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ABSTRACT

We deal with an example of a topology v for the additive group of real numbers
R, which makes it a compact Hausdorff topological group. Further, (R,v) is
connected, but neither arcwise connected, nor locally connected. Thus, it is nei-
ther a Lie group, nor a curve in the sense of H. Mazurkiewicz. The contribution
of this short note is to provide an elementary proof of the fact that it is not
arcwise connected.
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1. Introduction

The set R of real numbers is a corner stone in Mathematics. It supports all kind
of structures: the simple operations of sum and multiplication make R the perfect
paradigm of a group, a ring or a vector space. If it is endowed with the absolute value
it becomes the model for metric spaces and consequently for topological spaces. We
could point out so many features of the set R that make it a model, that maybe the
following question is pertinent: is R a human creature, or is it just a gift of God to
Mankind?

In this short note we do not pretend to answer that philosophical question, we
only try to report on a concrete structure on R which is suprising according to our
standard intuition. Namely, the additive group of real numbers R can be endowed with
a topology v such that (R,v) is a compact, connected, Hausdorff topological group
which is neither arcwise connected, nor locally connected. Thus (R,v) is neither a
Lie group, nor a curve in the sense of Hahn-Mazurkiewicz.

The mentioned topology v called our attention from a one-page paper of Halmos,
and we have denominated it Halmos topology. The route to define it in [7] is first to
establish an algebraic isomorphism between R and the group of all characters on the
rational numbers, say Hom(Q, T').Taking into account that Hom(Q, T) has a natural
topology as a subspace of the product T2, a topology on R can be defined under the
constrain of making topological (i.e. continuous and open) the algebraic isomorphism.
This is precisely what we call the Halmos topology v on R. By its very definition, the
properties of (R, ) are precisely the same as those of the compact group Hom(Q, T),
and for this reason we devote the first section of this paper to study the latter.

In [11] we dealt with the group (R,v), giving there the details of the definition
and a proof that it is not arcwise connected which seemed simple, but a deep artillery
was hidden in it. In the present paper we provide an elementary proof of the fact
that it is not arcwise connected. We will also give the reference to prove that it is not
locally connected.

Notation. All groups considered in this note will be abelian. For a set A we
denote by Card(A) or by |A| the cardinality of A. The symbols Z, Q, T and ¢ denote,
respectively, the integers, the rational numbers, complex numbers of modulus one,
and the cardinality of R. We write Qg or Q, if Q must be considered with the
discrete topology or with the induced from the euclidean topology of R, and the same
meaning have the subindex d and u in other contexts.

Let G,Y be groups. We denote by Hom(G, Y') the set of all group homomorphisms
from G to Y: with operation defined pointwise it becomes a group. If G, Y are topolog-
ical groups, CHom(G,Y') stands for the continuous elements of Hom(G,Y). If Y = T,
the elements of Hom(G, T) are called characters of G, and the group of continuous
characters G” := CHom(G, T) is called the dual group of G, or the character group of
G. Whenever R or T are target groups, say in CHom(G,R) or CHom(G, T), they are
supposed to carry the corresponding euclidean topology. Observe that Hom(G, T) is
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a closed subgroup of T, therefore it is compact and Hausdorff as a subspace of it.
However, CHom(G, T) may not be closed in T¢.

All the dual groups considered are supposed to carry the compact open topol-
ogy. This is in consonance with Pontryagin duality theory. Obviously if the original
group G is discrete, then G = Hom(G, T) and the compact open topology coincides
with the pointwise convergence topology which is precisely the induced by the natural
embedding of G” in the product T¢.

2. Groups of homomorphisms defined on Q

We shall look at Hom(Q, T) as the character group of Qg, the discrete group of ra-
tionals. Thus we write Q) := Hom(Q, T), and as said above, it carries the pointwise
convergence topology. We also consider Q. := CHom(Q,, T) the character group of
Q equipped with the topology induced from the euclidean topology of R. If the target
group T is substituted by R, we have Hom(Q,R), which happens to be the same as
CHom(Q,,R), as proved below.

2.1. A few elementary facts about Hom(Q,R)

The set Hom(Q, R) is quite simple, since every element x € Hom(Q, R) can be iden-
tified to the real number x(1), as we claim in the following Lemma.

Lemma 2.1 FEvery group homomorphism x : Q — R is defined by its value in 1 € Q,
being x a linear mapping if Q and R are considered as vector spaces over Q. Thus,
CHom(Qy,R) = Hom(Q, R).

The validity of Lemma 2.1 derives from the facts that R is divisible and y an
homomorphism: if x(1) = r € R, and m is any integer number, x(1/m) must be
r/m so that x(1/m+ . +1/m) = r. Thus x(n/m) = (n/m)x(1), and x is in fact
a linear mapping from the one-dimensional vector space Q to R (as a vector spaces
over Q). Consequently, x : @ — R is continuous if both Q and R are endowed with
the euclidean topology.

However, if ¢ : Q@ — T is a homomorphism and ¢(1) € T is known, two possibilities
arise for ¢(1/2), the two square roots of ¢(1) and roughly speaking, many more for
@(1/m) if m > 2. This explains the following negative claim:

Remark 2.1 A homomorphism ¢ : Q — T is not defined by its value in 1. Later on
we shall prove that Hom(Q, T) # CHom(Qy, T).
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2.2. The group Hom(Q,T).

In order to understand how the set Hom(Q, T') looks like, we include the following
description done in [8]. Let x : @ — T be a homomorphisms from Q to T. It gives
rise to a sequence {a,} of elements of T, namely a,, := x(1/n!). Clearly it holds:

(an)n = Op—1. (*)

On the other hand, every sequence {f,} C T which satisfies the condition (*) gives
rise to a character ¢ on Q. Just define ¢(1/n!) = 5,, and take into account the
expression of Q as a union of cyclic groups, Q = J,,(1/n!).

Thus, the character group of Qg can be identified to a limit of an inverse sequence
{T, g»}, where the linking mappings g, : T — T are defined by g, (v) = +".

2.3. Hom(Q, T) # CHom(Q,, T).

An example of a character x defined on Q which is not continuous considered as a
mapping from Q, into T is provided in [5]. Following 2.2, it is achieved by means of a
sequence {ay, } for which (*) holds but «,, does not converge to 1 € T. The character
x defined through x(1/n!) = a,, for such an {a,} cannot be continuous if Q carries
the euclidean topology. In fact, from 1/n! — 0 in Q,, we would obtain a,, — x(0) =1,
which does not happen. We present the concrete example below.

Example 2.1 Let o, := e>™%  being
1 1 i
= — + — H‘—u,
2(n!) + n! (; 2 (i=1Y
where the symbol [.] stands for entire part. From the equality:

Qn,l + [n/2]

0, = , for alln € N\ {0, 1},

it is straightforward to check that o) = ay_1, therefore x is a character on Q. On
the other hand, it can be proved by induction that

1/4<6, <3/4, for alln € N\ {0,1},
which implies ay, /A 1 in T.

3. Lifting continuous characters of a topological group G to real continuous
characters

Taking into account that R, is the universal cover of T by means of the exponential
mapping p, it is natural to think about the possibility of lifting continuous characters
defined on a topological group G, to continuous homomorphisms from G to R. First
a definition to make precise what we mean.
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Definition 3.1 Let G be a topological group. A continuous character ¢ : G — T is
said to be liftable over the reals if there exists a continuous homomorphism q~5 :G—R
such that pgz~5 = ¢. The term real character is used for a homomorphism from G to R,
and we will call ¢ a lift of ¢.

Let G be a topological group. Does the statement “every continuous character on G
is liftable” hold?

Clearly for a simply connected group G every continuous character is liftable.
(This follows from well known properties of the theory of coverings.) However, one
of the most elementary connected groups, like T is not simply connected. Thus, the
assumption of simple connectedness is too strong. Nevertheless, the statement will
hold for any topological real vector space considered as a group.

Partial Answers 3.1 1) (Dixmier [6]) If G is a locally compact group, and G is
arcwise connected then every continuous character is liftable.

2) If G is a k-space and G 1is arcwise connected, then every continuous character
1s liftable.

Obviously the result 1) is a particular case of 2) and 2) can be proved by means of
the homotopy lifting property of a covering [14, Chapter 2, thm. 3]. Dixmier gives a
proof of 1) ad hoc for locally compact groups, based upon the Structure Theorem for
the latter, which is a delicate matter. The assertion 2) is from [12]. A detailed proof
of it can be seen in [3, 5.2.1 and 5.2.2].

The possibility of lifting the characters of a topological group G to real characters
by requiring conditions on the arcs of G”, rather than the global property of arcwise
connectivity, is analyzed in a series of papers that have recently appeared. As defined
in [2], a topological group G has the EAP (equicontinuous arc property) if every arc
in G is equicontinuous with respect to the original topology of G. In the mentioned
paper, the set of continuous characters of G that can be lifted is called G{}y,. It is a
subgroup of G” contained in the arc component, denominated G7*. The main result
of [2] asserts that Gy, = G/ whenever G has the EAP property.

Since we have extensively dealt with the continuous convergence structure A de-
fined on the dual of a topological group (see for instance [4] and [3]), it is clear for us
that the EAP property has a natural setting in terms of it. Let us state here how to
reformulate the result of [2] quoted above:

Theorem 3.2 Let G be a topological abelian group. The following assertions are
equivalent:

1) Every character ¢ € G" can be lifted over the reals.

2) The group CHom(G, T) endowed with the continuous convergence structure A
s arcwise connected.
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4. The main results

In order to obtain a compact Hausdorff group topology on R, we first state the
following:

Proposition 4.1 The group Q) is algebraically isomorphic to the group of real num-
bers R.

A detailed proof of this assertion can be seen in [11]. For the readers convenience
we point out that it derives from the fact that Q) and R are vector spaces over
the field of rationals Q, such that |Q}| = |R|. Their respective Hamel bases have
also the same cardinality. Thus, any fixed bijection from a Hamel basis of R to a
Hamel basis of Q) can be extended to an algebraic isomorphism. For definiteness,
let us call ¢ : R — QJ such an isomorphism, and let us denote by v the topology
on R that makes ¢ a topological isomorphism. We call v a Halmos topology for R.

Since Q) and (R, v) are isomorphic topological groups, we prove now that the first
one is not arcwise connected in order to have the same property for (R, v).

Theorem 4.2 The group Q) is not arcwise connected.

Proof. Assume by contradiction that Q) were arcwise connected. Since Qg is locally
compact by the assertion 1) in 3.1, every character on Q would be liftable over the
reals. In particular x, as described in the Example would be liftable to a real charac-
ter ¥ : Q¢ — R such that px = x. By the equality CHom(Q,,R) = Hom(Q,R) (see
2.2), we would have that ¥ is continuous with respect to the usual topology. But in
that case pxy = x would be continuous with respect to the usual topology of Q, in
other words x = py € CHom(Q,, T), which does not hold as proved in the Example.
O

We provide now references which easily prove the facts that (R, v) is neither locally
connected, nor a Lie group.

Proposition 4.3 [13, Theorem 42, pp. 169] A compact locally connected and con-
nected abelian group decomposes into the direct sum of a finite or countable number
of subgroups, each isomorphic with the group T.

Clearly our group (R, v) cannot have any subgroup isomorphic to T, since in R
there are no torsion elements. Because of the definition of the topology v, all the
topological assertions done for Q7 hold for (R,v), thus we already know that (R,v) is
compact and connected. Therefore, according to Proposition 4.3, it cannot be locally
connected. On the other hand a compact Lie group is necessarily locally connected
(see, for instance [13, Remark H, p. 212]).

Finally we recall the following:

496



E. Martin-Peinador and M. Bruguera Compact group topologies for R

Proposition 4.4 [9, Theorem H. Mazurkiewicz] A Hausdorff topological space is a
curve if and only if it is a metrizable Peano continuum.

By a Peano continuum it is meant a Hausdorff, compact, connected and locally con-
nected topological space. We now have all the ingredients to formulate the Theorem:

Theorem 4.5 The topological group (R,v) is compact, Hausdorff and connected, but
neither arcwise connected nor locally connected. Therefore (R,v) is neither a Lie
group, nor a curve in the sense of H. Mazurkiewicz.
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