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ABSTRACT 

The estimation of the delay of a known training signal re- 
ceived by an antenna array in a multipath channel is ad- 
dressed. The effect of the co-channel interference is taken 
into account by including a term with unknown spatial cor- 
relation. The channel is modeled as an unstructured FIR 
filter. The exact maximum likelihood (ML) solution for 
this problem is derived, but it does not have a simple de- 
pendence on the delay. An approximate estimator that is 
asymptotically equivalent to the exact one is presented. Us- 
ing an appropriate reparameterization, it is shown that the 
delay estimate is obtained by rooting a low-order polyno- 
mial, which may be of interest in applications where fast 
feedforward synchronization is needed. 

1. INTRODUCTION 

Time-delay estimation or timing synchronization is a key 
task in diverse areas, such as radar, sonar and commu- 
nications. Accurate chip/symbol synchronization is espe- 
cially important in systems employing time-division multi- 
ple access (TDMA) or asynchronous burst transmissions. 
Also, most multiuser detectors for code-division multiple 
access (CDMA) require reliable estimates of the users' code 
timings in order to operate acceptably in near-far environ- 
ments [l]. In addition, Global Navigation Satellite Systems 
(GNNS) arouse great interest at present. In these systems, 
accurate time-delay estimation is fundamental, since it is 
the key to obtain sub-meter accuracies in location esti- 
mates. 

There is a vast literature on single antenna synchro- 
nization methods for both additive white Gaussian noise 
(AWGN) channels and multipath channels [2]. However, 
the performance of these methods is limited when strong 
co-channel interference (CCI) is present. For this reason, 
an important effort is being conducted to derive time-delay 
estimators that make efficient use of antenna arrays in inter- 
ference limited scenarios. Following an approach that has 
already been applied successfully to this and other prob- 
lem, all the components contributing to the noise and CCI 
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(a. e., multi-access interference (MAI), external interference, 
etc.) are modeled as a Gaussian term with unknown and 
arbitrary spatial correlation matrix [3, 4, 51. This model 
allows us to develop a metric that takes the spatial char- 
acteristics of the CCI into account, and we believe that 
this offers an excellent trade-off between model realism and 
computational complexity. A more detailed description of 
the CCI, e.g. using the finite alphabet property of the MAI, 
may result in an improved performance, but a t  the expense 
of avoiding a simple expression for the estimator. On the 
other hand, several computationally attractive algorithms 
have been derived under the usual assumption that the CCI 
is spatially white [SI. However, the resulting algorithms are 
not suited for situations involving strong CCI. The estima- 
tion of the spatial covariance of the CCI is only possible 
if a training sequence is received. Therefore, the estimator 
presented herein and those that assume the same model 
for the CCI can only operate in data-aided or decision- 
directed mode. The assumption that the signal shape is 
known should not be a too stringent one, since most com- 
munications or satellite navigation systems transmit certain 
training sequences and, subsequently the estimator can be 
switched to a decision-directed mode. In addition, in radar 
and sonar systems the shape of the received signal coincides 
with that of the transmitted one. 

Some methods have focused on determining the time- 
delays of the multipath components together with some 
other parameters, for instance the directions of arrival (DOA), 
describing the channel [7, 8, 91. Those methods exploit the 
full space-time structure of the multipath. Except for some 
cases that resort to a particular configuration of the an- 
tenna array, the primary drawback of these approaches is 
that complicated search procedures are required to estimate 
the desired parameters. Moreover, when DOA estimates 
are to be estimated, it is necessary to  have a calibrated an- 
tenna array, which is a restrictive assumption. For these 
reasons, we will use an unstructured model for the chan- 
nel. Although this leads to an increase in the number of 
unknowns with respect to a parameterized model, the de- 
pendence on the channel is linear and it can be estimated 
in closed form, as in [3]. 

A number of techniques that estimate the delays of each 
of the received replicas and assume that the value of each 
delay is arbitrary have been developed. However, receivers 
usually combine the different rays of the received signal us- 
ing a RAKE structure. This structure can be viewed as a 
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bank of filters, with a fixed delay (typically the inverse of 
the bandwidth or a fraction thereof) between each pair of 
filters. Hence, it seems logical to extend this structure also 
to the timing synchronization. The method proposed in this 
paper is based on the estimator in [4, 51. The difference lies 
in that now a fixed separation between the received replicas 
is assumed, thereby only the absolute delay of the whole set 
of replicas has to be estimated. The interesting consequence 
of this model is that the delay can be obtained by finding 
the roots of a low-order polynomial, for which computation- 
ally efficient algorithms exist. Consequently, the method is 
specially tailored to applications where fast (feedforward) 
synchronization of the received signal is needed [2]. 

2. DATAMODEL 

The signal received by an arbitrary m element array is mod- 
eled as 

d 

Y [n] = hk s (nT,  - T - (k - 1) TO) +e[.] (1) 

where T, is the sampling period, {hk} are the FIR chan- 
nel coefficient vectors and d is the temporal length of the 
channel. TO is the temporal spacing of the FIR channel and 
can be freely chosen, together with d ,  when setting up the 
model (1). The transmitted signal s ( t )  is assumed to be 
known to within the scalar time delay parameter T. If N 
samples are collected, they all may be grouped together as 
follows: 

Y = [  y[1] y[2] ... y[N] ] = H S ( T ) + E  (2) 

k = l  

where E is formed identically to Y and 

H =  [ hi hz ... hd ] (3) 

The m x d matrix H represents the single-input-multiple- 
output (SIMO) channel for the signal of interest. The p,g-  
t h  element of the matrix S ( T )  is s (qTs - T - ( p  - 1) TO). 
The term e [n] ,  which gathers the noise and all other CCI, 
is modeled as a complex, circularly-symmetric, zero-mean 
Gaussian process. It is assumed to be temporally white 
and spatially colored with an arbitrary unknown correlation 
matrix: 

E {e [n] e* [m]) = Q &,,m (4) 

where (.)* denotes the complex conjugate transpose oper- 
ation. While such a model for e [n] is clearly only approx- 
imate, it captures the most significant effects of the noise 
and interference, and leads to tractable algorithms. For 
the asymptotic results in the next section to be valid, the 
following additional assumption is needed: s ( t )  is a band- 
limited finite-average-power signal, and the sampling period 
Ts satisfies the Nyquist criterion. 

Note that though the pulse shaping filter could be fac- 
tored into the channel matrix, as in [8], we assume herein 
that the elements of S ( T )  are samples of the continuous 
modulated waveform s ( t ) .  As such, the matrix H only 
describes the propagation effects of the channel, and T is 
a continuous-valued parameter. This modeling premise is 

different to  those usually taken in other work addressing 
the equalization of FIR channels rather than the synchro- 
nization. 

The model in (1) is closely related to that employed 
in other methods that attempt to estimate the delays of 
the different arrivals, such as (7, 6, 4, 51. In those cases, 
the received vector model consists of the contribution of L 
arrivals as follows 

Y = A S ( T ) + E  (5) 

where 

T = [ T ~  ... 7.1' A = [ a l  ... a . ]  (6) 

s (71) = [ s (T, - ~ 1 )  

S ( T )  = [ ST(.]) ... S ' ( T 6 )  3'. (8) 

, . . (NT,  - 71) ] (7) 

The columns of the matrix A are the spatial signatures of 
the different arrivals. Assuming that the signal s ( t )  is band- 
limited a n d 0  satisfies the Nyquist criterion, each row of 
the matrix S (7) can be expressed as a linear combination 
of the elements of S ( T )  [lo]. Therefore, there exist a L x d 
interpolating matrix T that satisfies 

S ( T ) = T S ( T ) .  (9) 

For the equality (9) to be exact in a general case, the column 
dimension of T, that is d, should be infinite. However, 
very good approximations can be obtained for finite d [lo]. 
Finally, identifying the channel matrix as H = AT, the 
relationship between the models in (1) and (5) becomes 
apparent. 

3. MAXIMUM LIKELIHOOD ESTIMATOR 
AND ASYMPTOTICALLY EQUIVALENT 

APPROXIMATION 

Under the model described above, the negative log-likelihood 
function of the data Y in (2) is given by (to within irrelevant 
constants)' 

where 

qT, H) = R,, - HR;,(T) - R,,(T)H* + HR&)H* 

R,, = -Y Y" (11) 

(12) 

1 1 
N N Rys(T)  = -Y S * ( T )  

R , , ( T )  = N S ( T ) S * ( T ) .  1 

Since H and Q are taken as unstructured deterministic ma- 
trices, the minimization of (10) may be performed explicitly 
with respect to them. Their ML estimates may be expressed 
as 

H M L  (7) = R,,(T)R2 (7) (13) 
&id.) = %, - R , s ( T ) R , - , 1 ( 7 ) R ; , ( 4  . (14) 

1 and Tr{.) denote the determinant and the trace of a 
matrix, respectively. 
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Ignoring parameter independent constants, the resulting 
ML criterion for T is the minimizing argument of 

where 
1 . * -  

B(T)  = - N R$ Y Ps.(,) Y* ai$ 
Ps*(.) = s' (T) ( S  (T) S* ( T ) ) - ~ S  (T) . (17) 

If the noise had been assumed spatially white (i.e. Q = 
a21), the ML cost function, in place of (15), would have 
been 

(18) 
1 f" ( T )  = -xTr {Y P s * ( T )  Y ' }  . 

Since the dependence of this cost function on the projection 
matrix Ps* is linear, the algorithm presented in the next 
section could be applied in order to find the minimum of 
(18) by rooting a polynomial. This interesting algorithm 
is not directly applicable to  (15) because of the determi- 
nant operator. However, based on the results of [4, 51, it is 
straightforward to build a cost function that is linear in the 
projector Ps. and yields asymptotically (large N, through- 
out the paper) equivalent estimates to those provided by 
f ( ~ ) .  This alternative cost function to be minimized is 

g(T ,W)  =-Tr{WB(r)} 

The weighting matrix W is computed as 

W =  ( I -B(? ) ) - '  (20) 

where .i is a consistent estimate of the true delay. This ini- 
tial consistent estimate, that is when a previous estimate 
is not available to compute the weighting matrix, is simply 
obtained as the minimizing argument of g (7, I). Following 
the development in [4, 51, it can be shown that both (15) 
and (19) provide, under mild conditions and in absence of 
modeling errors, consistent and asymptotically efficient esti- 
mates. Note that it can be argued that since N is the length 
of the training sequence, we will never reach asymptotics in 
N .  However, the discussion above is completely meaning- 
ful because the numerical results show that the asymptotic 
behaviour is reached for rather modest sample sizes. It is 
not difficult to show that the CRB for the problem at hand 
is 

CRB-1 (T) = 2 n {  (D ( 7 )  P;*(~) I)* (TI> (H* Q-1 H) } , 
where the matrices 8 and D (which is the derivative of the 
former) are evaluated at  

T =  [ T T + T O  ... ~ + ( d - l ) T o  3' . 

4. POLYNOMIAL ROOTING A P P R O A C H  

At this point we are concerned with the minimization of the 
following general expression 

For appropriate choices of W, this expression represents 
the asymptotically efficient and the consistent estimators 
for correlated noise (g(.r, W) and g (T, I)), and the white- 
noise ML estimator (f" (T)). Now, the N temporal samples 
are transformed into the frequency domain using the DFT, 
so that the signal approximately satisfies the following re- 
lationship' 

s* (T) = s: v (T) (22) 

where S, is a diagonal matrix whose entries are the DFT 
of the samples [s (T,) , - , s (N  T,)], and 

V ( T ) =  [ V(T) v ( T + T o )  . * *  V ( T + ( d - l ) T o )  ] 
v(T> = [ exp(jw1T) ... exp(jwN.r) I' (23) 

The criterion in (21) may be expressed as a function of 
x exp (j27r~/NT,), resulting in a polynomial in 2 of or- 
der 2N - 2, since (V*(T)S,S:V(T) does not depend on 
x. This approach lacks of interest because N is generally 
large. Below we describe a method that leads to the rooting 
of polynomials of order 2d, and it is natural that d << N. 

Let the elements of the vector p = [PO 1 . pd]' be taken 
from the coefficients of the polynomial 

p ( z )  =PO zd f p l  Zd-' + * ' *  + p d  (25) 

whose roots are: 

where r 4 exp (j27rTo/NTs). If we define 

F = s;* Y'R$ W i / &  (27) 

!I? = (p*s;*s; '  p>-' (28) 

and build the N x N - d matrix 

PO 0 

1 
then minimizing (21) is equivalent to  minimizing [6] , 

(30) s (p,W) =Tr{F'P*P*F} . 
It can be readily shown that the vector p satisfies 

p = K t (x) (31) 

where K is diagonal matrix whose elements are the coeffi- 
cients of the polynomial p ( z )  for the case x = 1, and 

t ( 2 ) =  [ 1 2 * . a  xd 1' . (32) 

2The same notation is used for both the time and frequency 
y p  y* it-'I2 w1/2 domains because the DFT is an unitary transformation and, 

therefore, the estimators presented in section 3 are identically 
applicable in the frequency domain. 

yy } * 

(21) 
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Therefore, if the term \k is held fixed, the cost function in 
(30) can be written as a polynomial in z of order 2d, as 
follows: 

5 (z, W) = tT (1/x) K* C K t (x) (33) 

for some matrix C obtained from F and *. For sake of the 
brevity the explicit form of C is omitted. The minimum 
of 5 (z, W) on the unit circle is computed by first finding 
the roots of its derivative. Next, (33) is evaluated at the 
set of roots that lie on the unit circle, and the one giving 
the minimum is selected. Using this root and the definition 
of z, the delay estimate is easily obtained. This procedure 
is repeated until convergence or failure conditions are sat- 
isfied (e.g., in the simulations these conditions are: change 
in z smaller than number iterations larger than 50).  
At each iteration, the matrix 9 is recomputed using the 
previous estimate of 2; and in the first iteration, \k is taken 
equal to the identity. 

An essential feature of this algorithm is that the inverse 
matrix operation needed in the computation of * needs to 
be calculated only once, and it can be done ofl-line since 
the matrix to be inverted depends exclusively on some de- 
sign parameters. This follows from the fact that * can be 
decomposed as 

9 = U !PI U-l (34) 

where \E1 is the value of \k for x = 1, and 

U = diag 1, z, . . . , xN-’+’} . { (35)  

Therefore, the update of 9 at every iteration only involves 
the left and right-hand product of a fixed matrix by a di- 
agonal one that solely depends on x. 

5. NUMERICAL RESULTS 

We analyze the performance of the estimators proposed in 
this paper, and compare it with the Cram&-Rao Bound 
(CRB). Specifically, we consider the exact ML estimator 
for the colored-noise case given by (15) ,  its approximation 
in (19) and the ML estimator for the white-noise case in 
(18). The cost function of the first one is minimized by 
means of a search. Whereas, the polynomial rooting algo- 
rithm in section 4 is applied to the latter two. In the case 
of the approximate ML estimator, we have chosen to up- 
date the matrix W, together with *, at each iteration of 
the algorithm. The RMSE (root mean square error) are 
computed from 500 Monte Carlo realizations. 

We concentrate on a scenario where L = 2 delayed ar- 
rivals of a known signal are received by a uniform linear 
array with 6 antennas spaced 0.5X apart. This known sig- 
nal is a concatenation of K truncated and sampled Nyquist 
square root raised cosine pulses. Each pulse has a band- 
width equal to (1 + a) /2Tc, is truncated to the interval 
[-5Tc, 5Tc], and the sampling period is T, = Tc/2, so there 
are 21 samples in each pulse. The roll-off factor is set equal 
to a = 0.2. The use of this type of signal is of interest be- 
cause each pulse may represent the output of the despreader 
at every symbol period in a direct-sequence CDMA system. 
For simplicity, the spatial signatures of the two arrivals are 

the array steering vectors for DOAs equal to 0’ and loo rel- 
ative to the broadside. The noise plus interference field in 
which the array operates consists of: i )  spatially and tem- 
porally white Gaussian noise, and ai) a temporally white 
Gaussian interference at  DOA -30’. The remaining sce- 
nario parameters, except when one of them is varied, are 
as follows: K = 4 pulses; delays of the two arrivals equal 
to TI = 0 and 7 2  = 0.5Tc; signal to  noise ratio (SNR) of 
the first arrival: 14dB; Signal to Interference Ratio (SIR) 
of the first arrival: -7dB; the second signal is attenuated 
3dB with respect the first, and they are in phase at  the 
first sensor. The temporal spacing of the FIR channel is 
assumed to be TO = 0.5Tc. 

In figure 1, the finite-sample and asymptotic perfor- 
mance in absence of model errors ( i e . ,  TO = TI - TO and 
the length of the FIR filter d is equal to the number of ar- 
rivals) of the different estimator is illustrated. We consider 
that the number of taps of the channel is d = 2. The RM- 
SEs of the exact ML estimator and the proposed approx- 
imation reach the CRB for small sample sizes. This fact 
proves that neither the approximation leading to (19) nor 
the subsequent minimization using the polynomial rooting 
algorithm entail a significant degradation with respect to 
the exact search-based estimator. Figure 2 bears out that 
the methods that take into account the spatial correlation 
of the interference are practically insensitive to the CCI 
level, whenever enough degrees of freedom are available. 
On the other hand, under the rather usual of assumption 
of white-noise, the resulting estimator completely fails for 
SIR < -10dB. In figure 3, we investigate the performance 
of the estimators when for d = 4 and the delay difference 
between the signal arrivals, -r2 - 7 1 ,  does not necessarily 
coincide with the spacing of the FIR channel, TO. As ex- 
pected, the RMSE presents minima when the former is a 
multiple of the latter. In the other cases, the model in (1) is 
only approximate, which results in a higher RMSE. Finally, 
increasing the length of the FIR filter beyond the necessary 
minimum (d = 2 in this case) impairs the performance, as 
shown in figure 4. 

6. CONCLUSIONS 

The problem of time delay estimation in a multipath chan- 
nel has been considered. The channel is modeled as an un- 
known FIR filter, and the CCI is assumed to have unknown 
spatial correlation. Starting from the exact ML solution, we 
have derived an approximate estimator, which has allowed 
us to use a polynomial rooting approach to obtain the esti- 
mates. The proposed method attains the CRB in absence 
of modeling errors and is robust against arbitrarily high in- 
terference levels. Finally, the effects of varying the number 
of taps of the channel and varying the delay between the 
arrivals of the signal have been investigated. 
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