1598

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 12, DECEMBER 2010

Leveraging Register Windows to Reduce
Physical Registers to the Bare Minimum

Eduardo Quinones, Member, IEEE, Joan-Manuel Parcerisa, and Antonio Gonzalez, Member, IEEE

Abstract—Register window is an architectural technique that reduces memory operations required to save and restore registers
across procedure calls. Its effectiveness depends on the size of the register file. Such register requirements are normally increased for
out-of-order execution because it requires registers for the in-flight instructions, in addition to the architectural ones. However, a large
register file has an important cost in terms of area and power and may even affect the cycle time. In this paper, we propose a software/
hardware early register release technique that leverage register windows to drastically reduce the register requirements, and hence,
reduce the register file cost. Contrary to the common belief that out-of-order processors with register windows would need a large
physical register file, this paper shows that the physical register file size may be reduced to the bare minimum by using this novel
microarchitecture. Moreover, our proposal has much lower hardware complexity than previous approaches, and requires minimal
changes to a conventional register window scheme. Performance studies show that the proposed technique can reduce the number of
physical registers to the number of logical registers plus one (minimum number to guarantee forward progress) and still achieve almost

the same performance as an unbounded register file.

Index Terms—Register windows, physical register file, early register release.

1 INTRODUCTION

REGISTER window is an architectural technique that
reduces the amount of loads and stores required to
save and restore registers across procedure calls by storing
the local variables of multiple procedure contexts in a large
architectural register file. When a procedure is called, it
maps its context to a new set of architected registers, called
a register window. Through a simple runtime mechanism,
the compiler-defined local variables are then renamed to
these windowed registers.

If there are not enough architectural registers to allocate
all local variables, some local variables from caller proce-
dures are saved to memory and their associated registers are
freed for the new context. When the saved variables are
needed, they are restored to the register file. These
operations are typically referred to as spill and fill. SPARC
[6] and Itanium [10] are two commercial architectures that
use register windows.

The effectiveness of the register windows technique
depends on the size of the architectural register file because
the more registers it has, the less spills and fills are required
[28]. Besides, for an out-of-order processor, the number of
architectural registers determines the size of the rename
map table, which, in turn, determines the minimum number
of physical registers.

To extract high levels of parallelism, out-of-order proces-
sors use many more physical registers than architected ones,

e E. Quiriones is with the Barcelona Supercomputing Center, Spain.
E-mail: eduardo.quinones@bsc.es.

e J.-M. Parcerisa and A. Gonzilez are with the Computer Architecture
Department, Politechnical University of Catalonia, Spain.
E-mail: jmanel@ac.upc.edu, antonio.gonzalez@intel.com.

Manuscript received 26 Mar. 2008; revised 19 Jan. 2010; accepted 26 Jan.
2010; published online 9 Apr. 2010.

Recommended for acceptance by K. Ghose.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-03-0129.
Digital Object Identifier no. 10.1109/TC.2010.85.

0018-9340/10/$26.00 © 2010 IEEE

to store the uncommitted values of a large number of
instructions in flight [8]. Therefore, an out-of-order processor
with register windows requires a large amount of physical
registers because of a twofold reason: to hold multiple
contexts and support a large instruction window. Unfortu-
nately, the size of the register file has a strong impact on its
access time [8], which may stay in the critical path that sets
the cycle time. It has also an important cost in terms of area
and power [31]. There exist many proposals that address this
problem through different approaches.

One approach consists of pipelining the register file access
[11]. However, a multicycle register file requires a complex
multiple-level bypassing and increases the branch mispre-
diction penalty. Other approaches improve the register file
access time, area, and power by modifying the internal
organization, through register caching [30] or register bank-
ing [5]. Alternative approaches have focused on reducing the
physical register file size by reducing the register require-
ments through more aggressive reservation policies: late
allocation [9], [19], [23] and early release [3], [14], [17], [18],
[20], [22].

In this paper, we propose a new software/hardware
early register release technique for out-of-order processors
that builds upon register windows to achieve an impressive
level of register savings. On conventional processors, a
physical register remains allocated until the next instruction
writing the same architectural register commits. However,
procedure call and return semantics enables more aggres-
sive conditions for register release:

1. When a procedure finishes and its closing return
instruction commits, all physical registers defined by
this procedure can be safely released. The values
defined in the closed context are dead values that will
never be used again.

2. When the rename stage runs out of physical
registers, mappings defined by instructions that are

Published by the IEEE Computer Society

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

1599

u Early Release ® ot Early Release

#f

0 50 100 150

200 250 300

CPU cycles

Fig. 1. Average lifetime of physical registers for the set of integer benchmarks executing in a processor with an unbounded register file, when

applying our early release techniques and when not applying them.

not in-flight, which belong to caller procedures, can
also be released. However, unlike the previous case,
these values may be used in the future, after
returning from the current procedure, so they must
be saved to memory before they are released.

3. Architectural register requirements vary along a
program execution. The compiler can compute the
register requirements for each particular control flow
path and insert instructions to enlarge or shrink the
context depending on which control flow path is
being executed. When a context is shrunk, all defined
physical registers that lay outside of the new context
contain dead values and can be safely released.

By exploiting these software/hardware early release
opportunities, the proposed scheme achieves a drastic
reduction in physical register requirements. By applying
them to a processor with an unbounded physical register
file, the average register lifetime (number of cycles between
the allocation and release of a physical register) drops by
30 percent (see Fig. 1). This allows to reduce the number
of physical registers to the minimum number that still
guarantees forward progress, i.e., same number of archi-
tectural plus one (128 in our experiments for IPF binaries),
and still achieve almost the same performance as an
unbounded register file.

Contrary to the common belief that out-of-order proces-
sors with register windows would need a large physical
register file, this paper shows that register windows, together
with the proposed technique, can significantly reduce the
physical register file pressure to the bare minimum. In other
words, we show that the proposed scheme achieves a
synergistic effect between register windows and out-of-
order execution, resulting in an extremely cost-effective
implementation.

Besides, our scheme requires much lower hardware
complexity than previous related approaches [22], and it
requires minimal changes to a conventional register
windows scheme.

As stated above, a register windows mechanism works
by translating compiler-defined local variables to archi-
tected registers prior to renaming them to physical registers.
The information required for this translation is kept as a
part of the processor state and must be recovered in case of
branch mispredictions or exceptions. Our scheme also
provides an effective recovery mechanism that is suitable
for out-of-order execution. This paper extends the work in
[26] in several ways:

e It proposes a new early register release compiler
technique.

e It studies the effect of reducing the maximum
register window size.

e It analyzes the average lifetime of physical registers
when applying our proposals.

e It introduces the Retirement Map Table that allows
releasing those physical registers whose architec-
tural register has been already redefined at the
rename stage.

The rest of this paper is organized as follows: Section 2
discusses the state of the art on early register release
techniques. Section 3 describes our proposal in detail.
Section 4 presents and discusses the experimental results.
Section 5 analyzes several cost and complexity issues of the
proposed solution and previous approaches. Finally, the
main conclusions are summarized in Section 6.

2 REeLATED WORK

In this section, we will shortly review techniques that make
early releasing of physical registers, to reduce the average
number of required registers.

Jones et al. [13], [14] use the compiler to identify registers
that will be read a given number of times (n) known at
compile time, and rename them to different logical
registers. Upon issuing an instruction with one of these
logical registers as a source, the processor can release the
register through checkpointing if it is the nth read operation
of this register.

Moudgill et al. [21] suggested releasing physical registers
eagerly, as soon as the last instruction that uses a physical
register commits. The last-use tracking is based on counters
which record the number of pending reads for every
physical register. This initial proposal support precise
exceptions by adding an unmapped flag to each physical
register, which is set when a subsequent instruction
redefines the logical register it has associated. Then, a
physical register can be released once its usage counter is
zero and its unmapped flag is set. More recently, Akkary et al.
[3] proposed to improve the Moudgill scheme by using a
map table checkpoints. For proper exception recovery of the
reference counters, when a checkpoint is created, the
counters of all physical registers belonging to the checkpoint
are incremented. Similarly, when a checkpoint is released,
the counters of all physical registers belonging to the
checkpoint are decremented.

Martin et al. [17] introduced the Dead Value Information
(DVI), which is calculated by the compiler and passed to the
processor to help with early register releasing. DVI can be
passed through explicit ISA extensions instructions, which

1600

contain a bit-mask indicating the registers to release, or
implicitly on certain instructions such as procedure call and
returns. They use the DVI such that when a dynamic call or
return is committed, the caller-saved registers are early-
released because the calling conventions implicitly state that
they will not be live. A similar approach was introduced by
Lo et al. [16] but applied to simultaneous multithreading
processors. Although similar to our approach, both ap-
proaches require introducing new ISA instructions.

Monreal et al. [20] proposed a scheme where registers are
released as soon as the processor knows that there will be no
further use of them. Conventional renaming forces a physical
register to be idle from the commit of its Last-Use (LU)
instruction until the commit of the first Next-Version (NV)
instruction. The idea is to shift the responsibility from
NV instruction to LU instruction. Each time a NV instruction
is renamed, its corresponding LU instruction pair is marked.
Marked LU instructions reaching the commit stage will
release registers instead of keeping them idle until the
commit of the NV instruction.

Ergin et al. [7] introduced the checkpointed register file
to implement early register release. This scheme can release
a physical register before the redefining instruction is
known to be nonspeculative. This is done by copying its
value into the shadow bit cells of the register where it can be
accessed easily if a branch misprediction occurs.

Martinez et al. [18] presented Cherry: Checkpointer Early
Resource Recycling, a hybrid mode of execution based on
reorder buffer and checkpointing that decouples resource
recycling, i.e., resource releasing, and instruction retirement.
In this scheme, physical registers are recycled if both the
instructions that produce the value and all their consumers
have been executed, which are identified by using the scheme
described in [21], and are free of replay traps and are not
subject to branch mispredictions. To reconstruct the precise
state in case of exceptions or interrupts, the scheme relies on
periodic register file checkpointing.

Balkan et al. [4] proposed to early deallocate a written
physical register and to reallocate it again to a subsequent
instruction being renamed. In case not all consumers have
issued at that time, the reallocating instruction is either
stalled at dispatch, or it speculatively proceeds forward and
rechecks this condition again just before writeback. In case
the condition fails again, it is either provided a new free
register or reissued. However, stalling the reallocating
instructions can significantly impact on the performance
and providing free registers for the reallocating instructions
at writeback requires significant hardware complexity.

Oehmke et al. [22] have recently proposed the virtual
context architecture (VCA), which maps logical registers
holding local variables to a large memory address space
and manages the physical register file as a cache that keeps
the most recently used values. Logical register identifiers
are converted to memory addresses, and then, mapped to
physical registers by using a tagged set-associative rename
map table. Unlike the conventional renaming approach, the
VCA rename table lookup may miss, i.e., there may be no
physical register mapped to a given logical register. When
the renaming of a source register causes a table miss, the
value is restored from memory and a free physical register

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 12, DECEMBER 2010

is allocated and mapped onto the table. If there are no free
physical registers or table entries for a new mapping, then a
replacement occurs: a valid entry is chosen by LRU, the
value is saved to memory and its physical register is
released. Although the VCA scheme does not properly
define register windows as such, in practice, it produces
similar effects: multiple procedure contexts are maintained
in registers, and the available register space is transparently
managed without explicit saves and restores. This also
allows VCA being applied to Simultaneous Multithreading
processors. However, unlike our approach, their tagged set-
associative map table adds substantial complexity to the
rename stage, which might have implications on the cycle
time. Furthermore, when a map table entry is replaced, its
associated value is always saved to memory, regardless of
whether it is actually a dead value. This occurs because VCA
is not able to distinguish dead values from live values.

Some current commercial architectures implement reg-
ister windows to reduce procedure call/return overhead:
SPARC [6] and Itanium [10]. In the former case, where
register windows are of fixed size, overflows and under-
flows are handled by trapping to the operating system. In
the latter case, where register windows are of variable size,
overflows and underflows are solved by a hardware
mechanism called Register Stack Engine that transparently
handles saves and restores through procedure calls.

3 EARLY REGISTER RELEASE WITH REGISTER
WINDOWS

This section describes our early register release techniques
based on register windows. Our scheme assumes an ISA
with full register window support, such as IA-64 [12]. Along
this paper, we assume a conventional out-of-order processor
with a typical register renaming mechanism that uses a map
table to associate architected to physical registers. The IA-64
defines 32 static registers and 96 windowed registers. The
static registers are available to all procedures, while the
windowed registers are allocated on demand to each
procedure. Both static and windowed architected registers
map to a unified physical register file. Our technique applies
to windowed registers.

In the following sections, a basic register window
mechanism for out-of-order processors is explained first.
Then, we expose the early register release opportunities and
present a mechanism to exploit them.

3.1 Baseline Register Window

Register window is a technique that helps to reduce the
loads and stores required to save registers across procedure
calls by storing the local variables of multiple procedure
contexts in a large register file [28]. Throughout this paper,
we will use also the term procedure context to refer to a
register window.

From the ISA’s perspective, all procedure contexts use
the same “virtual” register name space. However, when
a procedure is called, it is responsible for dynamically
allocating a separate set of consecutive architected registers,
a register window, by specifying a context base pointer and a
window size. Each virtual register name is then dynamically
translated to an architected register by simply adding the

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

Map Table
Current A
Context
Out
>+ - Higher
A Local Register

‘ Indices

context base | P
)
movr3=1

Fig. 2. Dynamic translation from virtual register r3 to its corresponding
architectural windowed register.

base pointer to it (see Fig. 2). Note that register windows
grow toward higher register indexes.

Every register window is divided into two regions: the
local region, which includes both input parameters and local
variables, and the out region, where it passes parameters to
its callee procedures. By overlapping register windows,
parameters are passed through procedures, so these
registers holding the output parameters of the caller
procedure become the local parameters of the callee. The
overlap is illustrated in Fig. 3.

Hence, every register window is fully defined by a
context descriptor having three parameters: the context base
pointer, which sets the beginning of the register window;
the context size, which includes the local and out regions;
and the output parameters, which defines the size of the
out region.

Register windows are managed by software, with three
specific instructions: br.call, alloc, and br.ret. Br.call branches
to a procedure and creates a new context, by setting a
context descriptor with its base pointing to the first register
in the out region of the caller context, and its context size
equal to the out region’s size. Alloc modifies the current
context descriptor by setting a new context size and output
parameters based on the information coded inside the
instruction. This instruction is commonly executed just after
the br.call to enlarge the register window, defining the size

Map Table
Callee
Context
Caller Out
Context Local
™
- | Callee Base
Local
- | Caller Base

Fig. 3. Overlapping register windows.

1601
Map Table
growth
Current free
Context entries
Out Backing
Higher Store Higher
Register Local Memory
Indices Addresses
caller's
mappings

: -
Fig. 4. Relationship between map table and backing store memory.

of the local and out regions of the new context. However,
note that the new size may also be smaller than the previous
size, so the alloc may be used either for enlarging or
shrinking the context. Finally, br.ret returns to the caller
procedure and makes its context the current context. The
compiler is responsible for saving, on each procedure call,
the caller context descriptor to a local register and restoring
it later on return.

It may happen that an alloc instruction increases the
window size but there is no room available to allocate the
new context size in the architectural register file, i.e., at
the top of the map table. In such case, the contents of
some mappings and their associatived physical register at
the bottom of the map table (which belong to caller
procedure contexts) are sent to a special region of memory
called backing store, and then, are released. Such operation
is called a spill. Note that spills produce both free physical
registers and free entries in the map table. These entries
can then be assigned to new contexts to create the illusion
of an infinite-sized register stack.!

When a procedure returns, it expects to find its context in
the map table and the corresponding values stored in
physical registers. However, if some of these registers were
previously spilled to memory, the context is not completely
present. For each missing context register, a physical register
is allocated and renamed in the map table. Then, the value it
had before spilling is reloaded from the backing store. Such
operation is called a fill. Subsequent instructions that use this
value are made data dependent on the result of the fill, so
they are not stalled at renaming to wait for the fill completion.

The relationship between map table and backing store is
shown in Fig. 4. Note that the map table is managed as a
circular buffer. Spill and fill operations will be discussed in
more detail in Section 3.6.

3.2 Early Register Release Techniques with
Compiler Support

On a conventional out-of-order processor, a physical register
is released when the instruction that redefines it commits. To
help reduce the physical register pressure, we have observed
that by shrinking the context size, mappings that lay above
the new shrunk context can be early released. We have
identified an early release opportunity: the Alloc Release.

1. Each mapping has a unique associated backing store address.

1602

path 1 ~ path2
enlarge| /} » A
i pro
v v
14
software
pipelined < ker
loop
\J
epi
shrink | --p

Fig. 5. Architectural register requirements are higher in path 1than path 2.

Alloc Release. Architectural register requirements may
vary along the control flow graph. At compile time, if a
control flow path requires more registers, the context can be
enlarged by defining a higher context size with an alloc
instruction. At runtime, new architectural registers are
reserved at rename stage, as explained in Section 3.1.
Analogously, if the architectural register requirements
decrease, the compiler can shrunk the context by defining
a lower context size with an alloc instruction. At runtime,
when the alloc instruction commits, none of the architectur-
al registers that lay above the shrunk context are referenced
by any of the currently in-flight instructions. We refer to
them as not-active mappings, and they can be early released
as well as their associated physical registers without having
to wait until the commit of a subsequent redefinition.
In both cases (to enlarge or shrink the context size), the
compiler needs to introduce an alloc instruction. Fig. 5
shows a control flow graph with unbalanced architectural
register requirements. Alloc Release is illustrated in Fig. 6a.

Compiler support may help to reduce the physical
register pressure by shrinking contexts and releasing not-
active mappings that lay above the shrunk context. In fact,
what this technique actually does is to adapt better the
architectural registers requirements. However, physical
register requirements are not available at compile time. To
overcome this limitation, we propose two hardware
techniques called Context Release and Register Release Spill.

3.3 Early Register Release Techniques without
Compiler Support
Context Release takes full advantage of call conventions.
When a procedure finishes and its closing br.ret instruction
commits, many of the physical registers defined inside the
closed procedure become not-active and can be early
released. Context Release is illustrated in Fig. 6b. Note that
this technique is very similar to Alloc Release, since br.ret
also shrinks the current context size. However, although
both techniques require the same hardware support, the
compiler is not aware of applying Context Release.
Register Release Spill. This technique is based on an
extension of the not-active mapping concept: if none of the

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 59, NO. 12, DECEMBER 2010

context 1 alloc 16,0 context 1 add r4 =13, 2;
loop body br.ret ® » COMMIT
context 2
context 2 alloc 6 ® > coMmIT mov 12 =13;
mov 12 =13;
Map Table Map Table
context 1 context 1
not active
Local not active Local = context 2 mappings
mappings out
context2 | T
Local Local

(@) (b)

Fig. 6. In both figures, context 1 mappings that do not overlap with
context 2 are not-active (none in-flight instructions refer them), so they
can be released. (a) Alloc-Release technique. (b) Context-Release
technique.

instructions of a procedure are currently in-flight, not all
mappings of the procedure context need to stay in the map
table. Hence, not-active mappings are not only those
mappings that lay above a shrunk context, but also those
mappings that belong to previous caller procedure contexts
not currently present in the processor. The Register Release
Spill technique is illustrated in Fig. 7. As shown in Fig. 7a,
when br.call commits, context 1 mappings become not-
active. This is not the case in Fig. 7b, where the context 1
procedure has already returned before br.call commits, so
their mappings have become active. Hence, only not-active
mappings in Fig. 7a can be early released. However, since
these mappings belong to caller procedures, they contain
live values and must first spill the content of their associated
physical registers before releasing them. We will refer to
this operation as Register Release Spill.

Though beneficial for register pressure, this technique
increases the amount of spill operations. Fig. 8 shows the
number of spill operations issued with respect to the total
number of committed instructions when applying our

context1 - movrs=1; context 1 - movry=1;
br.call ¢ » COMMIT br.call ¢ » COMMIT
context 2 alloc 4,0; context 2 alloc 4,0;
movr2=rl; mov rl =0;
context 1 br.ret
mov 12 =15;
Map Table Map Table

context 2 context 2
context 1| 1 ..

context1 y ... contextl
Out Out Out

not active
mappings

active

Local .
mappings

Local

() (b)

Fig. 7. Register-Release Spill technique. (a) Context 1 mappings are
not-active, so they can be early released. (b) Context 1 mappings are
active (after returning from the procedure), so they cannot be released.

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

M Baseline M Register Release Spill Blind Register Release Spill

% of spils over commited
instructions
O R Wy =] 00D

Fig. 8. Number of spill operations issued with respect to the total number
of committed instructions when applying our baseline scheme (Base-
line), a blind application of the Register Release Spill (Blind Register
Release Spill), and applying Register Release Spill only when the
renaming runs out of physical registers.

baseline scheme and a blind application of the Register
Release Spill (labeled as Baseline and Blind Register Release
Spill, respectively). On average, a blind application of the
Register Release Spill increases the amount of spill opera-
tions from 0.5 to four percent over the total number of
committed instructions. Since spilling registers has an
associated cost, it could reduce the benefits brought by
register windows. Hence, Register Release Spill is only
triggered when the released registers are actually required
for the execution of the current context, i.e., if the renaming
runs out of physical registers. As shown in Fig. 8, this policy
(labeled as Register Release Spill) produces, on average, only
1.8 percent spill operations over the total number of
committed instructions (see Section 4.1 for further details).

Note that there is a slight difference between the Register
Release Spill and the conventional spill used in the baseline
(see Section 3.1). A conventional spill is triggered by a lack
of mappings when the window size is enlarged. What
Register Release spill actually does is “to steal” physical
registers from caller procedures at runtime to ensure an
optimum execution of the current active zone.

3.4 Implementation

To implement register windows in an out-of-order proces-
sor, we propose the Active Context Descriptor Table (ACDT).
The ACDT tracks all uncommitted context states to
accomplish two main purposes: to identify the active
mappings at any one point in time, which is required by
our early register release techniques; and to allow precise
state recovery of context descriptor information in case of
branch mispredictions and other exceptions. Moreover, we
introduce the Retirement Map Table that holds the rename
map table at commit stage. It allows that Alloc Release and
Context Release techniques identify at commit stage the
not-active mappings that can be released, even when these
mappings have been already redefined at rename stage by
another procedure context.

ACDT. The ACDT acts as a checkpoint repository that
buffers in a fifo way, the successive states of the current
context descriptor. As such, a new entry is queued for each
context modification (at rename stage in program order),
and it is removed when the instruction that has inserted the
checkpoint is committed. Hence, ACDT maintains only

1603
Map Table
1. Context Base Pointer
2. Context Size free upper
3. Output Parameters region active
- |
ACDT Backing
1 2 3 active Store
) head "
il. alloc 3,1; 5 3 1 = | regon lower
i2. br.call; 7 1 0 active
. tail dirt: -t I
i3. alloc4,0; 7 4 0 «-— irty .
region | | dirty |
4 spilled
Lower Map 5 Upper Map 10 values

Fig. 9. The pointers upper active, lower active, and dirty divide the map
table in three regions: free, active, and dirty. Upper active and lower
active pointers are computed using ACDT information. Dirty pointer
points to the first nonspilled mapping.

active context descriptors. In case the ACDT is full at the
time a new entry is going to be queued, the rename stage is
stalled until the instruction that has insert the oldest active
context commits. With this information, the ACDT allows
precise state recovery of context descriptor information: in
case of branch mispredictions and other exceptions, when
all younger instructions are squashed, the subsequent
context states are removed from the ACDT too.

As they are defined, active mappings stay in a contin-
uous region on the map table, called active region. The active
region is bounded by two pointers that are calculated using
the ACDT information: the lower active and the upper active.
Both pointers are updated at each context modification
using the information present in the ACDT: the lower active
equals to the minimum context base pointer present in the
ACDT, and the upper active equals to the maximum sum of
base + size present in the ACDT.

The mappings staying below the lower active pointer
belong to not-active contexts of callers procedures. These
mappings may eventually become free if their values are
spilled to memory, or may become active again if a br.ret
restores that context. They form the so-called dirty region of
the map table, and it lays between the lower active pointer and
a third pointer called dirty. The dirty pointer equals to the first
mapping that will be spilled if the renaming engine requires
it. Actually, the associated backing store address of the dirty
pointer corresponds to the top of the backing store stack.

Finally, the free-region lays between the upper active pointer
and the dirty pointer (note that the map table is managed as a
circular buffer), and it contains invalid mappings.

The three regions are shown in Fig. 9. When the first
instruction (i1) is renamed, the lower active pointer is set to
five and the upper active pointer is set to 7 since the new
context size is set to three (field 2 of the ACDT). When i2 is
renamed, the current context base is set to the out region of
the previous context, i.e., seven. However, at this time,
pointers are not updated since the new context has still not
enlarged its context size. This is done at the time i3 is
renamed, in which the new size is set to four, increasing the
upper active context up to 10. Thus, after i3, there are three
active contexts with a total size of six architectural registers.

Retirement Map Table. When a context is shrunk,
mappings that become not-active are not always accessible.
As shown in Fig. 10, when alloc i2 is renamed, it creates the

1604

Map Table

context 3

i] alloc 16,0;

context 1

context 1

loop body active

mappings

not active
mappings

. Local Local
i, alloc 6; e

context2 -

i mov 2 =r13;

i4alloc 16,0;

loop body

» COMMIT
context 2
Local

context 3

Fig. 10. Not-active mappings from context 1 have become active
because of context 3, so they cannot be released if context 2 commits.

descriptor context 2 and shrinks the context, so the deal-
located mappings of context 1 become not-active. Next, when
alloc i4 is renamed, it creates a new descriptor context 3,
increases the size of the context again, and reuses the map
entries that were released by alloc i2. At that point, if the
alloc i2 commits, the mappings of context 1 cannot be
released because their corresponding map entries have been
reassigned to context 3, which is active. However, the
physical registers associated to context 1 can be early
released because they contain dead values.

In order to obtain context 1 defined physical registers, we
introduce the Retirement Map Table [11], [21] that holds the
state of the Rename Map Table at commit stage. When an
instruction commits, the Retirement Map Table is indexed
using the same Rename Map Table register index, and
updated with its corresponding destination physical regis-
ter (which indicates that the physical register contains a
committed value). When a branch misprediction or excep-
tion occurs, the offending instruction is flagged, and the
recovery actions are delayed until this instruction is about to
commit. At this point, the Retirement Map Table contains
the architectural state just before the exception occurred.
Then, the processor state is restored by copying the
Retirement Map Table to the Rename Map Table (to avoid
significant penalty stalls caused by the use of Retirement
Map Table, some optimizations have been proposed [3]).

Fig. 11 shows the same previous example but introdu-
cing the Retirement Map Table. Note that when the alloc
that has created the context descriptor context 2 commits,
not-active mappings from context 1 are still present in the
Retirement Map Table, so they can be safely early released.

In summary, when a shrunk context commits, Alloc
Release and Context Release techniques are applied by
releasing those not-active mappings from the Retirement
Map Table that have laid above the committed shrunk
context. Furthermore, when the rename stage runs out of
physical registers, a Register Release Spill operation is
triggered and releases as many not-active mappings as
needed from the dirty region starting at the dirty pointer.
These spilled mappings become part of the free region.

3.5 Delayed Spill/Fill Operations

A closer look to the register window scheme for out-of-
order processors described in the previous sections
reveals that there is still some room for physical register
pressure reduction.

First, when a br.ret instruction is executed and the
restored context is not present in the map table, fill
operations are generated until all its mappings are restored.
Assuming a realistic scenario, there may exist a limit on the

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 12, DECEMBER 2010

Rename Retirement
Map Table Map Table
context 1 context 3 context 1
Local Local active Local not active
mappings mappings
context 2 context 2
Local Local
RENAME STAGE COMMIT STAGE

Fig. 11. The Retirement Map Table holds the committed state of the
Rename Map Table. Context 1 mappings will remain into the Retirement
Map Table until Context 3 commits.

number of fills generated per cycle. So, a massive fill
generation may stall the renaming for several cycles.
Moreover, it may happen that some of these mappings
will never be used. Actually, it occurs quite often that a
br.ret is followed by another br.ret, so none of the restored
mappings are used. Hence, unnecessary fill operations
reserve unnecessary physical registers, which means a
higher register file pressure. Hence, we propose to defer
each fill and its corresponding physical register allocation
until the mapping is actually used by a subsequent
instruction. By delaying fill operations, we achieve a lower
memory traffic and reduce the physical register pressure
which results in a higher performance.

Second, when an alloc is executed and there is not
enough space into the map table, spill operations are
generated to free the required mappings. As it happens
with the previous case, a massive spill generation may stall
the renaming for several cycles. Hence, we propose to defer
each spill until the map table entry is actually reassigned by
a subsequent instruction.

Hence, when a br.ret is executed and the restored context
is not present in the map table, the required mappings from
the free region are appended to the active region and
marked with a pending fill bit, so the br.ret instruction is not
stalled. When a subsequent dependent instruction wants to
use a mapping with the pending fill bit set, a fill operation is
generated and a new physical register is reserved. In a
similar way, when an alloc is executed and there is not
enough space for the new context, the required mappings
from the dirty region are appended to the active region and
marked with a pending spill bit, so the alloc is not stalled.
When an subsequent instruction redefines a mapping with
its pending spill bit set, the current mapping is first spilled
to the backing store.

It might happen that a mapping with the pending spill
bit set is not redefined until a subsequent nested procedure,
and the map table has wrapped around several times. In
that case, it would be costly to determine its associated
backing store address. Thus, it is less complex to have an
engine that autonomously clears the pending spills that
were left behind. This problem does not occur with pending
fills because these are actually invalid mappings that may
be safely reused.

3.6 Spill-Fill Operations
This section discusses some implementation considerations
about the spill and fill operations.

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

A naive implementation of spills and fills could insert
them into the pipeline as standard store and load
instructions. However, spills and fills have simpler
requirements that enable a more efficient implementation.
First, their effective addresses are known at rename time
and the data that the spills store to memory are committed
values. Hence, all their source operands are ready at
renaming, which allows using a much simpler hardware
scheduler. Second, our system guarantees that spills and
fills do not require memory disambiguation with respect to
program stores and loads as the stack address space is not
accessible by regular loads/stores. Thus, spill and fill
operations can be scheduled independently from all other
program instructions by using a simple fifo buffer [22]. To
that end, we introduce a dedicated Spill/Fill issue queue
(see Section 4.1 for further details).

4 EVALUATION

This section evaluates the proposed early register release
techniques (Alloc Release, Context Release, Register Release
Spill, and Delayed Spill/Fill) presented in previous sec-
tions, and compares them to a configuration that uses the
VCA register windows scheme (see Section 2). For each
configuration, performance speedups are normalized IPCs
relative to a configuration that uses the baseline register
window scheme with 160 physical registers. Although this
gives an advantage of 32 registers to the baseline, we
believe that it is a more reasonable design point for such an
out-of-order processor with 128 logical registers. We will
show that although our best scheme has much less registers,
not only it outperforms the 160-registers baseline, but it still
performs within a 192-registers baseline. At the end of this
section, we provide a more complete performance compar-
ison for a wide range of physical register file sizes.

4.1 Experimental Setup

All the experiments presented in this paper use a cycle-
accurate, execution-driven simulator that runs IA-64 ISA
binaries. It was built from scratch using the Liberty
Simulation Environment (LSE) [29]. LSE is a simulator
construction system, based on module definitions and
module communications, that also provides a complete
IA-64 functional emulator that maintains the correct
machine state.

We have simulated the integer benchmark SpecCPU2000
suite [2] (except two integer benchmarks (eon, vortex), which
the LSE emulator environment could not execute) using the
Minne Spec [15] input set. Floating-point benchmarks have
not been evaluated because the IA-64 register window
mechanism is only implemented on integer registers. All
benchmarks have been compiled with IA-64 Opencc [1]
compiler using maximum optimization levels. For each
benchmark, 100 million committed instructions are simu-
lated. To obtain representative portions of code to simulate,
we have used the Pinpoint tool [24].

An eight-stage out-of-order processor is fully simulated.
We have paid special attention to the rename stage
implementation, modeling many IA-64 peculiarities that
are involved in the renaming, such as the register rotation
and the application registers. The register stack engine has

1605

TABLE 1
Main Architectural Parameters Used

\ Architectural Parameters

Fetch Width
Issue Queues

Up to 2 bundles (6 instructions)

Integer Issue Queue: 80 entries
Floating-point Issue Queue: 80 entries
Branch Issue Queue: 32 entries
Load-Store Queues: 64 entries each

256 entries

64KB, 4way, 64B block, 2 cycle latency
Non-blocking, 12 primary misses,

4 secondary misses, 16 write-buffer entries
2 load, 2 store ports

LII 32KB, 4 way, 64B block, 1 cycle latency

Reorder Buffer
LID

L2 unified IMB, 16 way, 128B block, 8 cycle latency
Non-blocking, 12 primary misses
8 write-buffer entries
DTLB 512 entries. 10 cycles miss penalty
ITLB 512 entries. 10 cycles miss penalty

Main Memory

Fetch Branch Predictor
Predicate Predictor

120 cycles of latency

Gshare 14-bit GHR, 4KB. 1-cycle acces
Perceptron. 30b GHR. 10b LHR

Total size :148 KB. 3-cycle access

10 cycles for misprediction recovery

96 local entries, 32 global entries

129 physical registers

Integer Map Table
Integer Physical Register File

been replaced by our scheme. The microarchitecture
features predicate prediction [25], [27]. Load-store queues,
as well as the data and control speculation mechanisms
defined in IA-64, are also modeled and integrated in the
memory disambiguation subsystem. The main architectural
parameters are shown in Table 1.

The simulator models in detail the baseline register
windows, as well as our proposed techniques (Alloc
Release, Context Release, Register Release Spill, and
Delayed Spill/Fill), the ACDT mechanism, and the Retire-
ment Map table, as described in the previous section. In
order to manage the spill/fill operations, the simulator
introduces a dedicated 16-entry spill/fill issue queue as
described in the previous section. Moreover, the simulator
also models the VCA register windows technique, featuring
a four-way set associative cache for logical-physical register
mapping, with 11-bit tags, as described in [22], although it
was adapted to the IA-64 ISA.

4.2 Estimating the Potential of the Alloc Release

The Alloc Release technique releases not required architec-
tural registers (and their associated physical registers) by
introducing alloc instructions that shrink the context size
(see Section 3.2). A context can be shrunk by deallocating the
mappings that are above the highest architectural register
holding a live value. Hence, the compiler should assign the
shortest lifetime values to the highest architectural register
indexes in order to release them as soon as possible by
shrinking its context. However, this register assignment is
not trivial, since the same value may have different lifetimes
depending on the control flow path. Moreover, the intro-
duction of shrunk allocs increases the program code size,
having undesirable side effects on the instruction cache and
the fetch bandwidth. Fig. 12 shows the number of times there
is one, eight, or 16 architectural registers that can be released
at the beginning of each basic block if the context is perfectly
shrunk (i.e., shortest lifetimes are allocated into the highest
context indexes), when executing 100 million of committed
instructions.

1606
B it released ™ 8r released ™ 16r released
16
14
12
@ 10
2 8
E 6
£
2 4
S 2 ‘
£ o0 =
e 5 O & N & S S @
A s & & & L ‘,Q?Q & P

SR ©° 3 < s S @
o N Q N &® .é\'Q {ﬁ;b@ ® & o &

Fig. 12. Number of allocs that the compiler should introduce when
executing 100 million committed instructions if a perfect shrunk of
contexts is performed.

Evaluating the Alloc Release technique requires to
compare optimized and unoptimized binaries. For a fair
comparison, both binaries should be run until completion,
not just running a portion of the execution, because code
optimized with Alloc Release is different from a code that
does not apply it. Because of the limited resources of our
experimental infrastructure, we took an alternative work-
around: we attempted to estimate the potential performance
speedup of this technique, by evaluating an upper bound of
the Alloc Release.

Instead of inserting alloc instructions, the compiler
annotates the code at the beginning of each basic block
with a list of live architectural registers at that point. A
register is considered live in a given point if there is at least
one consumer in any possible path downstream. At
runtime, when the first instruction of a basic block commits,
the simulator releases the physical registers associated to
current context mappings not included in the live register
list, as would have occurred with a shrinking alloc
instruction. The physical registers are easily identified from
the Retirement Map Table.

However, note that by generating simple live register
lists, there is no guarantee that the freed registers are located
at the highest mappings of the context, to make the context
shrink possible. Thus, the upper bound configuration does
not attempt to shrink the context but only to free the
physical registers that correspond to nonlive values. This is
the effect that would have been seen on the Alloc Release if
the nonlive registers are always mapped by the compiler to
the highest context positions, which is obviously an
optimistic assumption.

4.3 Performance Evaluation of Our Early Register
Release Techniques

This section compares in terms of performance our
proposals: Alloc Release, Context Release, Register Release
Spill, and Delayed Spill/Fill. Each of them, either can be
implemented independently, or as a combination of one
with the rest. Although a thorough study has been realized,
only the best four configurations are presented:

Context Release,

Alloc Release and Context Release,

Register Release Spill and Context Release, and
Delayed Spill/Fill and Register Release Spill and
Context Release.

bl e

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 12, DECEMBER 2010

[l Context Release

8

6

4

: I ¥ Wi
0 = -— .. -

, 1 1

4

M CR+Alloc Release 16r [l CR+Alloc Release 8r [l CR+Alloc Release 1r

g W 525
S W 739 J
3 -
@
[|
&
|
< $ & & & & R & & e
e“‘gm\ «"'ﬁ ©° @'f @JF & zg)& 'o“'o? e"oq o“p .\95&
< < ’ : >
> ¥ K S » °

Fig. 13. Performance evaluation of Context Release and several
configurations with Alloc Release and Context Release. Speedups are
normalized to the baseline register window scheme with 160 physical
registers.

Note that the four configurations use Context Release.
This is because Context Release is a very powerful
technique that does not require any binary code modifica-
tion and does not carry any side effect, unlike Alloc Release
or Register Release Spill. Moreover, it is a low-cost
technique in terms of hardware.

Alloc Release and Context Release. Fig. 13 compares
configurations 1 and 2, presented in the previous para-
graph, in terms of performance. The first column uses only
Context Release technique. The remaining three columns
are variants of Context Release and Alloc Release config-
urations, where Alloc Release is applied only if the number
of released physical registers is bigger than 16, eight, or
one, respectively. On average, applying a nonrestricted
Alloc Release technique, i.e., release a physical register
when possible, together with Context Release (fourth
column) achieves a performance advantage of more than
three percent. However, such a performance improvement
does not make up for the amount of alloc instructions that
the compile should insert, as shown in Fig. 12. The
restrictive use of Alloc Release (second and third columns)
can drastically reduce the code size expansion (from 12 to
two and four millions of generated allocs), but it carries a
performance loss of 1.5 and 0.4 percent, respectively, in
comparison to a nonrestrictive use of Alloc Release.

One could expect a higher performance improvement,
but the Alloc Release technique shrinks contexts because
the architectural register requirements decreases, and not
because of a lack of physical registers. However, there is
one benchmark (twolf) that achieves a performance advan-
tage of 16 percent over Context Release configuration when
applying the nonrestrictive Alloc Release. A detail explana-
tion will be given below.

Register Release Spill and Delayed Spill/Fill. Fig. 14
compares the performance of configurations 3 (Context
Release and Register Release Spill) and 4 (Context Release,
Register Release Spill, and Delayed Spill/Fill) mentioned
above. The use of Delayed Spill/Fill consistently outper-
forms the Register Release Spill configuration, with average
speedups over the baseline of six and four percent,
respectively. Moreover, the number of spill/fill operations
generated with Delayed Spill/Fill drops from 7.3 to
2.6 percent of the total number of committed instructions,
and it almost equals the number of spill/fill operations
generated for the baseline scheme, that is, 2.4 percent of the
total number of committed instructions.

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

B CR+Register Release Spill M CR+RRS+Delayed SpillFill

y & 5 ¥+ Q

o & & 3 & @ & Q o &
@8 (\@4 o5 & & & & & § o &
I

Fig. 14. Performance evaluation of Register Release Spill configuration
and Delayed Spill/Fill configuration. Speedups are normalized to the
baseline register window scheme with 160 physical registers.

Such a reduction produces notable performance improve-
ments because it not only reduces memory traffic, but also the
amount of physical registers allocated by fill operations. On
average, by using the Delayed Spill/fill technique, fill
operations drop from 4.3 to 1.3 percent of the total number
of committed instructions, in comparison to the Register
Release Spill configuration (spill operations generated are
reduced from 2.7 to 1.4 percent). It is especially beneficial for
twolf, where the performance improvement of Delayed Spill/
Fill configuration achieves an advantage of more than
eight percent over the Register Release Spill configuration.
This is because by using only Register Release Spill, physical
registers obtained from dirty region are required again for fill
operations when the procedure returns, even though they
were not necessary. Actually, it is quite often that a br.ret is
followed by another br.ret, so none of the required physical
registers are used. Hence, by applying Delayed Spill/Fill
technique, only required fill operations (and physical
registers) are performed.

A similar effect explains the performance advantage of
16 percent of twolf when using a nonrestrictive Alloc
Release together with Context Release in comparison to
Context Release, as shown in Fig. 13. This is because
physical registers freed by Alloc Release come from dead
values that do not need to be restored again to the map
table. This also explains that a nonrestrictive Alloc Release
configuration outperforms the Register Release Spill con-
figuration by almost 4 percent for the case of twolf, when
comparing Figs. 13 and 14 (both use the same baseline).
However, the Alloc Release configuration does not adapt as
well as the Delayed Spill/Fill configuration to register
requirements at runtime. On average, the Delayed Spill /Fill
configuration outperforms the Alloc Release configuration
by almost four percent.

Such a performance improvement is mainly due to a
huge reduction of the average register lifetime. Fig. 15

M CR+RRS+Delayed M CR+Alloc Release [Context Release M 128r-Baseline
SpillFil

0 100 200 300 400 500 600 700

Fig. 15. Average lifetime of the set of integer benchmarks executing in a
processor with a 128 register file size, when applying different
configurations: Delayed Spill/Fill, Alloc Release, Context Release, and
register window baseline.

1607

B VCA M CR+RRS+Delayed SpillFill I 192r Baseline

!

"
-
n
.
-
u
.
r
-

Fig. 16. Performance evaluation of VCA scheme, our Delayed Spill/Fill
configuration, and the baseline register window scheme with 192 phy-
sical registers. Speedups normalized to the baseline register window
scheme with 160 physical registers.

shows the average register lifetime of the set of the studied
integer benchmarks, when using different configurations:
Delayed Spill/Fill, Alloc Release, Context Release, and the
register window baseline scheme. All configurations exe-
cute in a processor with a 128 register file size. Our best
proposal, i.e., the Delayed Spill/Fill configuration, reduces
the lifetime by 75 percent over the register window baseline
scheme, and by 31 and 37 percent over the Alloc Release
and the Context Release, respectively. Hence, by reducing
the lifetime, the rename stage stalls caused by a lack of
physical registers are also drastically reduced, increasing
considerably the processor throughput.

4.4 Performance Comparison with Other Schemes
Fig. 16 compares the performance of our best proposal
(configuration 4) that includes Context Release, Register
Release Spill, and Delayed Spill/Fill, to the VCA register
window scheme. Our scheme outperforms the VCA on all
benchmarks, except in twolf, where it loses by one percent. On
average, our scheme achieves a performance advantage of
two percent over the VCA. The graph also shows for
comparison the performance of the baseline scheme but
giving it the advantage of a large 192 physical register file
(labeled as 192r Baseline), and assuming no increase on its
access latency. On average, our 128-registers scheme achieves
the same performance as the optimistic 192-registers baseline
scheme.

4.5 Performance Impact of the Physical Register
File Size

This section provides two performance comparisons of the
Delayed Spill/Fill configuration 4 and the baseline scheme,
for a wide range of 129-256 physical registers and 96-256
physical registers, respectively. Two different sets of
binaries have been used. The first set has been compiled
limiting the size of the register window up to 96 architectural
registers (as it is defined in the IA-64 ISA). These binaries
have been simulated for various physical register file sizes
ranging from 128 to 256. The second set has been compiled
with a maximum register window size of 64 architectural
registers and simulated for physical register file sizes from
97 to 256. In both comparisons, performance speedups are
normalized IPCs relative to the baseline configuration that
uses the minimum required number of physical registers,
i.e., 97 and 129 baseline register schemes for each set of
binaries.

1608

= Baseline <~ CR+RRS+Delayed Spill/Fill

70 1

Speedup (%)
w
8

128 144 160 192 224 256
Number of Registers

Fig. 17. Performance evaluation of our Delayed Spill/Fill configuration
and the baseline register window scheme, when the number of physical
registers varies from 128 to 256.

Fig. 17 compares the performance when the number of
physical registers varies between 128 and 256. As expected,
the baseline improves the performance by increasing the
number of registers, up to a saturation point around 192,
beyond which it only gets marginal additional improve-
ments (Farkas et al. [8] show similar trends when increasing
the number of physical registers). As shown in the graph,
our scheme consistently outperforms the baseline. How-
ever, the most remarkable result is that the baseline curve
drastically degrades as the number of registers decreases
(up to a 80 percent speedup), while our proposal suffers just
a very small performance loss (less than four percent
speedup). On average, our scheme is capable to achieve the
same performance as the 192-registers baseline despite
having only the minimum number of physical registers (i.e.,
the number of architected registers plus one).

Finally, Fig. 18 compares the performance when the
number of physical registers varies between 96 and 256.
Our scheme consistently outperforms the baseline. When
reducing the number of physical registers from 256 to
only 96, our scheme suffers only a small performance loss
(seven percent slowdown), while it achieves a enormous
speedup (almost 70 percent) in comparison to the baseline
scheme with 96 physical registers. On average, our scheme
is capable to achieve the same performance as the
160-registers baseline with only the minimum number of
physical registers.

In conclusion, the Delayed Spill/Fill configuration is able
to reduce the number of required physical registers by up to
64 registers, with a minimal performance loss.

5 CosT AND COMPLEXITY ISSUES

The previous section evaluates our proposal only in terms
of performance. However, it is also interesting to analyze it
in terms of cost and hardware complexity.

We have proposed a low-cost implementation of the
rename logic to support register windows on out-of-order
processors. Compared to an in-order processor with register
windows, our scheme only adds the ACDT, three map table
pointers, and the pending spill/fill bits for each entry in the
Map Table. We have experimentally found that a simple
eight-entry ACDT table achieves near-optimal performance.

Compared to the VCA approach, our scheme is sub-
stantially less complex, since our proposal uses a conven-
tional direct-mapped table, whereas the VCA requires a
larger set-associative map table to hold memory address
tags. Fitting the rename delay into the processor cycle time
is typically a challenging problem because of its inherent
complexity. Hence, adding complexity to the rename stage

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12,

DECEMBER 2010

4Baseline =~ CR+RRS+Delayed Spil/Fill

Speedup (%)
@
8

9 112 128 160 192 256
Number of Registers

Fig. 18. Performance evaluation of our Delayed Spill/Fill configuration
and the baseline register window scheme, both with register window
sizes up to 64 entries, when the number of physical registers varies from
96 to 256.

increases its latency, which may have implications on cycle
time and power.

Moreover, the effectiveness of the register windows
technique depends on the size of the architectural register
file [28], so future implementations may take advantage
of increasing the map table size, which emphasizes the
importance of a simple scheme for scalability.

Finally, our proposal produces a lower number of spill
operations than the VCA, which not only affects to the
performance, but also reduces the power requirements. In
comparison to the baseline, which generates a 0.5 percent of
spill operations over the total number of committed
instructions, the VCA generated up to three percent,
whereas our scheme generates only up to 1.4 percent.

6 SUMMARY AND CONCLUSIONS

In this paper, we have proposed a software/hardware
early register release mechanism for out-of-order proces-
sors that achieves a drastic reduction in the size of the
physical register file leveraging register windows. This
mechanism consists of two techniques: Context Release and
Register Release Spill. They are based on the observation that
if none of the instructions of a procedure are currently in-
flight, not all mappings of the procedure context need to
stay in the map table. These mappings, called not-active,
can be released, as well as their associated physical
registers.

The Context Release technique releases mappings defined
by a procedure whose closing return instruction has
committed. The values of these mappings are dead values
that will never be used again, so their associated physical
registers can be safely released.

The Register Release Spill technique is automatically
triggered when the rename stage runs out of physical
registers and releases not-active mappings that belong to
caller procedures. However, unlike the previous techni-
que, the values contained in these mappings are live values
that may be used in the future, after returning from the
procedure, so they must be spilled before releasing them.

Besides, we have developed another technique, called
Alloc Release, which relies on the compiler to introduce alloc
instructions in order to shrink the context and release all
mappings that lay outside the new shrunk context and their
associated physical registers. In order to explore the potential
of the Alloc Release technique, we have simulated an upper
bound scheme based on the knowledge of the live registers at
the entry of each basic block. However, our experiments have
shown that the speedup achieved by the upper bound
scheme does not make up for the code size increment.

QUINONES ET AL.: LEVERAGING REGISTER WINDOWS TO REDUCE PHYSICAL REGISTERS TO THE BARE MINIMUM

We introduce the ACDT that tracks all uncommitted
context states to accomplish two main purposes: identify
the active mappings at any point in time, which is required
by our early register techniques; and implement precise
state recovery of context descriptor information in case of
branch mispredictions and other exceptions. We also
introduce the Retirement Map Table that holds the state of
the Rename Map Table at commit stage, and it allows the
processor to release not-active mappings from contexts that
have already been redefined at the rename stage by new
contexts.

Moreover, in order to avoid unnecessary rename stalls
caused by the spills and fills generated by alloc and br.ret
instructions, respectively, we propose to defer spills and fills
operations until the corresponding registers are used. Hence,
a fill is generated and its corresponding physical register is
allocated when the mapping is actually used by a subsequent
instruction. Many fill operations are then eliminated, which
results in a substantial reduction of the physical register file
pressure. Analogously, a spillis generated when the mapping
is actually reassigned by a subsequent instruction.

By applying these techniques, the average register value
lifetime is reduced by a 75 percent, so a processor fitted with
only the minimum required number of physical registers,
i.e., the number of architected registers plus one (which is
128 in our experiments with IPF binaries), achieves almost
the same performance as a baseline scheme with an
unbounded register file. Moreover, in comparison to pre-
vious techniques, our proposal has much lower hardware
complexity and requires minimal changes to a conventional
register window scheme.

ACKNOWLEDGMENTS

This work is supported by the Spanish Ministry of
Education and Science and FEDER funds of the EU under
contracts TIN 2004-03072, TIN 2004-07739-C02-01, and Intel
Corporation.

REFERENCES

[1] Opencc, The Open Research Compiler, http://www.open64.net/
home.html, 2010.

[2] Standard Performance Evaluation Corporation. Spec., Newsletter,
Sept. 2000.

[3] H. Akkary, R. Rajwar, and S.t. Srinivasan, “Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors,” Proc. 36th Ann. Int’l Symp. Microarchitec-
ture (MICRO 36), 2003.

[4] D. Balkan, J. Sharkey, D. Ponomarev, and A. Aggarwal, “Address-
Value Decoupling for Early Register Deallocation,” Proc. Int’l Conf.
Parallel Processing, pp. 337-346, 2006.

[5] J-L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham, “Multiple-
Banked Register File Architectures,” Proc. 27th Ann. Int’l Symp.
Computer Architecture (ISCA '00), pp. 316-325, 2000.

[6] D.L. Weaver and T. Germond, SPARC Architecture Manual
(Version 9), 1994.

[71 O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose, “Increasing
Processor Performance through Early Register Release,” Proc. Int’l
Conf. Computer Design (ICCD), 2004.

[8] K. Farkas, N. Jouppi, and P. Chow, “Register File Considerations
in Dynamically Scheduled Processors,” Proc. Second Int’l Symp.
High-Performance Computer Architecture (HPCA '96), pp. 40-51,
1996.

[91 A. Gonzalez,]J. Gonzalez, and M. Valero, “Virtual-Physical
Registers,” Proc. Fourth Int'l Symp. High-Performance Computer
Architecture (HPCA '98), 1998.

1609

[10] L. Gwennap, “Intel, hp Make Epic Disclosure,” Microprocessor
Report, vol. 11, pp. 1-9, Oct. 2001.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J. Q1, vol. 5, no. 1, pp. 1-13, Feb. 2001.

[12] “Intel Corporation,” Intel Itanium Architecture Software Developer’s
Manual, Volume 2: System Architechiture, 2002.

[13] T.M. Jones, M.EP. O’Boyle, J. Abella, A. Gonzalez, and O.
Ergin, “Compiler Directed Early Register Release,” Proc. 14th
Int’l Conf. Parallel Architectures and Compilation Techniques
(PACT '05), pp. 110-122, 2005.

[14] T.M. Jones, M.F.P. O'Boyle, J. Abella, A. Gonzalez, and O. Ergin,
“Exploring the Limits of Early Register Release: Exploiting
Compiler Analysis,” ACM Trans. Architecture and Code Optimiza-
tion, vol. 6, no. 3, pp. 1-30, 2009.

[15] A. KleinOsowski and D.J. Lilja, “Minnespec: A New Spec
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” IEEE Computer Architecture Letters, vol. 1, no. 1,
p- 7, Jan. 2002.

[16] J.L. Lo, S.S. Parekh, S.J. Eggers, HM. Levy, and D.M. Tullsen,
“Software-Directed Register Deallocation for Simultaneous Multi-
threaded Processors,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 9, pp. 922-933, Sept. 1999.

[17] M.M. Martin, A. Roth, and C.N. Fischer, “Exploiting Dead
Value Information,” Proc. 30th Ann. Int'l Symp. Microarchitecture
(MICRO 30), 1997.

[18] J.F. Martinez, J. Renau, M.C. Huang, M. Prvulovic, and]J.
Torrellas, “Cherry: Checkpointed Early Resources Recycling in
Out-of-Order Microprocessors,” Proc. 35th Ann. Int’l Symp.
Microarchitecture (MICRO 35), 2002.

[19] T. Monreal, A. Gonzélez, M. Valero, J. Gonzalez, and V. Vinals,
“Delaying Physical Register Allocation through Virtual-Physical
Registers,” Proc. 32nd Ann. ACM/IEEE Int’l Symp. Microarchitecture
(MICRO 32), pp. 186-192, 1999.

[20] T. Monreal, V. Vinals, A. Gonzalez, and M. Valero, “Hardware
Schemes for Early Register Release,” Proc. Int’'l Conf. Parallel
Processing (ICPP-02), 2002.

[21] M. Moudgill, K. Pingali, and S. Vassiliadis, “Register Renaming
and Dynamic Speculation: An Alternative Approach,” Proc. 26th
Ann. Int’'l Symp. Microarchitecture (MICRO 26), pp. 202-213, Nov.
1993.

[22] D.W. Oehmke, N.L. Binkert, T. Mudge, and S.K. Reinhardt, “How
to Fake 1000 Registers,” Proc. 38th Ann. Int’l Symp. Microarchi-
tecture (MICRO 38), pp. 7-18, 2005.

[23] L Park, M.D. Powell, and T.N. Vijaykumar, “Reducing Register
Ports for Higher Speed and Lower Energy,” Proc. 35th Ann. ACM/
IEEE Int’l Symp. Microarchitecture (MICRO 35), pp. 171-182, 2002.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A.
Karunanidhi, “Pinpointing Representative Portions of Large Intel
Itanjum Programs with Dynamic Instrumentation,” Proc. 37th
Ann. Int’l Symp. Microarchitecture (MICRO 37), pp. 81-92, 2004.

[25] E.Quinones, J.-M. Parcerisa, and A. Gonzalez, “Selective Predicate
Prediction for Out-of-Order Processors,” Proc. 20th Ann. Int’l Conf.
Supercomputing (ICS '06), 2006.

[26] E. Quinones, J.-M. Parcerisa, and A. Gonzalez, “Early Register
Release for Out-of-Order Processors with Register Windows,”
Proc. 16th Int’l Conf. Parallel Architectures and Compilation Techni-
ques (PACT ’07), 2007.

[27] E.Quinones,].-M. Parcerisa, and A. Gonzalez, “Improving Branch
Prediction and Predicate Execution in Out-of-Order Processors,”
Proc. 13th Int’l Symp. High-Performance Computer Architecture
(HPCA '07), Feb. 2007.

[28] R. Rakvic, E. Grochowski, B. Black, M. Annavaram, T. Diep, and
J.P. Shen, “Performance Advantage of the Register Stack in Intel
Itanium Processors,” Proc. Workshop Explicit Parallel Instruction
Computing (EPIC) Architectures and Compiler Technology, 2002.

[29] M. Vachharajani, N. Vachharajani, D.A. Penry, J.A. Blome, and
D.I. August, “Microarchitectural Exploration with Liberty,” Proc.
35th Ann. Int’l Symp. Microarchitecture (MICRO 35), pp. 271-282,
2002.

[30] R. Yung and N. Wilhelm, “Caching Processor General Design,”
Proc. Int’l Conf. Computer Design (ICCD), pp. 307-312, Oct. 1995.

[31] V. Zyuban and P. Kogge, “The Energy Complexity of Register
Files,” Proc. Int’l Symp. Low Power Electronics and Design,
pp- 305-310, 1998.

1610

Eduardo Quinones received the MS and PhD
degrees from the Universitat Politecnica de
Catalunya in 2003 and 2008, respectively. He is
a senior researcher at BSC. His area of expertise
is in safety-critical systems and high-perfor-
mance compiler techniques. He is involved in
several FP7 projects (MERASA, PROARTIS).
He is a member of the IEEE.

Joan-Manuel Parcerisa received the MS and
PhD degrees in computer science from the
Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain, in 1993 and 2004, respec-
tively. Since 1994, he has been a full-time
assistant professor in the Computer Architecture
Department, Universitat Politécnica de Catalu-
nya. His current research topics include clus-
tered microarchitectures, multithreading, and
acceleration of emerging applications.

IEEE TRANSACTIONS ON COMPUTERS, VOL.59, NO. 12, DECEMBER 2010

Antonio Gonzalez received the MS and PhD
degrees from the Universitat Politécnica de
Catalunya (UPC), Barcelona, Spain. He is the
founding director of the Intel-UPC Barcelona
Research Center, started in 2002, whose
research focuses on new microarchitecture
paradigms and code generation techniques for
future microprocessors. Prior to his work at
Intel, he joined the faculty of the Computer
Architecture Department of UPC in 1986 and
became a full professor in 2002. He currently holds a part-time full
professor position at this department. He has published more than
300 papers, has given more than 80 invited talks, has filed more than
40 patents, and has advised 18 PhD thesis in the areas of computer
architecture and compilers. He has served as an associate editor of the
IEEE Transactions on Computers, IEEE Transactions on Parallel and
Distributed Systems, ACM Transactions on Architecture and Code
Optimization, IEEE Computer Architecture Letters, and Journal of
Embedded Computing. He has served on the program committees for
more than 100 international symposia in the field of computer
architecture, including ISCA, MICRO, HPCA, ASPLOS, PACT, ICS,
ISPASS, CASES, and IPDPS. He has been the program chair for ICS
2003, ISPASS 2003, MICRO 2004, and HPCA 2008, and the general
chair for MICRO 2008 among other symposia. His awards include the
award to the best student in computer engineering in Spain among
those graduating in 1986, the 2001 Rosina Ribalta Award as the advisor
of the best PhD project in Information Technology and Communica-
tions, and the 2008 Duran Farrell Award for research in technology. He
is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

