

Proyecto de diseño de unos auriculares de cancelación activa de ruido

Trabajo Final de Grado **Tomo II:** ANNEXOS

Curso 2014/2015 Q2

Grado en Ingeniería en Tecnologías Industriales (GRETI)

Autor: Director del TFG: Xavier Batista Lladó Jordi Romeu Garbi

ÍNDICE

1	Annexo I FICHA TÉCNICA ALTAVOCES	.1
2	Annexo II FICHA TÉCNICA MICRÓFONOS1	15

OBI

Dynamic Speaker

Date: 03/22/12

DIMENSIONS: mm (in.)

Part Number:

254-DS108-RO

Frequency Response Curve Z μ: Frequency Response, Magn dB re 20.00 PA 90 80 dB ø10 (ø.393) 70 ø7.1 (ø.28) 60 2.7 (.11) 50 Dynamic Speaker 90° 40 20 200 Hz 2k 20k 6.6 (.26) 6 (.236) .80 (.031) 2-.15 (.008) 2-.30 (.012) RA.15 R1.82 PAL 82 1.35 (.053) R3.65 4.7 (.185) 5.3 (.21)

PCB Layout

Electrical Specifications:

- Rated Input Power: 0.15W
- Max. Input Power: Must be normal at 0.3W White Noise for 1 minute
- Impedance: $8\Omega \pm 15\%$ at 3KHz, 1V
- Resonant Frequency (Fo): 1200Hz ± 20% at FO, 1V
- · Frequency Range: Fo 6KHz
- Sensitivity (S.P.L.): 72dB (W/m) ± 3dB
 - 83dB (0.15W/0.1m) ± 3dB

Mechanical Specifications:

- Operating Temperature: -20°C to + 60°C
- Storage Temperature: -30°C to +70°C

Materials:

1 (.04)

Magnet: Nd-Fe-B

Note:

RoHS Compliant

Soldering Specifications:

- · Recommend using constant branding iron in 30W
- Temperature Range: 360±5°C for 2 seconds

Available from Mouser Electronics

www.mouser.com

(800) 346-6873

KT-400533

Specifications are subject to change without notice. No liability or warranty implied by this information. Environmental compliance based on producer documentation.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kobitone: 254-DS108-RO Speaker Speaker

Date: 7/10/13

Dimensions: mm (in.)

Part Number:

254-PS1032-RO

eaker

Frequency Response Curve

KT-400557

Electrical Specifications:

- Nominal Impedance: 32Ω ± 15% at 1200Hz
- Power Rating: Normal 0.01W, Maximum 0.02W
- Lowest Resonant Frequency: 700±150Hz
- Output Sound Pressure Level: 97±3dB/0.01W/0.01 Meter
- Average at 1000~2000Hz • Frequency Range: 400~6000Hz, Average SPL -20dB
- Frequency hange. 400~0000Hz, Average SFL
 Distartions. 50/ Maximum at 4000UHz/0.01W/

Distortion: 5% Maximum at 1000Hz/0.01W

Mechanical Specifications:

- Operating Temperature: -25°C to +50°C
- Storage Temperature: -25°C to +55°C

Materials:

- · Magnet: Rare Earth
- · Diaphragm: Mylar

Notes:

· RoHS Compliant

Available from Mouser Electronics

www.mouser.com

(800) 346-6873

Specifications are subject to change without notice. No liability or warranty implied by this information. Environmental compliance based on producer documentation.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kobitone: 254-PS1032-RO

MODEL: CDM-10008 | DESCRIPTION: SPEAKER

FEATURES

- \cdot metal frame
- \cdot mylar cone

SPECIFICATIONS

conditions/description	min	typ	max	units
		10		mm
		2.9		mm
max. power: IEC-60268-5, filter 60 s on / 120 s off, 10 cycles at room temp		0.3	0.5	W
at 1.5 kHz, 1 V	6.8	8	9.2	Ω
at 1 V	960	1200	1,440	Hz
0.3 W, 10 cm ave. at 1, 1.2, 1.5, 2 kHz 1 W, 1 m ave. at 1, 1.2, 1.5, 2 kHz	83 69	86 72	89 75	dB dB
			20,000	Hz
at 1.5 kHz, 0.3 W			10	%
must be normal at sine wave 1.55 V				
size: 5.3 x 1.0 mm				
	-20		55	°C
		0.6		g
metal				
yes				
	conditions/description max. power: IEC-60268-5, filter 60 s on / 120 s off, 10 cycles at room temp at 1.5 kHz, 1 V at 1 V 0.3 W, 10 cm ave. at 1, 1.2, 1.5, 2 kHz 1 W, 1 m ave. at 1, 1.2, 1.5, 2 kHz at 1.5 kHz, 0.3 W must be normal at sine wave 1.55 V size: 5.3 x 1.0 mm metal yes	conditions/description min max. power: IEC-60268-5, filter 60 s on / 120 s off, 10 cycles at room temp at 1.5 kHz, 1 V 6.8 at 1 V 960 0.3 W, 10 cm ave. at 1, 1.2, 1.5, 2 kHz 83 1 W, 1 m ave. at 1, 1.2, 1.5, 2 kHz 69 at 1.5 kHz, 0.3 W must be normal at sine wave 1.55 V size: 5.3 x 1.0 mm -20 metal yes	conditions/description min typ 10 10 2.9 2.9 max. power: IEC-60268-5, filter 60 s on / 120 s off, 10 cycles at room temp 0.3 at 1.5 kHz, 1 V 6.8 8 at 1 V 960 1200 0.3 W, 10 cm ave. at 1, 1.2, 1.5, 2 kHz 83 86 1 W, 1 m ave. at 1, 1.2, 1.5, 2 kHz 69 72 at 1.5 kHz, 0.3 W -20 -20 must be normal at sine wave 1.55 V -20 0.6 metal -20 0.6	conditions/description min typ max 10 10 2.9 10 max. power: IEC-60268-5, filter 60 s on / 120 s off, 10 cycles at room temp 0.3 0.5 0.5 at 1.5 kHz, 1 V 6.8 8 9.2 141 V at 1.5 kHz, 1 V 6.8 8 9.2 at 1 V 960 1200 1,440 0.3 W, 10 cm ave. at 1, 1.2, 1.5, 2 kHz 83 86 89 1 W, 1 m ave. at 1, 1.2, 1.5, 2 kHz 69 72 75 20,000 11.5 kHz, 0.3 W 10 10 must be normal at sine wave 1.55 V 10 10 size: 5.3 x 1.0 mm -20 55 0.6 95 0.6

SOLDERABILITY

.....

parameter	conditions/description
hand soldering	370 ±10°C for 3 ±1 seconds

MECHANICAL DRAWING

FREQUENCY RESPONSE CURVE

PACKAGING

.....

REVISION HISTORY

rev.	description	date
1.0	initial release	11/08/2011

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a one (1) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

⁴⁴¹¹ South High School Road, Indianapolis, Indiana 46241 USA • Phone (317) 612-1000 • Fax (317) 612-1010 • http://www.mallory-sonalert.com

PSR-11N08S-JQ

Frequency Response:

⁴⁴¹¹ South High School Road, Indianapolis, Indiana 46241 USA • Phone (317) 612-1000 • Fax (317) 612-1010 • http://www.mallory-sonalert.com

PSR-13N08A-JQ

Frequency Response:

ТОР			SIDE		E	BOTTO		EW		
		-	Ø 010	012	Yellow Glue				-	
Specifica	ations			Nistas			Revisio	n History		
Description	Value	Unit	1	NOTES	Version		Description		Date	Approved
Shape	Round		1) All dimensions are in mm	unless otherwise noted	1	Releas	ed from Engi	neering	2/5/2014	J.S.
Resonant Frequency	1,200	(Hz)	2) All parts meet RoHS							
Frequency Range	1,200 ~ 6,000	(Hz)								
SPL @ 10cm	82	(dBA)								
Impedance	8	(Ohm)		_						
Cone Material	Mylar]						
Nominal Power	0.15	(W)								
Max Power	0.3	(W)								
Mount Type	Flush Mount				Drawn by	Date	Checked by	Date	Approved by	Date
Operating Temperature	-20 ~ +60	°C			G.W.	1/27/2014	C.E.	2/4/2014	J.S.	2/5/2014
Storage Temperature	-20 ~ +60	°C		Dynamic Speaker			CN	11012	00 1	
Weight	0.8	(g)		Dynamic Speaker			210	ITOTS	00-T	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

DB Unlimited: SM101208-1

MP23AB02B

MEMS audio sensor high-performance analog bottom-port microphone

Datasheet - production data

Features

- Single supply voltage operation
- Low power consumption
- Omnidirectional sensitivity
- High signal-to-noise ratio
- High bandwidth
- Package compliant with reflow soldering

Description

The MP23AB02B is a compact, low-power microphone built with a low-profile sensing element.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The MP23AB02B has an acoustic overload point of 125 dBSPL with a 64 dB signal-to-noise ratio.

The MP23AB02B is available in a package compliant with reflow soldering and is guaranteed to operate over an extended temperature range from -40 $^{\circ}$ C to +85 $^{\circ}$ C.

Table 1. Device summary

Order code	Temperature range (°C)	Package	Packing
MP23AB02B	-40 to +85	(3.35 x 2.5 x 0.98) mm	Tray
MP23AB02BTR	-40 to +85	(3.35 x 2.5 x 0.98) mm	Tape and reel

This is information on a product in full production.

1 Pin description

Figure 1. Pin connections

Table 2. Pin description

Pin n°	Pin name	Function
1	Out	Analog output
2	Vdd	Power supply
3	GND	Ground

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.6	1.8	3.6	V
ldd	Current consumption	mean value = 2 V		150	220	μA
So	Sensitivity	1 kHz (0 dB = 1 V/Pa)	-41	-38	-35	dBV/PA
SNR	Signal-to-noise ratio	A-weighted, 1 kHz (0 dB = 1 V/Pa)		64		dBA
Тор	Operating temperature range		-40		+85	°C

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed

Table 4. Distortion specifications at 1 kHz

Parameter	Test condition	Value
Distortion	94	< 0.5%
Distortion	120	< 2%
Distortion	124	= 10%

Figure 2. Frequency response

DocID026104 Rev 3

Absolute maximum ratings 3

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.5 to 4	V
T _{STG}	Storage temperature range	-40 to +125	°C

Table 5. Absolute	maximum	ratings
-------------------	---------	---------

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4 Application recommendations

Figure 3. MP23AB02B electrical connections and external component values

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7/12

Min. Typ. Ma A1 0.880 0.980 1.0 A2 0.200 0.250 0.3 D1 3.250 3.350 3.4 D2 0.495 0.595 0.6 D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 1.0 1.3 R3 0.25 0.3 1.3 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 N2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400	Deferrer	Dimensions (mm)			
A1 0.880 0.980 1.0 A2 0.200 0.250 0.3 D1 3.250 3.350 3.4 D2 0.495 0.595 0.6 D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 0.28 0.28 R3 0.25 0.26 1.3 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	Reference	Min.	Тур.	Max.	
A2 0.200 0.250 0.3 D1 3.250 3.350 3.4 D2 0.495 0.595 0.6 D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 1 1 R3 0.25 1 1 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	A1	0.880	0.980	1.080	
D1 3.250 3.350 3.4 D2 0.495 0.595 0.6 D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 1.3 0.25 0.26 R3 0.25 1.3 2.60 2.60 E1 2.400 2.500 2.60 2.60 E2 1.150 1.250 1.3 3.3 E3 1.920 2.070 2.2 1.5 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	A2	0.200	0.250	0.300	
D2 0.495 0.595 0.6 D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 1 1 R3 0.25 1 1 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.22 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	D1	3.250	3.350	3.450	
D3 2.770 2.920 3.0 R1 0.275 0.325 0.3 R2 0.28 0.28 0.25 R3 0.25 0.26 0.26 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	D2	0.495	0.595	0.695	
R1 0.275 0.325 0.3 R2 0.28 0.25 0.25 0.26 0.26 0.25 0.26 0.22 0.33 0.25 0.21 0.33 0.25 0.21<	D3	2.770	2.920	3.070	
R2 0.28 R3 0.25 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.64 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	R1	0.275	0.325	0.375	
R3 0.25 E1 2.400 2.500 2.6 E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	R2		0.28		
E12.4002.5002.6E21.1501.2501.3E31.9202.0702.2L11.4801.5201.5L21.1801.2201.2N10.8850.9250.9N20.5700.6100.6T10.8600.9000.9T20.6400.6800.7G10.9000.9501.0G21.4001.5501.6D20.4000.4500.450	R3		0.25		
E2 1.150 1.250 1.3 E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	E1	2.400	2.500	2.600	
E3 1.920 2.070 2.2 L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	E2	1.150	1.250	1.350	
L1 1.480 1.520 1.5 L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.66 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	E3	1.920	2.070	2.220	
L2 1.180 1.220 1.2 N1 0.885 0.925 0.9 N2 0.570 0.610 0.66 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	L1	1.480	1.520	1.560	
N1 0.885 0.925 0.9 N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	L2	1.180	1.220	1.260	
N2 0.570 0.610 0.6 T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	N1	0.885	0.925	0.965	
T1 0.860 0.900 0.9 T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	N2	0.570	0.610	0.650	
T2 0.640 0.680 0.7 G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	T1	0.860	0.900	0.940	
G1 0.900 0.950 1.0 G2 1.400 1.550 1.6	T2	0.640	0.680	0.720	
G2 1.400 1.550 1.6	G1	0.900	0.950	1.000	
	G2	1.400	1.550	1.600	
G3 0.100 0.150 0.2	G3	0.100	0.150	0.200	
P1 1.425 1.475 1.5	P1	1.425	1.475	1.525	
P2 1.000 1.050 1.1	P2	1.000	1.050	1.100	
d 0.150	d		0.150		
К 0.050	К		0.050		

Table 6. RHLGA metal cap 3-lead (3.35 x 2.5 x 0.98 mm9 package dimensions

6 Soldering information

Table 7. Recommended soldering profile limits

Description	Parameter	Pb free
Average ramp rate	T_L to T_P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidus temperature	tL	60 sec to 150 sec
Liquidus temperature	Τ _L	217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t = 25 °C) to peak temperature		8 minutes max

7 Revision history

Table 0. Document revision mistory

Date	Revision	Changes	
21-Mar-2014	1	Initial release.	
16-Jun-2014	2	Updated Figure 5 on page 9.	
22-Sep-2014	3	Updated acoustic overload point in Description.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID026104 Rev 3

MP33AB01

MEMS audio surface-mount bottom-port silicon microphone with analog output

Datasheet - production data

Features

- Single supply voltage
- Low power consumption
- Omnidirectional sensitivity
- High signal-to-noise ratio
- High bandwidth
- Package compliant with reflow soldering

Description

The MP33AB01 is a compact, low-power microphone built with a low-profile sensing element.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The MP33AB01 has an acoustic overload point of 125 dBSPL with a 63 dB signal-to-noise ratio.

The MP33AB01 is available in a package compliant with reflow soldering and is guaranteed to operate over an extended temperature range from -30 °C to +100 °C.

Order code	Temperature range [°C]	Package	Packing	
MP33AB01	-30 to +100	RHLGA (3.76 x 2.95 x 1.0) mm	Tray	
MP33AB01TR	-30 to +100	RHLGA (3.76 x 2.95 x 1.0) mm	Tape and reel	

Table 1. Device summary

Contents

1	Pin description	3
2	Acoustic and electrical specifications	ļ
	2.1 Acoustic and electrical characteristics	1
	2.2 Frequency response	5
3	Absolute maximum ratings	5
4	Application recommendations7	7
5	Package mechanical data 8	3
6	Revision history12	2

1 Pin description

Table 2. Pin description

Pin #	Pin name	Function
1	Output	Analog output
2	GND	0 V supply
3	GND	0 V supply
4	Vdd	Power supply
5	GND	0 V supply
6	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 2.2 V unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.5	2.2	3.6	V
ldd	Current consumption	mean value = 2 V			0.25	mA
FR	Frequency range		100		10000	Hz
So	Sensitivity	at 1 kHz (0 dB = 1 V/Pa)	-41	-38	-35	dBV
SNR	Signal-to-noise ratio	at 1 kHz (0 dB = 1 V/Pa)		63		dB
Тор	Operating temperature range		-30		+100	°C

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

Table 4. Distortion specifications at 1 kHz

Parameter	Test condition	Value
Distortion	94 dBSPL	< 1% THD
Distortion	125 dBSPL	10% THD (typ.)

2.2 Frequency response

Figure 2. Typical frequency response normalized at 1 kHz

3 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.5 to 4	V
T _{STG}	Storage temperature range	-40 to +100	°C

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

4 Application recommendations

The DC-blocking capacitor C1 is required on the Vout pin as shown in *Figure 3*. The C1 value and the input resistance of the interface circuit (R) affect the cut-off frequency of the Audio signal path as:

3 dB cut-off freq = 1 / 2π RC1

It's advisable to have a cut-off frequency well below 20 HZ, so for a typical input resistance of about 20 k Ω it is recommended to use a C1 > 1 μ F.

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

The RHLGA (3.76 x 2.95) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com.

Figure 4. Recommended soldering profile limits

Table 6.	Recommended	soldering	profile limi	ts

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidous temperature	tL	60 sec to 150 sec
Liquidous temperature	ΤL	217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Figure 5. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package outline

Table 7. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package dimensions

Symbol	mm			inch.		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
A1	0.900	1.000	1.100	0.0354	0.0394	0.0433
D1	3.660	3.760	3.860	0.1441	0.1480	0.1520
D2	0.600	0.750	0.900	0.0236	0.0295	0.0354
R1	0.200	0.250	0.300	0.0079	0.0098	0.0118
E1	2.850	2.950	3.050	0.1122	0.1161	0.1201
E2	1.325	1.475	1.625	0.0522	0.0581	0.0640
L1	2.690	2.740	2.790	0.1059	0.1079	0.1098
L2	1.882	1.932	1.982	0.0741	0.0761	0.0780
L3	1.981	2.031	2.181	0.0780	0.0800	0.0859
N1	1.300	1.350	1.400	0.0512	0.0531	0.0551
N2	0.916	0.966	1.116	0.0361	0.0380	0.0440
N3	0.965	1.015	1.065	0.0380	0.0400	0.0419
G1	0.673	0.723	0.763	0.0265	0.0285	0.0300
G2	0.512	0.562	0.612	0.0202	0.0221	0.0241
G3	0.562	0.612	0.662	0.0221	0.0241	0.0261
G4	0.562	0.612	0.662	0.0221	0.0241	0.0261
G5	1.174	1.224	1.274	0.0462	0.0482	0.0502
P1	1.680	1.730	1.780	0.0661	0.0681	0.0701
P2	1.275	1.325	1.375	0.0502	0.0522	0.0541

Symbol	mm			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
d		0.150			0.0059	
к		0.050			0.0020	

Table 7. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package dimensions (continued)

Figure 6. Device footprint and PCB land pattern

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
17-Jan-2013	1	Initial release
13-Sep-2013	2	Modified Figure 3 on page 7

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING. ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID24159 Rev 2

MP33AB01H

MEMS audio surface-mount bottom-port silicon microphone with analog output

Datasheet - production data

Features

- Single supply voltage
- Low power consumption
- Omnidirectional sensitivity
- High signal-to-noise ratio
- High bandwidth
- Package compliant with reflow soldering

Description

The MP33AB01H is a compact, low-power microphone built with a low-profile sensing element.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The MP33AB01H has an acoustic overload point of 125 dBSPL with a 66 dB signal-to-noise ratio.

The MP33AB01H is available in a package compliant with reflow soldering and is guaranteed to operate over an extended temperature range from -30 °C to +100 °C.

Table in Device caninary				
Order code	Temperature range [°C]	Package	Packing	
MP33AB01H	-30 to +100	RHLGA (3.76 x 2.95 x 1.0) mm	Tray	
MP33AB01HTR	-30 to +100	RHLGA (3.76 x 2.95 x 1.0) mm	Tape and reel	

Table 1. Device summary

Contents

1	Pin description	\$
2	Acoustic and electrical specifications4	ļ
	2.1 Acoustic and electrical characteristics 4	ŀ
	2.2 Frequency response 5	5
3	Absolute maximum ratings 6	;
4	Application recommendations 7	,
5	Package mechanical data 8	\$
6	Revision history)

1 Pin description

Table 2. Pin description

Pin #	Pin name	Function
1	Output	Analog output
2	GND	0 V supply
3	GND	0 V supply
4	Vdd	Power supply
5	GND	0 V supply
6	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 2.2 V unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.5	2.2	3.6	V
ldd	Current consumption	mean value = 2 V			0.25	mA
FR	Frequency range		100		10000	Hz
So	Sensitivity	at 1 kHz (0 dB = 1 V/Pa)	-41	-38	-35	dBV
SNR	Signal-to-noise ratio	at 1 kHz (0 dB = 1 V/Pa)	64	66		dB
Тор	Operating temperature range		-30		+100	°C

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

Table 4. Distortion specifications at 1 kHz

Parameter	Test condition	Value
Distortion	94 dBSPL	< 1% THD
Distortion	125 dBSPL	10% THD (typ.)

2.2 Frequency response

Figure 2. Typical frequency response normalized at 1 kHz

3 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.5 to 4	V
T _{STG}	Storage temperature range	-40 to +100	°C

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

4 Application recommendations

The DC-blocking capacitor C1 is required on the Vout pin as shown in *Figure 3*. The C1 value and the input resistance of the interface circuit (R) affect the cut-off frequency of the Audio signal path as:

3 dB cut-off freq = 1 / 2π RC1

It's advisable to have a cut-off frequency well below 20 HZ, so for a typical input resistance of about 20 k Ω it is recommended to use a C1 > 1 μ F.

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

The RHLGA (3.76 x 2.95) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com.

Figure 4. Recommended soldering profile limits

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidous temperature	tL	60 sec to 150 sec
Liquidous temperature	TL	217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Figure 5. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package outline

Table 7. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package dimensions

Symbol		mm.			inch.	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
A1	0.900	1.000	1.100	0.0354	0.0394	0.0433
D1	3.660	3.760	3.860	0.1441	0.1480	0.1520
D2	0.600	0.750	0.900	0.0236	0.0295	0.0354
R1	0.200	0.250	0.300	0.0079	0.0098	0.0118
E1	2.850	2.950	3.050	0.1122	0.1161	0.1201
E2	1.325	1.475	1.625	0.0522	0.0581	0.0640
L1	2.690	2.740	2.790	0.1059	0.1079	0.1098
L2	1.882	1.932	1.982	0.0741	0.0761	0.0780
L3	1.981	2.031	2.181	0.0780	0.0800	0.0859
N1	1.300	1.350	1.400	0.0512	0.0531	0.0551
N2	0.916	0.966	1.116	0.0361	0.0380	0.0440
N3	0.965	1.015	1.065	0.0380	0.0400	0.0419
G1	0.673	0.723	0.763	0.0265	0.0285	0.0300
G2	0.512	0.562	0.612	0.0202	0.0221	0.0241
G3	0.562	0.612	0.662	0.0221	0.0241	0.0261
G4	0.562	0.612	0.662	0.0221	0.0241	0.0261
G5	1.174	1.224	1.274	0.0462	0.0482	0.0502
P1	1.680	1.730	1.780	0.0661	0.0681	0.0701
P2	1.275	1.325	1.375	0.0502	0.0522	0.0541

Symbol		mm.			inch.	,
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
d		0.150			0.0059	
К		0.050			0.0020	

Table 7. RHLGA 3.76 mm x 2.95 mm x 1.0 mm package dimensions (continued)

Figure 6. Device footprint and PCB land pattern

6 Revision history

Tuble 0. Decument revision motory	Table 8.	Document	revision	history
-----------------------------------	----------	----------	----------	---------

Date	Revision	Changes
17-Jan-2013	1	Initial release
13-Sep-2013	2	Modified Figure 3 on page 7
10-Oct-2013	3	Modified description value in cover page from 63 dB to 66 dB

57

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID024171 Rev 3

MP34DB01

Datasheet - production data

MEMS audio sensor omnidirectional digital microphone

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 62.6 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM single-bit output with option for stereo configuration
- RHLGA package
 - Bottom-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VolP
- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DB01 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface with stereo operation capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DB01 has an acoustic overload point of 120 dBSPL with a best on the market 62.6 dB signal-to-noise ratio and -26 dBFS sensitivity.

The MP34DB01 is available in a bottom-port, SMD-compliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Table 1. Device summary

Part number	Temperature range [°C]	Package	Packing
MP34DB01	-40 to +85	RHLGA (3x4x1) mm 4LD	Tray
MP34DB01TR	-40 to +85	RHLGA (3x4x1) mm 4LD	Tape and reel

This is information on a product in full production.

Contents

1	Pin description
2	Acoustic and electrical specifications6
	2.1 Acoustic and electrical characteristics
	2.2 Timing characteristics
	2.3 Frequency response 8
3	Sensing element9
4	Absolute maximum ratings 10
5	Functionality
	5.1 L/R channel selection 11
6	Application recommendations 12
7	Package mechanical data 13
8	Revision history15

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	5
Table 3.	Acoustic and electrical characteristics	6
Table 4.	Distortion specifications	6
Table 5.	Timing characteristics	7
Table 6.	Frequency response mask for digital microphones	8
Table 7.	Absolute maximum ratings 1	0
Table 8.	L/R channel selection	1
Table 9.	Recommended soldering profile limits1	3
Table 10.	RHLGA 3 mm x 4 mm x 1 mm 4-lead package dimensions 1	4
Table 11.	Document revision history1	5

List of figures

Figure 1.	Pin connections
Figure 2.	Timing waveforms
Figure 3.	Typical frequency response normalized at 1 kHz
Figure 4.	MP34DB01 electrical connections
Figure 5.	MP34DB01 electrical connections for stereo configuration
Figure 6.	Recommended soldering profile limits
Figure 7.	RHLGA 3 mm x 4 mm x 1 mm 4-lead package outline.14

1 Pin description

Table 2.Pin description

Pin #	Pin name	Function
1	CLK	Synchronization input clock
2	LR	Left/right channel selection
3	Vdd	Power supply
4	DOUT	Left/right PDM data output
5 (ground ring)	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value ⁽²⁾		0.65		mA
IddPdn	Current consumption in power-down mode ⁽³⁾			20		μA
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity	at 1 kHz, 1 Pa	-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa		62.6		dB
PSR	Power supply rejection	Guaranteed by design		-70		dBFS
Clock	Input clock frequency ⁽⁴⁾		1	2.4	3.25	MHz
TWK	Wake-up time ⁽⁵⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

 Table 3.
 Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

2. No load on DOUT line.

3. Input clock in static mode.

4. Duty cycle: min = 40% max = 60%

5. Time from the first clock edge to valid output data.

Table 4.Distortion specifications

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N

2.2 Timing characteristics

Table 5.	Timing characteristics	s
	Thinking on a dotter is the	-

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	30 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
$T_{L,EN}$	Data enabled on DATA line, L/R pin = 0	30 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

1. From design simulations

2.3 Frequency response

Figure 3. Typical frequency response normalized at 1 kHz

Table 6.	Frequency response mask	for digital microphones

Frequency / Hz ⁽¹⁾	Lower limit	Upper limit	Unit
20100	-5	+5	dBr 1kHz
1008000	-2	+2	dBr 1kHz
800020000	-5	+5	dBr 1kHz

1. At T = 20 °C and acoustic stimulus = 1 Pa (94 dB SPL).

3 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit	
Vdd	Supply voltage	-0.3 to 6	V	
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V	
T _{STG}	Storage temperature range	-40 to +125	°C	
ESD	Electrostatic discharge protection	2 (HBM)	kV	

able 7.	Absolute	maximum	ratings
---------	----------	---------	---------

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

5 Functionality

5.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 8*. The L/R pin must be connected to Vdd or GND.

Table 8. L/R channel selection

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

6 Application recommendations

Figure 4. MP34DB01 electrical connections

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 3 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 8).

Doc ID 17924 Rev 8

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Soldering information

The RHLGA $(3 \times 4 \times 1)$ mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Figure 6. Recommended soldering profile limits

Table 9.	Recommended	soldering	profile	limits

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidous temperature	tL	60 sec to 150 sec
Liquidous temperature	ΤL	217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Figure 7. RHLGA 3 mm x 4 mm x 1 mm 4-lead package outline

Symbol		mm	
ey inder	Min	Тур	Мах
A1	0.900	1.000	1.100
D1	3.900	4.000	4.100
D2	0.950	1.000	1.050
R1	0.350	0.400	0.450
E1	2.900	3.000	3.100
E2	1.450	1.500	1.550
L1	0.650	0.700	0.750
L2	0.850	0.900	0.950
N1	1.000	1.050	1.100
N2	0.400	0.450	0.500
T1	0.350	0.400	0.450
T2	0.550	0.600	0.650
G1	3.050	3.100	3.150
G2	3.750	3.800	3.850
G3	2.050	2.100	2.150
G4	2.750	2.800	2.850
G5	0.250	0.300	0.350
G6	0.050	0.100	0.150
G7	0.500	0.550	0.600
G8	0.800	0.850	0.900
М		0.100	
К		0.050	

8 Revision history

Table 11.	Document revision	history
-----------	--------------------------	---------

Date	Revision	Changes
28-Mar-2011	1	Initial release
05-Apr-2011	2	Updated Table 3 and Table 5
21-Oct-2011	3	Added max. peak temperature T _P to <i>Table 9</i>
18-Nov-2011	4	Updated SNR typical value in <i>Table 3</i> ; document promoted from preliminary to full datasheet
04-Jan-2012	5	Updated <i>Features</i> and <i>Description</i> Updated <i>Figure 3: Typical frequency response normalized at 1 kHz</i>
20-Mar-2012	6	Added test condition criterion to PSR in <i>Table 3: Acoustic and electrical characteristics</i>
07-May-2012	7	Added V _{IOL} , V _{IOH} to <i>Table 3: Acoustic and electrical characteristics</i>
05-Jul-2012	8	Added Section 3: Sensing element Updated operating temperature range throughout datasheet

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17924 Rev 8

MP34DB02

MEMS audio sensor omnidirectional digital microphone

RHLGA (3 x 4 x 1 mm) 4LD

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 62.6 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM single-bit output with option for stereo configuration
- RHLGA package
 - Bottom-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers

- Portable media players
- VolP
- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DB02 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface with stereo operation capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DB02 has an acoustic overload point of 120 dBSPL with a best on the market 62.6 dB signal-to-noise ratio and -26 dBFS sensitivity.

The MP34DB02 is available in a bottom-port, SMD-compliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Table 1. Device summary

Part number	Temperature range [°C]	Package	Packing
MP34DB02	-40 to +85	RHLGA (3x4x1) mm 4LD	Tray
MP34DB02TR	-40 to +85	RHLGA (3x4x1) mm 4LD	Tape and reel

March 2014

DocID026103 Rev 1

This is information on a product in full production.

1/15

Contents

1	Pin description
2	Acoustic and electrical specifications4
	2.1 Acoustic and electrical characteristics 4
	2.2 Timing characteristics 5
	2.3 Frequency response 6
3	Sensing element
4	Absolute maximum ratings8
5	Functionality9
	5.1 L/R channel selection 9
6	Application recommendations 10
7	Package mechanical data 11
8	Revision history14

1 Pin description

Table 2. Pin description

Pin n°	Pin name	Function	
1	CLK	Synchronization input clock	
2	LR	Left/right channel selection	
3	Vdd	Power supply	
4	DOUT	Left/right PDM data output	
5 (ground ring)	GND	0 V supply	

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value ⁽²⁾		0.65		mA
IddPdn	Current consumption in power-down mode ⁽³⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity	at 1 kHz, 1 Pa	-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa		62.6		dB
PSR	Power supply rejection			-70		dBFS
Clock	Input clock frequency ⁽⁴⁾		1	2.4	3.25	MHz
TWK	Wake-up time ⁽⁵⁾	guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

2. No load on DOUT line.

3. Input clock in static mode.

4. Duty cycle: min = 40% max = 60%

5. Time from the first clock edge to valid output data.

Table 4. Distortion specifications

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1 % THD + N
Distortion	115 dBSPL (1 kHz)	< 5 % THD + N

2.2 Timing characteristics

Tahla	5	Timina	characteristics
lable	э.	rinning	characteristics

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾	30 ⁽¹⁾	ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾	30 ⁽¹⁾	ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

1. From design simulations

2.3 Frequency response

Figure 3. Frequency response

3 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 6.	Absolute	maximum	ratings
----------	----------	---------	---------

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

5 Functionality

5.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 7*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

Table 7. L/R channel selection

6 Application recommendations

Figure 4. MP34DB02 electrical connections

Figure 5. MP34DB02 electrical connections for stereo configuration

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 3 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 7).

DocID026103 Rev 1

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Soldering information

The RHLGA $(3 \times 4 \times 1)$ mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Figure 6. Recommended soldering profile limits

Table 8.	Recommended	soldering	profile	limits

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T_{SMIN} to T_{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidus temperature	tL	60 sec to 150 sec
Liquidus temperature	ΤL	217 °C
Peak temperature	T _P	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Figure 7. RHLGA 3x4 (Metal Cap) 0.25mm Port Hole 4LD package outline

Table 9. RHLGA 3 x 4 (Metal Cap) 0.25 mm Port Hole 4LD package dimensions

Sumhal		mm.	
Symbol	Min.	Тур.	Max.
A1	0.900	1.000	1.100
A2	0.200	0.250	0.300
D1	3.900	4.000	4.100
D2	0.900	1.000	1.100
D3	1.000	1.100	1.200
D4	3.610	3.700	3.790
R1	0.200	0.250	0.300
R2		0.280	
R3		0.250	
E1	2.900	3.000	3.100
E2	1.300	1.500	1.700
E4	2.610	2.700	2.790
L1	0.650	0.700	0.750
L2	0.850	0.900	0.950
N1	1.000	1.050	1.100
N2	0.400	0.450	0.500
T1	0.350	0.400	0.450
T2	0.550	0.600	0.650

Table 9. RHLGA 3 x 4 ((Metal Cap) 0.25 mm	Port Hole 4LD packad	de dimensions (continued)

Symbol	mm.			
	Min.	Тур.	Max.	
G1	3.050	3.100	3.150	
G2	3.750	3.800	3.850	
G3	2.050	2.100	2.150	
G4	2.750	2.800	2.850	
G5	0.250	0.300	0.350	
G6	0.050	0.100	0.150	
G7	0.500	0.550	0.600	
G8	0.800	0.850	0.900	
М		0.100		
К		0.050		

8 Revision history

Table 10. Document	revision	history
--------------------	----------	---------

Date	Revision	Changes
21-Mar-2014	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID026103 Rev 1

MP34DT01

MEMS audio sensor omnidirectional digital microphone

Datasheet - production data

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 63 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VoIP
- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DT01 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT01 has an acoustic overload point of 120 dBSPL with a 63 dB signal-to-noise ratio and –26 dBFS sensitivity.

The MP34DT01 is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Table 1: Device summary

Order codes Temp. range [°C		Package	Packing
MP34DT01	-40 to +85	HCLGA (3x4 x1 mm) 4LD	Tray
MP34DT01TR	-40 to +85	HCLGA (3x4x1 mm) 4LD	Tape and reel

February 2015

DocID022331 Rev 12

1/20

This is information on a product in full production.

Contents

Со	ntents		
1	Pin des	cription	5
2	Acousti	ic and electrical specifications	6
	2.1	Acoustic and electrical characteristics	6
	2.2	Timing characteristics	7
	2.3	Frequency response	8
3	Carrier	tape mechanical specifications	9
4	Process	s recommendations	10
5	Sensing	g element	12
6	Absolut	te maximum ratings	13
7	Functio	nality	14
	7.1	L/R channel selection	14
8	Packag	e information	15
	8.1	Soldering information	15
	8.2	HCLGA package information	16
9	Revisio	n history	19

List of tables

Table 1: Device summary	1
Table 2: Pin description	5
Table 3: Acoustic and electrical characteristics	6
Table 4: Distortion specifications	6
Table 5: Timing characteristics	7
Table 6: Frequency response mask for digital microphones	8
Table 7: Absolute maximum ratings	13
Table 8: L/R channel selection	14
Table 9: Recommended soldering profile limits	15
Table 10: HCLGA (3 x 4 x 1 mm) 4-lead package dimensions	17
Table 11: Document revision history	19

List of figures

Figure 1: Pin connections	5
Figure 2: Timing waveforms	7
Figure 3: Frequency response and mask	8
Figure 4: Carrier tape without microphone (top view)	9
Figure 5: Carrier tape with microphone (top view)	.9
Figure 6: Recommended picking area	10
Figure 7: Recommended picker design	11
Figure 8: Recommended soldering profile limits	15
Figure 9: HCLGA (3 x 4 x 1 mm) 4-lead package outline	16
Figure 10: Land pattern	18

1 Pin description

Table 2: Pin description

Pin #	Pin name	Function
1	Vdd	Power supply
2	LR	Left/Right channel selection
3	CLK	Synchronization input clock
4	DOUT	Left/Right PDM data output
5 (ground ring)	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 $^{\circ}$ C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value		0.6		mA
IddPdn	Current consumption in power- down mode ⁽²⁾			20		μA
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa		63		dB
PSR	Power supply rejection	Guaranteed by design		-70		dBFS
Clock	Input clock frequency ⁽³⁾		1	2.4	3.25	MHz
Ton	Turn-on time ⁽⁴⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low-level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High-level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3: Acoustic and electrical characteristics

Notes:

⁽¹⁾Typical specifications are not guaranteed.

⁽²⁾Input clock in static mode.

⁽³⁾Duty cycle: min = 40% max = 60%.

⁽⁴⁾Time from the first clock edge to valid output data.

Parameter Test condition		Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N

2.2 Timing characteristics

Table 5: Timing characteristics

Parameter	Description	Min.	Max.	Unit
fclk	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
$T_{L,EN}$	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

Notes:

⁽¹⁾From design simulations

2.3 Frequency response

Table 6: Frequency response mask for digital microphones

Frequency / Hz ⁽¹⁾	Lower limit	Upper limit	Unit
1004000	-2	+2	dBr 1 kHz
400010000	-2	+4	dBr 1 kHz

Notes:

 $^{(1)}\mbox{At}$ T = 20 °C and acoustic stimulus = 1 Pa (94 dB SPL)

57

3 Carrier tape mechanical specifications

Figure 5: Carrier tape with microphone (top view)

DocID022331 Rev 12

4 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with the following recommendations:

- The recommended pick-up area for the MP34DT01 package must be defined using the worst case (ie. no device alignment during the picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). The picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do
 not pick up the component on the inlet area
- For the package outline please refer to *Figure 5: "Carrier tape with microphone (top view)"*. Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- 1 kPa = 0.145 psi (lb/in2) = 0.0102 kgf/cm² = 0.0098 atm
- All recommended dimensions (device safe-picking area) do not include the pick-andplace equipment tolerances

Figure 6: Recommended picking area

To have a safe pick-up "by design", ST strongly advises an ad hoc nozzle.

The following picker ensures that the holes for the vacuum and the air stream are ALWAYS away from the porthole of the device (4 vacuum ports located at each corner of the device).

The recommended nozzle also has a recess, in the form of a cross, which guarantees that the porthole is always left at atmospheric pressure. By using the recommended nozzle, the membrane will not suffer any sudden air disturbances during the picking or placing of the devices in the tape and reel.

Figure 7: Recommended picker design

5 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

Absolute maximum ratings 6

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table	7:	Absolute	maximum	ratings
lanc		Absolute	maximum	raunys

This device is sensitive to mechanical shock, improper handling can cause X) permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

7 Functionality

7.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 8: "L/R channel selection"*. The L/R pin must be connected to Vdd or GND.

Т	able	8:	I/R	channel	selection
	abic	υ.	L /1\	channel	3010011011

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 Soldering information

The HCLGA (3 x 4) 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com.

Figure 8.	Recommended	soldering	nrofile	limite
iguic o.	1.cconnicitaca	Solucing	prome	mmus

Table 9: Recommend	aed soldering profile limit	S
Description	Parameter	Pb free
Average ramp rate	T_L to T_P	3 °C/sec max
Preheat Minimum temperature Maximum temperature Time (T _{SMIN} to T _{SMAX})	T _{SMIN} T _{SMAX} t _S	150 °C 200 °C 60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquids temperature Liquids temperature	tı Tı	60 sec to 150 sec 217 °C
Peak temperature	Τ _Ρ	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

BOTTOM VIEW D2-Pin 1 indicator -e1-∕₃ [e1]/2 ,-[e2]/2 1 2 e2 E1 E2 3 ۲L1 4XR2 D1 L1-6 f cccC SEATING PLANE 6 d eeeC A1 🔬 Ċ D - A D3 В E E3 6 2X d aaaC R1 sound port 6 2X d aaaC TOP VIEW 8053274 E

HCLGA package information 8.2

Figure 9: HCLGA (3 x 4 x 1 mm) 4-lead package outline

Note: The MEMS microphone plastic cap can exhibit some level of variation in color when the device is subjected to thermal processes.

MP34DT01

Package information

			Package information		
Table	Table 10: HCLGA (3 X 4 X 1 mm) 4-lead package dimensions				
Symbol		mm			
	Min.	Тур.	Max.		
А	0.90	1.00	1.10		
A1	0.00	-	0.05		
b	0.35	0.45	0.50		
D	3.90	4.00	4.10		
D1	3.05	3.10	3.15		
D2	3.75	3.80	3.85		
D3	0.30	0.50	0.70		
E	2.90	3.00	3.10		
E1	2.05	2.10	2.15		
E2	2.75	2.80	2.85		
E3	-0.20	0.00	0.20		
e1	1.30	1.35	1.40		
e2	0.80	0.85	0.90		
h	0.25	0.30	0.35		
L	0.90	0.95	1.00		
L1	-	0.10	-		
Ν		4			
R1	0.30	0.40	0.50		
R2	-	0.40	-		
aaa		0.15			
CCC		0.10			
eee		0.08			

DocID022331 Rev 12

9 Revision history

Date	Revision	Changes
06-Oct-2011	1	Initial release
18-Nov-2011	2	Removed "stereo" from title, Section "Features", and Section "Description"
29-Nov-2011	3	Updated Section "Features" and Section "Description"
04-Jan-2012	4	Updated Added So limits to <i>Table 3: "Acoustic and electrical characteristics"</i> Minor textual updates
23-Mar-2012	5	Updated Figure 9: "HCLGA (3 x 4 x 1 mm) 4-lead package outline" Pin 1 indicator removed from top view of package on page 1 and Figure 1: "Pin connections" Updated Table 10: "HCLGA (3 x 4 x 1 mm) 4-lead package dimensions"
06-Apr-2012	6	Updated maximum supply voltage in <i>Table 3: "Acoustic and electrical characteristics"</i>
07-May-2012	7	Added V _{IOL} , V _{IOH} to Table 3: "Acoustic and electrical characteristics"
18-May-2012	8	Updated Table 5: "Timing characteristics"
05-Jul-2012	9	Added Section 5: "Sensing element" Added Figure 10: "Land pattern" Updated temperature range to -40 to +85 °C throughout datasheet
21-Feb-2013	10	Updated dimension T2 in <i>Table 10: "HCLGA</i> (3 x 4 x 1 mm) 4-lead package dimensions"
07-Jun-2013	11	Updated - Figure 3: "Frequency response and mask" - Table 6: "Frequency response mask for digital microphones" - HCLGA mechanical data Figure 9: "HCLGA (3 x 4 x 1 mm) 4-lead package outline" and Table 10: "HCLGA (3 x 4 x 1 mm) 4-lead package dimensions" Added - Section 3: "Carrier tape mechanical specifications" - Section 4: "Process recommendations"
27-Feb-2015	12	Minor textual updates Added note below <i>Figure 9: "HCLGA (3 x 4 x 1 mm) 4-lead package outline"</i>

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

MP34DT01-M

Datasheet - production data

MEMS audio sensor omnidirectional digital microphone

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 61 dB signal-to-noise ratio
- Omnidirectional sensitivity
- 26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players

- VoIP
- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DT01-M is an ultra-compact, lowpower, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT01-M has an acoustic overload point of 120 dBSPL with a 61 dB signal-to-noise ratio and -26 dBFS sensitivity.

The MP34DT01-M is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Table 1. Device summary

Order codes	Temperature range [°C] Package		Packing
MP34DT01-M	40 to 195 HCI CA (2 x 4 x 1 06) mm 41 D		Tray
MP34DT01TR-M	-40 10 +05		Tape and reel

September 2014

DocID026514 Rev 3

This is information on a product in full production.

Contents

1	Pin description
2	Acoustic and electrical specifications4
	2.1 Acoustic and electrical characteristics 4
	2.2 Frequency response 5
	2.3 Timing characteristics 6
3	Application recommendations 7
4	Sensing element9
5	Absolute maximum ratings10
6	Functionality
	6.1 L/R channel selection11
7	Package mechanical data 12
8	Carrier tape mechanical specifications
9	Process recommendations15
10	Revision history

1 Pin description

Figure 1. Pin connections

Pin #	Pin name	Function
1	Vdd	Power supply
2	LR	Left/Right channel selection
3	CLK	Synchronization input clock
4	DOUT	Left/Right PDM data output
5 (ground ring)	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value		0.6		mA
lddPdn	Current consumption in power-down mode ⁽²⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa	61			dB
PSR	Power supply rejection	Guaranteed by design	-70			dBFS
Clock	Input clock frequency (3)		1	2.4	3.25	MHz
Ton	Turn-on time ⁽⁴⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

2. Input clock in static mode.

3. Duty cycle: min = 40% max = 60%.

4. Time from the first clock edge to valid output data.

Table	4.	Distortion	n specifications	

Parameter	Test condition	Value
Distortion	100 dBSPL (1 kHz)	< 1% THD+N
Distortion	115 dBSPL (1 kHz)	< 2% THD+N
Distortion	120 dBSPL (1 kHz)	< 10% THD+N

2.2 Frequency response

Figure 2. Typical frequency response normalized at 1 kHz

2.3 Timing characteristics

Table 5.	Timina	characteristics
		onunuotonistios

Parameter	Description	Min.	Max.	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

1. From design simulations

57

3 Application recommendations

Figure 4. MP34DT01-M electrical connections (Top view)

Figure 5. MP34DT01-M electrical connections for stereo configuration (Top view)

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 1 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 5).

4 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transducers the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
	Electrostatic discharge protection	2 (HBM)	kV
ESD	3 discharges at \pm 8 kV direct contact to lid when unit is grounded (IEC 61000-4-2) and 3 discharges at \pm 2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)	± 8	kV

Table	6	Absolute	maximum	ratings
Table	υ.	Absolute	maximum	raungs

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

6 Functionality

6.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 7*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

Table 7. L/R channel selection

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

The HCLGA 3x4 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Description	Parameter	Pb free			
Average ramp rate	T _L to T _P	3 °C/sec max			
Preheat					
Minimum temperature Maximum temperature	T _{SMIN} T _{SMAX}	150 °C 200 °C			
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec			
Ramp-up rate	T_{SMAX} to T_{L}				
Time maintained above liquidus temperature Liquidus temperature	tL TL	60 sec to 150 sec 217 °C			
Peak temperature	Τ _Ρ	260 °C max			
Time within 5 °C of actual peak temperature		20 sec to 40 sec			
Ramp-down rate		6 °C/sec max			

Table 8. Recommended soldering profile limits

Time 25 °C (t25 °C) to peak temperature

8 minutes max

Figure 7. HCLGA (3 x 4 x 1.06 mm) 4-lead package outline

Note: The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to thermal process.

Dimensions are in millimeter unless otherwise specified. General tolerance is \pm 0.15 mm unless otherwise specified.

ltem	Dimension (mm)	Tolerance (mm)
Length [L]	4	± 0.1
Width [W]	3	± 0.1
Height [H]	1.06	± 0.1

Table 9. HCLGA (3 x 4 x 1.06 mm) mechanical data

8 Carrier tape mechanical specifications

Figure 8. Carrier tape without microphone-top view

Figure 9. Carrier tape with microphone-top view

9 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with following recommendations:

- The recommended pick-up area for the MP34DT01-M package must be defined using the worst case (ie. no device alignment during picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). Picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do not pick up the component on the inlet area
- For the package outline please refer to *Figure 10*. Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for the picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- 1 kPa = 0.145 psi (lb/in2) = 0.0102 kgf/cm² = 0.0098 atm
- All the recommended dimensions (device safe pick area) do not include the pick and place equipment tolerances
- According to *Figure 10*, standard picker tool can be used to handle this device

Figure 10. Recommended picking area

DocID026514 Rev 3

10 Revision history

Date	Revision	Changes		
19-Jun-2014	1	nitial release		
09-Jul-2014	2	Nodified Min. and Max. values So parameter Table 3 on page 4		
03-Sep-2014	3	 Added: Table 4: Distortion specifications on page 4 Section 3: Application recommendations on page 7 Section 9: Process recommendations on page 15 		

Table 10. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID026514 Rev 3

MP34DT02

Datasheet - production data

MEMS audio sensor omnidirectional digital microphone

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 60 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VolP

- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DT02 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT02 has an acoustic overload point of 120 dBSPL with a 60 dB signal-to-noise ratio and –26 dBFS sensitivity.

The MP34DT02 is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Table 1. Device summary

Order codes	Temperature range [°C]	Package	Packing
MP34DT02	-40 to +85	HCLGA (3 x 4 x 1.06) mm 4LD	Tray
MP34DT02TR	-40 to +85	HCLGA (3 x 4 x 1.06) mm 4LD	Tape and reel

September 2014

DocID026560 Rev 2

This is information on a product in full production.

1/16

Contents

1	Pin description
2	Acoustic and electrical specifications
	2.1 Acoustic and electrical characteristics 4
	2.2 Frequency response 5
3	Application recommendations 6
	3.1 Timing characteristics
4	Sensing element 8
5	Absolute maximum ratings9
6	Functionality
	6.1 L/R channel selection 10
7	Package mechanical data 11
8	Carrier tape mechanical specifications
9	Process recommendations14
10	Revision history

1 Pin description

Table 2. Pin description

Pin n°	Pin name	Function
1	Vdd	Power supply
2	LR	Left/Right channel selection
3	CLK	Synchronization input clock
4	DOUT	Left/Right PDM data output
5 (ground ring)	GND	0 V supply

Acoustic and electrical specifications 2

Acoustic and electrical characteristics 2.1

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value		0.6		mA
lddPdn	Current consumption in power-down mode ⁽²⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 1 Pa		60		dB
PSR	Power supply rejection	Guaranteed by design		-70		dBFS
Clock	Input clock frequency ⁽³⁾		1	2.4	3.25	MHz
Ton	Turn-on time ⁽⁴⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

2. Input clock in static mode.

3. Duty cycle: min = 40% max = 60%.

4. Time from the first clock edge to valid output data.

Та	ble 4.	Distortion	specificatio	ns

Parameter	Test condition	Value
Distortion	100 dBSPL (1 kHz)	< 1% THD+N
Distortion	115 dBSPL (1 kHz)	< 2% THD+N
Distortion	120 dBSPL (1 kHz)	< 10% THD+N

2.2 Frequency response

3 Application recommendations

Figure 3. MP34DT02 electrical connections (Top view)

Figure 4. MP34DT02 electrical connections for stereo configuration (Top view)

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 1 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 5).

3.1 Timing characteristics

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

Table 5. Timing characteristics

1. From design simulations

4 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transducers the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
	Electrostatic discharge protection	2 (HBM)	kV
ESD	3 discharges at \pm 8 kV direct contact to lid when unit is grounded (IEC 61000-4-2) and 3 discharges at \pm 2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)	± 8	kV

Table	6	Absolute	maximum	ratings
Table	υ.	Absolute	maximum	raungs

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

6 Functionality

6.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 7*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

Table 7. L/R channel selection

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

The HCLGA 3x4 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Figure 6.	Recommended	soldering	profile	limits
1 1941 0 01	1.0000mmonaoa	oonaoning	p: 0:0	

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T_{SMIN} to T_{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidus temperature	tL	60 sec to 150 sec
Liquidus temperature	ΤL	217 °C
Peak temperature	T _P	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Table 8. Recommended soldering profile limits

Figure 7. HCLGA (3 x 4 x 1.06 mm) 4-lead package outline

Note: The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to thermal process.

Dimensions are in millimeter unless otherwise specified. General tolerance is \pm 0.15 mm unless otherwise specified.

ltem	Dimension (mm)	Tolerance (mm)
Length [L]	4	± 0.1
Width [W]	3	± 0.1
Height [H]	1.06	± 0.1

Table 9. HCLGA (3 x 4 x 1.06 mm) mechanical data

8 Carrier tape mechanical specifications

Figure 8. Carrier tape without microphone-top view

Figure 9. Carrier tape with microphone-top view

9 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with following recommendations:

- The recommended pick-up area for the MP34DT02 package must be defined using the worst case (ie. no device alignment during picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). Picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do not pick up the component on the inlet area
- For the package outline please refer to *Figure 10*. Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for the picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- 1 kPa = 0.145 psi (lb/in2) = 0.0102 kgf/cm² = 0.0098 atm
- All the recommended dimensions (device safe pick area) do not include the pick and place equipment tolerances
- According to *Figure 10*, standard picker tool can be used to handle this device

Figure 10. Recommended picking area

10 Revision history

Date	Revision	Changes	
19-Jun-2014	1	Initial release	
03-Sep-2014	2	 Updated sensitivity values parameter Table 3 on page 4 Added: Table 4: Distortion specifications on page 4 and Figure 2: Typical frequency response normalized at 1 kHz on page 5 Section 3: Application recommendations on page 6 Section 9: Process recommendations on page 14 	

Table 10. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID026560 Rev 2

MP34DT04

MEMS audio sensor omnidirectional digital microphone

Datasheet - production data

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 64 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM output
- HCLGA package
 - Top-port design
 - SMD-compliant
 - EMI-shielded
 - ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VolP
- Speech recognition
- A/V eLearning devices

- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP34DT04 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT04 has an acoustic overload point of 120 dBSPL with a 64 dB signal-to-noise ratio and –26 dBFS sensitivity.

The MP34DT04 is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

Order codes	Temp. range [°C]	Package	Packing
MP34DT04	-40 to +85	HCLGA (3x4 x1.095 mm) 4LD	Tray
MP34DT04TR	-40 to +85	HCLGA (3x4x1.095 mm) 4LD	Tape and reel

Table 1: Device summary

March 2015

DocID027586 Rev 1

This is information on a product in full production.

Contents

Со	ntents		
1	Pin des	cription	5
2	Acoust	ic and electrical specifications	6
	2.1	Acoustic and electrical characteristics	6
	2.2	Timing characteristics	7
	2.3	Frequency response	8
3	Applica	tion recommendations	9
4	Carrier	tape mechanical specifications	11
5	Process	s recommendations	12
6	Sensing	g element	14
7	Absolut	te maximum ratings	15
8	Functio	onality	16
	8.1	L/R channel selection	16
9	Packag	e information	17
	9.1	Soldering information	17
	9.2	HCLGA package (3x4x1.095mm)	
10	Revisio	n history	

List of tables

Table 1: Device summary	1
Table 2: Pin description	5
Table 3: Acoustic and electrical characteristics	6
Table 4: Distortion specifications	6
Table 5: Timing characteristics	7
Table 6: Frequency response mask for digital microphones	8
Table 7: Absolute maximum ratings	15
Table 8: L/R channel selection	16
Table 9: Recommended soldering profile limits	17
Table 10: Outer dimensions	
Table 11: Document revision history	20

List of figures

Figure 1: Pin connections	5
Figure 2: Timing waveforms	7
Figure 3: Frequency response and mask	8
Figure 4: MP34DT04 electrical connections (top view)	9
Figure 5: MP34DT04 electrical connections for stereo configuration (top view)	10
Figure 6: Carrier tape without microphone (top view)	11
Figure 7: Carrier tape with microphone (top view)	11
Figure 8: Recommended picking area	12
Figure 9: Recommended picker design	13
Figure 10: Recommended soldering profile limits	17
Figure 11: HCLGA (3x4x1.095) 4-lead package outline	18
Figure 12: Land pattern	19

1 Pin description

Pin #	Pin name	Function
1	Vdd	Power supply
2	LR	Left/Right channel selection
3	CLK	Synchronization input clock
4	DOUT	Left/Right PDM data output
5 (ground ring)	GND	0 V supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 $^{\circ}$ C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.6	1.8	3.6	V
ldd	Current consumption in normal mode	Mean value		600	700	μA
lddPdn	Current consumption in power- down mode ⁽²⁾				10	μA
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted at 1 kHz, 94 dB SPL		64		dB (A)
PSR	Power supply rejection	100 mVpp sine 1 kHz		-70		dBFS
Clock	Input clock frequency (3)		1	2.4	3.25	MHz
Ton	Turn-on time ⁽⁴⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-40		+85	°C
V _{IOL}	Low-level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High-level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3: Acoustic and electrical characteristics

Notes:

⁽¹⁾Typical specifications are not guaranteed.

⁽²⁾Input clock in static mode.

⁽³⁾Duty cycle: min = 40% max = 60%.

⁽⁴⁾Time from the first clock edge to valid output data.

Table 4: Distortion specifications

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N

2.2 Timing characteristics

Table 5: Timing characteristics

Parameter	Description	Min.	Max.	Unit
fclk	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	18 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
$T_{L,EN}$	Data enabled on DATA line, L/R pin = 0	18 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

Notes:

⁽¹⁾From design simulations

2.3 Frequency response

Table 6: Frequency response mask for digital microphones

Frequency / Hz ⁽¹⁾	Lower limit	Upper limit	Unit
1004000	-2	+2	dBr 1 kHz
400010000	-2	+4	dBr 1 kHz

Notes:

 $^{(1)}\mbox{At}$ T = 20 °C and acoustic stimulus = 1 Pa (94 dB SPL)

3 Application recommendations

Figure 4: MP34DT04 electrical connections (top view)

Application recommendations

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 1 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 8: "L/R channel selection").

57

4 Carrier tape mechanical specifications

Figure 7: Carrier tape with microphone (top view)

DocID027586 Rev 1

5 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with the following recommendations:

- The recommended pick-up area for the MP34DT04 package must be defined using the worst case (ie. no device alignment during the picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). The picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do not pick up the component on the inlet area
- For the package outline please refer to . Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- 1 kPa = 0.145 psi (lb/in2) = 0.0102 kgf/cm² = 0.0098 atm
- All recommended dimensions (device safe-picking area) do not include the pick-andplace equipment tolerances

Figure 8: Recommended picking area

To have a safe pick-up "by design", ST strongly advises an ad hoc nozzle.

The following picker ensures that the holes for the vacuum and the air stream are ALWAYS away from the porthole of the device (4 vacuum ports located at each corner of the device).

The recommended nozzle also has a recess, in the form of a cross, which guarantees that the porthole is always left at atmospheric pressure. By using the recommended nozzle, the membrane will not suffer any sudden air disturbances during the picking or placing of the devices in the tape and reel.

Figure 9: Recommended picker design

6 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

7 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit	
Vdd	Supply voltage	-0.3 to 5	V	
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V	
T_{STG}	Storage temperature range	-40 to +125	°C	
		±2000 (HBM)		
ESD	Electrostatic discharge protection	±200 (MM)	V	
		±750 (CBM)		
ESD	Product standard EN 55024:2010 - 3 air discharge	±15000	V	

Table	7:	Absolute	maximum	ratings
Table		Absolute	maximum	raunga

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

8 Functionality

8.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 8: "L/R channel selection"*. The L/R pin must be connected to Vdd or GND.

Т	able	8:	I/R	channel	selection
	abic	υ.	L /1\	channel	3010011011

L/R	CLK low	CLK high
GND	Data valid	High impedance
Vdd	High impedance	Data valid

Package information 9

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Soldering information 9.1

The HCLGA (3 x 4) 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com.

Figure 10: Recommended soldering profile limits

Table 9: Recommended soldering profile limits					
Description	Parameter	Pb free			
Average ramp rate	T_L to T_P	3 °C/sec max			
Preheat Minimum temperature Maximum temperature Time (T _{SMIN} to T _{SMAX})	T _{SMIN} T _{SMAX} t _S	150 °C 200 °C 60 sec to 120 sec			
Ramp-up rate	T_{SMAX} to T_{L}				
Time maintained above liquids temperature Liquids temperature	t∟ T∟	60 sec to 150 sec 217 °C			
Peak temperature	Τ _Ρ	260 °C max			
Time within 5 °C of actual peak temperature		20 sec to 40 sec			
Ramp-down rate		6 °C/sec max			
Time 25 °C (t25 °C) to peak temperature		8 minutes max			

9.2 HCLGA package (3x4x1.095mm)

Figure 11: HCLGA (3x4x1.095) 4-lead package outline

- 1. The MEMS microphone plastic cap can exhibit some level of variation in color when the device is subjected to thermal processes.
- 2. Ring plating can be subject to change not affecting acoustic and electrical performance.

Table	10:	Outer	dimensions	
-------	-----	-------	------------	--

Symbol	Dimension (mm)	Tolerance (mm)
Length	3	±0.1
Width	4	±0.1
Height	1.095	±0.1
AP	Ф0.4	±0.1

Package information

10 Revision history

Date	Revision	Changes
10-Mar-2015	1	Initial release

MP34DT04

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

MP45DT02

Datasheet - production data

MEMS audio sensor omnidirectional digital microphone

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- Omnidirectional sensitivity
- PDM single-bit output with option for stereo configuration
- HLGA package (SMD-compliant) plastic or metal
- ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VoIP

- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP45DT02 is a compact, low-power, topport, omnidirectional, digital MEMS microphone. The MP45DT02 is built with a sensing element and an IC interface with stereo capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP45DT02 has an acoustic overload point of 120 dBSPL with a best on the market 61 dB signal-to-noise ratio and -26 dB sensitivity.

The MP45DT02 is available in an SMD-compliant package metal (M) or plastic and is guaranteed to operate over an extended temperature range from -30 $^{\circ}$ C to +85 $^{\circ}$ C.

The MP45DT02's digital output and package size (1.25 mm thick) make this device the best solution for laptop and portable computing applications.

Order code	Temperature range [°C]	Package	Packing
MP45DT02	-30 to +85	HLGA 4.72 x 3.76 6LD	Tray
MP45DT02TR	-30 to +85	HLGA 4.72 x 3.76 6LD	Tape and reel
MP45DT02TR-M	-30 to +85	HLGA 4.72 x 3.76 6LD	Tape and reel

Table 1. Device summary

June 2014

DocID018658 Rev 7

This is information on a product in full production.

1/15

Contents

1	Pin description
2	Acoustic and electrical specifications4
	2.1 Acoustic and electrical characteristics 4
	2.2 Timing characteristics 5
	2.3 Frequency response 6
3	Sensing element
4	Absolute maximum ratings 8
5	Functionality9
	5.1 L/R channel selection
6	Application recommendations10
7	Package mechanical data 11
8	Revision history14

1 Pin description

Figure 1. Pin connections

Table 2. Pin description

Pin n°	Pin name	Function
1	GND	0 V supply
2	LR	Left/right channel selection; MIC1 LR is connected to GND or Vdd and MIC2 LR is connected to Vdd or GND (see <i>Figure 5</i>)
3	GND	0 V supply
4	CLK	Synchronization input clock
5	DOUT	Left/right PDM data output
6	Vdd	Power supply

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
Idd	Current consumption in normal mode	No load on data line		0.65		mA
IddPdn	Current consumption in power-down mode ⁽²⁾			20		μΑ
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted @1 kHz, 1 Pa		61		dB
PSR	Power supply rejection	Guaranteed by design ⁽³⁾		-70		dBFS
Clock	Input clock frequency ⁽⁴⁾		1	2.4	3.25	MHz
TWK	Wake-up time ⁽⁵⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-30		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
V _{IOH}	High level logic input/output voltage	I _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3. Acoustic and electrical characteristics

1. Typical specifications are not guaranteed.

- 2. Input clock in static mode.
- 3. Test signal: 217 Hz square wave, 100 mVpp on Vdd pin.
- 4. Duty cycle: min = 40% max = 60%.
- 5. Time from the first clock edge to valid output data.

Table 4. D	Distortion s	specifications
------------	--------------	----------------

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N

2.2 Timing characteristics

Table 5.	Timing	characteristics

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	30 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	30 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾	ns

1. From design simulations

2.3 Frequency response

Figure 3. Typical frequency response normalized at 1 kHz

3 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 6. Absolute maximum ratings

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is ESD-sensitive, improper handling can cause permanent damage to the part.

5 Functionality

5.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 7*. The L/R pin must be connected to Vdd or GND.

L/R	CLK low	CLK high
GND	Data valid	High impedence
Vdd	High impedence	Data valid

Table 7. L/R channel selection

6 Application recommendations

Figure 4. MP45DT02 electrical connections

Power supply decoupling capacitors (100 nF ceramic, 10 μ F ceramic) should be placed as near as possible to pin 6 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 7).

DocID018658 Rev 7

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Soldering information

The HLGA (4.72 x 3.76 x 1.25) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T_{SMAX} to T_{L}	
Time maintained above liquidus temperature	tL	60 sec to 150 sec
Liquidus temperature	TL	217 °C
Peak temperature	T _P	260 °C max
Time within 5 °C of actual peak temperature		20 sec to 40 sec
Ramp-down rate		6 °C/sec max
Time 25 °C (t25 °C) to peak temperature		8 minutes max

Table 8. Recommended soldering profile limits

Note: The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to a thermal process.

Figure 8. HLGA (4.72 x 3.76 mm9 6-lead package outline

	mm.			
Symbol	Min.	Тур.	Max.	
A1	1.125	1.250	1.375	
D1	4.670	4.720	4.770	
D2		1.320		
R1	0.750	0.840	0.930	
E1	3.710	3.760	3.810	
E2		1.880		
L1	3.200	3.300	3.400	
L2	2.250	2.350	2.450	
N1	1.550	1.650	1.750	
N2	1.075	1.175	1.275	
N3	1.350	1.450	1.550	
N4	0.865	0.965	1.065	
G1	0.810	0.910	1.010	
K		0.050		

Table 9. HLGA (4.72 x 3.76 mm) 6-lead package dimensions

8 Revision history

Date	Revision	Changes
28-Mar-2011	1	Initial release
21-Oct-2011	2	Added max. peak temperature T _P to <i>Table 8</i> Added min. and max. sensitivity So to <i>Table 3</i>
01-Mar-2012	3	Document status promoted from preliminary to production data Updated SNR to 61 dB (<i>Description</i> and <i>Table 3</i>)
07-May-2012	4	Added V_{IOL} , V_{IOH} to Table 3: Acoustic and electrical characteristics
05-Jul-2012	5	Added Section 3: Sensing element
21-Mar-2014	6	Added new package <i>Figure 7: HLGA (4.72 x 3.76 mm) 6-lead</i> package outline
17-Jun-2014	7	Updated Figure 3 on page 6

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID018658 Rev 7