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Abstract: Altered movement control is typically the first noticeable symptom manifested by 

Parkinson’s disease (PD) patients. Once under treatment, the effect of the medication is very patent 

and patients often recover correct movement control over several hours. Nonetheless, as the disease 

advances, patients present motor complications. Obtaining precise information on the long-term 

evolution of these motor complications and their short-term fluctuations is crucial to provide 

optimal therapy to PD patients and to properly measure the outcome of clinical trials. This paper 

presents an algorithm based on the accelerometer signals provided by a waist sensor that has been 

validated in the automatic assessment of patient’s motor fluctuations (ON and OFF motor states) 

during their activities of daily living. A total of 15 patients have participated in the experiments in 

ambulatory conditions during 1 to 3 days. The state recognised by the algorithm and the motor state 

annotated by patients in standard diaries are contrasted. Results show that the average specificity 

and sensitivity are higher than 90%, while their values are higher than 80% of all patients, thereby 

showing that PD motor status is able to be monitored through a single sensor during daily life of 

patients in a precise and objective way.  

Keywords: inertial sensors; Support Vector Machine; Parkinson’s disease; motor fluctuations; 

ambulatory monitoring 

 

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder whose pathology is typified by a deficit 

of dopamine-producing neurons, which is a neurotransmitter involved in movement control [1]. 

Probably, the best known and most recognisable symptom of PD are resting tremors. Parkinsonian 

tremors are usually unilateral and occur when the affected segment is at rest and disappears when 

the patient makes any voluntary movement. Although it is the most characteristic symptom of PD, 

generally, tremors are one of the less disabling motor symptoms [2–5]. On the other hand, 

bradykinesia is a symptom characterised by slowness of motion and is one of the most relevant 

clinical features in PD. Bradykinesia results in difficulties with planning, initiation and execution of 

movements as well as performing sequential and simultaneous tasks. According to Jankovic [1], early 

bradykinesia symptoms are the slow implementation of the activities of daily living, the increase of 
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the reaction time and slowness of motion. These manifestations can lead to difficulties in any tasks 

that require fine motor control (e.g., buttoning clothes or using tools). Bradykinesia is one of the most 

recognisable symptoms by clinicians in PD as it may become apparent before any formal neurological 

examination. Other PD motor symptoms are stiffness, postural alteration and freezing of  

gait (FoG) [1,6–8].  

These symptoms, however, can be treated by means of specific medication that aims to increase 

dopamine concentration. Among current available therapies, levodopa-based ones are the most used 

since levodopa is the precursor of dopamine. At the beginning of levodopa treatment, patients 

present a meaningful response and symptoms may completely disappear for hours. However, these 

treatments only temporally revert the symptoms, but they do not prevent disease’s progression [9]. 

Hence, as disease progresses, dyskinesias and motor fluctuations appear. Firstly, levodopa-induced 

dyskinesia refers to exaggerated and involuntary movements occurring generally after prolonged 

treatment with levodopa. Dyskinesia term is applied to any involuntary movement with choreic 

nature (chorea), as a repetitive “dance”, or that provokes dystonic postures (dystonia) that typically 

affect trunk, limbs, neck or head. The occurrence of choreic dyskinesias is closely related to the 

levodopa levels in plasma: the highest levodopa-induced dyskinesia occurs when antiparkinsonian 

effects of levodopa are maximum [10–13]. Secondly, motor fluctuations refer to the oscillations 

between ON and OFF periods that patients present after few years of medication. OFF periods are 

considered as those parts of the day in which patients manifest PD symptoms, with the exception of 

dyskinesia. On the contrary, ON periods refers to the remaining time in which patients regain 

movement control and the only appreciable movement alteration is dyskinesia. Medication intakes 

are commonly scheduled to keep a constant dopamine level in order to maximise ON time without 

dyskinesia and minimise OFF periods and their duration [14,15].  

Time in OFF is currently the main parameter employed to assess pharmacological interventions 

and to evaluate the efficacy of different active principles. Therefore, obtaining precise information on 

the long-term evolution of these ON-OFF fluctuations and their short-term alternations, i.e., onset 

and duration, is essential to provide optimal therapy to PD patients and minimise time in OFF and 

dyskinesias [14]. Currently, the only available method to collect such information consists of  

self-reporting diaries [16]. With this method, patients annotate their motor state every waking hour 

during 2 or 3 days. These diaries have some important shortcomings that limit their validity and their 

application in clinical practice. First, they have a recall bias, and, second, they present a reduced 

compliance [16]. In consequence, a wearable device capable of collecting PD motor fluctuations in an 

objective and reliable way could help to overcome the limitations of self-reporting diaries and, in 

addition, would provide clinicians with a valuable tool to reduce OFF time and dyskinesia of their 

patients. A system with these characteristics would result an invaluable tool in PD diagnosis. Early 

detection of dyskinesias and motor fluctuations would help to, first, enhance the effectiveness of the 

medication through a better regimen adjustment; second, to significantly improve the quality of life 

of patients and, third, to obtain a deeper understanding of the evolution of disease. Another area that 

could benefit from a tool with these characteristics is the clinical and epidemiological research. These 

studies are expensive and laborious and, often, these economic limitations affect the methodological 

rigor. Studies based on movement disorders are especially complicated, on the one hand by the lack 

of markers to establish a clear diagnosis and, on the other hand, by the lack of uniformity in  

diagnostic criteria.  

Wearable inertial sensors based on Micro-Electro-Mechanical Systems (MEMS) are the current 

technological basis to analyse PD symptoms. In this sense, Zwartjes et al. [17] analysed the automatic 

detection and severity assessment of tremor and bradykinesia in six PD patients. In this study, the 

following locations were used to place their wearable sensors: sternum, foot, thigh, and wrist. The 

methodology applied provided a good correlation with Unified Parkinson’s Disease Rating Scale 

(UPDRS) values. Similarly, Salarian et al. [18] employed two triaxial gyroscopes located on each of 

the forearms to detect and quantify tremor and bradykinesia in 20 PD patients, also obtaining a high 

correlation with related UPDRS values. Finally, some papers have been presented in the last years as 

a result of the work done under the European project PERFORM [19,20], where dyskinesia, tremor, 
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and bradykinesia detection were analysed. So far, several limitations are found in former studies. 

Firstly, most of the experiments on assessing motor states took place in controlled settings 

(laboratory), where patients were asked to perform specific activities with the aim of eliciting PD 

symptoms [21–24]. These tests can barely provide information to the algorithm in order to confront 

false positives in real life and, hence, the algorithm loses consistency; Secondly, OFF states presented 

by PD patients are obtained, in most cases, by removing medication intakes prior to experiments. As 

a result, symptoms observed are easily more severe than what they would have in the daily life of 

patients, facilitating the discrimination between their presence or absence. Therefore, natural 

conditions to monitor fluctuations are preferred, avoiding any withdrawal of medication intake.  

This work presents a new method for the assessment of ON and OFF motor states through a 

single waist-worn device which has an accelerometer as primary sensor. The method estimates, on 

the one hand, the presence of bradykinesia based on a Support Vector Machine (SVM) classifier that 

detects gait followed by a specific signal processing method that identifies strides and, finally, a 

method for characterising bradykinesia. On the other hand, dyskinesia presence is determined by 

analysing specific frequency features of the inertial signal. Based on their outputs, ON and OFF motor 

states are assessed by a hierarchical algorithm. This algorithm is applied to the signals collected 

during 1 to 3 days from 15 patients during their daily activities in natural conditions, i.e., without 

removing any medication intake. Accuracies above 90% in detecting ON and OFF motor states are 

obtained with the hierarchical algorithm and the signals collected from a single sensor.  

The paper is organised as follows: the next section is devoted to reviewing the related works on 

sensors and algorithms for monitoring PD motor states. Sections 3 and 4 present the methods and the 

signal processing techniques employed, respectively. Then, Section 5 reports the obtained results. 

Finally, our conclusions are detailed in Section 6. 

2. Related Work 

Many previous studies have focused on the detection of PD motor symptoms. More concretely, 

these works mainly rely on the use of inertial sensors, although there are other less extended 

alternatives, as the use of sEMG [25–28] or another physiological measure [29]. The majority of these 

research studies have employed wearable sensors to study specific PD symptoms such as FOG [30–32], 

dyskinesia [33–36] and bradykinesia [18,19,22,37–39]; thus, the aim was detecting the presence or 

severity of a certain symptom. However, the main objective of our work is the detection of ON/OFF 

motor states of patients, which is mainly related to a dopaminergic deficit and is not related to the 

presence of a unique symptom. 

Previous works conducted so far on the detection of ON/OFF motor states are based on 

characterising PD symptoms by means of inertial sensors. This idea was followed by the work 

conducted in 2004 by scientists at the Medical Center at Leiden University [24], in which hypokinesia, 

tremor, and bradykinesia were characterised with the aim of determining the motor state in 50 PD 

patients wearing two wrist-worn accelerometers. In this study, three features were extracted in time 

periods of half an hour: time during which patients did not move, acceleration average and 

percentage of the time with tremor. Patient’s motor state was based on a decision tree; more 

specifically, it was determined by comparing the output of each feature against a threshold value. 

Through the usage of this method with the wrist-worn signals, the specificity and sensitivity achieved 

in detecting OFF states were of approximately 70%, being sensitivity referred to the accuracy in 

detecting OFF annotations and specificity to the ON ones. 

Salarian et al. [40] conducted another study in which nine sensors were used by 13 patients 

during 3 to 6 h. These sensors, which consisted of seven gyroscopes and two accelerometers, were 

located at the trunk, shins, and forearms. Features extracted aimed to characterise different symptoms 

and movements: tremor, bradykinesia, as well as posture and gait parameters. The sensitivity 

achieved by using these features into time periods of 10 min and a logistic regression classifier was 

76%, being the specificity 90%. 

Some papers have been presented in the last years as a result of the work done under the 

European project PERFORM [19,20]. Cancela et al. collected data from 20 patients, while they 
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developed a variety of activities. In these research works, a variety of machine-learning classifiers 

were analysed, obtaining classification errors of 14%. In addition, in another set of signals obtained 

from 24 PD patients at home during 7 days, the same method was applied, obtaining an error rate of 

25.6% ± 14.9%. As part of the PERFORM project as well, Pastorino et al. [41] presented a preliminary 

result of the PERFORM project where a correlation between the algorithms developed in the project 

and motor states in two patients were reported. In this paper, the algorithms used were not specified 

and also the resulting specificity and sensitivity values are not available, only data correlation 

between the system output and patients’ diary were offered (88.2% ± 3.7%). In the most recent papers 

of the PERFORM project [42], this system was reported to present the ON/OFF related information 

based on UPDRS values. Nevertheless, in all cases, the system was composed of a set of 5 wearable 

sensors and a central storage unit, making the system, from our point of view, unusable as a 

continuous monitoring system in daily life. Table 1 summarizes the main works focused on the 

detection of ON-OFF motor states.  

Table 1. Summary of most relevant ON-OFF works. 

Authors Year 
Number 

of Patients 

Number 

of Sensors 
Time Assessment ON-OFF Results 

Pastorino  

et al. [41] 
2013 2 5 

4 h, 2 days, unscripted 

activities 

88.2% correspondence with UPDRS 

scales 

Pastorino  

et al. [19] 
2011 24 5 Scripted activities 74.4% accuracy 

Cancela  

et al. [20] 
2010 20 5 Specific movements 

Brad. detection: 70% (walking), 

86.6% (upper limbs) 

Keijsers  

et al. [21] 
2006 23 6 

3 h activities, laboratory 

settings 
96% sensitivity, 95% specificity 

Patel  

et al. [22] 
2009 12 8 Specific movements 

Error: 3.4% in tremor, 2.2 in brad, 

and 3.2% in dysk 

Hoff  

et al. [24] 
2004 50 2 One hour and a half 70% accuracy 

Besides motor states, levodopa-induced dyskinesias, which are a side effect of the dopaminergic 

treatment, have been widely analysed. Many works have studied their automatic assessment based 

on MEMS sensors. Recently, Keijsers et al. employed five tri-axial acceleration sensors in 13 patients 

to achieve an accuracy of 96.6% in detecting dyskinesia [43]. The classification algorithm employed 

was based on artificial neural networks and labelled 15-min segments. In contrast, similar results 

were achieved by Tsipouras et al. but on smaller segments [44]. In this case, signals from four PD 

patients and six control subjects doing a number of previously scripted activities were collected. 

Patients wore eight sensors and several classifiers were evaluated on the signals obtained. The 

accuracies obtained ranged from 53.85% to 93.7%.  

Besides characterising motor symptoms, there is another approach that many research works 

have followed to evaluate the motor state of PD patients. This method is inspired in the assessment 

commonly done by neurologists at the clinical setting, which consists of administering a scale to 

patients that rates patients’ movements, e.g., UPDRS scale. In this approach, that takes advantage of 

the relationship between UPDRS and motor state [45], the goal is to assess PD patients while they are 

asked to do specific movements and they wear an inertial sensor or use a specific device. An example 

of such method is the Kinesia device, developed by Great Lakes Technology, which consists of a 

triaxial accelerometer and a gyroscope that measure patient’s finger movement providing values 

correlated with UPDRS [46]. This approach was also followed by the work of Patel et al. [22], who 

used eight sensors to estimate different UPDRS scores. Compared to the methods presented before, 

this one presents the shortcoming of requiring the patient to move in a specific way, as a finger 

tapping movement, necessary to provide the rating value. In consequence, the monitoring is 

discontinuous, requiring patients to stop their normal activity and may not be frequent enough to 

capture motor fluctuations.  
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To sum up, some systems have been previously developed to monitor ON and OFF fluctuations 

during patient’s daily life; however, they require several IMU’s. Furthermore, almost all tests have 

been performed in laboratory conditions and, as previously mentioned, most works analyse OFF 

periods that were artificially induced through a prolonged withdrawal of the patients’ habitual 

medication. This commonly provokes deeper OFF periods than the natural ones and, hence, could 

result in non-real condition evaluation. In the next section, a new method for the assessment of motor 

states in PD patients based on a single waist-worn sensor is presented. This method is evaluated in 

15 PD patients without medication withdrawal. 

3. Methods 

This section describes the methods used to validate the device and algorithms for the assessment 

of motor fluctuations. The section is organised as follows. First, the inclusion criteria and descriptive 

data of the patients who participated are described. In the data collection part, the data acquisition 

methodology is explained.  

3.1. Participants  

In this study, developed within the MoMoPa 2 project, a total of 15 patients with idiopathic PD, 

according to UK PD Society Brain Bank criteria [47], have been used to validate the algorithms. We 

included patients aged between 49 and 82 years old and patients who were in a mild or moderate stage 

of the disease (Hoehn and Yahr stage greater than or equal to 2.5 in their ON state) and had motor 

fluctuations with bradykinesia, freezing of gait or dyskinesia. Patients with other health problems that 

hamper physical activity and patients with dementia (DSM-IV-TR criteria) or neuropsychiatric 

disorders were excluded. The study was conducted in the province of Barcelona (Spain) over 3 years 

(from 2013 until 2015), the experimental protocol was approved by the local Ethics Review Committee 

and all participants provided informed consent prior to their inclusion in the study. 

3.2. Sensor Device 

The device employed to collect inertial signals is the 9 × 2 device, which has been previously 

used to collect data from PD patients [48]. The device has been specifically designed for long-term 

monitoring and allows capturing inertial data as well as embedding algorithms in real-time. Thus, 

commercial devices are not suitable for the purpose of this work. This device saves the inertial 

measurements into a micro-SD card and includes a tri-axial accelerometer with a full-scale range of 

±6 g. It also features a rechargeable Li-ion battery. The 9 × 2 maximum sampling data rate is 200 

samples per second. The sensor is worn on the waist by means of a neoprene belt specifically designed 

for this purpose, as shown in Figure 1.  

 
Figure 1. Image of the 9 × 2 sensor and the neoprene belt. 
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Waist position has been selected due to the following rationale. Regarding the design and 

generation of a system and an algorithm for monitoring PD motor states, it is a key factor to determine 

the context and conditions in which the system will be used. According to this directive, two 

requirements lead and constrained the development of the algorithm and, consequently, the data 

acquisition required to generate the algorithms: the number and location of inertial sensors. We find, 

then, a trade-off between the feasibility of capturing accurate data, which affects the precision in 

recognising a motor symptom, and patient’s discomfort while wearing a sensor on certain positions 

or in simply having to wear several sensors. Thus, in this work, any system implementation that 

requires multiple sensors has been discarded and the study has been focused on the use of a single 

sensor. Another important issue is the position of the sensor and, in this sense, some studies like those 

of Yang et al. and Gjoreski et al. [49,50] have shown that placing an accelerometer on the waist 

provides good ergonomics for the patient. Furthermore, from a technical point of view, the closeness 

and solidarity with the centre of human body mass provide a precise characterisation of body 

movement. Along the same line, Mathie et al. [51] performed a study where volunteers chose, as the 

most suitable place to carry a small inertial sensor, the anterior superior iliac spine in the waist. Given 

this reasoning, in our work it was considered that a single sensor must be used and, in addition, it 

must be placed on the side of the waist, as depicted in Figure 1. Almost all human movements are 

reflected in the trunk and, among the different trunk locations a sensor could be located, the waist is 

considered to be the optimal place. Related to the symptoms that are detected by the sensor, as Section 4 

presents, this location presents the advantage of enabling the detection of both bradykinetic gait  

and dyskinesia. 

3.3. Data Collection  

Data collection is divided into two parts. The main database of accelerometer signals gathered 

from 15 PD patients was used to evaluate the motor state detection algorithms. These signals were 

collected with the device while patients freely performed their activities of daily life. Additionally, a 

former database obtained from 20 patients had been previously collected mainly in laboratory 

settings [52]. This database has been employed to develop the window-based analysis of the 

algorithms, while the first one has been used to validate the method. Both databases are presented in 

the following subsections. 

3.3.1. Evaluation Database of Inertial Signals 

Data collection basically consists of three days of free monitoring, during which patients wore 

the 9 × 2 wearable device. The first day, early in the morning and prior to any recording, PD motor 

state was verified by clinical experts, by means of the motor section of the UPDRS, which was 

evaluated in order to objectively assess, with standard instruments, the characteristics of patients’ 

motor state. Then, a sensor was given to patients and its usage and location were described. Then, 

the researcher left patients’ home. This way, during the remaining of the first day, patients wore the 

sensor and did their usual daily life activities. In the morning of the second and third day, patients 

wore up the sensor by themselves and, as in the first day, performed their daily life activities in a 

regular way. In addition, patients used a diary over these three days to report their motor state every 

half an hour.  

Some specific cautions were taken to ensure the validity of the diaries reported by PD patients 

since they are known to present some shortcomings: first, patients may not correctly identify their 

motor state, and, second, non-motor symptoms could provoke wrong annotations [16]. In addition, 

time slots might be confused and time alterations in the diary could be introduced. The first caution 

taken was to check that patients enrolled correctly identified their motor state, which was done by 

doing some questions; The second measurement taken, which is the main one, consists in gathering 

an alternative diary. In this sense, a researcher called patients by phone every two hours while they 

used the sensor. This way, another register of patients’ motor state was obtained, which was used to 

verify the one delivered by patients. The third caution taken relies on assuming that the temporal 

validity of each annotation covers 15 min before and after the time of the annotation. Unfortunately, 
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six patients stopped the experiment before the third day due to the inconvenience of filling the diary. 

The demographics, UPDRS score, Hoehn and Yahr stage and the dominant symptoms of the patients 

are provided in Table 2. 
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Table 2. Demographics and PD symptoms of the patients included in the database. 

Patient Age 
H & 

Y 
Gender 

UPDRS/Motor 

State 
Dyskinesia 

Motor 

Fluctuations 
Bradykinesia Rigidity Tremor 

Postural 

Instability 
FoG 

1 61 2.5 Female 29/OFF        

2 59 3 Female 46/OFF      
  

3 70 3 Female 29/OFF      
  

4 49 2.5 Male 19/INT    
    

5 68 2.5 Male 16/INT        

6 80 2.5 Male 11/ON  
    

  

7 63 2.5 Female 38/INT        

8 57 2.5 Male 6/ON  
  

  
  

9 61 2.5 Male 25/OFF  
      

10 66 2.5 Male 17/INT    
    

11 64 4 Male 62/OFF        

12 63 2.5 Male 7/ON      
  

13 57 2.5 Male 9/ON  
    

  

14 60 2.5 Female 8/ON  
    

  

15 59 2.5 Male 11/INT      
  
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3.3.2. Learning Database 

The second set of accelerometer signals was gathered from 20 PD patients in laboratory setting 

as part of a study that took place during 2009 and 2010 [52]. Patients who participated were aged 

between 49 and 82 years of age, lived in the Barcelona (Spain) area and had been diagnosed to have 

idiopathic PD according to the criteria of the Brain Bank, London [47]. In this study, only patients 

with the mild or moderate stage of the disease and motor fluctuations were included. 

Accelerometer signals were collected by a former version of the sensor device presented in 

Section 3.1. This device, that registered the signals in a micro-SD card, was worn by PD patients while 

they performed various activities in laboratory settings and outdoors. Laboratory activities 

comprised walking in a straight line, walking over an inclined plane, carrying a heavy object, setting 

a table and going upstairs and downstairs. The outdoors protocol consisted of a 15-min walk, at least. 

Patients who had motor fluctuations repeated the experiment, excluding the outdoors protocol, in 

OFF state, which was induced by avoiding the first-morning intake of medication. The experimental 

protocol was approved by the local Ethics Review Committee.  

4. Signal Processing Methods 

The signal processing method applied to the waist-worn accelerometer measurements to 

determine the ON/OFF state of PD patients relies on characterising motor symptoms, similarly to the 

methods presented in the related work section. In this sense, two specific algorithms, which analyse 

the presence of dyskinesia and bradykinetic gait, are used. Their output is then merged based on a 

hierarchical algorithm that eventually provides the motor state estimation. This section describes 

each one of the methods used to estimate the motor state of PD patients.  

In a previous work of the authors [53], a previous version of the ON/OFF detector was presented, 

which was only based on the analysis patients’ gait and it was validated in a different database than 

the one used. This new work presents a novel approach in which two algorithms are combined: a 

bradykinetic gait detector and a choreic-dyskinesia detector that, combined by means of a decision 

tree, perform the detection of the motor states. Notably, the algorithmic basis for the detection of 

bradykinesia in [53] and this work, with some modifications, is based on a previous work by the 

authors [52]. On the other hand the algorithmic basis of the dyskinesia block is based on another 

previous work [33]. The way to combine these algorithms and the database where they are validated 

are completely new. In addition, the processing required for extending bradykinetic gait detection 

into 10-min periods and the method presented in Section 4.3 to self-tune the corresponding 

thresholds are new. 

In our approach, ON/OFF states are estimated by means of dyskinesia and bradykinesia 

detection. The rationale of using these two symptoms is given below. First, motor fluctuations have 

been shown to be associated with oscillating levels of dopamine and to the appearance of PD motor 

symptoms [9]. In addition, bradykinesia has been identified as the motor symptom whose 

appearance is more closely related to the lack of dopamine [54]. More concretely, bradykinesia and 

OFF states are related to low dopamine levels. On the contrary, the motor alteration that correlates to 

high dopamine levels is peak-dose dyskinesias, which are linked to ON states [1]. In consequence, 

both bradykinesia and dyskinesia motor alterations are selected to determine ON/OFF motor states. 

Taking into account these observations, we aim to obtain a set of signal processing methods that 

identify the presence of bradykinesia and dyskinesia during daily life activities, without requiring 

patients to perform specific movements, as some methods presented in the related work do. Related 

to choreic dyskinesia, this movement disorder can be evaluated without requiring any exercise, since 

it is an involuntary repetitive movement that patients manifest in any body segment with specific 

frequencies that have been shown to be up to 4 Hz [36,55]. Bradykinesia requires a more complex 

solution since, in general, it is manifested as a slower than normal movement that may be presented 

in any body segment. In order to automatically evaluate bradykinesia, movements belonging to the 

activities of daily living are considered, since they can be automatically assessed through wearable 

sensors. In this sense, gait is one of the movements involved in many of these activities and, in 

addition, it is an automatic movement that is also performed slowly by PD patients due to the effects 
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of the disease [56]; hence, authors consider it the optimal way to analyse bradykinesia. This way, a 

signal processing method that analyses gait to determine the presence of bradykinesia is considered, 

which will enable the monitoring of low dopamine levels without requiring patients to do any 

specific movement. A general schematic representation of the algorithms is shown in Figure 2. 

Accelerometer signals

Signal conditioning 
and windowing

Dyskinesia 
detection

Bradykinesia 
detection

ON/OFF detection

 

Figure 2. Block diagram of the dyskinesia, bradykinesia, and ON/OFF detection algorithms. 

The next sections present the algorithms comprising the overall motor state detection: first, 

bradykinesia detection; second, dyskinesia detection and finally, the hierarchical algorithm that 

provides the motor state estimation based on the first two algorithms. Furthermore, to facilitate the 

understanding of the equations presented in the following sections, two tables are presented with the 

nomenclature of all the parameters (Table 3) and all the variables (Table 4) involved in the algorithms. 

Table 3 presents those parameters that are required to be tuned in order to properly detect the PD 

symptoms, while Table 4 summarises the variables that correspond to values that are computed by 

the algorithm from the inertial signals. 

Table 3. Summary of the parameters used in this work. 

Parameter Algorithm Description Value 

𝑡𝑑 Dyskinesia Threshold for dyskinetic band 1.75 

𝑡𝑃𝑇 Dyskinesia Threshold for postural transition band 0.95 

𝑡𝑤𝑎𝑙𝑘 Dyskinesia Threshold for walk band 1 

𝑡𝑝 Dyskinesia Threshold for the probability of dyskinesia occurrence in 1 min 0.4 

𝑡𝑐 Dyskinesia Threshold for the confidence of dyskinesia occurrence in 1 min 0.3 

𝐶 Bradykinesia Balance between empirical error and hyperplane margin 10 

γ Bradykinesia RBF kernel hyper-parameter 0.1 

𝛼, 𝒛, 𝑏,  𝜉𝑖 Bradykinesia 
SVM model. Obtained by solving the SVM-related  

optimization process 
- 

𝑏𝑡ℎ
𝑚 Bradykinesia 

Patient-dependent fluency threshold to determine the presence or 

absence of bradykinesia. 

Self-tuned  

(see Section 4.3) 

Table 4. Summary of the variables used in this work. 

Variable Algorithm Description 

𝑃𝑑 Dyskinesia Power spectra in dyskinetic band 

 𝑃𝑃𝑇 Dyskinesia Power spectra in postural transition band 

 𝑃𝑤𝑎𝑙𝑘 Dyskinesia Power spectra in walk band 

𝑑ℎ
𝑤  Dyskinesia Dyskinesia detection in window h 

𝑑𝑗
𝑚 Dyskinesia Dyskinesia detection in the j-th 1-min period 

𝑑𝑖
10𝑚  ON/OFF Dyskinesia detection in the i-th 10-min period  

𝑛𝑑 Dyskinesia number of time windows in which the condition  𝑃𝑃𝑇 ≥ 𝑑𝑃𝑇  ∨   𝑃𝑤𝑎𝑙𝑘 ≥ 𝑡𝑤𝑎𝑙𝑘was not held 

𝒑𝑖 Bradykinesia 
Vector of the features that characterize the window of the accelerometer signal  

(for walking detection) 

𝑦𝑖 Bradykinesia Window label according to video observations (for walking detection) 

𝑙(𝒑) Bradykinesia SVM output (walk/no walk) for a given window represented by 𝒑  

𝑝𝑗
𝑠𝑡𝑟 Bradykinesia Power spectra of the stride j 

𝑆𝑘 Bradykinesia Number of strides detected in the walking stretch k 

𝑓𝑘
𝑠𝑡𝑟  Bradykinesia Averaged fluency value for the strides within the walking stretch k 

𝑓ℎ
𝑚  Bradykinesia Averaged fluency value of the strides done within minute h 
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Table 4. Cont. 

𝑓ℎ
𝑠 Bradykinesia Standard deviation of the fluency values corresponding to the strides done in the minute h 

𝑓ℎ
𝑛 Bradykinesia Number of strides analyzed in minute h 

𝑓𝑗
𝑚  Bradykinesia Fluency weighted value for minute j 

𝑘ℎ  Bradykinesia Filtering coefficient for minute h 

𝑤ℎ Bradykinesia Weight for fluency value in minute j  

𝑏𝑗
𝑚 Bradykinesia The existence of bradykinesia evaluated for minute j 

𝑏𝑖
10𝑚  ON/OFF Bradykinesia detection in the i-th 10-min period  

𝑣𝑘
𝑎 ON/OFF Motor state estimation done by the algorithm in the k-th 10-min period  

𝑡𝑘
𝑎. ON/OFF 

Time of the kth motor state estimation done by the algorithm (corresponding to the first 

minute of the 10-min period) 

𝑣𝑖
𝑝

 ON/OFF i-th motor state annotation given by a patient that corresponds to time 𝑡𝑖
𝑝

 

𝑡𝑖
𝑝

 ON/OFF Time of the annotation i given by a patient 

4.1. Dyskinesia Detection  

Dyskinesia detection is the first algorithm presented for the ON-OFF motor states detection. This 

algorithm was designed based on many previously works that relate dyskinesia to an increased 

power spectra of some specific frequency bands. The algorithm was developed by analysing the 

frequency spectra of inertial signals obtained from PD patients while performing different activities, 

either while presenting dyskinesias and without presenting them. As a result [52], a specific 

frequency band in which power spectra increases with dyskinesia was identified; in addition, other 

activities were found to also increase the power spectra in some bands that are overlapped with the 

dyskinesia one; thus, these other activities could provoke false positive detections of the symptom. 

These overlapping frequency bands are also examined in the algorithm in order to avoid inaccurate 

dyskinesia detections. 

Dyskinesia frequency band was identified within the range of 0 to 4 Hz [57]. As mentioned 

previously, other activities with high power spectrum in the same band were found; for example, the 

natural frequency of gait and going upstairs and downstairs ranges from 0.5 to 6 Hz [58,59], being 

overlapped with the dyskinetic band. However, these activities have strong harmonics whose 

frequency reaches 20 Hz, which is not overlapped with the dyskinetic band. On the other hand, 

posture transitions span the band from 0 (not included) to 0.68 Hz [60]. A symptom that could 

introduce harmonics at frequencies of interest is tremor; nonetheless, according to a consensus of the 

Movement Disorders Society [55] the frequency of Parkinsonian tremor goes from 4 Hz to 9 Hz. This 

way, the upper limit of the dyskinesia band is set to the lowest frequencies of tremor, and the possible 

increment in the power spectra, caused by the tremor, would incorporate in the non-dyskinetic band. 

In consequence, dyskinesia algorithm relies on the calculus of three power spectra values: first, the 

one corresponding to dyskinetic band (Pd), considered to be in the (0.68, 4] Hz range; second,  

non-dyskinetic band (Pwalk), considered to cover [8, 20] Hz; and postural transition band (PPT), which 

is (0, 0.68] according to [57]. The power spectra in a given band is computed as the summation of the 

corresponding harmonic amplitudes among the three axis. 

The sampling frequency has been determined by the maximum frequency of interest following 

the Nyquist-Shannon sampling theorem [61]. Given a sample rate f’s, the complete reconstruction of 

a continuous signal is guaranteed for a frequency band limit below f’s/2. In consequence, f’s is set to 

40 Hz, since 20 Hz is our maximum harmonic of interest in the previous frequency bands and we 

want to minimise the resources used by the algorithms. On the other hand, the window length is set 

to 128 samples since it enables the evaluation of postural transitions (below 0.68 Hz) and dyskinesias. 

In consequence, 𝑤 = 128/f’s = 3.2 s.  

Dyskinesia features Pd, Pwalk and PPT are obtained in each window of 128 samples, i.e., 3.2 s. They 

are used, as Equation (1) shows, to determine if a patient manifests dyskinesia, does not manifest it, 

or performed a movement that does not allow to evaluate its presence (i.e., the output is Unknown). 

The latter case refers to a patient who walks or performs a postural transition, in which cases these 

movements do not enable the detection of dyskinesia since they have overlapped frequency bands. 

This way, the detection of dyskinesia in a certain window ℎ is defined by 𝑑ℎ
𝑤 according to: 
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𝑑ℎ
𝑤 ={ 

1 (𝐷𝑦𝑠𝑘𝑖𝑛𝑒𝑠𝑖𝑎) 𝑃𝑑 > 𝑡𝑑  ∧  𝑃𝑃𝑇 < 𝑡𝑃𝑇  ∧  𝑃𝑤𝑎𝑙𝑘 < 𝑡𝑤𝑎𝑙𝑘  
0 (𝑁𝑜 𝑑𝑦𝑠𝑘𝑖𝑛𝑒𝑠𝑖𝑎) 𝑃𝑑 ≤ 𝑡𝑑 ∧  𝑃𝑃𝑇 < 𝑡𝑃𝑇  ∧  𝑃𝑤𝑎𝑙𝑘 < 𝑡𝑤𝑎𝑙𝑘  

𝑈 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛)  𝑃𝑃𝑇 ≥ 𝑡𝑃𝑇  ∨   𝑃𝑤𝑎𝑙𝑘 ≥ 𝑡𝑤𝑎𝑙𝑘

  (1) 

where 𝑡𝑑, 𝑡𝑃𝑇, 𝑡𝑤𝑎𝑙𝑘  are the thresholds for dyskinetic and non-dyskinetic bands (posture transition 

band and walking band) respectively, ∨ is the logical OR operation and ∧ is the logical AND.  

The values found for these thresholds are 𝑡𝑑 = 1.75, 𝑡𝑃𝑇 = 0.95, and 𝑡𝑤𝑎𝑙𝑘  = 1. These thresholds 

have been set based on the previously described study [52] (see Section 3.3.2) and they are used in a 

generic way for any patient.  

Dyskinesia is a movement alteration that commonly appears during several minutes. 

Nonetheless, short windows are being used (𝑤  = 3.2 s). In order to determine the presence of 

dyskinesia in a more appropriate time interval, it is proposed to collect the output of several windows 

under a period of T = 60 s. Each window is overlapped with the previous one by 64 samples, i.e., a 

new window starts every half a window. The algorithm, thus, provides an output once per minute 

obtained from the information included in its ⌊2𝑇/𝑤⌋  windows, being ⌊·⌋  the floor function, 

according to: 

𝑑𝑗
𝑚 =

{
 
 
 

 
 
 

 

1 (𝐷𝑦𝑠𝑘𝑖𝑛𝑒𝑠𝑖𝑎) ∑
𝑑ℎ
𝑤

𝑛𝑑

⌊2𝑇/𝑤⌋

ℎ=1

> 𝑡𝑝  ∧
𝑤 ∙ 𝑛𝑑
2𝑇

> 𝑡𝑐

0 (𝑁𝑜 𝑑𝑦𝑠𝑘𝑖𝑛𝑒𝑠𝑖𝑎) ∑
𝑑ℎ
𝑤

𝑛𝑑

⌊2𝑇/𝑤⌋

ℎ=1

≤ 𝑡𝑝  ∧
𝑤 ∙ 𝑛𝑑
2𝑇

> 𝑡𝑐 

𝑈 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛)
𝑤 ∙ 𝑛𝑑
2𝑇

≤ 𝑡𝑐

  (2) 

where 𝑑1
𝑤, … , 𝑑⌊2𝑇/𝑤⌋

𝑤  are the outputs represented in Equation (1) corresponding to the windows 

evaluated in minute 𝑖 , 𝑛𝑑  is the number of time windows in which the condition  

 𝑃𝑃𝑇 ≥ 𝑑𝑃𝑇  ∨   𝑃𝑤𝑎𝑙𝑘 ≥ 𝑡𝑤𝑎𝑙𝑘  was not held, 𝑡𝑝  is the minimum rate of dyskinetic windows in the 

analysed period, and tc is the threshold that represents the minimum rate of windows to analyse in 

order to validate the detection. 
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Figure 3. Block diagram of the dyskinesia algorithm. 

According to Equation (2), the algorithm output in a one-minute interval is determined to be 

dyskinetic (𝑑𝑗
𝑚 = 1) provided that most of the analysed window outputs are dyskinetic. This means 

that a minute period is considered dyskinetic if the rate of positive outputs of Equation (1) in this 

period is greater than 𝑡𝑝 . However, as these band’s power spectra might be increased by other 

activities, and not only by the appearance of dyskinesias, we must add a parameter of confidence in 

which we ensure that the patient is not performing activities that might cause false detections in this 
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band. Then, a confidence index is defined as 
𝑤∙𝑛𝑑

2𝑇
 and represents the number of windows that were 

rejected due to the condition  𝑃𝑃𝑇 < 𝑑𝑃𝑇  ∨   𝑃𝑤𝑎𝑙𝑘 < 𝑡𝑤𝑎𝑙𝑘 . A low confidence index indicates an 

unreliable detection assessment because only few windows could be analysed. For this reason, the 

confidence index is required to be greater than threshold tc.  

Threshold values were found based on an optimisation procedure on the signals collected in the 

previously mentioned study with 20 patients [52], in which several values for the thresholds were 

evaluated in 10 patients and the accuracy was measured onto the signals from other 10 patients. 

Values found were 𝑡𝑝 = 0.4 and tc = 0.3. Figure 3 shows a schematic representation of the dyskinesia 

algorithm block. 

4.2. Bradykinesia Detection  

Bradykinesia detection analyses Parkinsonian gait, as previously presented. The signal 

processing algorithm exploits the fact that gait, as an automated movement, is slowed in Parkinson’s 

patients during low-dopamine level periods. In consequence, it is considered that the signal 

processing method has to, first, determine that patients are walking; second, identify gait cycles from 

the accelerometer signals; and, third, characterise gait cycles through a measurement that correlates 

to the presence of bradykinesia. The complete bradykinesia detection method consists of a five-step 

characterisation method, as described below. 

The first step consists in detecting gait and it is based on an SVM classifier. SVM is chosen, first, 

given the bi-classification nature of the problem at hand (detecting if the patient walks or not), which 

matches the bi-classification problems that SVM solve; second, due to the high performance that SVM 

have reported when dealing with this kind of classification problems; and, finally, because SVM 

allows us to obtain a global optimal solution, as opposed to Artificial Neural Networks that may 

provide suboptimal ones. Thus, given the signal contained in a time window of 𝑤 = 3.2 s, as in the 

dyskinesia case, it is needed to determine whether the patient is walking or not. The SVM is trained 

with a Radial Basis Function (RBF) kernel and vectors {p1, …, pn}, where pi = [ℎ1
𝑖 , … , ℎ𝑘

𝑖  ] and ℎ𝑗
𝑖  are 

the features which characterise the window of the accelerometer signal. Hyper-parameters γ and C 

were tuned through Cross-Validation by testing the following values: {10−3, 10−2, …, 103}. In a previous 

study [52], 800 frequency features were analysed using data from 10 patients. Two features were 

finally selected for walking detection as those that maximised inter-class distance and minimised 

intra-class distance according to Relief algorithm [62]. These two features (k = 2) selected for gait 

detection were the tri-axial power spectra between in the frequency bands [0.1, 3] Hz and [0.1, 10] Hz, 

which are noted as h1 and h2, respectively.  

Each vector pi has a label yi = {1, −1} according to video observations used to label the video:  

yi = 1 corresponds to those windows whose corresponding video labels were walking and yi = −1 to 

the remaining windows. Dataset elements are denoted as {(p1, y1), …, (pn, yn)} and were employed to 

find the SVM classifier that allows the detection of gait by solving:  

𝑚𝑖𝑛𝒛,𝑏,𝜉
1

2
 ‖𝒛‖2

2 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

 

𝑠. 𝑡  𝜉𝑖 ≥ 0

𝑦𝑖[𝐾(𝒛, 𝒑𝑖) + 𝑏] ≥ 1 − 𝜉𝑖

 (3) 

where 𝐾(𝒛, 𝑝𝑖) = 𝑒
𝛾‖𝒛−𝒑𝑖‖2

2
, b is the hyperplane bias, 𝒛 is the hyperplane that separates both classes 

and  𝜉𝑖 are the slack variables. Parameters C and γ are determined as the values that maximise the 

accuracy among the values 10−2, 10−1, …, 102 in a 10-fold Cross-Validation [63], which were found to 

be 10 and 0.1, respectively.  

The label of a new window p is then obtained by: 

𝑙(𝒑) = 𝑠𝑔𝑛 (∑𝑦𝑖𝛼𝑖𝐾(𝒑𝑖, 𝒑) + 𝑏

𝑙

𝑖=1

) (4) 

where the set of α are the Lagrangian multipliers of the dual problem formulation of the SVM. 
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The second phase is focused on detecting patients’ strides and only those windows whose 

feature representation pj = [ℎ1
𝑗
, ℎ2

𝑗
 ] satisfies l(pj) = 1 (walking) are analysed. The principles used to 

detect strides are based on Zijlstra et al. work [64]. Although segmentation techniques can be 

employed to detect strides [65–67], we restrict to biomechanical properties of gait and the way they 

are observed in the acceleration signals to do so. More concretely, the beginning of the support phase 

of gait, that is when the heel touches the ground, can be detected by a local minimum in the front 

acceleration measured from the bottom of the trunk [64]. This event in the gait cycle is known as 

‘initial contact’ and it is regarded as the beginning of step. However, due to lateral particularities of 

PD [1], our interest focuses on strides; i.e., the signal comprised between two consecutive steps of one 

feet. The discrimination between left and right steps can be performed by analysing the relative 

extrema of the lateral acceleration in the waist, which approximately describes a sinusoidal period 

during gait cycle [64].  

The third step consists in characterising the detected strides in the previous phase with the aim 

of analysing the presence of bradykinesia. The basis of this step is the previously mentioned study 

[52] where several statistics were applied and evaluated in 20 patients. In this study, several features 

that characterised strides were analysed into their ability to linearly separate the presence of the 

interest symptom and, also, intuitively represent the fluidity of movement. From the conclusions of 

this work, the best feature to characterise the fluidity of movement was the power spectra in the 

bands of (0, 10] Hz of the stride. Given a stride detected on the accelerometer signal of a certain 

patient, the (0, 10] Hz power spectra of the stride is represented by 𝑝𝑗
𝑠𝑡𝑟. 

The considerations for the fourth step are related to the fact that bradykinesia is a symptom 

examined during gait, as it is an automatic movement. In consequence, with the aim of analysing gait 

during its highest degree of automation, the inertial parameters of gait are analysed after walking 

started and before the patient stopped. Therefore, we consider a sequence of U consecutive walking 

windows, i.e., l (px) = −1, l (px+1) = 1, …, l (px+U) = 1, l (px+U+1) = −1, called walking stretch, during which S 

strides are detected; first and last two strides are not considered because they are not done under a 

high automation control, i.e., only 𝑆𝑘 − 4 strides are considered. Thus, the result of averaging the 

fluency characteristics obtained from the strides within a walking stretch k is denoted by 𝑓𝑘
𝑠𝑡𝑟 and is 

defined as: 

𝑓𝑘
𝑠𝑡𝑟 =

1

𝑆𝑘 − 4
 ∑ 𝑝𝑗

𝑠𝑡𝑟  

𝑆𝑘−2

𝑗=3

 (5) 

where 𝑆𝑘 is the number of strides detected in the walking stretch k.  

Considering that, when bradykinesia appears, it remains present for long periods of time, we 

designed an aggregation strategy that provides an algorithm output per minute, in order to simplify 

the final evaluation of the presence or absence of symptoms. In this aggregation, algorithm’s output 

for a given minute h, noted as 𝑓ℎ
𝑚, is computed as the average of the bradykinesia values associated 

with the strides contained in the walking stretches within that minute. The standard deviation of 

these bradykinesia values is represented by 𝑓ℎ
𝑠. 

Finally, the algorithm’s fifth step aims to give more robust outputs every minute by considering 

longer periods. In consequence, a weighted average of the last 10 min is proposed. Note that the 

output of the algorithm persists once per minute. Weighted aggregation is based on the importance 

each bradykinesia value has; for example, the value obtained in a minute from only 2 strides should 

not have the same weight as the value obtained in one minute with 20 strides detected. Furthermore, 

a very high standard deviation within a minute means a large scatter in the data and, in case of very 

high values of 𝑓ℎ
𝑠, the average may not be significant. Furthermore, it has been observed that when 

the patient goes upstairs or downstairs the standard deviation grows above the usual values. An 

estimation of the maximum value of 𝑓ℎ
𝑠 has been empirically determined through the signals from 

the previous study [52]. This value was determined by studying the values of standard deviation 

presented by patients who had made the dubious activities. From the presented premises, values per 

minute are filtered in the following way: those minutes h in which 𝑓ℎ
𝑠 is greater than threshold 1.7, 

which is formalised through 𝑘ℎ coefficients that are set according to: 
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𝑘ℎ = {
1,  ( 𝑓ℎ

𝑛 < 2) ∧ ( 𝑓ℎ
𝑠 < 1.7)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

where 𝑓ℎ
𝑛 is the number of steps in the minute h.  

The results presented in [52] show that the algorithm works best when considering the average 

walking steps in stretches over 5 strides. From this result the value of the minimum number of steps 

in a minute to be able to estimate the presence of bradykinesia is 2. In order to take into account the 

number of strides, a weight function is included. The function selected is the sigmoidal, considering 

that the minimum weight (0) should be with 0 steps and the maximum weight is 1. Whereas the 

maximum number of strides in a minute will be around 30–40, it is considered that from 20 strides 

the confidence in this minute should be high and therefore the weight should be the maximum. 

According to these considerations, the weight of data 𝑤ℎ  in a minute h is represented by  

 𝑤ℎ =
1
1 + 𝑒−𝑓ℎ

𝑛⁄ . Finally, the fluidity value representing a period of 1 min, but weighted with the 

last 10 min, is calculated through the next function: 

𝑓𝑗
𝑚 = 

∑  𝑓ℎ
𝑚 𝑘ℎ𝑤ℎ

𝑗
ℎ=𝑗−9

∑ 𝑘ℎ𝑤ℎ
𝑗
ℎ=𝑗−9

 (7) 

where 𝑓𝑗
𝑚 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 (𝑈) if ∑ 𝑘ℎ𝑤ℎ

𝑗
ℎ=𝑗−9 = 0. 

This value is finally used to determine the bradykinesia presence in the last-minute period under 

analysis. Diagnosis of bradykinesia is set differently for the first minute. The existence of 

bradykinesia evaluated for the first minute (𝑏1) is defined by: 

𝑏1
𝑚 = {

 1 (𝐵𝑟𝑎𝑑𝑦𝑘𝑖𝑛𝑒𝑠𝑖𝑎), 𝑖𝑓 𝑓1
𝑚 < 𝑏𝑡ℎ

𝑚

−1 (𝑁𝑜 𝑏𝑟𝑎𝑑𝑦𝑘𝑖𝑛𝑒𝑠𝑖𝑎), 𝑖𝑓 𝑓1
𝑚 ≥ 𝑏𝑡ℎ

𝑚  

𝑈 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛),  𝑖𝑓 𝑓1
𝑚 = 𝑁𝑎𝑁

 (8) 

where 𝑏𝑡ℎ
𝑚  is the patient-dependent threshold to determine the presence (1) or absence (−1) of 

bradykinesia. This threshold is unique for each patient and must be particularised, as it is described 

in next subsections. 

From this first minute, in order to avoid constant changes of diagnosis in intermediate states, a 

minimum variation from the threshold must be considered. This minimum variation is consequently 

determined by the maximum allowable standard deviation. The presence or absence of bradykinesia 

for the next minutes (j > 1) is set as follows: 

𝑏𝑗
𝑚 =

{
 
 
 

 
 
 1, 𝑖𝑓 𝑓𝑗

𝑚  < 𝑏𝑡ℎ
𝑚 −

1.7

2

−1,  𝑖𝑓 𝑓𝑗
𝑚 > 𝑏𝑡ℎ

𝑚 +
1.7

2

𝑏𝑗−1
𝑚 , 𝑖𝑓 𝑏𝑚𝑡ℎ +

1.7

2
≥  𝑓𝑗

𝑚 ≥ 𝑏𝑡ℎ
𝑚 −

1.7

2
𝑈, 𝑖𝑓 𝑓𝑗

𝑚 = 𝑈

  (9) 

Thus, the output of the bradykinesia algorithm in a given one-minute period j, noted as 𝑏𝑗
𝑚, is 

𝑈 whenever the patient did not walk in the corresponding minute, 𝑏𝑗
𝑚 = 1 in case of bradykinesia 

being detected, and 𝑏𝑗
𝑚 = −1 whenever not bradykinetic gait was present. Figure 4 shows a 

schematic representation of the bradykinesia algorithm block. 

4.3. Self-Adapting Bradykinesia Detection Algorithm 

The threshold applied to the output of the bradykinesia algorithm allows determining the 

presence of the symptom by dividing the range of possible values into two zones, one for each motor 

state. However, the selection of the threshold is very critical. Given that bradykinesia values 𝑝𝑗
𝑠𝑡𝑟 

depend on the way of walking of each individual, a young person without any pathological 

movement would provide high values; nonetheless, with older patients and/or with the presence of 

diseases such as arthritis, lower values would be obtained. Similarly, ON and OFF motor states are 

very patient-dependant. In consequence, bradykinesia values from each patient must be analysed in 

order to establish an optimal separation threshold. 
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Figure 4. Block diagram of the bradykinesia algorithm. 

In our previous works [15,52], the adaptation of the threshold to each patient was performed by 

a customisation process which is, in practice, long and complex. This process requires that the patient 

visits the clinical setting without medication, a fact which is already difficult to accomplish in many 

cases, but also implies that the medical team should perform a double clinical examination and a 

double assessment as the patient performs a series of exercises (mainly walking) both in OFF and ON 

states. Arguably, it is a methodology completely inapplicable in the clinical practice. In this section, 

a new methodology to calculate the threshold is presented. 

This new methodology is based on automatically analysing the distribution of the bradykinesia 

fluency values (𝑓𝑗
𝑚) obtained during few days. Ideally, their histogram could present two clearly 

separate distributions representing each motor state. In this case, the bradykinesia optimal threshold 

lies within the gap between the two distributions. This type of clear distributions is found only in 

some patients, but it does not occur in most of them, where the difference between states is not so 

obvious. In these cases some empirical rules, that allow optimally adjusting the threshold,  

are applied. 

More specifically, bradykinesia weighted values 𝑓𝑗
𝑚 are first collected during few days (from 1 

to 3 days). A histogram is then obtained in order to analyse the data distribution. Histogram bins are 

arranged to cover bradykinesia values from 2 to 15 since, from our experience, fluidity values from 

PD patients in both motor states are contained within this range. Given this histogram, the special 

case in which two different distributions are found, i.e., one for each motor state, is determined by 

locating empty bins. In order to standardise it, it is considered that both distributions must be 

separated by at least 0.5 points and, in addition, both of them must contain at least 10% of the total 

data, in order to avoid identifying a double distribution from merely isolated data. For this case, the 

value of the threshold is set to that value in the middle between distributions. 

However, the most common case consists of overlapping distributions. In this case, the premise 

for calculating the threshold for this group of patients consists in considering the lower values of the 

distribution corresponding to the OFF state and the highest ones to the ON state. Then, the threshold 

can be set based on the percentage of frequencies remaining on either side of the distribution. To 

implement this approach, the value of the histogram’s bin that has the largest absolute frequency, 

i.e., the mode, is obtained. Then, the bin that is located immediately below the mode and whose 

frequency is higher than 60% of the mode’s frequency, is selected as threshold 𝑏𝑡ℎ
𝑚 .  

4.4. ON/OFF Motor States Detection 

PD patients manifest motor fluctuations as an alternation between ON and OFF states. As 

previously described, provided that specific symptoms and movement alterations appear in each 

motor state, a hierarchical algorithm is designed to estimate the motor state of PD patients by 

combining the output of the previously presented methods. This way, dyskinesia and bradykinesia 

algorithms’ outputs are merged. 
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In order to work in a time unit closer to the gold standard, which are the annotations given by 

patients that are commonly provided every 30 or 60 min, a similar time basis is proposed. This time 

unit is 10 min since it is considered long enough to give accurate estimations and short enough to 

avoid mixing different motor states. More concretely, the motor state classifier first computes the 

presence of bradykinesia and dyskinesia into the period of 10 min, noted as 𝑏𝑖
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respectively, according to Equations (10) and (11):  
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  (11) 

where ‖·‖ counts the number of elements satisfying the within condition. 

Bradykinesia-algorithm’s output 𝑏𝑖
10𝑚 is 1 when the symptom is present, −1 if it is absent, 0 if 

an intermediate state has been detected and Unknown (U) if there is not any gait period detected in 

the last 10 min. On the other hand, dyskinesia-algorithm’s output 𝑑𝑖
10𝑚 is 1 when the symptoms are 

present, 0 if absent and Unknown whenever the patient walked or performed a posture change in 

most of the 10 min, which is unlikely. 

Once the 10-min output has been obtained, the motor state estimated by the algorithm at time 

𝑡𝑖, which is noted as 𝑣𝑖
𝑎 , is defined by Equation (12):  

𝑣𝑖
𝑎 =

{
 
 

 
 𝑈 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛)  𝑖𝑓(𝑏𝑖
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10𝑚 ≠ 1

1 (OFF state) 𝑖𝑓 𝑏𝑖
10𝑚 = 1 ∧  𝑑𝑖

10𝑚 ≠ 1

  

 

(12) 

OFF state is considered whenever a patient has a bradykinetic period. On the other hand, ON 

state is estimated if non-bradykinetic gait or dyskinesias have been detected. Finally, an intermediate 

state is also added as a consequence of the intermediate bradykinetic state. Once several consecutive 

outputs of the ON/OFF decision-tree defined in Equation (12) are obtained, a small filter is then 

applied. Considering three consecutive outputs of the decision-tree, if a blank period is found 

between two periods that are equal, the empty period is then set to the same state. Figure 5 shows a 

schematic representation of the complete ON-OFF algorithmic block. 

 

Figure 5. Block diagram of the ON-OFF algorithm. 
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4.5. Evaluation  

In order to formalise the analysis performed, the time of the patient annotation i corresponds to 

𝑡𝑖
𝑝 and it is defined by a value 𝑣𝑖

𝑝 which corresponds to −1 for ON state, 0 for intermediate state 

(INT) and 1 for OFF state. The time corresponding to an output of the algorithm  𝑣𝑘
𝑎  is noted as 𝑡𝑘

𝑎. 

The meaning of 𝑣𝑘
𝑎  is the same as 𝑣𝑘

𝑝, corresponding the super-index a and p to the algorithm output 

and patient’s annotation, respectively. Since patients reported the motor state every 30 min, the 

validity period of an annotation of the patient is considered to be 15 min ahead and behind the time 

in which the patient wrote 𝑡𝑖
𝑝.  

The output of the algorithm relies on the common statistical measures used in binary diagnostic 

tests. Thus, we consider a true positive (TP) when an OFF state is detected correctly and a false 

positive (FP) when an OFF state is diagnosed when the patient was in ON state. On the contrary, we 

consider a true negative (TN) when an ON state is detected correctly and false negative (FN) when 

an ON state is incorrectly obtained. It should be noted that intermediate states are excluded from the 

analysis since they cannot be identified as either of the motor states. Hence, the algorithm is evaluated 

based on the presented gold-standard; for each 10-min output of the algorithm 𝑣𝑖
𝑎  that matches a 

diary annotation, a TP, FP, TN or FN is obtained according to: 
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 (13) 

Finally, the sensitivity is the ability of an algorithm to correctly diagnose positive cases 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 100 ·
‖{𝑒𝑖=𝑇𝑃}‖

‖{𝑒𝑖=𝑇𝑃}‖+‖{𝑒𝑖=𝐹𝑁}‖
, while specificity is the ability of the algorithm to diagnose 

healthy cases 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 100 ·
‖{𝑒𝑖=𝑇𝑁}‖

‖{𝑒𝑖=𝑇𝑁}‖+‖{𝑒𝑖=𝐹𝑃}‖
. Specificity and sensitivity values are obtained for 

each patient. 

5. Results and Discussion 

A total of 420.2 h of inertial sensor signals were gathered from the 15 PD patients who 

participated in the experiment. Among these 15 patients, six decided to stop before concluding the 

three days of experimentation; however, some hours of valid data were obtained. More concretely, 

patients 1, 2 and 3 stopped the experiment after 24 h and the patients 4, 7 and 9 stopped after 48 h. 

All of them claimed that filling the diary, together with the calls, were very annoying.  

As an example, Figure 6 presents, among others, the third day of patient 13: diary annotations 

reported by patients are depicted in the upper part and algorithm outputs, each one corresponding 

to a period of 10 min, in the lower part. 
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Figure 6. Graphical output of the algorithm for those patients who had the poorest results (patient 1) 

and some intermediate results (patients 9 and 13) during a day. Patient’s annotations (upper part) 

cover, each one of them, a time interval 30 min. Sensor outputs comprise 10 min and follow the same 

code colour: white corresponds to ON-state, grey to intermediate-state, and black to OFF-state. 

Table 5 shows, for each one of the 15 patients: accuracy, specificity and sensitivity of the OFF 

detection method; number of outputs provided by the ON/OFF method; number of outputs (Total 

outputs) that were used to compute specificity and sensitivity, since only those outputs with a diary 

annotation could be used; number of annotations reported by the patient (Total labels); the number 

of labels used in the validation (Labels used), since the algorithm output covers a period of 10 min 

and labels a time interval of 30 min; and the total number of minutes in the monitoring (Total of 

minutes).  

Table 5. Results organised by patient. The number of outputs given by the sensor and algorithm are 

presented in the ‘Total outputs’ column, distinguishing among ON, OFF and INT states. The number 

of Unknown outputs is shown as “Unknown”, being in brackets the amount corresponding to a 

detection of both bradykinesia and dyskinesia “(n. br. + dy.)”.  

Patient Accuracy Specificity Sensitivity 
TP/TN/ 

FP/FN 

Total Outputs 

(ON/OFF/INT) 

“Unknown”  

(n. br.+dy.) 

Outputs 

Used 

Total 

Labels 

Labels 

Used 

1 81.82% 83.33% 80.00% 4/5/1/1 19 (6/5/8) 7 (0) 11 10 7 

2 100.00% 100.00% 100.00% 1/15/0/0 29 (15/1/13) 14 (0) 16 16 8 

3 100.00% 100.00% NaN 0/27/0/0 34 (27/0/7) 21 (0) 27 19 13 

4 94.74% 100.00% 92.31% 12/6/0/1 38 (7/12/19) 21 (0) 19 22 10 

5 91.89% 91.89% NaN 0/68/6/0 102 (68/6/28) 25 (0) 74 44 33 

6 87.50% 83.33% 100.00% 4/10/2/0 53 (10/6/37) 37 (0) 16 33 9 

7 92.31% 100.00% 80.00% 4/8/0/1 19 (9/4/6) 7 (0) 13 9 7 

8 83.87% 73.33% 93.75% 15/11/4/1 48 (12/19/17) 27 (0) 31 30 15 

9 93.33% 94.00% 90.00% 9/47/3/1 93 (48/12/33) 51 (0) 60 52 33 

10 83.33% 100.00% 66.67% 4/6/0/2 23 (8/4/11) 31 (0) 12 25 9 

11 85.19% 84.00% 100.00% 2/21/4/0 34 (21/6/7) 20 (0) 27 24 14 

12 92.59% 91.30% 100.00% 4/21/2/0 37 (21/6/10) 20 (2) 27 25 16 

13 95.83% 95.45% 100.00% 2/21/1/0 42 (21/3/18) 94 (0) 24 48 17 

14 91.67% 91.67% NaN 0/11/1/0 19 (11/1/7) 30 (0) 12 21 10 

15 100.00% 100.00% 100.00% 4/3/0/0 9 (3/4/2) 18 (1) 7 13 4 
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From Table 5, it is worth noting that the sensitivity average per-patient is 92% and the specificity 

is 92%. However, some patients (3, 5 and 14) do not present any OFF state detected by the algorithm, 

which is shown as NaN in the sensitivity column, since TP + FN = 0. These NaN values are obtained 

because these patients did not enter into the OFF state during the experiment or did not report it and, 

consequently, have no OFF state entries in the diaries.  

Patients reported an average of 26 annotations (13 h), meaning that the diary was far from being 

completely filled (approximately 60 annotations). However, patients 9 and 13 diaries are very 

complete in the number of entries (52 and 48 annotations respectively), which are very useful to 

validate the output of the algorithms in an optimal sense. In the case of patient 13, as can be seen in 

Figure 6, the output of the algorithm fully agrees with the annotations in the patient diary. 

Furthermore, in Table 5, some cases where a low number of daily patient labels have been validated 

are observed. For example, in the case of patient 15, two problems have been detected: on the one 

hand, the low number of entries (13 in 3 days) and, on the other hand, in OFF state, the patient could 

not or had no desire to move and, therefore, the algorithm was not able to provide a decision. In the 

case of patient 6, the problem is related to the high rate of intermediate states detected by the sensor. 

The algorithm output determines a great number of intermediate states because the patient walks 

briefly and also in very short stretches. This causes the algorithm not to be able to clearly evaluate 

gait and, thus, the motor state of the patient. 

Figure 7 presents the precision-recall diagram of all patients who presented OFF state. This 

figure shows very high recall values in all patients, and somehow lower precision values for some of 

them. These low values (patients 11 and 6) are due to a low amount of OFF states, since only four and 

two OFF states are not detected (i.e., four and two false negatives), respectively. In patient 4 and 

patient 8, who have more than 10 OFF states, much higher values are obtained.  

 

Figure 7. Precision-Recall diagrams of those patients who presented OFF states. 

The overall confusion matrix is presented in Table 6, considering the results among all patients. 

From this matrix, it follows that the method has an overall sensitivity and specificity of 90.28% and 

92.11%, respectively, considering all the validated outputs of the algorithm, i.e., without 

distinguishing among patients.  

Table 6. Confusion matrix summarising the results from all patients. 

  Predicted  
Positive Negative 

Real 
Positive 65 7 72 

Negative 24 280 304 
  89 287  
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ON/OFF patterns have been previously used in the literature [39]. These patterns graphically 

summarize the ON/OFF pattern that patients have presented during one or more days. More 

specifically, they represent the most frequent motor state that patients annotated at each hour. Figure 

8 presents the ON/OFF pattern for six patients who participated in the study. From this figure, it is 

observed that, with few specific exceptions, the estimations made by the algorithm mostly match the 

diary annotations. 

 

Figure 8. ON/OFF patterns for patients 1, 2, 6, 9, 13 and 15. Patterns obtained from the self-reported 

diaries and provided by the sensor are presented. 

So far, there are other works that also analysed the feasibility of monitoring PD motor 

fluctuations through wearable sensors. Nonetheless, previous works, as far as authors know, have 

used several sensors and, in most cases, in laboratory settings by following a set of scripted activities 

as shown in Table 1 [19–23]. The work of Cancela and Pastorino et al. developed in the project 

PERFORM [19] reports an accuracy of 86% [20] and 74.4% [19], respectively, with inertial signals 

obtained from twenty PD patients following a set of previously defined activities. These accuracies 

are similar or lower than the 92% reported in this work. Furthermore, their system is composed of a 

set of five wearable sensors and a central store unit, in contrast to the single device used in our study. 

Similarly, the work of Keijsers et al. and Patel et al. was performed with several inertial systems, 

being very cumbersome for patients [21]. Finally, it is difficult to compare the results obtained in this 

work with the one presented by Pastorino et al. in 2013, in which only two patients performed the 

test obtaining a 88.2% of correspondence between patient’s diary and ON/OFF phases identified by 

the system [41]. 

The main limitation of the algorithm presented in this work relies on the fact that the detection 

of OFF states can only be evaluated if patients walk. In consequence, there could be long periods 

during which the algorithm does not provide any information. In spite of this, it has been reported 

that PD patients in both moderate and advanced stages commonly walk more than 40 times per day 

[68,69]. Hence, it is considered that the algorithm would be capable of providing enough information.  

Currently, clinicians rely on patients’ self-reporting to monitor ON and OFF motor states. The 

algorithmic approach presented in this work combined with the simplicity of wearing a single  

waist-sensor has the potential of being an excellent clinical tool to replace these self-reporting diaries. 

However, the method requires further validation in more patients to confirm the results obtained in 

this research work. 

6. Conclusions 

In this work, a hierarchical algorithm has been presented, which combines the output of a 

dyskinesia-detection and a bradykinesia-detection method based on a waist-worn sensor in order to 

determine the motor state of PD patients. This algorithm has been validated in 15 PD patients with 
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idiopathic Parkinson’s disease, who only wore a waist-sensor mainly consisting of a triaxial 

accelerometer. The results on sensitivity and specificity, above 90%, show the great potential of the 

method, both algorithm and sensor device, despite the rather low number of patients that has been 

validated. In addition, these results show that the motor status in PD patients is able to be monitored 

through a single sensor during daily life of patients in a precise and objective way. However, the 

method requires further validation in more PD patients. 

This automatic detection of PD motor status might provide relevant advances. In a relatively 

short time, physicians can obtain accurate information for the purpose of adjusting the medication 

intake. Furthermore, this automatic assessment opens up the possibility to modify drug infusion rates 

in apomorphine and duodopa pumps in real-time, by adjusting to patients’ motor state. In addition, 

clinical trials may benefit from such tool since an objective comparison of the efficacy of distinct active 

principles would be obtained.  

To conclude, wearable devices for PD patients that objectively monitor the disease in daily life 

environments are a great advance in the clinical practice. Through them, the pharmacological 

regimen can be tailored to PD patients and, in addition, drug infusion pumps can interact in  

real-time to improve patients’ motor state.  
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