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Abstract. Field conjugation arrays use adaptive combining 
techniques on multi-aperture receivers to improve the 
performance of coherent laser communication links by 
mitigating the consequences of atmospheric turbulence on 
the down-converted coherent power. However, this 
motivate the use of complex receivers as optical signals 
collected by different apertures need to be adaptively 
processed, co-phased, and scaled before they are combined. 
Here we show that multiple apertures coupled with optical 
delay lines combine retarded versions of a signal at a single 
coherent receiver, which uses digital equalization to obtain 
diversity gain against atmospheric fading. We found in our 
analysis that, instead of field conjugation arrays, digital 
equalization of time-delay multi-aperture receivers are a 
simpler and more versatile approach to accomplish 
reduction of atmospheric fading. 

© 2016 Optical Society of America 

OCIS codes: (060.1660) Coherent communications; (060.2605) Free-
space optical communication; (040.1240) Arrays, apertures  

http://dx.doi.org/10.1364/OL.99.099999 

Coherent laser communications through the atmosphere 
are challenging because turbulence disturbs the received 
optical wavefront and  their mixing with the local 
oscillator [1,2]. A coherent fiber array consisting of an 
assembly of smaller fiber-coupled apertures can be used 
to replace a single monolithic-aperture receiver with a 
full-size collecting area. Output signals from the optical 
fibers are combined optically in a fiber power combiner 
and, as the array output is accessible in a single fiber, 
superimposed with the local oscillator in a directional 
coupler. The receiver uses balanced detection so the 
down-converted electrical signal can be measured 
coherently.  

Since each receiver aperture in a coherent fiber array 
can be smaller than the scale on which the optical 
wavefront fluctuates, a coherent fiber array has a gain in 
terms of coupling efficiency because the optical signal can 
be matched with less error to the propagating mode of a 
single-mode fiber. In general, given a fixed collecting 
area, the performance of the array should improve with 
an increasing number of apertures [3-6].  

Nevertheless, the atmospheric optical signals received 
by the different apertures in the array exhibit field 
fading, i.e., random fluctuations of both envelope and 

phase over time. Fading will cause destructive 
interference in the optical combiner and reduce the 
strength of the total optical signal [3]. Assuming that the 
dominant noise ݊(ݐ) source is shot noise from the local 
oscillator laser, which can be modeled accurately as 
additive white Gaussian noise (AWGN) that is 
statistically independent of the atmospheric fading, the 
down-converted detected array signal ݎ௔(ݐ) can be written 
as 

(ݐ)௔ݎ =෍ሾ ሿ(ݐ)ݏ	௟ߙ + 	n(ݐ)௅ିଵ
௟ୀ଴ . (1)

Here, ߙ௟ =  denotes the atmospheric fading (௟߶݆)݌ݔ݁|௟ߙ|
at aperture ݈ ∈ ሼ0,2,… , ܮ − 1ሽ ∈ ℕࡸ, where |ߙ௟| 
represents the fading envelope and ߶௟ the corresponding 
random phase of the optical signal. The transmit signal 
waveform (ݐ)ݏ = ∑ ݐ)݌	(݊)݀ − ݊ܶ)݊  for the data symbol 
sequence ݀(݊), ݊ ∈ ሼ1,2, … , ܰሽ ∈ ℕࡺ is the sum of pulses 
with shape (ݐ)݌ transmitted per symbol interval ܶ = 1 ⁄ܤ , 
when ܤ is the signal spectral bandwidth. For a shot-
noise-limited array receiver, the composite signal-to-noise 
ratio (SNR) per symbol ߛ =  ଶ can be taken as theߙ	଴ߛ
number of signal photons received on the receiver multi-
aperture ߛ଴ multiplied by a mixing efficiency ߙଶ =|∑ ௟݈ߙ |2.  

Fading on the array L receive apertures can be 
aggregated into a complex channel column vector ࢻ ,଴ߙ)= ,ଶߙ … , ࢀ(௅ିଵߙ ∈ ℂࡸ, where the superscript T denotes 
transposition. It is recognized [6] that, if instantaneous 
atmospheric fading information ࢻ is known for all 
apertures in Eq. (1), an adaptive linear combiner ࢝ = ,ଶݓ,ଵݓ) … ࢀ(௅ݓ, ∈ ℂࡸ can be considered to 
compensate for fading effects and match the coherent 
array to the optical input field (see Fig. 1(a)). When a 
linear combiner is considered along with the array, the 
receive signal ݎ௖(ݐ) is the result of adding together the 
scaled and phase shifted signals received from the 
various receive apertures: 

(ݐ)௖ݎ =෍ሾ ୪ݓ ௅ିଵ	ሿ(ݐ)ݏ	௟ߙ
௟ୀ଴ + n(ݐ). (2)

Here, the complex weight ݓ୪ of the linear combiner applied 
to the ݈th subaperture output can be characterized at 
large as ݓ௟ =  ௟ are theߠ ௟| andݓ| where (௟ߠ݆)݌ݔ݁|௟ݓ|



amplitude and phase controls, respectively, provided by 
the linear combiner. Field conjugation array combining ࢝ = 1 ⁄∗ࢻ  makes maximal-ratio combining possible and 
produces perfect mixing of the array signals. Now, the 
resultant composite SNR of the envelope detector for an ܮ-
element combiner is the sum of the component array 
element SNR’s, i.e., ߛ = ଴ߛ ∑ ௟|ଶ݈ߙ|  and a fraction equal to |2|݈ߙ of the incident received photons ߛ଴ per symbol are 
coupled into the ݈th aperture. 

However, the conjugate array described by Eq. (2) 
requires the use of complex receivers as atmospheric 
fading information ߙ௟ =  needs to be (௟߶݆)݌ݔ݁|௟ߙ|
estimated for all apertures.  Also, optical signals collected 
by different apertures need to be adaptively processed, co-
phased, and scaled with the complex weight ݓ௟  ௟ andߠ before they are combined. Phase (௟ߠ݆)݌ݔ݁|௟ݓ|=
amplitude |ݓ௟| control is usually achieved by introducing 
an optical phase shifter and an optical amplifier stage 
after each aperture in the array.  

Here we show a simpler and more versatile array 
approach to accomplish reduction of atmospheric fading 
(Fig. 1(b)). The diversity scheme introduced in this work 
converts spatial diversity into delayed signals and 
superposes in the span of a symbol ܶ the equivalent to ܮ 
atmospheric fading realizations. The scheme considers a 
fiber array where each aperture feeds a single-mode fiber 
and where the fields of each aperture are properly 
delayed controlling the length of each fiber (performing as 
optical delay lines). Each succeeding optical fiber in the 
array needs to be larger than the preceding by an 
additional length of vܶ meters, with v the group velocity of 
light in fiber. For instance, in a 1550-nm wavelength system, 
where v is roughly 2 3⁄  of light speed in a vacuum, a 10-
GBd data rate, with a symbol time frame ܶ of 0.1-ns, 
requires a relative additional length vܶ of 2 cm. We note 
that, although other devices could be used to symbol-
spaced delay the optical signals in this diversity scheme, 
fiber optics are attractive delay lines due to its flexibility 
and low propagation losses. 

Now, no adaptive linear combiner ࢝ is considered in 
the proposed scheme and the receive signal is generated 
from the symbol-spaced ܶ delay superposition and 
interference of the signals received from the ܮ receive 
apertures, i.e., ߙ௟	ݐ)ݏ − ݈	ܶ). The signal (ݐ)ݎ received by 
the time-delay array is given by  
(ݐ)ݎ  =෍ሾ	ߙ௟	ݐ)ݏ − ݈	ܶ)	ሿ௅ିଵ

௟ୀ଴ + (3) .(ݐ)݊

Here, along with the fading effects ߙ௟, the overlay at the 
receiver of multiple delayed copies of the transmitted 
signal ݐ)ݏ − ݈	ܶ) creates an artificial intersymbol 
interference (ISI). This is a unique feature of the proposed 
time-delay scheme. When no delayed signals are 
considered, intersymbol interference between two symbol 
transmission is negligible in free-space optical channels 
due to extremely small multi-path effects in the 
atmosphere. 

It is well known that the effects of multipath ISI in RF 
wireless systems can be reduced using transmit diversity 
and equalization [7]. In this analysis we use receive 

diversity and signal equalization to mitigate the effects of 
both ISI and atmospheric fading in Eq. (3). The goal is for 
the combination of fading, symbol interference, and 
equalization to provide an enhanced received signal [8].  

The process of equalizing to mitigate interference 
effects involves using digital methods to gather the 
dispersed symbol energy ߙ௟	ݐ)ݏ − ݈	ܶ), ݈ ∈ ሼ0, 2, … , ܮ − 1ሽ 
in Eq. (3) back into its original time interval (ݐ)ݏ so that it 
doesn’t complicate the detection of other symbols. 
Simultaneously, a digital equalizer also provide fading 
diversity by synthetizing an inverse filter of the 
atmospheric fading channel ࢻ and applying it to the 
different components ߙ௟	(ݐ)ݏ,	݈ ∈ ሼ1,2, … ,  ሽ of theܮ
gathered dispersed signal. Since atmospheric signal 
distortions can be expressed as linear transfer functions 
operating on the complex amplitude of the optical signal, 
in principle we can compensate for them by linearly 
equalizing the coherent-detected complex amplitude with 
digital techniques.  

A simple means of implementing such a filter in our 
diversity scheme is the use of a symbol-spaced adaptive 
linear equalizer (LE) [9], where the digital equalized 
signal ݕሾ݊ሿ = ݊ ,(ܶ݊)ݕ ∈ ሼ1,2, … , ܰሽ can be obtained by 
sampling the output signal (ݐ)ݎ at the symbol-
synchronous intervals. This class of equalizer is called 
symbol-spaced because the sample rates of the input and 
output are equal. The digital observations ݕሾ݊ሿ can be 
written as 

ሾ݊ሿݕ =෍ܿ௟	ݎ(݊	ܶ − ݈	ܶ)௅ିଵ
௟ୀ଴ . (4)

Here, a set of weighting coefficients ࢉ = (ܿ଴, ܿଶ, … , ܿ௅ିଵ)ࢀ ∈ ℂࡸ, describing the taps of a linear 
finite impulse response (FIR) filter, is used to compensate 
for intersymbol interference and atmospheric fading 
effects in the received signal (ݐ)ݎ. The number of FIR 
taps in Eq. (4) equals the number of apertures ܮ and the ݈th tap implements a temporal delay. The binary data 
sequence ݀(݊) is detected from this digital signal ݕሾ݊ሿ and 
the equalization technique works well because the 
coefficients ܿ௟ are determined from training patterns 
affected by the atmospheric impairments. The coefficients ࢉ = (ܿ଴, ܿଶ, … , ܿ௅ିଵ)ࢀ of the equalizer can be adapted to 
the time-varying atmospheric channel characteristics 
using a variety of methods such as the least-mean square 
(LMS) algorithm. It is worth mentioning that, as optical 
signal rates 1 ܶ⁄  increase up to several GHz, the 
atmospheric channel remains constant over a coherence 
time ߬ much larger than the transmission duration of the 
symbol ܶ. Atmospheric turbulent fluctuates with a rate 1 ߬⁄  that is generally no higher than 1 kHz.  

Among all digital equalization techniques, decision 
feedback equalizers (DFE) and maximum-likelihood 
sequence estimation equalizer (MLSEE) can be 
considered as natural extensions of LE in Eq. (4). DFE 
depends on the idea that, once you have determined the 
value of the current transmitted symbol, you can exactly 
remove the intersymbol interference contribution of that 
symbol to future received symbols [9]. DFE consists of an 
LE with an additional filter to process past symbols 
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