
1

 A Self-Repairable TRNG
Honorio Martin, Giorgio Di Natale, and Pedro Peris-Lopez

I. ABSTRACT

True Random Number Generators (TRNGs) are one of the
basic cryptographic primitives commonly used in security
protocols. Mainly these generators are employed to generate
keys, nonces, padding plain-text or even like a countermeasure
against side channel attacks. Due to their importance for the
security, they must be subjected to on-line testing in order to
guarantee true randomness at their outputs.

Nevertheless there is an open question in this topic: what
should be done with a particular generator, if some test
fails?. To the best of our knowledge, all the aforementioned
tests raise an alarm but they provide no specification about
appropriate actions to recovers in case of a faulty state. In
this work we attempt to provide some general guidelines in
order to guide designers to create more dependable TRNGs.
In addition, we present a case of study where these guidelines
are applied.

The mentioned guidelines comprehend a number of recom-
mendations that are valid for general-purpose digital circuits
but are also specific guidelines for TRNGs. It is important to
note that the applied hardening strategies will depend on the
application (and its corresponding security levels), the specific
TRNG (e.g., entropy extraction mechanism, post-processing
technique, etc.) and the available resources. We have split these
guidelines into three groups:

• Prevention: In this group typical guidelines to design
more reliable systems such as the use of one-hot coding
for the FSMs implemented in the statistical tests are
included. On the other hand, as some TRNGs are quite
sensitive to the surrounding conditions, we propose to
check, if possible, the main magnitudes that could affect
the randomness (temperature, voltage, frequencies, etc.).

• Detection & Evaluation: In order to accomplish the
self-repairability for the TRNG, it is a key aspect to be
able to detect different kind of faults. Typical scenarios
considered in the scientific literature only include the
evaluation of faults in the digitized noise source (source
of randomness and entropy extractor). We propose that
the post-processing block and the different embedded
tests are included as possible fault targets. Normally on-
the-fly tests or ad-hoc solutions could allow the detection
of faults on the digitized noise source or on the post-
processing. Redundancy might be applied to detect faults

H. Martin is with Department of Electronics Technology, Universidad
Carlos III de Madrid,(e-mail: hmartin@ing.uc3m.es)

G. Di Natale is with the LIRMM, Universite Montpellier II,(e-mail:
DiNatale@lirmm.fr)

P. Peris-Lopez is with the Computer Security (COSEC) Lab, Universidad
Carlos III de Madrid, (e-mail: pperis@inf.uc3m.es)

on the on-board supported tests. It is crucial that the de-
tection strategies answer the following questions: Where
is located the fault? How bad/harmful is the fault?

• Correction: Once the fault has been detected and located,
the TRNG must be stopped if deemed necessary. After
this first action, different measures can be used to
recover from the faulty state. These further actions will
highly depend on the available resources and the TRNG
itself.

Conclusively, we have shown the effectivenest of these
guidelines using a case of study. We have defined an exper-
imental framework where a RO-TRNG is used to generate
nonces and padding plain-texts –certain degradation on the
entropy source is allowed. We have added support for some of
the aforesaid guidelines (redundancy, one-hot coding,control
main magnitudes, etc.) to the system. In Fig1 is depicted
the proposed TRNG scheme. We have duplicated the entropy
source, the tests and post-processing blocks. In addition we
have added and LFSR that can be used to check the differ-
ent tests and as a post-processing block. The checker and
controller block will handle the test results and the control
different blocks.

Finally, using a flexible open-source fault simulator (in par-
ticular, LIFTING), we have performed several fault injection
campaigns using different fault models (bit-flip, stuck-at-0/1
and transient stuck-at-0/1). The results of these injection show
that the proposed enhanced TRNG is able to self-recover from
the different fault scenarios considered.

TRNG-A
PP-A

Entropy
TEST-A

LFSR Checker + Controller

TRNG-B

TRNG-B
FIPS 140 

A
PP-B
LFSR

TRNG-B

PP-B

Entropy
TEST-B

TRNG-A

TRNG-A
FIPS 140 

B

PP-A
LFSR

Control

blocks

Extern
alarm

Fig. 1. Self-repairable TRNG scheme

Paper 30




