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Abstract

In the paper Decisiveness indices are semiindices (Economics Letters 143:13–15, 2016) it
was shown that any decisiveness index obtained from an anonymous probability distribution
is a semiindex, and that the converse is not true. In this note we characterize the semiindices
which are indices of decisiveness.

Key words: Game theory; Simple games; Power indices; Semiindices; Decisiveness.
Math. Subj. Class. (2000): 91A12, 91A80. JEL Class.: C71, D72.

1 Preliminaires

In this paper we deal with a voting system in which a proposal is put to the vote and it must
be either approved or rejected. It is assumed that each voter can only vote “yes” or “no”. The
appropriate model for this binary voting context is a simple game (N,W), where N = {1, 2, . . . , n}
denotes the set of voters. A coalition is any subset S ⊆ N , and is interpreted as the set of voters
which vote “yes”. A coalition is winning when its occurrence causes the proposal to be accepted,
and W denotes the set of winning coalitions. For any coalition S we denote s = |S|. When the set
of voters, N , is fixed we will write W instead of (N,W). A probability distribution over coalitions
is a function P : 2N → R such that P (S) ≥ 0 for all S ⊆ N and

∑
S∈2N

P (S) = 1. P (S) is interpreted

as the probability that voters in S vote “yes” and voters is N \ S vote “no”. Let PN denote the
set of probability distributions over coalitions.
Let SN be the set of simple games on N . A power index on SN is a map ψ : SN → Rn that assigns
to every simple game W a vector ψ(W) with components ψi(W) for all i ∈ N . Power indices try
to quantify the importance that voters have in the simple game.

Most power indices are based on the notion of cruciality. If W is a simple game, a player i ∈ N
is said to be crucial for a coalition S ⊆ N with i ∈ S if S ∈ W but S \ {i} /∈ W . We then
write S ∈ Ci(W). In this paper we deal with two families of power indices based on cruciality:
semiindices and decisiveness indices. Semiindices were defined on simple games in [6] and the
characterization, by means of coefficients, given in the next definition was proved in [2].

Definition 1.1 Semiindex

A semiindex is a power index on SN defined, from a vector p = (p1, . . . , pn) such that
n∑

j=1

pj
(
n−1
j−1

)
=
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1 and pj ≥ 0 for all j ∈ N , by the expression

Sp
i (W) =

∑
S∈Ci(W)

ps,

for any voter i ∈ N .

Well–known examples of semiindices are: the Shapley-Shubik power index φ (Shapley and
Shubik [5]), for which ps = 1/

[
n
(
n−1
s−1

)]
for any s (1 ≤ s ≤ n), and the Banzhaf power index β

(Banzhaf [1] and Penrose [4]) for which ps = 1/2n−1.

Definition 1.2 Decisiveness index
A decisiveness index is a power index on SN defined, from a probability distribution P ∈ PN , by
the expression

ΦP
i (W) =

∑
S∈Ci(W)

[P (S) + P (S \ {i})]

for any voter i ∈ N ,

The Banzhaf index β and the Shapley-Shubik index φ are examples of decisiveness indices for
particular probability distributions. Indeed, β = ΦP ∗

and φ = ΦP ∗∗
, where P ∗(S) = 1/2n and

P ∗∗(S) = 1/
[
(n+ 1)

(
n
s

)]
for all S ⊆ N .

A probability distribution P ∈ PN is anonymous if P (S) = P (T ) whenever |S| = |T |. Let
AN ⊆ PN denote the set of anonymous probability distributions. If P ∈ AN let Ps = P (S) for all

S ⊆ N . Then,
n∑

s=0

(
n
s

)
Ps = 1, Ps ≥ 0 for all s = 0, 1, . . . , n and the decisiveness index in Definition

1.2 reduces to
ΦP

i (W) =
∑

S∈Ci(W)

[Ps + Ps−1]

The following proposition was proved in [3]:

Proposition 1.3 Let P ∈ AN . Then the decisiveness index ΦP coincides with the semiindex Sp

with p = (p1, . . . , pn) defined by ps = Ps + Ps−1 for s = 1, . . . , n.

Thus, any decisiveness index given by an anonymous probability distribution is a semiindex.
Nevertheless, not every semiindex comes from a decisiveness index. In the following section we
identify the semiindices which can be obtained as in Proposition 1.3.

2 Semiindices given by decisiveness indices

We introduce a subclass of semiindices which will be proved to be precisely the semiindices which
are decisiveness indices.

Definition 2.1 Trimmed semiindex
Let Sp be a semiindex. We say that Sp is trimmed if for any odd number k with 1 < k ≤ n and
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for any s with 1 ≤ s ≤ n− k + 1 the following inequalities are verified:

k−1∑
j=0

(−1)jps+j ≥ 0 (1)

Notice that for any two trimmed semiindices Sp and Sq, and any α ∈ [0, 1], it is clear that the
semiindex constructed from αp+(1−α)q, i.e. Sαp+(1−α)q, is also trimmed. Thus the set of trimmed
semiindices is a convex set. Observe also that the Banzhaf index β and the Shapley-Shubik index
φ are both trimmed semiindices since their corresponding coefficients fulfil the inequalities in (1).
Finally, let us remark that for n = 2 any semiindex is trimmed. But for any n ≥ 3 there exist
semiindices which are not trimmed, as the following example shows: let p = (1/(2n− 1), 2/(2n−
1), 0, . . . , 0). Then, taking k = 3 and s = 1 in (1) the corresponding inequality is not verified since
p1 − p2 + p3 = −1/(2n− 1) < 0.

To better illustrate the set of inequalities in (1) we show all of them for n = 7:

k = 3 p1 − p2 + p3 ≥ 0
p2 − p3 + p4 ≥ 0
p3 − p4 + p5 ≥ 0
p4 − p5 + p6 ≥ 0
p5 − p6 + p7 ≥ 0

k = 5 p1 − p2 + p3 − p4 + p5 ≥ 0
p2 − p3 + p4 − p5 + p6 ≥ 0
p3 − p4 + p5 − p6 + p7 ≥ 0

k = 7 p1 − p2 + p3 − p4 + p5 − p6 + p7 ≥ 0

Finally, notice that if Sp is defined from a vector p = (p1, . . . , pn) which verifies either 0 ≤
p1 ≤ · · · ≤ pn or p1 ≥ · · · ≥ pn ≥ 0 then Sp is a trimmed semiindex.

We establish now the main result of the paper.

Theorem 2.2 A semiindex Sp is trimmed if and only if there exists P ∈ AN such that ΦP = Sp.

Proof:

⇐ ) Let P ∈ AN . Then, from Proposition 1.3, the decisiveness index ΦP defined from P coincides
with the semiindex Sp with coefficients ps = Ps + Ps−1 for all s = 1, . . . , n. To see that Sp

is trimmed, let k be an odd number with 1 < k ≤ n and s with 1 ≤ s ≤ n− k + 1. Then,

k−1∑
j=0

(−1)jps+j =
k−1∑
j=0

(−1)j (Ps+j + Ps+j−1) = Ps−1 + Ps+k−1 ≥ 0

and this proves that Sp is trimmed.

⇒ ) Let p = (p1, . . . , pn) define a trimmed semiindex Sp, i.e., p verifies the properties established
in Definitions 1.1 and 2.1. Taking into account Proposition 1.3 we only need to prove that
the linear system ps = Ps + Ps−1 for s = 1, . . . , n has at least a non–negative solution
(P0, P1, . . . , Pn). This system has n equations and n+ 1 variables and it is compatible, with
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one free variable. Taking P0 as the free variable, and writing P0 = a, the solutions of the
system can be expressed in terms of a, for s = 1, . . . , n:

Ps =
s−1∑
j=0

(−1)jps−j + (−1)sa. (2)

A value of a ≥ 0 such that Ps ≥ 0 for s = 1, . . . , n must verify the following inequalities:

r−1∑
j=0

(−1)j+1pr−j ≤ a for any r even (1 ≤ r ≤ n)

t−1∑
j=0

(−1)jpt−j ≥ a for any t odd (1 ≤ t ≤ n).

The existence of such a will be proved if for any even number r and any odd number t, both
between 1 and n, the following inequalities are verified:

max

{
0,

r−1∑
j=0

(−1)j+1pr−j

}
≤

t−1∑
j=0

(−1)jpt−j.

But for t odd (1 ≤ t ≤ n) it is 0 ≤
t−1∑
j=0

(−1)jpt−j because
t−1∑
j=0

(−1)jpt−j =
t−1∑
j=0

(−1)jp1+j, and

this value is non–negative by the hypothesis (1) if t > 1 and by the properties of p established
in Definition 1.1 if t = 1. Thus we only need to prove that

r−1∑
j=0

(−1)j+1pr−j ≤
t−1∑
j=0

(−1)jpt−j. (3)

for any even number r and any odd number t, both between 1 and n.
Let r be even and t be odd (1 ≤ r, t ≤ n).

• If r < t let k = t− r. Clearly, k is odd (k > 1) and we can write:

t−1∑
j=0

(−1)jpt−j =
k+r−1∑
j=0

(−1)jpk+r−j =
r−1∑
j=−k

(−1)j+kpr−j =
r−1∑
j=0

(−1)j+1pr−j+
k∑

j=1

(−1)j+1pr+j

so that the inequality (3) is equivalent to

0 ≤
k∑

j=1

(−1)j+1pr+j =
k−1∑
j=0

(−1)jpr−1+j

and this inequality is true because of (1).

• If r > t let k = r − t. Clearly, k is odd (k > 1) and we can write:

r−1∑
j=0

(−1)j+1pr−j =
t−1∑
j=0

(−1)jpt−j +
k∑

j=1

(−1)jpt+j
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so that the inequality (3) is equivalent to

k∑
j=1

(−1)jpt+j =
k−1∑
j=0

(−1)j−1pt+j ≤ 0

and this inequality is true because of (1).

Thus, a can have any value between max
r even

1 ≤ r ≤ n

{
0,

r−1∑
j=0

(−1)j+1pr−j

}
and min

t odd
1 ≤ t ≤ n

{
t−1∑
j=0

(−1)jpt−j

}
.

Now, with this value of a in (2) and defining P (S) = Ps for any S ⊆ N we obtain an anony-
mous probability distribution over coalitions with ΦP = Sp.
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