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ABSTRACT  

A simplified mechanical model for the shear strength prediction of reinforced and prestressed 

concrete members with and without transverse reinforcement, with I, T or rectangular cross 

section is presented. The model, derived after further simplifications of a previous one 

developed by the authors, incorporates in a compact formulation, the contributions of the 

concrete compression chord, the cracked web, the dowel action and the shear reinforcement. 

The mechanical character of the model provides valuable information about the physics of the 

problem and incorporates the most relevant parameters governing the shear strength of 

structural concrete members. The predictions of the model fit very well the experimental results 

collected in the ACI-DAfStb databases of shear tests on slender reinforced and prestressed 

concrete beams with and without stirrups. Due to this fact and the simplicity of the derived 

equations it may become a very useful tool for structural design and assessment in engineering 

practice. 

 

Keywords: Shear strength, mechanical model, structural code, reinforced concrete, prestressed 

concrete; T-beam; stirrups, shear-flexure interaction, design, assessment. 

1. Introduction 

As Golder [1] brilliantly pointed out in the first issue of Géotechnique, in June 1948, “there are 

two approaches to a natural problem. They are the approach of the pure scientist and that of the 

engineer. The pure scientist is interested only in the truth. For him there is only one answer – 

the right one – no matter how long it takes to get it. For the engineer, on the other hand, there 

are many possible answers, all of which are compromises between the truth and time, for the 

engineer must have an answer now; his answer must be sufficient for a given purpose, even if 

not true. For this reason an engineer must make assumptions – assumptions which in some cases 

he knows to be not strictly correct – but which will enable him to arrive at an answer which is 

sufficiently true for the immediate purpose. Mistakes are not made when an engineer makes his 



assumption. Mistakes are made when other engineers forget the assumptions which have been 

made […]”. This thought, which was dedicated to Coulomb and the earth pressure, is 

completely valid for the modelling of the “riddle of shear failure” [2]. For example, Mörsch 

recognised that his pioneer model was a simplification, since some of the transverse force could 

be resisted by inclination of the flexural compression chord, and, the ribs of concrete between 

flexural cracks would bend and produce dowel forces in the main steel [3].  

It is essential, therefore, when dealing with models for a structural code, to know the 

purpose of that code. The purpose will fix the level of the simplifications that can be accepted. 

In general, most current structural codes, as EC2 [4] or ACI 318-11 [5] , were conceived for the 

design of new structures. With this purpose in mind, very simple models are adequate, as the 

main objective it is not to predict the actual strength of a structure, but to design it in a safe way. 

However, the assessment of structures is a topic of increasing interest for everyday engineering. 

For this reason, the inclusion of the assessment in the purpose of a given Structural Code makes 

it necessary to rethink the models included and the simplifications carried out. Moreover, the 

construction sector is everyday more open to new materials and technologies. Therefore, a code 

should not be “a set of rules prepared by a few for the regulation of other engineers, but a 

synthesis of contemporary knowledge, practices and techniques” [6], based on mechanical 

models, to allow their natural extension to new applications that were probably not envisaged 

when the initial mechanical model was developed.   

An incredible amount of research on shear strength of concrete members has been 

conducted since the mid-1950s [3], and even before. Thanks to this continuous research, that is 

impossible to summarize in a research paper, refined analytical and numerical models have been 

developed [7–15]. At the same time, simplified models for the shear strength of RC and PC 

members, based on sound theories, have also been presented [16–22]. As Regan pointed out [3], 

“for simpler models the problem is mostly that of the need to neglect secondary factors, while 

what is secondary in one case may be primary in another”. Regan also concluded that significant 

improvements for design were very likely to be initiated by experimental observations [3]. 



This paper deals with the simplification of a multi-action mechanical model for the shear 

design and assessment of RC and PC beams previously developed by the authors which is valid 

for reinforced concrete and for prestressed concrete members with any degree of prestressing, 

with or without stirrups, for normal or high strength concrete, for T, I or rectangular sections 

[23–25]. The predictions of the original mechanical model were compared with four large 

database of tests results on RC and PC beams developed by ACI-DafStb [26–28], showing 

small bias and scatter, and it had also been extended to FRP RC beams [29, 30]. However, for 

design purposes, some simplifications are still necessary in order to make the mechanical model 

easier to use in daily engineering practice. In this paper, the assumptions made for the derivation 

of the original mechanical model, and for the further simplification to reach code-type 

expressions will be highlighted. The main focus of this paper is to allow practicing engineers to 

understand and use this model and to extend it to other cases. 

2. Theoretical background 

It is considered that the shear strength, Vu in Eq. (1), is the sum of the shear resisted by concrete 

and by the transverse reinforcement (Vs), and it must be lower than the shear force that produce 

failure in the concrete struts, Vu,max in Eq. (2). The concrete contribution is explicitly separated 

(see Eq. 1) into the shear resisted in the uncracked compression chord (Vc), shear transferred 

across web cracks (Vw) and the dowel action in the longitudinal reinforcement (Vl). The 

importance of the different contributing actions is considered to be variable as cracks open and 

propagate.  
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Lower case variables vc, vw, vl and vs are the dimensionless values of the shear transfer 

actions considered in the multi-action model or background mechanical model, whose 

expressions are given in Table 1 (Eqs. 3-6). The complete derivation of these equations may be 



found in [23, 25]. The different parameters needed to compute Eq. (1) are also given in Table 1 

(Eqs. 7-12) and in the notation. For the maximum shear strength due to the strut crushing, Eq. 

(2), this model adopts the formulation of the current EC-2, derived from plasticity models, but 

assuming that the angle of the compression strut is equal to the angle of the critical crack given 

by Eq. (12). Strut crushing is not a common failure mode, but it is possible in cases when larger 

contribution of Vs exists, so the verification is introduced. As larger values of Vs implies large 

amount of stirrups, usually this will occur with smear cracking in the web. Therefore, Eq. (2) 

represents here a check that another failure mode, strut crushing, prevents the occurrence of the 

compression chord failure. Note that these expressions do not include partial safety factors and 

that depend on mean values of the mechanical properties. 

Table 1. Summary of dimensionless shear contributing components and factors considered in the mechanical model 

for members cracked in bending. 
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Longitudinal reinforcement 
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𝑖𝑓 𝑣𝑠 = 0 → 𝑣𝑙 = 0 (5b) 
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Effective width 
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Fig. 1. Critical shear crack evolution and horizontal projection of the first branch of this crack. 

A main assumption of the model is to consider that failure occurs when, at any point of 

the compression chord, the principal stresses (1, 2) reach the Kupfer’s biaxial failure envelope 

[31], in the compression-tension branch (Fig. 2). This assumption is based on the experimental 

observation that when this happens, the concrete in the compression chord, subjected to a multi-

axial stress state, initiates softening, reducing its capacity as the crack propagates. 

 

Fig. 2. Adopted failure envelope for concrete under a biaxial stress state. Adapted from [31]. 

 

When the load is increasingly applied, flexural cracks successively appear as the bending 

moment increases. It is assumed that the critical crack is the closest crack to the zero bending 

moment point and that it starts where the bending moment diagram at failure reaches the 

cracking moment of the cross section. The critical section, where failure occurs, is assumed to 

be located where the critical crack reaches the neutral axis depth. This assumption is justified 

because any other section closer to the zero bending moment point has a bigger depth of the 

compression chord, produced by the inclination of the strut and will resist a higher shear force. 

On the other hand, any other section placed between this section and the maximum moment 



section will have the same depth of the compression chord but will be subjected to higher 

normal stresses and, therefore, the uncracked concrete zone will have a higher shear transfer 

capacity.  

Moreover, based also on experimental observations made by the authors and summarized 

in [24], the horizontal projection of the first branch of the flexural-shear critical crack is 

considered to be equal to 0.85d  (Fig. 1). This is equivalent to considering that its inclination is 

approximated as in Eq. (12), shown in Table 1. 

As a result of the above assumptions, the distance between the zero bending moment 

point and the initiation of the critical crack is scr = Mcr/Vu, and the position of the critical section 

will be su=scr+0.85 ds, which is usually a little higher than ds. This is the reason why for design 

purposes, ds is adopted as the position of the section where shear strength must be checked for 

RC members. In prestressed concrete members, the cracking moment is higher and the position 

of the critical crack is shifted away from the zero bending moment point with respect to RC 

members. For this reason it is proposed that the shear strength is checked at a section placed at a 

distance ds(1+0.4cp/fctm). The higher cracking moment in a prestressed concrete section, with 

respect to a reinforced concrete section, is taken into account in the background mechanical 

model by means of the strength factor Kp (Eq. 10 in Table 1). The complete derivation of this 

term can be found in reference [25]. In case of reinforced concrete beams without axial loads, P 

= 0, the factor Kp becomes equal to 1. 

Figure 3 plots, in a schematic way, the different contributing actions in the proposed 

model (Fig. 3a-3b) and compares them with the contributing actions in the Level III of 

Approximation of Model Code 2010 [32] (Fig. 3c), derived from both the Modified 

Compression Field Theory [13] and the Generalized Stress Field Approach [33], and the steel 

contribution of a variable angle truss model (Fig. 3d), as the one given in EC2 [4] for members 

with shear reinforcement. The different models are not contradictory; in fact, the fundamental 

difference is that they have been derived from different simplifying assumptions. The model 



developed by the authors considers that the maximum load occurs slightly after the first branch 

of the critical crack reaches the neutral axis depth, as also proposed by [34]. Other models take 

into account the full crack development. When the second branch of the critical crack is 

developed, the aggregate interlock in the first branch is activated. It could be understood that the 

shear transferred by the non-cracked concrete zone in this model (Fig. 3a-3b) is approximately 

equal to the contributing actions in the other models that takes place after the development of 

the second branch of the critical crack (aggregate interlock or stirrups crossing that zone). Note 

that the angle   in Fig. 3a-3c is the angle of the critical crack, and it is an angle fixed by the 

assumptions carried out in the models. However, the angle  in Fig. 3d is the angle of the 

compression field, an equilibrium angle that can be chosen by the designer. 

Fig. 3. Shear contributing actions at failure. a)Background mechanical model for elements without stirrups. b) 

Background mechanical model for elements with stirrups. c)Model Code 2010 model. d)Variable angle truss model. 

 

Fig. 4. Crack pattern at failure in a prestressed concrete girder without flexural cracks [35, 36]. 



In case of highly prestressed simply supported concrete beams, such as some T or I 

beams, usually with thin webs and with minimum or no shear reinforcement, no flexural cracks 

take place near the supports. In these regions, the beam web is subjected to high shear stresses, 

combined with normal compressive stresses produced by prestressing, generating a biaxial 

compression-tension state of stress. When, at the most stressed point of the web, the principal 

stresses reach the biaxial failure envelope, a diagonal crack initiates, which develops through 

the entire beam height (Fig. 4). In this situation, the model given by Eqs. (1)-(12) is not valid, as 

the main assumption of the initial bending crack would be false. The derivation of a design 

expression according to Mohr’s circle of stresses assuming Kupfer’s biaxial failure surface as 

failure criteria is carried out in [25]. 

In the case of PC beams with shear reinforcement, once the web cracks, stirrups start 

working and a shear force higher than the cracking shear can be resisted [37]. Therefore, higher 

bending moments take place near the supports which, generally, will produce flexural cracks. 

For this reason, in PC members with shear reinforcement, it is assumed that the shear strength 

may be computed accepting flexural cracks, by means of the model described by Eqs. (1)-(12), 

independently of the origin (bending or shear) of the initial crack. 

3. Derivation of the simplified equations considering shear-
flexure interaction 

3.1 General and minor changes to simplify the procedure 

The background mechanical model has been presented in the previous section. However, for 

design purposes, some simplifications are necessary in order to make the model easier to use in 

daily engineering practice. Taking into account that when shear-flexure failure takes place, both 

the residual tensile stresses, vw (Eq. 4), and the dowel action, vl (Eq. 5), are small compared to 

the shear resisted by the uncracked zone, vc (Eq. 3), the two first mentioned contributing actions, 

vw and vl have been incorporated into vc (Eq. 3). The detailed derivation of the new compact 

expression may be seen in Appendix A1. The resulting equation is presented in Eq. (13): 



 𝑉𝑢 = (𝑣𝑐 + 𝑣𝑤+𝑣𝑙)𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 =  0.30𝜁
𝑥

𝑑
 𝑓𝑐𝑘

2 3⁄
𝑏𝑣,𝑒𝑓𝑓𝑑 + 𝑉𝑠[1 + ∆𝑉𝑐𝑢] (13) 

where all parameters have been defined previously and Vcu is a non-dimensional confinement 

factor which considers the increment of the shear resisted by the concrete caused by the stirrup 

confinement in the compression chord, as shown in Eq. (14). This parameter will be taken 

constant and equal to 0.4 for simplicity reason in the type-code expression, although its actual 

value is generally between 0.2 and 0.6 for normal members. 

 ∆𝑉𝑐𝑢= 0.5𝜁 (1 +
𝑏

𝑏𝑤
)

𝑥

𝑑

𝑏𝑣,𝑒𝑓𝑓

𝑏
≈ 0.4 (14) 

Note that the influence of normal forces in Eq. (13) is taken into account by the 

parameter x/d. As can be seen in Appendix A1, the strength factor Kp, which takes into account 

the higher cracking moment in a prestressed concrete section with respect to a reinforced 

concrete section, has been considered equal to 1.0 due to the relatively low influence of this 

parameter and for simplicity reasons. 

Eq. (13) depends on the neutral axis depth ratio, x/d. This value may be computed from 

Eq. (7) for RC beams disregarding the compression reinforcement, but it may be also simplified 

as proposed in Eq. (15). Both values are represented in Figure 5. Consequently, the model 

considers the influence of the amount of the longitudinal tensile reinforcement in an indirect 

way, through the variation of the neutral axis depth. An increase of the amount of the 

longitudinal reinforcement would increase the neutral axis depth, increasing the shear strength 

and decreasing the inclination of the critical crack, Eq. (12). The longitudinal compression 

reinforcement is disregarded in Eq. (15) because its effect decreasing the neutral axis depth is 

compensated by the increase of the shear strength caused by the presence of steel in the concrete 

compression chord.  
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Fig. 5. Exact value of the neutral axis depth ratio and simplified expression given in Eq. (15).  

Eq. (13) has been derived taken into account that, in most beams, the residual tensile 

stresses, vw, and the dowel action, vl, are small compared to the shear resisted by the uncracked 

zone, vc. However, in some members, e.g. one-way slabs with low levels of longitudinal 

reinforcement and without stirrups, this assumption would lead to too conservative results, as 

the dimensionless shear contribution due to residual stresses along the crack may be comparable 

to the contribution of the uncracked zone, since x/d is small. In this situation, it is possible to 

derive an equation for the minimum shear strength, Vcu,min, that takes explicitly into account the 

residual tensile stresses action. This expression will be very useful for elements with low 

amounts of longitudinal reinforcement, and its derivation may be found in Appendix A2. The 

resulting equation for this minimum shear strength is given by Eq. (16), in which x/d shall not 

be taken higher than 0.20. 

 𝑉𝑐𝑢,𝑚𝑖𝑛 = (𝑣𝑐 + 𝑣𝑤)𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 ≈ 0.25 (𝜁
𝑥

𝑑
+

20

𝑑0
) 𝑓𝑐𝑘
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∙ 𝑏𝑤𝑑 (16) 

The influence of the compression flange is taken into account in the general model by 

means of the effective shear width given by Eqs. (9a - 9b). In the case in which x > hf, Eq. (9b), 

the effective width shall be interpolated between the web width, bw, and the effective width in 

the compression flange, bv (Eq. 9a). Equation (9b) is a straight forward equation, but the authors 

have considered that it is too complex for everyday engineering. For that reason, the following 

simplified expression for the calculation of the effective width is proposed: 
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Eqs. (9a-9b) and (17a-17b) are compared in Figure 6 for some T-beams with 

compression flanges. The results shown that the error between the original formulation and the 

simplification is generally lower than 10%. 

 

Fig. 6. Comparison between exact and simplified relative effective width for shear strength calculations. 

3.2 Size effect 

Due to the brittle character of the failure that takes place when the second branch of the critical 

crack propagates, it is necessary to take into account the size effect. The empirical factor 

proposed by other authors [22] was adopted in the background mechanical model, by means of 

the term ζ, Eq. (11), which can be assimilated to the size effect of a splitting test. According to 

such model, the size effect on the shear failure of slender beams seems to depend on the size of 

the shear span a, that would be proportional to the diameter of the specimen of a hypothetical 

splitting test that occurs at the beam compression chord, between the point where the load is 

applied and the tip of the first branch of the critical shear crack. The term given by Eq. (11) was 

derived from a previous experimental work carried out by Hasegawa et al. [38], in which a 

linear relationship was proposed for the size effect. However, this work was lately re-examined 



by Bažant et al. [39] , suggesting that the splitting tensile strength followed the size effect term 

developed by fracture mechanics with an asymptote, as shown in Eq. (18):  

σN = max (
Bf𝑡

′

√1+𝛽0
, σy) (18) 

Where f’t is a measure of material tensile strength, 0 is proportional to the diameter of the 

cylinder, B is an empirical constant and y is the asymptote.  

Moreover, the shear strength of structural concrete members is affected, not only by the element 

size, but also by its slenderness, a/d, as reported by many researchers [40–42]. For the previous 

reasons, a new empirical size effect term is proposed which depends on d and a/d. The factor 

depending on d will be taken as the factor proposed by ACI Committee 446 [43], Eq. (19), 

which is an expression similar to the one on the left inside the parenthesis in Eq. (18). 

𝑣𝑐 =
𝑣0

√1+
𝑑

𝑘𝑑

 (19) 

The factor depending on a/d will be taken from the empirical work performed with 

genetic programming in [44, 45], where was seen that the term a/d0.21 correctly predicted the 

influence of this variable. The new combined size and slenderness effect factor is given in Eq. 

(20). Figure 7 compares Eq. (20) with previous size effect factor given by Eq. (11). 

ζ =
2

√1+
d0

200

(
d

a
)

0.2
≮ 0.45 (20) 

 

Fig. 7. Comparison between size effect term given by Eq. (11) and new size effect term given by Eq. (20). 



4. Simplified shear model 

Based on the previous theoretical multi-action model and on the main simplifications presented 

in the previous section, the following model is proposed for shear design and assessment in 

engineering practice. 

4.1 General 

The design shear force in the section considered, VEd, results from external loading (VEd,0) and 

prestressing (bonded or unbonded, considered as an external action (Figure 9)).  

 VEd = VEd,0 – P·sinp (21) 

When, on the basis of the design shear calculation, no shear reinforcement is required, 

minimum shear reinforcement should nevertheless be provided. The minimum shear 

reinforcement may be omitted in members such as slabs (solid, ribbed or hollow core slabs) and 

footings where transverse redistribution of loads is possible. Minimum reinforcement may also 

be omitted in members of minor importance (e.g. lintels with span ≤ 2 m) which do not 

contribute significantly to the overall resistance and stability of the structure. 

The longitudinal tension reinforcement should be able to resist the additional tensile force 

caused by shear, given by Eq. (29).  

Where a load is applied near the bottom of a section, sufficient vertical reinforcement to 

suspend the load to the top of the section should be provided in addition to any reinforcement 

required to resist shear. 

4.2 Simplified shear design and assessment equations: the 

compression chord capacity model 

The design procedure of members with or without shear reinforcement shall verify equilibrium 

and shall take into account the influence of the stresses transferred across cracked concrete (Vw 

in Figure 8), by the compression chord (Vc), and the contribution of the shear reinforcements 

(Vs) and longitudinal reinforcements (Vl). 



Shear strength shall be checked at least at a distance ds(1+0.4cp/fctm) from the support 

axis and at any other potential critical section, where σcp = NEd/Ac is the mean concrete normal 

stress due to axial loads or prestressing (compression positive) and fctm is the mean concrete 

tensile strength, not greater than 4.60 MPa. See Appendix A3 for further information regarding 

the location of the critical section. 

The inclination of the compression strut is considered equal to the mean inclination of the 

shear crack, computed as follows 

 
0.85

cot 2.50s

s

d

d x
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
  (22) 

where x is the neutral axis depth of the cracked section, obtained assuming zero concrete tensile 

strength. For reinforced concrete members without axial loads, x = x0 (see Eq. 15). 

 

Fig. 8. Shear contributions and notation for simple supported beam and cantilever beam. 

For prestressed or axially loaded members (NEd, compression positive), x can be 

estimated, in a simplified manner, by means of Eq. (23). Note that for compressed members 

(NEd  0), the right side of the equation incorporates a reducing factor 0.8 which is not present in 

the equivalent expression of the background theoretical model, see Eq. (8). This factor is needed 

to correct the fact that in the derivation of the simplified value of the shear strength, Eq. (13) 



and Appendix A1, mean values of the contributing actions vw and vl have been added to vc. 

However, vw and vl, should not be affected by the variation of the neutral axis depth for 

prestressed beams, and for this reason the reduction factor is needed. Moreover, it can be also 

seen as a calibration factor to increase safety when compressive axial loads are present. It is also 

important to highlight that the increase of the neutral axis depth depends on the ratio 

𝜎𝑐𝑝/𝑓𝑐𝑡𝑚

𝜎𝑐𝑝/𝑓𝑐𝑡𝑚+1
=

𝜎𝑐𝑝

𝜎𝑐𝑝+𝑓𝑐𝑡𝑚
 and not only on cp. 

 𝑁𝐸𝑑 ≥ 0 →   𝑥 = 𝑥0 + 0.80(ℎ − 𝑥0) (
𝑑

ℎ
)

𝜎𝑐𝑝

𝜎𝑐𝑝+𝑓𝑐𝑡𝑚
≤ ℎ 

 𝑁𝐸𝑑 < 0 →   𝑥 = 𝑥0 (1 + 0.1
𝑁𝐸𝑑𝑑𝑠

𝑀𝐸𝑑
) ≥ 0 (23) 

The shear strength, VRd, is the smaller value given by Eqs. (24) and (25). 

 𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 (24) 

 ,max 1 2

cot cot

1 cot
Rd cw w cdV b z v f

 








 (25) 

where Vcu is the shear resisted by the concrete considering the different contributions given in 

Figure 8 (Vcu = Vc + Vl + Vw), see Eq. (26). An alternative code type expression for Vcu using the 

typical values of fct and Ec given in the ACI318-11 Code is presented in the on-line 

Supplementary Material. 

 𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2/3
𝑏𝑣,𝑒𝑓𝑓𝑑 ≮ 𝑉𝑐𝑢,𝑚𝑖𝑛 = 0.25 (𝜁𝐾𝑐 +

20

𝑑0
) 𝑓𝑐𝑑

2/3
𝑏𝑤𝑑 (26) 

And Vsu   the shear resisted due to the shear reinforcement: 

 𝑉𝑠𝑢 = 1.4
𝐴𝑠𝑤

𝑠
𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼) (27) 

 is a combined size and slenderness effect factor, given by Eq. (20). 

The parameter bv,eff  shall be calculated using Eqs. (17). For the determination of fcd for 

Eq. (26), fck shall not be taken greater than 60 MPa. This limitation is provided due to the larger 

observed variability in shear strength of members with higher strength concrete, particularly for 

members without stirrups such as slabs, as recognized for example in Model Code 2010 [32]. Kc 

is equal to the relative neutral axis depth, x/d, but not greater than 0.20 when computing Vcu,min 

(Eq. 26). The constant 1.4 is not a calibration factor, but a term to take into account the 



confinement of the concrete in the compression chord caused by the stirrups, as shown in Eq. 

(14). The rest of terms can be seen in the notations. 

Shear reinforcement is necessary when the shear design force exceeds the shear resisted 

by the concrete without shear reinforcement given by Eq. (26). Then, the necessary shear 

reinforcement is: 

𝐴𝑠𝑤

𝑠𝑡
=

𝑉𝐸𝑑−𝑉𝑐𝑢

1.4𝑓𝑦𝑤𝑑(𝑑𝑠−𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃+cot 𝛼)
 (28) 

The additional tensile force, Ftd, in the longitudinal reinforcement due to the shear force 

VEd may be calculated from: 

 0.5·td Ed suF  =V cot  - V ( cot  + cot  )    (29) 

The tensile force of the longitudinal reinforcement, (MEd/z) + Ftd, should be taken not 

greater than MEd,max/z, where MEd,max is the maximum moment along the beam. In elements with 

inclined prestressing tendons, longitudinal reinforcement at the tensile chord should be provided 

to carry the longitudinal tensile force due to shear defined by Eq. (29). See Appendix A4 for the 

details regarding the derivation of Eq. (29). 

In prestressed members without shear reinforcement, the shear resistance of the regions 

uncracked in bending in ULS may be obtained using a design expression directly derived from 

Mohr’s circle of stresses [25], as previously commented in Section 2.  

5. Verification of the model and comparison with other 

formulations 

The shear strength predictions of all tested beams included in the four databases developed by 

ACI-DafStb for RC and PC beams [26–28] by the simplified proposal presented in Section 4 

and by four current structural codes are compared in Table 2 and Figure 9. All explicit partial 

safety factors have been removed from the original formulations, and the mean value of the 

materials strength has been used for these calculations. The proposed model correlates 

significantly better with the tests results than any of the four considered code formulations. In 

summary, for the 1285 tested beams, the average of the Vtest/Vpred ratio is 1.17 for the simplified 



equations. For the ACI318-11 provisions the ratio equals 1.44, 1.26 for EC-2, 1.35 for Model 

Code 2010 and 1.33 for CSA A23.3-14, using for the Model Code the better results obtained for 

the different levels of approximation. The CoV is 18.6% for the simplified model proposed in 

this paper. For ACI318-04, EC-2, MC- 2010 and CSA A23.3-14 the CoV equals 35.3%, 34.1%, 

31.4% and 26.9% respectively. A recently published paper studied the scatter in the shear 

capacity of slender RC members without web reinforcement [46]. The authors concluded that 

the scatter of the shear capacity seems to be mainly due to the randomness of the tensile strength 

of concrete. Also recently, other authors confirmed that a comparison with different shear 

design models revealed that models that use the concrete tensile strength predict the shear 

capacity of continuous prestressed concrete beams with external prestressing more accurately 

[47] that the models that do not explicitly consider the tensile strength of the concrete. In this 

sense, the coefficient of variation of the predictions by the Compression Chord Capacity Model 

for the beam tests included in the four databases is not much higher than the coefficient of 

variation of the splitting tensile strength. In a published database of 78 splitting tensile tests 

[48], the coefficient of variation (COV) for the prediction of the tensile strength was 15.1%. 

This fact seems to indicate that the shear transfer mechanisms at failure have been well captured 

by the model. 

Table 3 presents a more detailed comparison between the simplified proposal and the EC-

2 formulation, comparing the results obtained considering the mean value of the materials 

strength, the characteristic value for concrete strength without partial safety factors and 

including them (c = 1.50; s = 1.15). The results show that, for the studied databases, the 

proposal shows a reasonable and homogeneous safety level. 

The predictions obtained by means of the proposed formulation, EC-2 and MC-2010 are 

compared in Fig. 10-11 with some selected series of tests [49–56]. Note that the code format 

proposal captures the influence of the different parameters studied: d, Aswfyw and cp/fctm both for 

RC and PC members.  



 

 

 
Fig. 9. Correlation between the predictions and the experimental results as a function of the effective depth, d, for the 

1285 beams included in the four ACI-DafStb databases 

 

 

 

 

 

 

 

 

 

 



      A)             B) 

 
      C)             D) 

 
Fig. 10. Correlation between the prediction and experimental results for RC beams: A) Size effect in beams w/o stirrups 

[49]. B) Size effect in beam w/o stirrups [50]. C) Influence of the stirrup index [51]. D) Influence of the stirrup index 

[52]. 

      A)             B) 

 
      C)             D) 

 
Fig. 11. Correlation between the prediction and experimental results for PC beams: A) Influence of prestressing 

ratiocp/fctm in beams w/o stirrups [53]. B) Influence of amount of prestressing reinforcement for constant prestressing 

force in beams w/o stirrups [54]. C) Influence of prestressing ratiocp/fctm in beams with stirrups [55]. D) Influence of 

the stirrup index [56]. 



6. Application example 
6.1 Reinforced concrete slab 

The shear strength of a continuous RC ribbed slab, of two equal spans of 8 m each, subjected to 

a permanent load of 5.0 kN/m2 and a live load of 8.0 kN/m2, must be verified. The dimensions 

and reinforcement layouts are indicated in Figure 12. The design bending moments and shear 

forces distributions (G = 1.35, Q = 1.50) in a strip of 0.80 m width (distance between ribs axes), 

when the live load is applied in the whole length of both spans are shown in Figure 13. 

Concrete characteristic strength is 25 MPa (c = 1.50), maximum aggregate size is 14 

mm. Yield strength of both longitudinal and transverse reinforcements is 500 MPa (s = 1.15). 

 

Fig. 12. Dimensions and reinforcement layouts. 

 

Fig. 13. Design bending moments and shear forces distributions (G = 1.35 , Q = 1.50). 



 

6.1.1 Verification of the shear strength near the end supports 

Position of the control section: distance to support axis: s = ds = 350 mm 

Design shear force VEd = 45.0 – 0.35·15 = 39.75 kN 

Longitudinal reinforcement area: 216 = 402 mm2 

Concrete properties and neutral axis depth: 

𝑓𝑐𝑑 =
𝑓𝑐𝑘

𝛾𝑐
= 16.67 𝑀𝑃𝑎  ;    𝑓𝑐𝑡𝑚 = 0.30√𝑓𝑐𝑘

23
= 2.56 𝑀𝑃𝑎  

𝐸𝑐 = 22000 (
𝑓𝑐𝑚

10
)

0.3

= 22000 (
33

10
)

0.3

= 31475 𝑀𝑃𝑎     ;   𝛼 =
𝐸𝑠

𝐸𝑐
= 6.35 

𝜌 =
𝐴𝑠

𝑏𝑑
=

402

800 · 350
= 0.00144;    

𝑥

𝑑
= 0.75 · (𝛼𝜌)1/3 = 0.157;    𝑥 = 54.95 𝑚𝑚 < ℎ𝑓 

Note that b is taken equal to the width of the compression flange (effective bending width). 

𝑥 < ℎ𝑓 = 80 𝑚𝑚    ;    𝑏𝑣 = 𝑏𝑤 + 2ℎ𝑓 = 150 + 2 · 80 = 310 𝑚𝑚 

Size effect: 𝑎 = 0.20𝐿 = 1.6 𝑚   ;   𝜁 =
2

√1+
350

200

(
350

1600
)

0.2
= 0.89 

𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2
3 𝑏𝑣,𝑒𝑓𝑓𝑑 = 0.3 · 0.89 · 0.157 · 16.67

2
3 · 310 · 350 = 29.7 𝑘𝑁 ≮  𝑉𝑐𝑢,𝑚𝑖𝑛 

𝑉𝑐𝑢,𝑚𝑖𝑛 = 0.25 (𝜁𝑘𝑐 +
20

𝑑0
) 𝑓𝑐𝑑

2/3
𝑏𝑤𝑑 = 0.25 (0.89 ∙ 0.157 +

20

350
) 16.672/3150 ∙ 350

= 16.9 𝑘𝑁  

0.85 0.85·350
cot 1.01 2.50; 44.7º

350 54.95

s

s

d

d x
     

 
  

𝐴𝑠𝑤

𝑠
=

𝜋·0.62

2·275
= 0.206 𝑚𝑚2

𝑚𝑚⁄   ; 𝑓𝑦𝑤𝑑=
500

1.15
= 435   ;  𝑠𝑖𝑛𝛼 = 1   ;   cot 𝛼 = 0 

𝑉𝑠𝑢 = 1.4
𝐴𝑠𝑤

𝑠
𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼) = 1.4 · 0.206 · 435 · (350 − 54.95) · 1.01

= 37.4 𝑘𝑁 

,max 1 2 2

cot cot 1.01
1·150·0.9·350·0.6·16.67· 236.3

1 cot 1 1.01
Rd cw w cdV b z v f kN

 





  

 
 

𝑉𝐸𝑑 = 39.75 𝑘𝑁 < 𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 = 29.7 + 37.4 = 67.1 < 𝑉𝑅𝑑,𝑚𝑎𝑥 



Therefore, the shear force near the end supports is resisted. The strictly necessary area of 

stirrups may be computed by: 

𝐴𝑠𝑤

𝑠
=

𝑉𝐸𝑑 − 𝑉𝑐𝑢

1.4 · 𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼)
=

39.75 − 29.7

1.4 · 435 · (350 − 54.95) · 1.01

= 0.055 𝑚𝑚2

𝑚𝑚    ⁄  

The minimum amount of shear reinforcement should be provided. 

 

6.1.2 Verification of shear strength near the central support (inverted T section, b = bw) 

Design shear force VEd = 75.0- 0.35·15 = 69.75 kN  

Longitudinal reinforcement area: 612+120 = 992 mm2 

𝜌 =
𝐴𝑠

𝑏𝑑
=

992

150 · 350
= 0.0189;    

𝑥

𝑑
= 0.75 · (𝛼 ∙ 𝜌)1/3 = 0.37;    𝑥 = 129.5 𝑚𝑚 

Note that in this case, b is equal to the width of the compression chord for negative bending 

moment, bw. 

𝑏𝑣 = 𝑏𝑤 = 𝑏 = 150 𝑚𝑚 

Size effect:    𝑎 = 0.15𝐿 = 1.2 𝑚   ;   𝜁 =
2

√1+
350

200

(
350

1200
)

0.2
= 0.94 

𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2
3 𝑏𝑣,𝑒𝑓𝑓𝑑 = 0.3 · 0.94 · 0.37 · 16.67

2
3 · 150 · 350 = 35.7 𝑘𝑁 ≮  𝑉𝑐𝑢,𝑚𝑖𝑛 

𝑉𝑐𝑢,𝑚𝑖𝑛 = 0.25 (𝜁𝑘𝑐 +
20

𝑑0
) 𝑓𝑐𝑑

2/3
𝑏𝑤𝑑 = 0.25 (0.94 ∙ 0.2 +

20

350
) 16.67

2
3150 ∙ 350 = 21.0 𝑘𝑁  

0.85 0.85·350
cot 1.35 2.50 ; 36.5º

350 129.5

s

s

d

d x
     

 
 

𝐴𝑠𝑤

𝑠
=

𝜋·0.62

2·250
= 0.226 𝑚𝑚2

𝑚𝑚⁄ ; 𝑓𝑦𝑤𝑑=
500

1.15
= 435 ; 𝑠𝑖𝑛𝛼 = 1   ;  cot 𝛼 = 0 

𝑉𝑠𝑢 = 1.4
𝐴𝑠𝑤

𝑠
𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼) = 1.4 · 0.226 · 435 · (350 − 129.5) · 1.35 =

= 41.0 𝑘𝑁 

,max 1 2 2

cot cot 1.35
1·150·0.9·350·0.6·16.67· 226

1 cot 1 1.35
Rd cw w cdV b z v f kN

 





  

 
 

𝑉𝐸𝑑 = 69.75 𝑘𝑁 < 𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 = 35.7 + 41.0 = 76.7 < 𝑉𝑅𝑑,𝑚𝑎𝑥 



Therefore, the shear near the end supports is also resisted. The strictly necessary area of stirrups 

may be computed by: 

𝐴𝑠𝑤

𝑠
=

𝑉𝐸𝑑 − 𝑉𝑐𝑢

1.4𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼)
=

69.75 − 35.7

1.4 · 435 · (350 − 129.5) · 1.35 · 1.348

= 0.139 𝑚𝑚2

𝑚𝑚    ⁄  

The minimum amount of shear reinforcement should be checked.  

 

6.2 Post-tensioned concrete slab 

Compute the shear strength of the same slab with the same reinforcement but post-tensioned by 

means of a straight un-bonded tendon in each rib, placed at the center of gravity of the section 

(Ac=0.112 m2) . The tendon consists of a 150 mm2 strand, initially stressed at 1400 N/mm2, 

which introduces a force of 180 kN after total losses, that can be considered constant along the 

whole tendon length.  

The mean concrete normal stress introduced by the tendon is: 

2180000
1.607 /

112000
cp

c

P
N mm

A
     

 

6.2.1 Verification of the shear strength near the end supports 

The position and design shear force at the critical section are: 

1.607
1 0.4 350 1 0.4 438 ; 45 0.438·15 38.4

2.56

cp

s Ed

ctm

s d mm V kN
f

   
          

  
 

The neutral axis depth without prestressing is x0 = 54.95 mm. Since the tendon is un-bonded it is 

assumed that it does not contribute to the section stiffness, but only introduces an axial force P 

= 180 kN. Then the neutral axis depth x is: 

   0 0

350 1.607
0.8 54.95 0.8 400 54.95 148.1

400 1.607 2.56

cp

cp ctm

d
x x h x mm

h f




      

 

The effective shear width is (x > hf): 

 𝑏𝑣,𝑒𝑓𝑓 = 𝑏𝑤 + (𝑏𝑣 − 𝑏𝑤) · (
ℎ𝑓

𝑥
)

2/3

= 150 + (310 − 150) (
80

148.1
)

1.5

= 213.5 𝑚𝑚 



Note that bv had been calculated in 6.1.1. 

148.1
0.423

350

x

d
   

𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2
3 𝑏𝑣,𝑒𝑓𝑓𝑑 = 0.3 · 0.89 · 0.423 · 16.67

2
3 · 213.5 · 350 = 55.1 𝑘𝑁 

Since Vcu = 55.1 kN >VEd =38.4 kN, only minimum shear reinforcement will be necessary. 

 

6.2.2 Verification of shear strength near the central support (inverted T section, b = bw) 

1 0.4 438 ; 45 (8 0.438)·15 68.4
cp

s Ed

ctm

s d mm V kN
f

 
        

 
; 𝜁 = 0.94 

The neutral axis depth without prestressing is x0 = 129.5 mm. Since the tendon is un-bonded it is 

assumed that it does not contribute to the section stiffness, but only introduces an axial force 

P=180 kN. Then the neutral axis depth x is: 

   0 0

350 1.607
0.8 129.5 0.8 400 129.5 202.5

400 1.607 2.56

cp

cp ctm

d
x x h x mm

h f




      

 
 

202.5
0.578

350

x

d
   

𝑉𝑐𝑢 = 0.3𝜁
𝑥

𝑑
𝑓𝑐𝑑

2
3 𝑏𝑣,𝑒𝑓𝑓𝑑 = 0.3 · 0.94 · 0.578 · 16.67

2
3 · 150 · 350 = 55.8 𝑘𝑁 

Since Vcu=55.8 kN < VEd =68.4 kN shear reinforcement is necessary at central support region 

(probably the minimum amount). The contribution of the stirrups to the shear strength is: 

0.85 0.85·350
cot 2.017 2.50; 26.4º

350 202.5

s

s

d

d x
     

 
 

𝑉𝑠𝑢 = 1.4
𝐴𝑠𝑤

𝑠
𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥)𝑠𝑖𝑛𝛼 (cot 𝜃 + cot 𝛼) =

= 1.4 · 0.226 · 435 · (350 − 202.5) · 2.017 = 40.9 𝑘𝑁 

,max 1 2 2

cot cot 2.017
1.096·150·0.9·350·0.6·16.67· 206.1

1 cot 1 2.017
Rd cw w cdV b z v f kN

 





  

 
 

The parameter cw has been taken equal to 1.096. See the Notations for its definition. 

𝑉𝐸𝑑 = 68.4 𝑘𝑁 < 𝑉𝑅𝑑 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢 = 55.8 + 40.9 = 96.7 < 𝑉𝑅𝑑,𝑚𝑎𝑥 



Therefore, the design shear force is resisted. The strictly necessary shear reinforcement is: 

𝐴𝑠𝑤

𝑠
=

𝑉𝐸𝑑 − 𝑉𝑐𝑢

1.4𝑓𝑦𝑤𝑑(𝑑𝑠 − 𝑥) cot 𝜃
=

68.4 − 55.8

1.4 · 435 · (350 − 202.5) · 2.017
= 0.07 𝑚𝑚2

𝑚𝑚    ⁄  

The minimum amount of shear reinforcement should be placed. 

7. Conclusions 

A simplified mechanical model for the shear strength of structural concrete members, named by 

the authors as the Compression Chord Capacity Model, based on a more general previous one 

already developed by the authors, has been presented and verified. The most relevant shear 

transfer mechanisms have been incorporated into a compact and very simple formulation, valid 

for direct and straightforward shear design and assessment of reinforced and prestressed 

concrete members, with and without transverse reinforcement, with I, T or rectangular cross 

section.  

The model recognizes the increment of shear strength of the concrete compression 

chord due to the confinement provided by the stirrups, the contribution of the flanges in I or T 

beams through an effective shear width and the effects of the bending moment on the shear 

transfer capacity of the compression chord. A shear failure criteria associated to the propagation 

of the critical shear crack into the uncracked compression chord has been defined. In addition, a 

new combined size and slenderness effect factor and an expression to evaluate the neutral axis 

depth in prestressed and/or axially loaded members are also original contributions.  

The predictions of the model fit very well the experimental results collected in the ACI-

DAfStb databases of shear tests on slender reinforced and prestressed concrete beams with and 

without stirrups. The mechanical character of the model provides valuable information about the 

physics of the problem and incorporates the most relevant parameters governing the shear 

strength of structural concrete members. Due to this fact and the simplicity of the derived 

equations it may become a very useful tool for structural design and assessment in engineering 

practice.  
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Notation 
a shear span, equal to MEd,max/VEd,max, where MEd,max and VEd,max are the maximum absolute 

values of the internal forces in the region between the maximum bending moment and the 

zero bending moment in which the considered section is located. This is equivalent to the 

distance from the support to the resultant of the loads producing shear at that support. For 

design, in members with uniformly distributed load, a=0.25L for simple supported 

members; a=0.5L in the case of a cantilever beam; a=0.2L for the sagging moment 

regions in continuous members and a=0.15L for the hogging moment regions in 

continuous members, being L the span of the member or the length of the cantilever. 

b width of the cross-section. For T or I-shaped is equal to the flexural effective compression 

flange width 

bv,eff  effective width for shear strength calculation. For rectangular beams, 

bv,eff = b. For T or I beams with compression flange, it may be computed by means of Eq. 

(9) for the general model (multi-action model). For the simplify model, use Eq. (17). For 

L beams with one compression flange, the value 2hf of Eq. (9a) and (17a) shall be 

substituted by hf. 

bw width of the web on T, I or L beams. For rectangular beams bw = b 

d effective depth of the cross-section. For members containing mild steel reinforcement and 

prestressed tendons, 𝑑 =
𝐴𝑠𝑑𝑠+𝐴𝑝𝑑𝑝

𝐴𝑠+𝐴𝑝
 



d0 effective depth of the cross-section, d, but not less than 100 mm 

dmax maximum aggregate size 

ds  distance between the maximum compressed concrete fibre and the centroid of the mild 

steel tensile reinforcement. In the case of prestressed elements without mild 

reinforcement, ds shall be taken equal to dp 

dp distance between the maximum compressed concrete fibre and the  mechanical centroid 

of the prestressing tendons placed at the tension zone 

fcd is the design value of concrete compressive strength 

fck characteristic compressive strength of concrete 

fcm mean compressive strength of concrete 

fctm mean tensile strength of concrete, in MPa, not greater than 4.60 

fywd  design yield strength of the shear reinforcement 

h overall depth of a cross-section 

hf height of the compression flange. In T, I or L beams with haunches, hf can be considered 

the flange height plus half the haunch 

s  longitudinal coordinate from the support 

scr location of the section where the critical shear crack starts 

st spacing of the stirrups 

x neutral axis depth of the cracked section, obtained assuming zero concrete tensile strength 

x0 neutral axis depth of a RC member or of a PC member considering P = 0 and the same 

amounts of reinforcements 

yt distance from the concrete section centroid to the most tensioned fibre under the external 

bending moment 

z inner lever arm, for a member with constant depth, corresponding to the bending moment 

in the element under consideration. In the shear analysis of reinforced concrete members 

without axial force, the approximate value z ≈ 0.9d may normally be used 

Ac cross sectional area of concrete 

Ap cross sectional area of prestressing steel 



As cross sectional area of mild reinforcement 

Asw  cross-sectional area of the shear reinforcement

Ecm secant modulus of elasticity of concrete, 𝐸𝑐𝑚 = 22000(𝑓𝑐𝑚/10)0.3 ≯ 39 𝐺𝑃𝑎

Es modulus of elasticity of reinforcing steel

Ftd design value of the tensile force in the longitudinal reinforcement 

Fcd design value of the concrete compression force in the direction of the longitudinal 

member axis 

Gf concrete fracture energy, 𝐺𝑓 = 0.028𝑓𝑐𝑚
0.18𝑑𝑚𝑎𝑥

0.32  

Kc  is equal to the relative neutral axis depth, x/d, but not greater than 0.20 

Kp strength factor which takes into account the effects of the axial load, including 

prestressing, (compression positive), and the interaction with the bending moment acting 

at the considered section. See Eq. (10) for its definition in the mechanical model. This 

factor is taken equal to 1.0 in the simplified model.  

Mcr  cracking moment at the section where shear strength is checked calculated using the 

mechanical properties of the gross concrete section and the flexural tensile strength 

MEd concomitant design bending moment, considered positive 

NEd concomitant design axial or prestressing force (compression positive) 

P prestressing tendon force after total losses 

VEd  design shear force in the section considered 

VEd,0  design shear force in the section considered due only to the external loading 

VRd  design shear resistance of the member 

VRd,max  design value of the maximum shear force which can be sustained by the member, 

limited by crushing of the struts 

Vu  shear resistance of the member calculated by the background mechanical model 

Vu,max maximum shear force which can be sustained by the member, limited by crushing of the 

struts in the background mechanical model or multi-action model. 

 angle between shear reinforcement and the beam axis perpendicular to the shear force 

(measured positive as shown in Figure 8) 



cw coefficient taking account the state of the stress in the struts: 𝛼𝑐𝑤 = 1 for non prestressed 

structures; 𝛼𝑐𝑤 = 1 + 𝜎𝑐𝑝/𝑓𝑐𝑑for  0 ≤ 𝜎𝑐𝑝 ≤ 0.25𝑓𝑐𝑑; 𝛼𝑐𝑤 = 1.25 for 0.25𝑓𝑐𝑑 < 𝜎𝑐𝑝 ≤

0.50𝑓𝑐𝑑; and 𝛼𝑐𝑤 = 2.5(1 − 𝜎𝑐𝑝/𝑓𝑐𝑑) for 0.50𝑓𝑐𝑑 < 𝜎𝑐𝑝 ≤ 𝑓𝑐𝑑 

e  modular ratio, 𝛼𝑒 = 𝐸𝑠/𝐸𝑐𝑚 

p angle between the prestressed tendon axis and the beam axis perpendicular to the shear 

force (Figure 8) 

1 strength reduction factor for concrete cracked in shear, 1 = 0.6 for fck ≤ 60 MPa and 1 = 

0.9-fck/200 for fck > 60 MPa 

 angle between the concrete compression strut and the beam axis perpendicular to the 

shear force 

l  longitudinal tensile reinforcement ratio referred to the effective depth d and the width b. 

For members with mild steel reinforcement and tendons, el can be adopted as 

, ,e e s e pl s p
        being 𝛼𝑒,𝑠 = 𝐸𝑠 𝐸𝑐𝑚⁄ , 𝛼𝑒,𝑝 = 𝐸𝑝 𝐸𝑐𝑚⁄ , 𝜌𝑠 = 𝐴𝑠 𝑏𝑑⁄ , 𝜌𝑝 =

𝐴𝑝 𝑏𝑑⁄  and b the width of the cross-section according to Figure 8. For the case of unbonded 

tendons, Ap = 0. 

cp concrete compressive stress at the centroidal axis due to axial loading and/or prestressing 

(cp = NEd / Ac in MPa, NEd >0 in compression) 

 size effect coefficient, given by Eq. (11) for the background mechanical model and Eq. 

(20) for the model presented in this paper (combined size and slenderness effect factor).  

Vcu non-dimensional confinement factor which considers the increment of the shear resisted 

by the concrete caused by the stirrup confinement in the compression chord, see Eq. (14). 

This factor is taken equal to 0.4 in the simplified model. 

Ft,d  additional tensile force in the longitudinal reinforcement due to the shear force VEd 

 

  



Appendixes 

A1. Derivation of compact expression for Vcu 

To derive the compact expression, vw (Eq 4) and vl (Eq. 5) have been incorporated into vc (Eq. 3) 

taking into account that when shear-flexure failure takes place, both the residual tensile stresses 

and the dowel action are small compared to the shear resisted by the uncracked zone. For this 

purpose, average values vw=0.035 and vl=0.025 have been considered. On one hand, the term vw 

has been added to the constant 0.02 in Eq. (3) and both terms have been included in the term 

multiplying x/d, considering x/d = 0.35. On the other, the action term vl, which only exists when 

Ast>0, has been added to the factor multiplying vs in Eq. (3), considering a value of vs=0.25. The 

tensile strength fctm has been considered equal to 0.30·fck
2/3. The detailed derivation is as follows: 

𝑉𝑢 = (𝑣𝑐 + 𝑣𝑤+𝑣𝑙)𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 = 

 = (𝜁 [(0.88 + (0.20 + 0.50
𝑏

𝑏𝑤
) 𝑣𝑠)

𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝 + 𝑣𝑤+𝑣𝑙) 𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 = 

= (𝜁 [(0.88 + (0.20 + 0.50
𝑏

𝑏𝑤
) 𝑣𝑠)

𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝 + 0.035 + 0.025) 𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 = 

= (𝜁 [(0.88 +
0.02

0.35
+

0.035

0.35
+ (0.20 +

0.025

0.35 · 0.25
+ 0.50

𝑏

𝑏𝑤
) 𝑣𝑠)

𝑥

𝑑
]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝) 𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 = 

= (𝜁 [(1.04 + (0.49 + 0.50
𝑏

𝑏𝑤
) 𝑣𝑠)

𝑥

𝑑
]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝) 𝑓𝑐𝑡𝑚 · 𝑏 ∙ 𝑑 + 𝑉𝑠 ≈ 

≈ 0.30𝜁𝑓𝑐𝑘
2 3⁄ 𝑥

𝑑
 𝐾𝑝𝑏𝑣,𝑒𝑓𝑓𝑑 + 0.5𝜁 (1 +

𝑏

𝑏𝑤
)

𝑥

𝑑

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝

𝑉𝑠

𝑏 ∙ 𝑑 · 𝑓𝑐𝑡
𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 + 𝑉𝑠 = 

= 0.30𝜁𝑓𝑐𝑘
2 3⁄ 𝑥

𝑑
 𝑏𝑣,𝑒𝑓𝑓𝑑 + 𝑉𝑠 [1 + 0.5𝜁 (1 +

𝑏

𝑏𝑤
)

𝑥

𝑑

𝑏𝑣,𝑒𝑓𝑓

𝑏
] = 0.30𝜁

𝑥

𝑑
 𝑓𝑐𝑘

2 3⁄
𝑏𝑣,𝑒𝑓𝑓𝑑 + 𝑉𝑠[1 + ∆𝑉𝑐𝑢] = 

= 𝑉𝑐𝑢 + 𝑉𝑠[1 + ∆𝑉𝑐𝑢] 

It is recommended to adopt a constant value, ∆𝑉𝑐𝑢= 0.4, for the non-dimensional 

confinement factor to simplify the calculation procedure. 

In the background mechanical model, Kp is a strength factor which takes into account 

the effects of the axial load, including prestressing (compression positive), and it can be 

simplified as: 

 
2

1 0.24 t
p

ctm

P y
K

f bd


   

where yt is the distance from the centroid of the section to the most stressed fibre in tension, and 

it is a simplification of the term x+ds-dp (parenthesis in the right in Eq. 10). In the previous 

equation  a coefficient 0.30·0.8 = 0.24 has been used in spite of the original value of 0.30, to 



take into account that the neutral axis depth in prestressed concrete sections (see Eq. 8) is higher 

than the one assumed to merge the different components into a single concrete contribution Vc 

and due to the fact that the load P, which is a favourable action, is not minored in the structural 

codes. However, Kp has been considered equal to 1.0 due to the relatively low influence of this 

parameter and for simplicity reason in the code-type expression. 

 

A2. Derivation of Vcu,min 

A simplified equation for a minimum value for the shear strength is derived. Average values for 

a 25 MPa compressive strength concrete have been assumed: 

𝑉𝑐𝑢,𝑚𝑖𝑛 = (𝑣𝑐 + 𝑣𝑤)𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 = 

 = (𝜁 [0.88
𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
𝐾𝑝 + 167

𝑓𝑐𝑡𝑚

𝐸𝑐
(1 +

2 · 𝐺𝑓 · 𝐸𝑐

𝑓𝑐𝑡𝑚
2 · 𝑑0

)
𝑏𝑤

𝑏
) 𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 = 

= (𝜁 [0.88
𝑥

𝑑
+ 0.02]

𝑏𝑣,𝑒𝑓𝑓

𝑏
· 1 + 0.015 (1 +

1206

𝑑0
)

𝑏𝑤

𝑏
) 𝑓𝑐𝑡𝑚 ∙ 𝑏 ∙ 𝑑 ≈ 

≈ (𝜁
𝑥

𝑑
0.88𝑏𝑣,𝑒𝑓𝑓 + 0.015𝑏𝑤 +

18.1

𝑑0
𝑏𝑤) 0.30𝑓𝑐𝑘

2 3⁄
𝑑 ≈ (𝜁

𝑥

𝑑
0.264 + 0.0045 +

5.43

𝑑0
) 𝑓𝑐𝑘

2 3⁄
∙ 𝑏𝑤𝑑 = 

≈ 0.25 (𝜁
𝑥

𝑑
+

20

𝑑0
) 𝑓𝑐𝑘

2 3⁄
∙ 𝑏𝑤𝑑 

The previous equation is intended for the particular cases in which the residual stresses 

across the crack are relatively important compared to the stresses transferred by the concrete 

compression chord. For this reason, it is recommended to limit x/d to values lower to 0.20 for 

application of this Vcu,min expression.  

 

A3. Position of the critical shear crack and the critical section 

One of the assumptions of the model is that the critical crack starts where the bending moment 

diagram at failure reaches the cracking moment of the section. Then, the distance from the zero 

bending moment point to the initiation of the critical shear crack, scr, is scr = Mcr/Vu smin, where 

smin is the crack spacing, i.e. the necessary distance to transfer tensile stresses from the 

reinforcement to the concrete so that another crack is formed. The control section would be 

placed at a distance from the zero bending moment point scr + 0.85d.  



For rectangular sections, with h=1.1d, the cracking moment, adopting fctd in in ULS, is 

Mcr0.2 fctd ·b d.. Taking into account that Vu=Vcu+Vsu and adopting for Vcu and Vsu the values 

provided by the model in the design format, Eqs. (25) to (28), the following expression is 

obtained for the position where the critical crack starts: 

min

,

0.2

1.63 1.2

cr
cr

ywdu
w

ct d

M d
s s

fxV

d f
 

  



  

where it has been taken into account that: 

2/3

2/3 2/3

, ,0.3 0.3 0.763·0.3 0.763 1.63
1.5

ck
cd ck ct m ct d

f
f f f f

 
    

 
  

It can be seen that the higher are the longitudinal or shear reinforcement ratios the closer 

is the crack to the zero bending moment point. Similarly, in beams without stirrups the critical 

crack is farther from the zero bending moment point than in beams with stirrups.  

To use the above expression in design is not practical nor possible since the shear 

reinforcement ratio is not known a priori. Therefore, a constant and conservative value is 

considered convenient to be adopted for design purposes. Considering usual ranges of the 

parameters involved in the equation for scr derived in this appendix, ( between 0.7 and 1.0, l 

between 0.005 and 0.02, w between 0 and 0.3%) and assuming fywd=435 MPa, and fct,d=1.4 

MPa) the position of the critical section scr+0.85d  ranges between 0.97·d and 1.6·d. Therefore, 

for design purposes a conservative value, d, is adopted. 

For PC beams, even though the neutral axis increases, the increment of the cracking moment is 

higher, and the control section shall be shifted away from the zero bending moment point. The 

simplification made by the authors in the paper, drives to expression ds(1+0.4cp/fctm), which is a 

conservative approach, as the shear force increases towards the support. 

 

A4. Additional tensile force in the longitudinal reinforcement 



The additional tensile force, Ftd, in the longitudinal reinforcement due to the shear force VEd is 

given by Eq. (29). This equation is derived from the free body diagram shown in Fig. A41.b. 

The free body diagram for the multi-action background model is shown in Fig. A4.1.a and for 

the simplified Compression Chord Capacity Model is shown in Fig. A4.1.b. In the last, it has 

been assumed that the application point of the action Vsu (Eq. 27) remains in the same point that 

the resultant force caused only by the stirrups, Vs in Fig. A4.1.a. Note that Vsu (Eq. 27) includes 

the dowel effect, Vl, and the confinement effect in the compression chord, Vcu·Vs, as derived in 

Appendix A1. The term Vcu (Eq. 26) in Fig. A4.1.b takes into account the stresses transferred in 

the compression chord, Vc, and the residual tensile stresses near the tip of the crack, Vw,, shown 

in Fig. A4.1.a for the multi-action model. Applying equilibrium equations in the free body 

diagram shown in Fig. A41.b, the following expression for the force in the longitudinal 

reinforcement is obtained: 

𝐹𝑡𝑑 =
𝑀𝐸𝑑

𝑧
+ 𝑉𝐸𝑑𝑐𝑜𝑡𝜃 − 0.5𝑉𝑠𝑢(𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼) 

 

Fig. A4.1. Free body diagram for the determination of the additional force in the longitudinal reinforcement. A) 

Multi-action model. B) Compression Chord Capacity Model. 
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Table captions 

Table 1. Summary of dimensionless shear contributing components and factors considered in 

the mechanical model for members cracked in bending. 

Table 2. Verification of the proposed model for different databases: mean value and Coefficient 

of Variation (%) for Vtest/Vpred ratio. 

Table 3. Comparison of the Vtest/Vpred ratio for the proposed model and EC-2 equations using fcm, 

fck and materials safety partial coefficients c = 1.5 and s = 1.15. 

 

  



Figure captions 

Fig. 1. Critical shear crack evolution and horizontal projection of the first branch of this crack. 

Fig. 2. Adopted failure envelope for concrete under a biaxial stress state. Adapted from [31]. 

Fig. 3. Shear contributing actions at failure. a) Background mechanical model for elements 

without stirrups. b) Background mechanical model for elements with stirrups. c) Model Code 

2010 model. d) Variable angle truss model. 

Fig. 4. Crack pattern at failure in a prestressed concrete girder without flexural cracks [35, 36]. 

Fig. 5. Exact value of the neutral axis depth ratio and simplified expression given in Eq. (15).  

Fig. 6. Comparison between exact and simplified relative effective width for shear strength 

calculations. 

Fig. 7. Comparison between size effect term given by Eq. (11) and new size effect term given 

by Eq. (20). 

Fig. 8. Shear contributions and notation for simple supported beam and cantilever beam. 

Fig. 9. Correlation between the predictions and the experimental results as a function of the 

effective depth, d, for the 1285 beams included in the four ACI-DafStb databases. 

Fig. 10. Correlation between the prediction and experimental results for RC beams: A) Size effect 

in beams w/o stirrups [49]. B) Size effect in beam w/o stirrups [50]. C) Influence of the stirrup 

index [51]. D) Influence of the stirrup index [52]. 

Fig. 11. Correlation between the prediction and experimental results for PC beams: A) Influence 

of prestressing ratiocp/fctm in beams w/o stirrups [53]. B) Influence of amount of prestressing 

reinforcement for constant prestressing force in beams w/o stirrups [54]. C) Influence of 

prestressing ratiocp/fctm in beams with stirrups [55]. D) Influence of the stirrup index [56]. 

Fig. 12. Dimensions and reinforcement layouts. 

Fig. 13. Design bending moments and shear forces distributions (G = 1.35 , Q = 1.50). 

Fig. A4.1. Free body diagram for the determination of the additional force in the longitudinal 

reinforcement. A) Multi-action model. B) Compression Chord Capacity Model.   



 

Table 1. Summary of dimensionless shear contributing components and factors considered in the mechanical model 

for members cracked in bending. 
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Table 2. Verification of the proposed model for different databases: mean value and Coefficient of Variation (%) for 

Vtest/Vpred ratio. 

 

 

Database  
original source 

No. 
beams 

Code format 
proposal  

(Section 4) 
ACI318-11 EC-2 MC-2010 CSA A23.3-14 

Mean  CoV Mean  CoV Mean CoV Mean CoV Mean CoV 

RC beams w/o stirrups [25] 784 1.17 18.5 1.42 38.3 1.10 27.9 1.22 22.8 1.22 22.3 

RC beams with stirrups [26] 170 1.16 14.1 1.53 25.2 1.47 26.4 1.28 17.2 1.29 17.3 

PC beams w/o stirrups [27] 214 1.21 22.1 1.52 35.1 1.56 29.8 1.85 33.9 1.68 29.8 

PC beams with stirrups [27] 117 1.18 16.5 1.28 20.5 1.54 37.2 1.38 19.6 1.40 16.2 

All 1285 1.17 18.6 1.44 35.3 1.26 34.1 1.35 31.4 1.33 26.9 

 

 

 

 

 

 

 

 

 

 

 

  



Table 3. Comparison of the Vtest/Vpred ratio for the proposed model and EC-2 equations using fcm, fck and materials 

safety partial coefficients c = 1.5 and s = 1.15. 

 

 

 

Comments 

Code format proposal (Section 4) EC-2 

With fcm With fck With fcd and s With fcm With fck With fcd and s 

Mean CoV 5% Mean CoV 5% Mean CoV 5% Mean CoV 5% Mean CoV 5% Mean CoV 5% 

RC beams w/o stirrups 1.17 18.5 0.81 1.28 20.4 0.86 1.67 20.4 1.12 1.10 27.9 0.77 1.15 27.7 0.79 1.72 27.8 1.18 

RC beams with stirrups 1.16 14.1 0.91 1.19 14.9 0.94 1.49 17.6 1.16 1.47 26.4 0.96 1.49 26.4 0.99 1.83 27.9 1.16 

PC beams w/o stirrups 1.21 22.1 0.88 1.33 23.5 0.93 1.72 24.3 1.14 1.56 29.8 0.86 1.58 26.9 1.02 1.98 29.6 1.25 

PC beams with stirrups 1.18 16.5 0.93 1.24 18.3 0.94 1.61 23.4 1.14 1.54 37.2 0.83 1.57 35.9 0.91 1.92 33.1 1.13 

 
 

 

 


