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Abstract—We present an approach to solve the nonconvex
optimization problem that arises when designing the transmit
covariance matrices in multiuser multiple-input multiple-output
(MIMO) broadcast networks implementing simultaneous wireless
information and power transfer (SWIPT). The MIMO SWIPT
problem is formulated as a general multi-objective optimization
problem, in which data rates and harvested powers are opti-
mized simultaneously. Two different approaches are applied to
reformulate the (nonconvex) multi-objective problem. In the first
approach, the transmitter can control the specific amount of power
to be harvested by power transfer whereas in the second approach
the transmitter can only control the proportion of power to be
harvested among the different harvesting users. The computational
complexity will also be different, with higher computational
resources required in the first approach. In order to solve
the resulting formulations, we propose to use the majorization-
minimization (MM) approach. The idea behind this approach
is to obtain a convex function that approximates the nonconvex
objective and, then, solve a series of convex subproblems that will
converge to a locally optimal solution of the general nonconvex
multi-objective problem. The solution obtained from the MM
approach is compared to the classical block-diagonalization (BD)
strategy, typically used to solve the nonconvex multiuser MIMO
network by forcing no interference among users. Simulation results
show that the proposed approach improves over the BD approach
both the system sum rate and the power harvested by users.
Additionally, the computational times needed for convergence of
the proposed methods are much lower than the ones required for
classical gradient-based approaches.

I. INTRODUCTION

S IMULTANEOUS wireless information and power transfer
(SWIPT) is a technique by which a transmitter actively

feeds a receiver (or a set of receivers) with power that is sent
through radio frequency (RF) signals and, simultaneously, sends
useful information to the same or different receivers [1]. By
harvesting this transmitted energy, battery-constrained mobile
terminals are able to recharge their batteries and, thus, prolong
their operation time [2]. Although there are many different
harvesting techniques used to power devices, such as solar
or wind, SWIPT technology provides an appealing solution
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since the transmitter can control the amount of energy that the
mobile terminals need to keep alive. Historically, due to the
high attenuation of microwave signals over distance, SWIPT
techniques were only considered in low-power devices, such
as RFID tags [3]. Nevertheless, recent advances in antenna
technologies and RF harvesting circuits have enabled energy
to be transferred and harvested much more efficiently [1], [3].

The concept of SWIPT was first studied from a theoreti-
cal point of view by Varshney [4]. He showed that, for the
single-antenna additive white Gaussian noise (AWGN) channel,
there exists a nontrivial trade-off in maximizing the data rate
versus the power transmission. In [5], the authors considered
a multiple-input multiple-output (MIMO) scenario with one
transmitter capable of transmitting information and power si-
multaneously to one receiver. Later, in [6], the authors extended
the work in [5] by considering that multiple users were present
in the broadcast MIMO system. However, the multi-stream
transmit covariance optimization that arises in broadcast MIMO
systems is a very difficult nonconvex optimization problem. In
order to overcome that difficulty, authors in [6] considered a
block-diagonalization (BD) strategy [7], in which interference
is pre-canceled at the transmitter. The BD technique allows for
a simple solution but wastes some degrees of freedom and, thus,
degrades the overall performance. Works [8] and [9] considered
a MIMO network consisting of multiple transmitter-receiver
pairs with co-channel interference. The study in [8] focused
on the case with two transmitter-receiver pairs whereas in [9],
the authors generalized [8] by considering that k transmitter-
receivers pairs were present. The work in [10] considered
a MIMO system with single-stream transmission. In contrast
to previous works where the system rate was optimized, the
objective was to minimize the overall power consumption with
per-user signal to interference and noise ratio (SINR) constraints
and harvesting constraints. The design of multiuser broadcast
networks under the framework of multiple-input single-output
(MISO) beamformimg optimization has also been addressed in
works such as [11] and [12].

There exist two approaches in the literature that deal with
the nonconvex optimization of the transmit covariance matri-
ces in multiuser multi-stream MIMO networks. The first is
based on the duality principle [13]. In [14], authors applied
that principle to obtain the beamforming optimization solution
for the multiuser MIMO SWIPT broadcast channel. However,
that work considered an overall (sum) harvesting constraint
instead of individual per-user harvesting constraints. The second
approach is based on the minimization of the mean square
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error (MSE) [15]. However, this technique cannot be applied
to the SWIPT framework due to fact that the resulting problem
remains nonconvex.

The main difference of our work with respect to the previous
works described above is that we assume a broadcast multiuser
multi-stream (non BD-based) MIMO SWIPT network, in which
(per-user) harvested power and information transfer must be
optimized simultaneously. We model our transmitter design as
a multi-objective problem in which the scenarios studied in [5]
and [6] are shown to be particular solutions of the proposed
framework. Additionally, we assume that interference is not
pre-canceled (i.e., the BD approach is not applied) and, thus,
both larger information transfer and harvested power can be
achieved simultaneously. The resulting problem is nonconvex
and very difficult to solve. In order to obtain local solutions, we
derive different methods based on majorization-minimization
(MM) techniques. By means of this strategy, we are able
to reformulate our original nonconvex problem into a series
of convex subproblems that are easily solved (i.e., through
algorithms that have a very low computational complexity) and
whose solutions converge to a locally optimal solution of the
original nonconvex problem.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce a summary of the mathematical techniques
employed in this paper. In Section III we present the system and
signal models and the problem formulation. In Section IV we
derive the mathematical modeling required to reformulate the
original nonconvex problem into convex subproblems that are
solved using the MM approach. In Section V, we evaluate the
performance of the proposed methods and, finally, in Section
VI, we draw some conclusions.

Notation: We adopt the notation of using boldface lower case
for vectors x and upper case for matrices X. The transpose,
conjugate transpose (hermitian), and inverse operators are de-
noted by the superscripts (·)T , (·)H , and (·)−1, respectively.
Tr(·) and det(·) denote the trace and the determinant of a
matrix, respectively. vec(X) is a column vector resulting from
stacking all columns of X. We use X to denote the N−tuple
X , (Xi)Ni=1 = (X1, . . . ,XN ) and || · ||F to denote the matrix
Frobenius norm.

II. MATHEMATICAL PRELIMINARIES

A. Multi-Objective Optimization

Multi-objective optimization (also known as multi-criteria
optimization or vector optimization) is a type of optimization
that involves multiple objective functions that are optimized
simultaneously [16]. For a nontrivial multi-objective problem,
in general, there does not exist a single solution that simul-
taneously optimizes each objective. In that case, the objective
functions are said to be conflicting, and there exists a (possibly
infinite) number of Pareto optimal solutions. A solution is
called Pareto optimal if none of the objective functions can be
improved in value without degrading some of the other objective
values.
1) Definitions

Definition 1 ([16]). A multi-objective problem can be formally

expressed as

maximize
x

f(x) = (f1(x), . . . , fK(x)) (1)

subject to x ∈ X ,

where fk : CN → R for k = 1, . . . ,K and X is the feasible set
that represents the constraints. Let Y be the set of all attainable
points for all feasible solutions, i.e., Y = f(X ).

2) Efficient Solutions

Definition 2 ([16], Definition 2.1). A point x ∈ X is called
Pareto optimal if there is no other x′ ∈ X such that f(x′) � f(x),
where � refers to the component-wise inequality, i.e., fi(x′) ≥
fi(x), i = 1, . . . ,K.

Sometimes, ensuring Pareto optimality for some problems is
difficult. Due to this, the condition of optimality can be relaxed
as follows.

Definition 3 ([16], Definition 2.24). A point x ∈ X is called
weakly Pareto optimal (or weakly efficient) if there is no other
x′ ∈ X such that f(x′) � f(x), where � refers to the strict
component-wise inequality, i.e., fi(x′) > fi(x), i = 1, . . . ,K.
All Pareto optimal solutions are also weakly Pareto optimal.

3) Finding Pareto Optimal Points

There are several methods for finding the Pareto points of
a multi-objective problem. In the sequel, we present three
different (scalarization) techniques.

3.1) Weighted sum method: the simplest scalarization tech-
nique is the weighted sum method which collapses the vector-
objective into a single-objective component sum:

maximize
x∈X

K∑
k=1

βkfk(x), (2)

where βk are real non-negative weights. The following results
present the relation between the optimal solutions of (2) and
the Pareto optimal points of the original problem (1).

Proposition 1 ([16], Proposition 3.9). Suppose that x? is an
optimal solution of (2). Then, x? is weakly efficient.

Proposition 2 ([16], Proposition 3.10). Let X be a convex set,
and let fk be concave functions, k = 1, . . . ,K. If x? is weakly
efficient, there are some βk ≥ 0 such that x? is an optimal
solution of (2).

As as result, convexity is apparently required for finding all
weakly Pareto optimal points with the weighted sum method,
which means that if the original problem is not convex, all the
Pareto optimal points may not be found by using the weighted
sum method. However, there are other weighted sum techniques
in the literature (see, for example, the adaptive weighted sum
method [17]) that are able to find all Pareto optimal points for
nonconvex problems at the expense of a higher computational
complexity.

3.2) Epsilon-constraint method: in this method, only one of
the original objectives is maximized while the others are trans-
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formed into constraints:

maximize
x∈X

fj(x) (3)

subject to fk(x) ≥ εk, k = 1, . . . ,K, k 6= j.

Let us introduce the following results.

Proposition 3 ([16], Proposition 4.3). Let x? be an optimal
solution of (3) for some j. Then x? is weakly Pareto optimal.

Proposition 4 ([16], Proposition 4.5). A feasible solution x? ∈
X is Pareto optimal if, and only if, there exists a set of ε̂k, k =
1, . . . ,K such that x? is an optimal solution of (3) for all j =
1, . . . ,K.

Contrarily to the weighted sum method, convexity is not
needed in the previous two propositions (but convexity is still
typically required to solve problems like (3)).
3.3) Hybrid method: this method combines the previous two
methods, i.e., the weighted sum method and the epsilon-
constraint method. In this case, the scalarized problem to be
solved has a weighted sum objective and constraints on all (or
some) objectives.

maximize
x∈X

∑
k∈K1

βkfk(x) (4)

subject to fk(x) ≥ εk, k ∈ K2,

where |K1| ≤ K and |K2| ≤ K, being |A| the cardinality of
set A, and βk are real non-negative weights.

B. Majorization-Minimization Method

The MM is an approach to solve optimization problems that
are too difficult to solve in their original formulation. The
principle behind the MM method is to transform a difficult
problem into a sequence of simple problems. Interested readers
may refer to [18] and references therein for more details.

The method works as follows. Suppose that we want to
maximize f0(x) over X . In the MM approach, instead of
maximizing the cost function f0(x) directly, the algorithm
optimizes a sequence of approximate objective functions that
minorize f0(x), producing a sequence {x(k)} according to the
following update rule:

x(k+1) = arg max
x∈X

f̂0(x, x(k)), (5)

where x(k) is the point generated by the algorithm at iteration k
and f̂0(x, x(k)) known as surrogate function is the minorization
function of f0(x) at x(k), i.e., it has to be a global lower bound
tight at x(k). Problem (5) will be referred as surrogate problem.
In addition, the surrogate function must also be continuous in
x and x(k). The last condition that the surrogate function must
fulfill is that the directional derivatives1 of itself and of the
original objective function f0(x) must be equal at the point

1Let f : CN → R. Then, the directional derivative of f(x) in the direction
of vector d is given by f ′(x; d) , limλ→0

f(x+λd)−f(x)
λ

.

x(k). All in all, the four conditions are as follows:

(A1) : f̂0(x(k), x(k)) = f0(x(k)), ∀x(k) ∈ X , (6)

(A2) : f̂0(x, x(k)) ≤ f0(x), ∀x, x(k) ∈ X , (7)

(A3) : f̂ ′0(x, x(k); d)|x=x(k) = f ′0(x(k); d),

∀d with x(k) + d ∈ X , (8)
(A4) : f̂0(x, x(k)) is continuous in x and x(k). (9)

Under assumptions (A1) − (A4), every limit point of the
sequence {x(k)} is a locally optimal point of the original
problem (globally optimal if the problem is convex) (see [18]
for details).

III. PROBLEM FORMULATION

Let us consider a wireless broadcast multiuser system consist-
ing of one base station (BS) transmitter equipped with nT anten-
nas and a set of K receivers, denoted as UT = {1, 2, . . . ,K},
where the k-th receiver is equipped with nRk

antennas. We
assume that a given user is not able to decode information and to
harvest energy simultaneously, and that a user being served with
information by the BS uses all the energy to decode the signal.
Thus, the set of users is partitioned into two disjoint subsets.
One that contains the information users, denoted as UI ⊆ UT
with |UI | = N , and the other subset that contains harvesting
users, denoted as UE ⊆ UT with |UE | = M . Therefore,
UI ∩ UE = ∅ and |UI | + |UE | = N + M = K.2 Without loss
of generality (w.l.o.g.), let us index users as UI = {1, . . . , N}
and UE = {N + 1, . . . , N +M}.

The equivalent baseband channel from the BS to the k-th
receiver is denoted by Hk ∈ CnRk

×nT . It is also assumed
that the set of matrices {Hk} is known to the BS and to the
corresponding receivers (the case of imperfect CSI is out of the
scope of the paper).

As far as the signal model is concerned, the received signal
for the i-th information receiver can be modeled as

yi = HiBixi + Hi

∑
k∈UI
k 6=i

Bkxk + ni, ∀i ∈ UI . (10)

In the previous notation, Bixi represents the transmitted signal
for user i ∈ UI , where Bi ∈ CnT×nSi is the precoder matrix
and xi ∈ CnSi

×1 represents the information symbol vector. It
is also assumed that the signals transmitted to different users
are independent and zero mean. nSi denotes the number of
streams assigned to user i ∈ UI and we assume that nSi =
min{nRi

, nT } ∀i ∈ UI . The transmit covariance matrix is Si =
BiBHi if we assume w.l.o.g. that E

[
xixHi

]
= InSi

. ni ∈ CnRi
×1

denotes the receiver noise vector, which is considered Gaussian
with E

[
ninHi

]
= InRi

3. Note that the middle term of (10) is
an interference term. The covariance matrix of the interference
plus noise is written as

Ωi(S−i) = HiS−iHH
i + I, ∀i ∈ UI , (11)

2In this paper, we assume for simplicity in the formulation that a user belongs
to either the harvesting set or the information set and that both sets are known
and fixed. This assumption could be generalized by considering that some users
are not selected in either set as well as by defining which particular users are
scheduled in each particular set (i.e., user grouping strategies). However, this
falls out of the scope of this paper.

3We assume that noise power σ2 = 1 w.l.o.g., otherwise we could simply
apply a scale factor at the receiver and re-scale the channels accordingly.
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where S−i =
∑
k∈UI
k 6=i

Sk. Let x̃ = Bx denote the signal vector

transmitted by the BS, where the joint precoding matrix is
defined as B = [B1 . . . BN ] ∈ CnT×nS , being nS =∑
i∈UI nSi the total number of streams of all information users,

and the data vector as x =
[
xT1 . . . xTN

]T ∈ CnS×1, that
must satisfy the power constraint formulated as E[‖x̃‖2] =∑
i∈UI Tr(Si) ≤ PT , where PT represents the total available

transmission power at the BS.
The total RF-band power harvested by the j-th user from all

receiving antennas, denoted by Q̄j , is proportional to that of the
equivalent baseband signal, i.e., ∀j ∈ UE , we have:

Q̄j = ζjE
[∥∥∥Hj

∑
i∈UI

Bixi
∥∥∥2]

= ζj
∑
i∈UI

E[‖HjBixi‖2], (12)

where ζj is a constant that accounts for the loss for converting
the harvested RF power to electrical power. Notice that, for
simplicity, in (12) we have omitted the harvested power due to
the noise term since it can be assumed negligible.

The transmitter design that we propose in this paper is
modeled as a nonconvex multi-objective optimization problem.
The goal is to maximize, simultaneously, the individual data
rates and the harvested powers of the information and harvesting
users, respectively. Given this and the previous system model,
the optimization problem is written as

maximize
{Si}

(
(Rn(S))n∈UI , (Em(S))m∈UE

)
(13)

subject to C1 :
∑
i∈UI

Tr(Si) ≤ PT

C2 : Si � 0, ∀i ∈ UI ,

where S , (Si)∀i∈UI , the data rate expression is given by

Rn(S) = log det
(
I + HnSnHH

n Ω−1
n (S−n)

)
(14)

= log det
(
Ωn(S−n) + HnSnHH

n

)
− log det (Ωn(S−n)) (15)

= log det
(
I + HnS̄HH

n

)︸ ︷︷ ︸
, sn(S)

− log det (Ωn(S−n))︸ ︷︷ ︸
, gn(Ωn(S−n))

, (16)

with S̄ =
∑
k∈UI Sk, and the harvested power is given by

Em(S) =
∑
i∈UI

Tr(HmSiHH
m). (17)

The previous problem in (13) is not convex due the objective
functions (in fact, due to Ωi(S−i)) and is difficult to solve. In
order to find Pareto optimal points, we can reformulate it by
using any of the techniques presented in Section II-A. In the
following, we propose two approaches based on the weighted
sum method and on the hybrid method. For convenience, we
start with the hybrid method as it is the one that has received
the most attention in the literature [5], [19]. However in that
literature, the interference in (11) is assumed to be removed by
the transmission strategy. This assumption makes the problem
convex and hence easier to solve.

A. Hybrid-Based Formulation to Solve (13)
In the hybrid approach, some of the objective functions are

collapsed into a single objective by means of scalarization

and some of the objective functions are added as constraints.
In particular, the data rates are left in the objective whereas
the harvesting constraints are included as individual harvesting
constraints. With this particular formulation, we are able to
guarantee a minimum value for the power to be harvested by
the harvesting users. Thus, problem (13) is formulated as

max
{Si}

∑
i∈UI

ωi log det
(
I + HiS̄HH

i

)
− ωi log det (Ωi(S−i))

s. t. C1 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE (18)

C2 :
∑
i∈UI

Tr(Si) ≤ PT

C3 : Si � 0, ∀i ∈ UI ,

where Qj =
Q̄min

j

ζj
, being {Q̄min

j } the set of minimum power
harvesting constraints, and ωi are some real non-negative
weights. For simplicity in the notation, let us define the feasible
set S1 as

S1 ,

{
S :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE ,

∑
i∈UI

Tr(Si) ≤ PT , Si � 0,∀i ∈ UI

}
. (19)

For a set of fixed harvesting constraints, the convex hull of
the rate region can be obtained by varying the values of ωi.
In addition, we can use the values of the weights to assign
priorities to some users if user scheduling is to be implemented,
following, for example, the proportional fair criterion [20], [21].
Notice that constraint C1 is associated with the minimum power
to be harvested for a given user. Note also the similarities of
problem (18) with the single user case presented in [5] and its
extension to the multiuser case presented in [6]. As commented
before, the novelty is that we do not force the transmitter to
cancel the interference generated among the information users
(as opposed to BD approaches [7]) and, thus, we allow the
system to have more degrees of freedom to improve the system
throughput and the harvested power simultaneously. Later in
Section IV-A, we will present a method based on MM to solve
the nonconvex problem in (18).

B. Weighted Sum-Based Formulation to Solve (13)

In situations where the exact amount of power to be harvested
by harvesting users is not needed, we can also obtain Pareto
optimal points by means of the simpler weighted-sum method.
In this case, we can assign priorities so that some users tend
to harvest more power than others, although the exact amounts
cannot be controlled. As we will see later, the overall problem
based on this new formulation is much easier to solve. The
transmitter design is obtained through the following nonconvex
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optimization problem:

max
{Si}

∑
i∈UI

ωi log det
(
I + HiS̄HH

i

)
− ωi log det (Ωi(S−i))

+
∑
j∈UE

∑
i∈UI

αj Tr(HjSiHH
j ) (20)

s. t. C1 :
∑
i∈UI

Tr(Si) ≤ PT

C2 : Si � 0, ∀i ∈ UI ,

where αj are some real non-negative weights. For simplicity in
the notation, let us define the feasible set S2 as

S2 ,

{
S :
∑
i∈UI

Tr(Si) ≤ PT , Si � 0,∀i ∈ UI

}
. (21)

As we will show later in Section IV-B, the algorithm to solve
(20) is easier than the algorithm to solve (18). Hence, there is a
trade-off in terms of speed of convergence of the algorithms and
in terms of the harvested power control since, as we introduced
before, in (18) the transmitter can fully control the amount
of power to be harvested by the users whereas in (20) the
transmitter can only control the proportion of the power to be
harvested among the users.

IV. MM-BASED TECHNIQUES TO SOLVE PROBLEM (13)

In this section, we present a method based on the MM
philosophy to solve problems (18) and (20). Since the original
problems (18) and (20) are nonconvex, we reformulate them and
make them convex before applying the MM method. This refor-
mulation will follow two steps. In the first step, problems (18)
and (20) will be convexified by using a linear approximation
of the nonconvex terms. This is the approach taken in papers
such as [22], [23], and [24]. Instead of solving the reformulated
(convex) problem, in the second step, we design a quadratic
approximation of the remaining convex terms in order to find
a surrogate problem easier to solve. Finally, we apply the MM
method to the quadratic reformulation.

As benchmarks for comparison, we will consider the case of
just convexifying the nonconvex terms, which is an approach
taken in the previous literature, and also consider a gradient
method applied directly to the nonconvex problems (18) and
(20).

Although the mathematical developments of the proposed
MM approaches are more tedious than the approaches usually
taken in the literature, the resulting algorithms are faster.

A. Approach to Solve the Hybrid Formulation in (18)

As we introduced before, we need to reformulate the original
nonconvex problem (18) and make it convex. This will be done
in two steps. Motivated by the work in [23], in this first step,
we derive a linear approximation for the nonconcave (right-
hand side) part of the objective function of (18), i.e., f0(S) =∑
i∈UI ωisi(S)−ωigi(Ωi(S−i)), in such a way that the modified

problem is convex4. In order to find a concave lower bound of

4In fact, by applying the approximation, the overall objective function
becomes concave.

f0(S), gi(·) can be upper bounded linearly at point Ω
(0)
i =∑

k∈UI
k 6=i

HiS
(0)
k HH

i + I as

gi(Ωi(S−i)) ≤

gi

(
Ω

(0)
i

)
+ Tr

((
Ω

(0)
i

)−1 (
Ωi(S−i)−Ω

(0)
i

))
= constant + Tr

((
Ω

(0)
i

)−1

Ωi(S−i)
)

, ĝi(Ωi(S−i),Ω
(0)
i ). (22)

Even though problem (18) reformulated with the previous upper
bound ĝi(Ωi(S−i),Ω

(0)
i ) is convex, we want to go one step

further and apply a quadratic lower bound for the left hand
side of f0(S), i.e., si(S) in a way that the overall lower bound
fulfills conditions (A1) − (A4) presented before in Section
II-B and the MM method can be invoked. Note that the upper
bound ĝi(Ωi(S−i),Ω

(0)
i ) already fulfills the four conditions

(A1)− (A4). The idea of implementing this quadratic bound is
to find a surrogate problem that is much simpler and easier to
solve than the one obtained by just considering the linear bound
ĝi(Ωi(S−i),Ω

(0)
i ). 5

We now focus attention on deriving the surrogate function for
the left hand side of f0(S), i.e., si(S). In order for the surrogate
problem to be easily solved, we force the surrogate function of
si(S) around S̄(0) to be quadratic, where S̄(0)

=
∑
k∈UI S(0)

k and
S(0)
k is the solution of the algorithm at the previous iteration.

By doing this, as will be apparent later, the overall surrogate
problem can be formulated as an SDP optimization problem.

Proposition 5. A valid surrogate function, ŝi(S̄, S̄(0)
), for the

function si(S̄) = log det
(
I + HnS̄HH

n

)
that satisfies conditions

(A1)− (A4) is

ŝi(S̄, S̄(0)
) , Tr

(
JiS̄
)

+ Tr
(

S̄HMiS̄
)

+κ1, ∀S̄, S̄(0) ∈ SnT
+ ,

(23)
with matrices Ji = Gi − S̄(0),HMi − MiS̄

(0), Gi =

HH
i

(
I + HiS̄

(0)HH
i

)−1

Hi and Mi = −γiI, being γi ≥
1
2λ

2
max(HH

i Hi), κ1 contains some terms that do not depend
on S, and SnT

+ denotes the set of positive semidefinite matrices.

Proof: See Appendix B.

Let us now reformulate the optimization problem in (18) with
the surrogate function ŝi(S̄, S̄(0)

)− ĝi(Ωi(S−i),Ω
(0)
i ):

Tr
(
EiS̄
)

+ Tr
(

S̄HMiS̄
)

+ Tr (RiSi) + κ2, (24)

where Ri = HH
i

(
Ω

(0)
i

)−1

Hi ∈ CnT×nT , Ei = Ji − Ri, and
κ2 contains some terms that do not depend on S. Thus, problem

5The surrogate problem obtained by just applying the bound
ĝi(Ωi(S−i),Ω

(0)
i ) will be used as benchmark. The specific mathematical

details of the optimization problem and the algorithm will be described in
App. A.
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(18) can be reformulated as

max
{Si}

∑
i∈UI

ωi

(
Tr
(
EiS̄
)

+ Tr
(

S̄HMiS̄
)

+ Tr (RiSi)

)

− ρ
∥∥∥Si − S(0)

i

∥∥∥2

F
(25)

s. t. S ∈ S1,

where we have added a proximal quadratic term to the surrogate
function in which ρ is any non-negative constant that can be
tuned by the algorithm. This term provides more flexibility
in the algorithm design stage and may help to speed up the
convergence. By performing some mathematical manipulations,
we are able to obtain the following result:

Proposition 6. The optimization problem presented in (18) can
be solved based on MM method by solving recursively the
following SDP problem:

min
{Si}, s, t

t (26)

s. t. C1 :

 tI C̃
1
2 s− c(

C̃
1
2 s− c

)H
1

 � 0

C2 : Tis = vec (Si) , ∀i ∈ UI
C3 : S ∈ S1,

where s =
[
vec(S1)T vec(S2)T . . . vec(SN )T

]T ∈ CnTnT |UI |×1,

t is a dummy variable, and C̃
1
2 , Ti, and c are some constant

matrices and vectors computed as shown in Appendix C. Vector
c depends on matrix S̄(0).

Proof: See Appendix C.
The final algorithm is presented in Alg. 1.

B. Approach to Solve the Sum Method Formulation in (20)

Let us start the development by reformulating problem (20):

max
{Si}

∑
i∈UI

ωi (si(S)− ωigi(Ωi(S−i))) +
∑
i∈UI

Tr(RHSi)

s. t. S ∈ S2, (27)

where RH =
∑
j∈UE αjH

H
j Hj . The right hand side of the

objective function of (27) is convex (in fact it is linear) whereas
the left hand side is not convex. Let us apply the same steps
that we applied before but with a slight modification. Previously
in (22), we found that gi(Ωi(S−i)) could be approximated by

ĝi(Ωi(S−i),Ω
(0)
i ) = Tr

((
Ω

(0)
i

)−1

Ωi(S−i)
)

(omitting the

constant term). Now, as the objective function is different than
the one from problem (18), the goal is to find a surrogate
function for the function si(S) that allows us to find efficiently
a solution for the surrogate problem.

Proposition 7. A valid surrogate function, ŝi(S,S(0)), for the
function si(S) that satisfies conditions (A1)− (A4) is

ŝi(S,S(0)) ,
∑
`∈UI

Tr (JiS`) +
∑
`∈UI

Tr
(
SH` MiS`

)
+ κ3,

∀S`, S(0)
` ∈ S

nT
+ , (28)

Algorithm 1 Algorithm for Solving Problem (18)

1: Initialize S(0) ∈ S1. Set k = 0
2: Repeat
3: Compute c with S(k), given in (61)
4: Generate the (k + 1)-th tuple (S?i )∀i∈UI by solving

the SDP in (26)
5: Set S(k+1)

i = S?i , ∀i ∈ UI , and set k = k + 1
6: Until convergence is reached

with matrices Ji = Gi − S(0),H
` Mi − MiS

(0)
` , Gi =

HH
i

(
I + Hi

∑
k∈UI S(0)

k HH
i

)−1

Hi, and Mi = −ξiI, being

ξi ≥ 1
2 |UI |

2λ2
max(HH

i Hi), and κ3 contains the constant terms
that do not depend on S.

Proof: See Appendix D.

Remark 1. Note that the two surrogate functions (23) and (28)
have the same form but with a difference in the quadratic term.
Notice that surrogate function (28) is tighter than (23) and with
cross-products. As will be shown later, this will allow us to
decouple the optimization problem for each information user i
and, thus, solve all problems in parallel. On the other hand,
thanks to the fact that surrogate function (23) is looser than
(28), a faster convergence can be obtained than if surrogate
(28) were to be applied in problem (18).

Let us now reformulate problem (27) with the lower bound
that we just found (omitting the constant terms):

max
{Si}

∑
i∈UI

Tr
(
J̌iSi

)
+
∑
i∈UI

Tr
(

SHi M̌Si
)

−
∑
i∈UI

Tr

Ri
∑
k∈UI
k 6=i

Sk

+
∑
i∈UI

Tr(RHSi) (29)

s. t. S ∈ S2,

where J̌i = Ǧ − S(0),H
i M̌ − M̌S(0)

i , with M̌ =
∑
k∈UI ωkMk

and Ǧ =
∑
k∈UI ωkGk. Note that we have arranged the indices

to make the notation easier to follow and consistent with the
original notation. We can further simplify the objective function
by grouping terms considering that matrix M̌ is diagonal, i.e.,
M̌ = −βI, being β = 1

2 |UI |
2
∑
k∈UI ωkλ

2
max(HH

k Hk):

min
{Si}

β
∑
i∈UI

Tr
(

SHi Si
)
−
∑
i∈UI

Tr (FiSi) (30)

s. t. S ∈ S2,

where
Fi = J̌i −

∑
k∈UI
k 6=i

Rk + RH . (31)

Note that we have changed the sign of the objective and
reformulated the problem as a minimization one. The idea is
to find a closed-form expression for the optimum covariance
matrices {Si}. If we dualize constraint C1 and form a partial
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Algorithm 2 Algorithm for Solving Problem (20)

1: Initialize S(0) ∈ S2. Set k = 0
2: Repeat
3: Compute Fi with matrix S(k)

i , ∀i ∈ UI , given in (31)
4: Compute EVD of Fi = UFiΛFiU

H
Fi

, ∀i ∈ UI
5: Compute µ? such that∑

i∈UI Tr ([ΛFi
− µ?I]+) = 2βPT

6: Compute S?i (µ?) = 1
2β [Fi − µ?I]+, ∀i ∈ UI

7: Set S(k+1)
i = S?i (µ?),∀i ∈ UI , and set k = k + 1

8: Until convergence is reached

Lagrangian, we obtain the following optimization problem:

min
{Si}

β
∑
i∈UI

Tr
(

SHi Si
)
−
∑
i∈UI

Tr (Wi(µ)Si) (32)

s. t. Si � 0, ∀i ∈ UI ,

where Wi(µ) = Fi − µI, for µ ≥ 0 the Lagrange multiplier
associated with constraint C1 of problem (27). The previous
problem is clearly separable for each user i. Thus, for each
information user, problem (32) is equivalent to solving the
following projection problem:

min
Si

∥∥∥√βSi − W̌i(µ)
∥∥∥
F

(33)

s. t. Si � 0,

where W̌i(µ) = 1
2
√
β

Wi(µ) = 1
2
√
β

(Fi − µI). The previous
result is very nice as the solution of (33) is simple and
elegant, thanks to the fact that problem (33) is a projection
onto the semidefinite cone and has a closed-form solution
[25]. Let the eigenvalue decomposition (EVD) of matrix Fi be
Fi = UFiΛFiU

H
Fi

. The expression of S?i (µ) is, thus, given by

S?i (µ) =
1√
β

[W̌i(µ)]+ =
1

2β
UHFi

[ΛFi − µI]+UFi , ∀i ∈ UI ,
(34)

where λk([X]+) = min(0, λk(X)), with λk(X) the k-th eigen-
value of matrix X. Now it remains to compute the optimal La-
grange multiplier µ. This can be found by means of the simple
bisection method fulfilling

∑
i∈UI Tr ([ΛFi

− µI]+) = 2βPT .
It turns out that, at each inner iteration, we need to compute
a single EVD per information user, that is, the EVD of Fi,
and a few iterations to find the optimal multiplier µ. Note that
the surrogate problem can be solved straightforwardly with the
previous steps. The final algorithm is presented in Alg. 2.

C. Approaches Used as Benchmarks for Performance Compar-
ison

As the problem introduced in (13) has not been addressed
before in the literature, there are not specific benchmarks to
compare our approaches with. For this reason, in this section,
we propose some benchmark algorithms that will be used in the
simulation section to compare the performance of the proposed
MM approaches. These benchmarks are:
• Gradient-based algorithms based on [26, Sec. 7] applied

directly to the nonconvex problems (18) and (20). The
gradients are not presented due to space limitations.

• MM approaches considering just the linear approximation
presented in (22), i.e., ĝi(Ωi(S−i),Ω

(0)
i ), applied to prob-

lems (18) and (20). The specific optimization problems and
algorithms can be found in App. A.

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the previous
algorithms. In the first part of this section, we present some
convergence and computational time results. For the simula-
tions, we consider a system composed of 1 transmitter with
6 antennas, and 3 information users and 3 harvesting users
with 2 antennas each. In the second part of the section, we
show the performance of the proposed methods compared to
the classical BD approach. In this case, for ease of presenting
the information, we assume a system composed of 1 transmitter
with 4 antennas, and 2 information users and 2 harvesting users
with 2 antennas each. The simulation parameters common to
both scenarios are the following. The maximum radiated power
is PT = 1 W. The channel matrices are generated randomly with
i.i.d. entries distributed according to CN (0, 1). The weights ωi
are set to 1.

A. Convergence Evaluation

In this subsection, we evaluate the convergence behavior and
the computational time of the methods presented in Sections
IV-A and IV-B and the benchmark approach presented in
App. A. The benchmark method for problem (20) presented
in App. A will not be evaluated as it is clearly worse6 than
the one presented in Section IV-B. In the figures, the legend is
interpreted as follows: ‘MM-L for (18)’ refers to the method
developed in App. A for problem (18), ‘MM-Q for (18)’ refers
to the method in Section IV-A, and ‘MM-Q for (20)’ refers to
the method in Section IV-B. In order to compare all methods,
we set the values of αj and the values of Qj so that the same
system sum rate is achieved. These values are: α = [1, 5, 10],
and Q = [3.8, 7.2, 6.4] power units. Software package CVX is
used to solve problem (35) [27], and SeDuMi solver is used to
solve problem (26) [28].

Figure 1 presents the sum rate convergence as a function
of iterations. The three approaches converge to the same sum
rate value but require a different number of iterations. In fact,
the required number of iterations depends on how well the
surrogate function approximates the original function. Note that
the surrogate function used in the ‘MM-L for (18)’ approach is
the one that best approximates the objective function and, thus,
fewer iterations are needed.

Figure 2 shows the computational time required by the
three previous methods. We see that the ‘MM-Q for (20)’
method converges much faster than the other two approaches,
as expected. The ‘MM-Q for (18)’ approach requires more
iterations than the ‘MM-L for (18)’ approach but each iteration
is solved faster since a specific algorithm can be employed to
solve the convex optimization problem. Hence, the ‘MM-Q for
(18)’ algorithm is the best option.

For the sake of comparison and completeness, we also show
in Figures 3 and 4 the convergence and the computational time

6However, it was included in the paper for the sake of completeness
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Fig. 1: Convergence of the system sum rate vs number of iterations for three
different approaches.
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Fig. 2: Convergence of the system sum rate vs computational time for three
different approaches.

of a gradient-like benchmark approach. The plot legend reads
as follows: ‘GRAD for (18)’ and ‘GRAD for (20)’ refers to a
gradient approach applied to problems (18) and (20), respec-
tively. ‘all ones’ and ‘identity’ mean that covariance matrices
are initialized using an all ones matrix and the identity matrix,
respectively. Results show that the proposed MM approaches are
one to two orders of magnitude faster than the gradient-based
methods.

B. Performance Evaluation

In this section, we evaluate the performance of the MM
approach as compared to the classical BD strategy considered in
the literature (see, for example, [6], [29]). In order to show how
harvesting users at different distances affect the performance,
we have generated channel matrices with different norms. We
would like to emphasize that, as the noise and channels are
normalized, we will refer to the powers harvested by the
receivers in terms of power units instead of Watts.

Figures 5 and 6 show the rate-power surface, that is, the
multidimensional trade-off between the system sum rate and
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Fig. 3: Convergence of the system sum rate vs iterations for a gradient approach
for constrained optimization.
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Fig. 4: Convergence of the system sum rate vs computational time for a gradient
approach for constrained optimization.
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Fig. 5: Rate-power surface for the MM method.
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Fig. 6: Rate-power surface for the BD method.
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Fig. 7: Contour of rate-power surface for the MM method.

the powers to be collected by harvesting users (see [6] for a
formal definition of the rate-power surface). As we see, the MM
approach outperforms the BD strategy in both terms, sum rate
and harvested power. The maximum system sum rate obtained
with the MM approach when Q1 and Q2 are set to 0 is 4.5
bit/s/Hz, whereas the sum rate obtained with the BD approach is
2.75 bit/s/Hz. The rate-power surfaces are generated by varying
the values of {Qj} in problem (18) or, equivalently, by varying
the values of {αj} in problem (20). A way to reduce the
computational complexity associated with the generation of the
rate-power surface is to use as an initialization point the solution
that was obtained for the previous values of {Qj} or {αj} to
generate the new value of the curve [30]. Note, however, that
the whole rate-power surface need not be generated for each
transmission as it is just the representation of the existing rate-
power tradeoff.

In order to clearly see the benefits in terms of collected power,
Figures 7 and 8 show the contour plots of the previous 3D plots.
We observe that users in the MM approach collect roughly 50%
more power than the power collected by users when applying
the BD strategy.
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Fig. 8: Contour of rate-power surface for the BD method.

R1 (bits/s/Hz)
0 0.5 1 1.5 2 2.5 3

R
2
(b
it
s/
s/
H
z)

0

0.5

1

1.5

2

2.5

3

Qj = 1

Qj = 1.5

Qj = 2

Qj = 2.5

Qj = 3

Fig. 9: Rate region for different values of Qj (in power units).

Finally, Figure 9 presents the rate-region of the MM approach
for different values of {Qj}. The same value of Qj is set
to the two harvesting users. In this case, we vary the values
of ωi to achieve the whole contour of the rate regions. We
observe that, the larger the harvesting constraints, the smaller
the rate-region, as expected. However, the relation between the
harvesting constraints and the rate-region is not linear. As the
harvesting constraints increase, a small change in the {Qj}
produces a large reduction of the rate-region. This is because
the 3D rate-power surfaces presented before are not planes.

VI. CONCLUSIONS

We have presented a method to solve the difficult nonconvex
problem that arises in multiuser multi-stream broadcast MIMO
SWIPT networks. We formulated the general SWIPT problem
as a multi-objective optimization problem, in which rates and
harvested powers were to be optimized simultaneously. Then,
we proposed two different formulations to obtain solutions of
the general multi-objective optimization problem depending on
the desired level of control of the power to be harvested. In the
first approach, the transmitter was able to control the specific
amount of power to be harvested by each user whereas in the
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second approach only the proportions of power to be harvested
among the different users could be controlled. Both (nonconvex)
formulations were solved based on the MM approach. We de-
rived a convex approximation for two nonconvex objectives and
developed two different algorithms. Simulation results showed
that the proposed methods outperform the classical BD in terms
of both system sum rate and power collected by users by a
factor of approximately 50%. Moreover, the computational time
needed to achieve convergence was shown to be really low for
the approach in which the transmitter could only control the
proportion of powers to be harvested (around two orders of
magnitude lower than a gradient-like approach).

APPENDIX A
BENCHMARK FORMULATIONS AND ALGORITHMS

In this appendix, we are going to describe the benchmarks
based on the works in [22], [23], and [24]. We start with the
benchmark for problem (18).

Note that the upper bound ĝi(Ωi(S−i),Ω
(0)
i ) can be used to

build a lower bound of f0(S̄) that fulfills the four conditions
(A1)− (A4) presented before in Section II-B.

By applying a successive approximation of f0(·) through the
application of the previous surrogate function, i.e., f̂0(S,S(k)) =∑
i∈UI ωisi(S)−ωiĝi(Ωi(S−i),Ω

(k)
i )−ρ

∥∥∥Si − S(k)
i

∥∥∥2

F
, where

S(k) , (S(k)
i )∀i∈UI , for different evaluation points, we obtain an

iterative algorithm based on the MM approach that converges
to a stationary point (or local optimum) of the original problem
(18). Note that we have considered a proximal-like term. Given
this, the convex optimization problem to solve is

max
{Si}

∑
i∈UI

ωisi(S)− ωiĝi(Ωi(S−i),Ω
(k)
i )− ρ

∥∥∥Si − S(k)
i

∥∥∥2

F

s. t. S ∈ S1. (35)

We must proceed iteratively until convergence is reached. The
procedure is presented in Alg. 3.

Let us now continue with the benchmark for problem (20). If
we apply the bound from (22), i.e., ĝi(Ωi(S−i),Ω

(0)
i ), problem

(20) can be solved by solving consecutively the following
problem:

max
{Si}

∑
i∈UI

ωisi(S)− ωiĝi(Ωi(S−i),Ω
(k)
i ) + Tr(RHSi)

− ρ
∥∥∥Si − S(k)

i

∥∥∥2

F
(36)

s. t. S ∈ S2.

As problem (36) is convex, the MM method can be invoked
to obtain a local optimum of problem (20), following the same
procedure as we did before for problem (35).

Algorithm 3 Algorithm for Solving Problem (18)

1: Initialize S(0) ∈ S1. Set k = 0
2: Repeat
3: Generate the (k + 1)-th tuple (S?i )∀i∈UI by solving (35)
4: Set S(k+1)

i = S?i , ∀i ∈ UI , and set k = k + 1
5: Until convergence is reached

APPENDIX B
PROOF OF PROPOSITION 5

The proposed quadratic surrogate function of si(S̄) has the
following form:

ŝi(S̄, S̄(0)
) , log det

(
I + HiS̄

(0)HH
i

)
+Re

{
Tr
(

Gi

(
S̄− S̄(0)

))}
+ Tr

((
S̄− S̄(0)

)H
Mi

(
S̄− S̄(0)

))
≤ log det

(
I + HiS̄HH

i

)
, ∀S̄, S̄(0) ∈ SnT

+ , (37)

where matrices Gi ∈ CnT×nT and Mi ∈ CnT×nT need to be
found such that conditions (A1) through (A4) are satisfied, and
Re{x} denotes the real part of x. Note that (A1) and (A4) are
already satisfied. Only (A2) and (A3) must be ensured.

Let us start by proving condition (A3). Let S̄(0) and S̄(1) be
two positive semidefinite matrices, i.e, S̄(0), S̄(1) ∈ SnT

+ . Then,
the directional derivative of the surrogate function ŝi(S̄, S̄(0)

) in
(37) at S̄(0) with direction S̄(1) − S̄(0) is given by:

Re
{

Tr
(

Gi

(
S̄(1) − S̄(0)

))}
. (38)

Now, let us compute the directional derivative of the term
log det

(
I + HiS̄HH

i

)
:

Tr

(
HH
i

(
I + HiS̄

(0)HH
i

)−1

Hi

(
S̄(1) − S̄(0)

))
, (39)

where we have used d log det(X) = Tr(X−1dX) [31]. Hence,
by applying condition (A3), the two directional derivatives (38)
and (39) must be equal, from which we are able to identify
matrix Gi as

Gi = HH
i

(
I + HiS̄

(0)HH
i

)−1

Hi, Gi = GH
i . (40)

Note that as matrix Gi is hermitian, the real operator is no
longer needed since the trace of the product of two hermitian
matrices is real. In order to prove condition (A2), it suffices
to show that for each linear cut in any direction, the surrogate
function is a lower bound. Let S̄ = S̄(0)

+ µ
(

S̄(1) − S̄(0)
)

,
∀µ ∈ [0, 1]. Then, it suffices to show (41). Since the left hand
side of (41) is concave with respect to µ, a sufficient condition
is that the second derivative of the left hand side of (41) must
be lower than or equal to the second derivative of the right hand
side of (41) for any µ ∈ [0, 1] and any S̄(1)

, S̄(0) ∈ SnT
+ , thus,

(42) must hold.
Let us compute the second derivative of the right hand side

of (42). The first derivative is given by (43) and the second
derivative is given by (44), where we have used the identity
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log det
(

I + HiS̄
(0)HH

i

)
+ µTr

(
Gi

(
S̄(1) − S̄(0)

))
+ µ2 Tr

((
S̄(1) − S̄(0)

)H
Mi

(
S̄(1) − S̄(0)

))
≤ log det

(
I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i

)
, ∀S̄(1)

, S̄(0) ∈ SnT
+ , ∀µ ∈ [0, 1]. (41)

2 Tr

((
S̄(1) − S̄(0)

)H
Mi

(
S̄(1) − S̄(0)

))
≤ ∂2

∂µ2
log det

(
I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i

) ∣∣∣∣∣
∀S̄(1),S̄(0)∈SnT

+ , ∀µ∈[0,1]

.(42)

∂

∂µ
log det

(
I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i

)
= Tr

((
I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i

)−1

Hi

(
S̄(1) − S̄(0)

)
HH
i

)
, (43)

∂2

∂µ2
log det

(
I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i

)
= −Tr

(
A−1
i Hi

(
S̄(1) − S̄(0)

)
HH
i A−1

i Hi

(
S̄(1) − S̄(0)

)
HH
i

)
, (44)

dX−1 = −X−1dXX−1 [31] and matrix Ai ∈ CnRi
×nRi is

defined as Ai = I + Hi

(
S̄(0)

+ µ
(

S̄(1) − S̄(0)
))

HH
i .

We need to manipulate the previous expressions. To this end,
let us define matrix Pi = HH

i A−1
i Hi ∈ CnT×nT and let us

vectorize the result found in (44):

Tr

(
Pi
(

S̄(1) − S̄(0)
)

Pi
(

S̄(1) − S̄(0)
))

=vec
((

S̄(1) − S̄(0)
)T)T(

I⊗ PTi Pi
)

vec
(

S̄(1) − S̄(0)
)
, (45)

where we have used the following properties: Tr(AB) =
vec(AT )T vec(B), vec(AB)T = vec(A)T (I ⊗ B), vec(AB) =
(I ⊗ A)vec(B), and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). Let us
now vectorize the left hand side of (42):

2 Tr

((
S̄− S̄(0)

)H
Mi

(
S̄− S̄(0)

))

= 2vec
((

S̄(1) − S̄(0)
)T)T

(I⊗Mi)vec
(

S̄(1) − S̄(0)
)
, (46)

where in (46) we have used the fact that S̄(1)− S̄(0) is hermitian
and Tr(ABC) = vec(AT )T (I ⊗ B)vec(C). Finally, we end up
with the relation from forcing that (46) must be lower than or
equal to (45). This relation can be expressed as given by (47).
A sufficient condition for expression (47) is:

(I⊗Mi) +
1

2

(
I⊗ PTi Pi

)
= I⊗

(
Mi +

1

2
PTi Pi

)
� 0, (48)

which means that

Mi +
1

2
PTi Pi � 0. (49)

Now, if we set Mi = αI (note that this is a particular simple
solution), we have that

α ≤ −1

2
λmax

(
PTi Pi

)
, (50)

where λmax(X) is the maximum eigenvalue of matrix X. Now,
let us introduce the following result:

Theorem 1 ([32]). Let A, B ∈ Cn×n, assume that A is positive
definite, and assume that B is positive definite. Let λi(A) be the
i-th eigenvalue of matrix A such that λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A). Then, for all i, j, k ∈ {1, . . . , n} such that j+k ≤ i+1,

λi(AB) ≤ λj(A)λk(B). (51)

In particular, for all i = 1, . . . , n,

λi(A)λn(B) ≤ λi(AB) ≤ λi(A)λ1(B). (52)

Thanks to the previous result, α ≤ − 1
2λ

2
max (Pi). Now, let the

singular value decomposition of Hi be Hi = UiΣiVHi . From
this, we can upper bound λmax (Pi) = λmax

(
HH
i A−1

i Hi

)
=

λmax

(
ΣiVHi A−1

i ViΣi

)
≤ σ2

max(Hi)λ
−1
min(Ai), where σmax(X)

is the maximum singular value of matrix X. Because matrix A
is positive definite with λmin(Ai) ≥ 1, we can conclude that

α ≤ −1

2
σ4

max(Hi), (53)

and thus, a possible matrix Mi satisfying conditions (A1)−(A4)
is finally

Mi = −1

2
σ4

max(Hi)I = −1

2
λ2

max(HH
i Hi)I. (54)

APPENDIX C
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Let us start by vectorizing the surrogate function in (24):

R̂i(S,S(0)) = ŝi(S̄, S̄(0)
)− ĝi(Ωi(S−i),Ω

(0)
i )

= vec
(

S̄T
)T

(I⊗Mi) vec
(
S̄
)

+ eTi vec
(
S̄
)

+rTi vec (Si) + κ2, (55)

where ei = vec
(
ETi
)
∈ CnTnT×1, ri = vec

(
RTi
)
∈ CnTnT×1,

and κ2 contains some constant terms that do not depend
on {Si}. Let s =

[
vec(S1)T vec(S2)T . . . vec(S|UI |)T

]T ∈
CnTnT |UI |×1. Note that vec

(
S̄
)

= Ts, where T ∈
CnTnT×nTnT |UI | is composed of |UI | identity matrices of size
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2vec
((

S̄(1) − S̄(0)
)T)T [

(I⊗Mi) +
1

2

(
I⊗ PTi Pi

)]
vec
(

S̄(1) − S̄(0)
)
≤ 0. (47)

nTnT × nTnT , i.e., T = [I I . . . I]. Now, we can rewrite (55)
as (omitting the constant terms)

R̂i(S,S(0))=sHTH (I⊗Mi) Ts + eTi Ts + rTi vec (Si) . (56)

We know proceed to formulate the objective function (de-
noted by f̄0(S,S(0)) of problem (18) but substituting the bound
that we just computed and considering the proximal term. If
we incorporate all the terms (but omitting the constant ones)
we have

f̄0 (S,S(0)) =∑
i∈UI

ωi

(
sHTH (I⊗Mi) Ts + eTi Ts + rTi vec (Si)

)

−ρ
∥∥∥Si − S(0)

i

∥∥∥2

F
(57)

= sHTHM̃Ts + ẽTTs + r̂T s− ρsHs + ρs(0),Hs
+ρsHs(0) − ρs(0),Hs(0), (58)

where M̃ =
∑
i∈UI ωi (I⊗Mi) ∈ CnTnT×nTnT , ẽ =∑

i∈UI ωiei, r̂ =
[
rT1 rT2 . . . rT|UI |

]T
∈ CnTnT |UI |×1, and s(0) =[

vec(S(0)
1 )T vec(S(0)

2 )T . . . vec(S(0)
|UI |)

T
]T
∈ CnTnT |UI |×1. Now

taking into account that the objective function f̄0(S,S(0)) must
be real and combining terms (omitting terms that do not depend
on s) we obtain

f̄0(S,S(0)) = sHCs + bT s + sHb∗, (59)

where bT = 1
2 ẽTT + 1

2 r̂T + ρs(0),H ∈ C1×nTnT |UI | and
matrix C is C = THM̃T − ρI ∈ CnTnT |UI |×nTnT |UI |. For
convenient purposes, let us change the sign of f̄0(S,S(0))
such that ¯̄f0(S,S(0)) = −f̄0(S,S(0)) = sHC̃s − bT s − sHb∗,
where C̃ = −C � 0. Finally, we can equivalently rewrite the
objective function as the following expression (with this new
reformulation, the objective is to minimize ¯̄f0(S,S(0)) instead
of maximizing it):

¯̄f0(S,S(0)) = ‖C̃
1
2 s− c‖22, (60)

where
c = C̃

− 1
2 b∗ ∈ CnTnT |UI |×1. (61)

Note that the term cHc does not affect the optimum value of
the optimization variables as this term does not depend on s.
Now, we can reformulate the optimization problem presented
in (18) as

minimize
{Si}, s

‖C̃
1
2 s− c‖22 (62)

subject to C1 : Tis = vec (Si) , ∀i ∈ UI
C2 : S ∈ S1,

where Ti = [0, 0, . . . , 0︸ ︷︷ ︸
i−1

, I, 0, . . . , 0] ∈ RnTnT×nTnT |UI | is

composed of zero matrices of dimension nTnT ×nTnT with an

identity matrix at the i-th position. Problem (62) can be further
reformulated as

minimize
{Si}, s, t

t (63)

subject to C1 : ‖C̃
1
2 s− c‖2 ≤ t

C2 : Tis = vec (Si) , ∀i ∈ UI
C3 : S ∈ S1,

and, finally, as the following SDP optimization problem

minimize
{Si}, s, t

t (64)

subject to C1 :

 tI C̃
1
2 s− c(

C̃
1
2 s− c

)H
1

 � 0

C2 : Tis = vec (Si) , ∀i ∈ UI
C3 : S ∈ S1.

APPENDIX D
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The proposed quadratic surrogate function of si(S) has the
following form:

ŝi(S,S(0)) , log det

(
I + Hi

∑
k∈UI

S(0)
k HH

i

)
(65)

+
∑
`∈UI

Re
{

Tr
(

G`i

(
S` − S(0)

`

))}
+
∑
`∈UI

Tr

((
S` − S(0)

`

)H
M`i

(
S` − S(0)

`

))

≤ log det

(
I + Hi

∑
k∈UI

SkHH
i

)
, ∀S`, S(0)

` ∈ S
nT
+ ,

where matrices Gi ∈ CnT×nT and Mi ∈ CnT×nT need to
be found such that conditions (A1) through (A4) are satisfied.
Note that (A1) and (A4) are already satisfied. Only (A2) and
(A3) must be ensured. Let us start with condition (A3). Let S(0)

` ,
S(1)
` ∈ S

nT
+ , ∀`. Then, the directional derivative of the surrogate

function ŝi(S,S(0)) in (65) at S(0)
` with direction S(1)

` − S(0)
` is

given by ∑
`∈UI

Re
{

Tr
(

G`i

(
S(1)
` − S(0)

`

))}
, (66)

and the directional derivative of the right hand side of (65) at
S(0)
` with direction S(1)

` − S(0)
` is given by (67). From (66) and

(67), we identify the matrices G`i as

G`i = HH
i

(
I + Hi

∑
k∈UI

S(0)
k HH

i

)−1

Hi, G`i = GH
`i , (68)

where we find that all matrices G`i for a given user i can be
the same, Gi = G`i (i.e., they do not depend on `).
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Tr

(
HH
i

(
I + Hi

∑
k∈UI

S(0)
k HH

i

)−1

Hi

(∑
`∈UI

(
S(1)
` − S(0)

`

)))

=
∑
`∈UI

Tr

HH
i

(
I + Hi

∑
k∈UI

S(0)
k HH

i

)−1

Hi

(
S(1)
` − S(0)

`

) (67)

vec

(∑
`∈UI

(
S(1)
` − S(0)

`

))TT (
I⊗ PTi Pi

)
vec

(∑
`∈UI

(
S(1)
` − S(0)

`

))
, (70)

Now, we seek to find matrices {M`i} based on condition
(A2). To this end, we follow the same procedure presented
before. We make linear cuts in each possible direction and apply
the condition over the second derivative (see (42)). The second
derivative of the left hand side of (65) is given by

2
∑
`∈UI

Tr

((
S(1)
` − S(0)

`

)H
M`i

(
S(1)
` − S(0)

`

))
= (69)

2
∑
`∈UI

vec
((

S(1)
` − S(0)

`

)T)T
(I⊗M`i) vec

(
S(1)
` − S(0)

`

)
,

and the second derivative of the right
hand side is given by (70), where Pi =

HH
i

(
I + Hi

(∑
`∈UI

(
S(0)
` + µ

(
S(1)
` − S(0)

`

)))
HH
i

)−1

Hi,
being constant µ ∈ [0, 1]. Now, let s =[

vec
(

S(1)
1 − S(0)

1

)T
· · · vec

(
S(1)
|UI | − S(0)

|UI |

)T]T
and let us

introduce the following block diagonal matrix

M̃i =


I⊗M1i 0 . . . 0

0 I⊗M2i

...
...

. . . 0
0 . . . 0 I⊗M|UI |i

 . (71)

Then we have that the following condition should be fulfilled:

2sHM̃is + sHTH
(
I⊗ PTi Pi

)
Ts ≤ 0, (72)

which means that

M̃i +
1

2
TH

(
I⊗ PTi Pi

)
T � 0. (73)

Note that the particular structure of matrix TH
(
I⊗ PTi Pi

)
T is

given by

TH
(
I⊗ PTi Pi

)
T =


I⊗ PTi Pi . . . I⊗ PTi Pi
I⊗ PTi Pi

...
. . .

...
I⊗ PTi Pi . . . I⊗ PTi Pi

 , (74)

From the previous conditions we can see that all matrices
M`i will be the same for user i, i.e., M`i = Mi, ∀`. Now if we
choose the particular structure Mi = αiI, then condition (73)
is equivalent to

αiI +
1

2
TH

(
I⊗ PTi Pi

)
T � 0. (75)

Now, condition (75) is equivalent to

αigHg ≤ −1

2
gHTH

(
I⊗ PTi Pi

)
Tg, ∀g =⇒ (76)

αigHg ≤ −1

2
‖Tg‖22λmax

(
I⊗ PTi Pi

)
, ∀g =⇒ (77)

αigHg ≤ −1

2
‖Tg‖22λmax

(
PTi Pi

)
, ∀g. (78)

Now, the term ‖Tg‖22 can be further simplified. Based on the
structure of matrix T, we have that

‖Tg‖22 =
nTnT∑
i=1

|gi + gi+nTnT +1 + . . .+ gi+nTnT (|UI |−1)+1|2 (79)

≤
nTnT∑
i=1

||UI |max{gi, . . . , gi+nTnT (|UI |−1)+1}|2 (80)

≤
nTnT∑
i=1

|UI |2
(
|gi|2 + . . .+ |gi+nTnT (|UI |−1)+1|2

)
(81)

= |UI |2
nTnT |UI |∑

i=1

|gi|2 = |UI |2‖g‖22. (82)

Thus, a sufficient condition to fulfill (78) is

αi‖g‖22 ≤ −
1

2
|UI |2‖g‖22λmax

(
PTi Pi

)
, ∀g, (83)

and, finally,

αi ≤ −
1

2
|UI |2λmax

(
PTi Pi

)
≤ −1

2
|UI |2λ2

max(HH
i Hi). (84)

Hence, a possible matrix Mi satisfying assumptions (A1)−(A4)
is, finally,

Mi = −1

2
|UI |2λ2

max(HH
i Hi)I. (85)
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