 

a mutual information measure (Liu et al., 2008), random subspace methods have also 123 

been employed in feature ranking for removal of irrelevant variables (e.g. Tuv et al., 124 

2009), and ensembles based on bootstrapping have been combined with recursive 125 

feature elimination and feature ranking (Windeatt et al., 2007). Furthermore, several 126 

studies have analyzed the use of averaging and voting for the combination of multiple 127 

feature selection criteria with the hope that several criteria would reflect different 128 

properties in feature subsets (e.g. Somol et al., 2009), although none of them has 129 
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analyzed the effect of these procedures using a sole criterion to obtain a single feature 130 

subset. Our proposal addresses this problem in the context of wrappers.     131 

Wrappers (Kohavi, 1995) select features from a pool of feature sets based on a 132 

decision rule of the form  DD ;Cminarg j

CVjW L , that is, they select the jth feature 133 

set for which  DD ;j

CV CL  is the minimum, where CVL  is the cross-validation error based 134 

on the dataset D computed in the base classifier  DxD ;jj CC  , whose inputs belong to 135 

the jth feature set space. If the database is divided into a learning set D for performing 136 

cross-validation and a test set T for final assessment of the classifier after feature 137 

selection, a sequence of learning sets {Dk} and test sets {Tk} can be generated for 138 

different random splits of the database. Then, and in accordance to the theoretical 139 

analysis given in (Breiman, 1996a, 1996b), we propose in this paper a stabilized feature 140 

selection rule that can be obtained through averaging over CVL  in order to stabilize the 141 

metric used in wrappers directly, so the feature selection rule based on an ensemble of 142 

wrappers (EW) can be computed as   KCL
k k

j

CVjEW k DD ;minarg . The proposed 143 

stabilization of the assessment criterion can be simply seen as an averaging of several k-144 

fold cross-validation estimates (based on the output of the wrapper’s base classifier) 145 

similarly to the way in which the outputs of several classifiers are stabilized through 146 

averaging. The reader is referred to Breiman, 1996a, 1996b for further discussion, and 147 

definition, of stability.   148 

A baseline algorithm for feature selection with wrappers using internal cross-149 

validation (Flach, 2012) is suggested in Algorithm no. 1. The ensemble approach using 150 

rule EW  is detailed in Algorithm no. 2 as a straightforward variation of the baseline 151 

algorithm, in which feature selection is postponed until all the splits obtained in the first 152 

version are evaluated. In this way, the second algorithm uses the same amount of 153 
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computational resources than the first one but a single decision on what features are 154 

more relevant is obtained averaging over all these splits.  155 

2.3. Base classifiers 156 

 Reducing the instability of the base classifiers would make it possible to evaluate 157 

the degree of stability achieved by EW  with respect to W  and could also provide 158 

additional insight into how the stabilized decision rules work. Specifically, if the 159 

induction algorithm 
j

k
C D  is completely stable on a sequence of learning sets {Dk}, then 160 

    kiforCCC k

j

i

jj ,;;  DxDx . Thus, the metric    j

CVk K

j

CV CLKCL  D; , 161 

where 
CVL  denotes an averaged form of the cross-validation error computed using 162 

different random replicates of the original database. As K augments, CVL  will use more 163 

samples from the database than CVL , which is based on a single replicate, and can thus 164 

presumably obtain a better estimation. Following this rationale, two well-known stable 165 

induction algorithms, SVMs and NNs, have been employed as base classifiers in 166 

wrappers. 167 

SVMs (Vapnik, 1998), which has been developed in accordance with main results of 168 

statistical learning theory, have also obtained a practical success in a range of practical 169 

problems that makes them an appreciated part of many practitioners’ toolbox. Multi-170 

class SVMs (Hsu and Lin, 2002) are a required extension of two-class SVMs that deal 171 

with R-class classification problems, with R>2. In the experiments, we used two multi-172 

class SVMs implemented in the Spider library (Weston et al., 2006): 1) 1-vs-R (“one-173 

against-all”) SVMs (Steinwart and Christmann, 2008), and 2) 1-vs-1 (“one-against-174 

one”) SVMs (Schölkopf and Smola, 2001). Other SVM algorithms also implemented in 175 

the library were ruled out in a previous round of experiments, since the results obtained 176 

with them were outperformed by both 1-vs-R and 1-vs-1 SVMs.  177 



 8 

Nearest-neighbor classifiers (Duda et al., 2001; pp.161-214) remain one of the 178 

simplest yet most valuable nonparametric classification procedures. Given a set of 179 

labeled prototypes P, the k-NN algorithm assigns the test point x to that class majority 180 

among its k nearest neighbors belonging to P. In the experiments reported, the 1-NN, 181 

also simply denoted as the NN rule, was used, since it has less computational burden 182 

than the k-NN rule. Although the NN rule is sub-optimal with respect to the k-NN rule 183 

in terms of the asymptotic error probability (i.e. with an unlimited number of 184 

prototypes), its error rate is never worse than twice the Bayes error (Devroye et al., 185 

1996; pp. 61-90). 186 

 187 

2.4. Statistical assessment of experiments 188 

As pre-processing, whitening –i.e. mean removal and scaling by the variance of each 189 

feature– was performed on the dataset so as to prevent the negative effect of their very 190 

different scaling on the SVMs and NNs, and thus improving dramatically their 191 

classification accuracy (see e.g. Ali and Smith-Miles, 2006). In (Bermejo, 2014), the 192 

positive effect of such standardization is specifically discussed for this dataset. 193 

 A previous round of simple experiments was done to limit the set of values for the 194 

parameters of the multi-class SVMs. According to the results obtained, radial basis 195 

function (RBF) kernels    2exp,
2

iiK xxxx   were selected with a kernel width of 196 

={5,10,15,20,25}, while the rest of the parameters involved were the default values 197 

defined in the Spider library (Weston et al., 2006).  198 

 The whole training set was chosen as nearest-neighbor prototypes in order to reduce 199 

the computational burden due to the use of the learning algorithm. This brute-force 200 

strategy, which usually works better than significant condensing and editing, achieves 201 

competitive results with learning algorithms that compute a reduced number of 202 

prototypes (see e.g. Bermejo, 2000). 203 
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 Since the datasets here are medium- and small-sized, it was considered preferable to 204 

maximize the learning set size in order to get enough training data. Thus, test sets were 205 

formed containing only 25% of the database the test set size according to common 206 

practices found in the literature; in particular, test sets ranged from 50% to 25% of the 207 

complete database in fourteen datasets from the STATLOG project (Michie et al., 208 

1994). Accordingly, the datasets were first randomly divided using stratification into a 209 

test set Ti (25%) and a learning set Di (75%) for each split i=1,…,I of the database (with 210 

I=75 when SVMs are used as the base classifiers and K=100 for NNs). Then, Di was 211 

divided using stratification into five equal-sized parts or folds (i.e. n=5) that maintained 212 

approximately the original proportion of data belonging to each class; in order to reduce 213 

variance in the estimates of classification accuracy, this random division of Di was 214 

repeated ten times, forming a sequence of folds. Thus, steps 5-13 of Algorithms 1 and 2 215 

were repeated ten times and results conveniently averaged; in the case of SVMs, a 216 

sequence of classifiers using a kernel width of ={5,10,15,20,25} was also generated 217 

for each split i, each feature set j and fold, and only those classifiers with parameters 218 

obtaining, on average, the best results on the validation set were retained for testing. 219 

Finally, the relative frequency with which the rule EW  outperforms or equals W  220 

defined by      IErrErr
i iWiiEWi  TT ;;1   was computed in order to compare 221 

Algorithms 1 and 2. 222 

 223 

3. Results and discussion  224 

As Table 2 shows, on average, the use of EW  improves accuracy, since 225 

   WEW ErrErr    for all the classifiers (see also Fig. 1). Also, for each data split i, 226 

feature selection done by averaging mainly improves the results achieved by classifiers 227 

based on feature sets selected using cross-validation, since  96,.75. (see also Fig. 2). 228 
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While the feature selection rule EW  generates a single feature set (see Table 2), W  229 

generates a population of feature sets, which only sometimes coincides with EW  (these 230 

cases are shown as points along the line depicted in Fig. 2). On the other hand, feature 231 

sets obtained by EW  are not unique with respect to the problem, but depend on the 232 

wrapper’s base classifier. However, although there is not a total consensus among the 233 

classifiers, features set obtained by the selection rule EW  are particularly coherent with 234 

biological findings, since fish weight (W) and otolith weight (OW) –i.e. the features 235 

selected when 1-vs-R SVMs are used as base classifiers– and fish length (L), which is 236 

also included when NN classifiers are used, are known to be highly correlated with age 237 

and are often used in automatic fish age estimation or classification (Lou et al., 2005, 238 

2007; Metin and Ilkyak, 2008; Ochwada et al., 2008; Pino et al., 2004), although other 239 

researchers have proposed the use of other features, such as otolith growth rings (Fablet 240 

and Le Josse, 2005; Guillaud et al., 1999, 2000; Rodin et al., 1996) or otolith shape 241 

(Bird et al., 1986; Campana and Casselman, 1993; Castonguay et al., 1991). 242 

Additionally, and more importantly, the feature set obtained by the selection rule EW  243 

(based only on OW and W) in combination with 1-vs-R SVMs achieves an average test 244 

error (20,93%) that outperforms best results computed with previous SVM experiments 245 

(Bermejo, 2014) with the same dataset in which feature set selection was performed 246 

manually (21,79%). 247 

 The feature selection rule EW  makes it possible to compute a single feature set with 248 

the additional information obtained by generating different splits of the original 249 

database. Since the repetition of experiments for different splits seems to be 250 

recommended to reduce variance in test results (at least for small databases), EW  can 251 

be used in this context at no extra computational cost. In order to extend this procedure 252 

to datasets with a greater number of features, the brute-force search can be replaced 253 
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with the inspection of a pool of candidates obtained by ordering the feature set space by 254 

leave-one-out error, since the minimum leave-one-out errors are obtained for feature 255 

sets quite similar to those computed by EW  (see Table 1). Also, search strategies 256 

(Guyon, 2006; pp.119-136) applied to large dimensionality domains in the context of 257 

wrappers (Gheyas and Smith, 2010) are useful for obtaining a feature set subspace 258 

where EW  and the experimental procedure suggested above were run with moderate 259 

computational resources.    260 

 261 

4. Conclusions  262 

A metric based on averaging, a well-known method employed in ensemble learning for 263 

stabilizing, has been proposed to reduce the instability of the feature subset selection 264 

process performed by wrappers and has been tested on an Atlantic cod dataset using 265 

SVMs and NN classifiers as base classifiers. As shown, a single feature subset can be 266 

obtained in such a form of ensemble of wrappers and used to reverse engineer or better 267 

explain data. Features selected in fish age classification are particularly noticeable in 268 

view of current biological findings and practices in fishery research and outperforms 269 

SVM classification accuracies obtained with manual feature selection (Bermejo, 2014).  270 
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Algorithm 1 Baseline algorithm for wrappers based on internal cross-validation 402 

 403 
1: For i=1,…,I 404 

2:    Split database randomly into a test set Ti and a learning set Di using a ratio 1:q 405 

where 1:q denotes the sampling ratio between Dk and Tk, i.e.  % of samples q/(1+q) is 406 

sampled for Dk and % 1/(1+q) for Tk  407 

3:    For j=1 to 2m combinations of feature sets 408 

4:    Obtain for feature space jth a subset j

iD  from Di where j is a vector in a binary 409 

representation  mjj 1  with jk denoting whether feature kth is present (‘1’) or 410 

not (‘0’) and mpXX m

i

pj

ii

j

i

m

i

pj

i  0,,,,, DDDDDD  411 

5:         Split j

iD into n disjoint sets  nkkj

i ,...,1,, D , i.e. 0,
1

,

1

, 



n

k

kj

i

j

i

n

k

kj

i DDD   412 

6:         For k=1 to n folds 413 

7:                 Obtain a training dataset 
n

kmm

mj

i

kj

i



 
,1

,,
DD and a validation set kj

i

kj

i

,,
DV     414 

8:                 Define a sequence of classifiers’ parameters  Lll ,...,1, σ   415 

9:          For l=1,…,L             416 

10:                Compute classifier  lkj

i

j

lC σDx ,; ,  or, in short,  lj

lC σx ; , i.e. a classifier 417 

 jlC x  working in feature space pX with pj Xx  using the training data 418 

set kj

i

,
D  for the classifier’s parameters lσ  419 

11:  Obtain the cross-validation error for  lj

lC σx ;  as the loss error for this 420 

classifier computed using kj

i

,
V , i.e.     kj

il

j

l

j

lCV CLCL ,,; Vσx  421 

12:                  Choose the best classifier  jkC x  of the sequence  lC with optimal 422 

parameters 
k

σ as the one that minimizes the cross validation (CV) error, 423 

i.e.  424 

   j

lCVlC

kjk CLC minarg; σx  or    j

lCVLl

jk

CV CLCL ,...,1

, min   425 

13:              Obtain mean CV error in j

iD for feature space jth as    



n

k

jk

CV

j

iCV CL
n

L
1

,1
D  426 

14:        Select the feature subset from which the mean CV error  jiCVL D  is minimum,     427 

i.e.    j

iCVjW Li Dminarg   428 

15:        Obtain the generation error   iWi
iErr T;  of classifiers in feature space  iW  429 

16: Compute the mean generalization error for the baseline wrapper W as 430 

     IiErrErr
I

i iWiW  


1
;T  431 

 432 

433 
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Algorithm 2 Ensembles of wrappers (as a variation of Algorithm 1) 434 

 435 
1: For i=1,…,I 436 

2:      Split database randomly into a test set Ti and a learning set Di using a ratio 1:q 437 

3:      For j=1 to 2m combinations of feature sets 438 

4:          Obtain for feature space jth a subset j

iD  from Di with 439 

   mpXX m

i

pj

ii

j

i

mj

i

pj

i  0,,,,, DDDDDD  440 

5:          Split j

iD into n disjoint sets  nkkj

i ,...,1,, D  441 

6:          For k=1 to n folds 442 

7:               Obtain 
n

kmm

mj

i

kj

i 

 
,1

,,
DD and kj

i

kj

i

,,
DV     443 

8:               Define a sequence of classifiers’ parameters  Lll ,...,1, σ   444 

9:       For l=1,…,L             445 

10:                 Compute classifier  lkj

i

j

lC σDx ,; ,  446 

11:           Obtain     kj

il

j

l

j

lCV CLCL ,,; Vσx  447 

12:               Choose    j

lCVlC

kjk CLC minarg; σx  or 448 

   j

lCV
Ll

jk

CV CLCL
,...,1

, min


  449 

13:               Compute    



n

k

jk

CV

j

iCV CL
n

L
1

,1
D  450 

14: For i=1,…,I 451 

15:  Compute the mean CV error for feature space jth as    



I

i

j

iCVCV L
I

jL
1

1
D  452 

16: Select the feature subset from which the mean cross-validation  jLCV  is minimum, 453 

i.e.  jLCVjEW minarg   454 

16: For i=1,…,I  455 

17:  Obtain the generation error of classifiers in feature space EW for Ti as 456 

 iEWi
Err T;  457 

18: Compute the mean generalization error for the averaged wrapper EW as 458 

    IErrErr
I

i iEWiEW  


1
;T  459 

 460 

 461 

 462 

 463 

464 



 19 

  465 

Size  
No. of 

Features  

Features / Feature vector  No. of Classes  

Minimum 

Leave-one-out 

Error 

145 8 

Fish sex (S), fish length (L), fish 

weigh (W), otolith weight (OW), 

otolith contour length (C), otolith 

area (A), otolith maximum 

internal distance (I), otolith 

maximum perpendicular distance 

(P) / (P I A C OW W L S) 

5 

[fish age: 2 to 6] 

0.1931 

 

[for feature set 

12=(00001100)2] 

 466 

Table 1. Codfish dataset summary.  467 

468 
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 469 

 470 

  WErr    EWErr   Feature vector(*) / EW   

S
V

M
  

1-vs-1 .2297 .2147 (P I A C OW W L S)/ 

175=(10101111)2 

.74567 

1-vs-R .2273 .2093 (P I A C OW W L S)/ 

12=(00001100)2 

.96 

NN .2459 .214 (P I A C OW W L S)/ 

14=(00001110)2 

.84 

 471 

Table 2. Comparison of feature set selection using averaging and cross-validation.    472 

(* see Table 1 for further details) 473 

 474 

 475 

 476 

477 
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 478 

a) 479 

 480 

b) 481 

 482 

c) 483 

Fig.1. Box plot of average test errors  EWErr   [left] and  WErr   [right] using: a) 1-484 

vs-1 SVMs, b) 1-vs-R SVMs and c) NN classifiers. 485 

486 
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 487 

a) 488 

 489 

b) 490 

 491 

c) 492 

Fig.2. Test errors of ensembles of wrappers based on averaging,  EWi
Err  , vs. 493 

those based on internal CV,  Wi
Err  , for different Ti using a) 1-vs-1 SVMs, b) 1-vs-R 494 

SVMs and c) NN classifiers. 495 


