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ABSTRACT 
This paper addresses the problems of blind channel estimation 
and symbol detection with second order statistics methods from 
the received data. It can be shown that this problem is similar to 
Direction Of Arrival (DOA) estimation, where many solutions 
like the MUSIC algorithm or “weighted” techniques (as 
Deterministic Maximum Likelihood or Weighted Subspace 
Fitting method) have been developed. In this proposal we extend 
these techniques to blind channel identification problem in an 
unified framework known as Subspace Fitting. In this 
framework the estimated and the received data are “fitting” 
through the subspaces in a least square sense. Then, in order to 
solve this problem and estimate the channel, a modified Gauss- 
Newton type algorithm is suggested. Simulations are carried out 
comparing the proposed solutions with a classical signal 
subspace-based blind channel identification scheme. 

1. INTRODUCTION 
Digital communications through channels with multipath 
phenomena are subjected to intersymbol interference. This 
problem can be so severe that correct reception of the transmitted 
symbols is not feasible anymore. It is necessary therefore to 
equalize the channel, which implies to estimate the channel. 
Since Tong, Xu and Kailath showed in [l] that it is possible to 
obtain an estimation of the channel from a second order statistic 
of the received signal, second order statistics have substituted to 
high order statistics in channel estimation. 

Due to its high-resolution capability, many subspace-based 
methods have been developed in order to recover signal 
parameters. These methods are based on the singular value 
decomposition (SVD) of a matrix constructed from the observed 
signal, which provides a robust discrimination between desired 
and disturbing signals in terms of signal and noise subspaces. 
The general objective is to find a low-rank subspace with a shift 
structure that has minimal distance to the true signal space, or 
equivalently, that is as orthogonal to the noise subspace as 
possible. Viberg and Ottersten formulate in [3 ]  different methods 
in a common subspace fitting based framework, providing an 
overview of the DOA estimation problem and clarifying the 
algebraic relations between the algorithms. 
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In this contribution we focus on MUSIC [4], WSF [3] and MDL 
[5]  algorithms. These methods are summarized and adapted to 
blind channel identification in a subspace fitting approach. The 
paper is organized as follows. In Section 2 data model and its 
subspace approach are formulated. In Section 3 we extend the 
subspace-fitting framework proposed by Viberg [3] to blind 
channel identification and formulate the cost functions whose 
minimizatiodmaximiztion will allow estimating the channel. 
After that, the Gauss-Newton algorithm that solves this problem 
is developed. In section 4 some simulation results are presented 
and discussed. Finally, we present some conclusions and outline 
our future work in section 5. 

2. PROBLEM FORMULATION 

2.1 Data Model 
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For simplicity, we assume only one emitter. Let s(n) denote the 
transmitted symbol at time nT where T is the symbol duration. 
This discrete time signal is modulated, filtered, transmitted over a 
Gaussian channel, filtered and down band converted. The 
resulting baseband signal has the expression: 

cu 

y ( t )  = x( t )  + n(t)  = z s ( k ) A ( t  - kT) +n( t )  (1) 
k =a 

Sampling this signal at baud rate, the resulting discrete signal 
will be a stationary process in wide sense. In that case, only 
minimum-phase channels could be recovered from second order 
statistics. As showed Tong, Xu and Kailath [l], when the 
received signal is oversampled (for example at M times the baud 
rate), the resulting discrete signal becomes cyclostationary, 
which allows to recover the phase of the channel from second 
order statistics. Moreover, this oversampling strategy allows 
modeling the channel as a single-input multiple-output FIR 
system. M-oversampling the received signal, we have: 

L 

.vi ( n )  = y(t, + ( i  - l)A + nT) = s(n - l)hi ( I )  + n(n) ; i= 1 ..M (2) 

Where A is the new sample rate (A=T/M) and the highest order of 
the resulting discrete M-multichannel system is L+I.  
Let lii=[hi(0), I i i ( l ) ,  ... , hi(L)]’ and defining yi(n)=Lvi(n+ W-1). 
.v,(n+ W-2). ..., ,y,(n)]’as a window of Wconsecutive samples: 

ldl 

Yi(n)=Hi(W).s(n)+ni(n) (3) 

Where s(n)=[s(n+W-I), s(n+W-2), ..., s(n-L)]’ and the W X 
(W+L) matrix Hi(W) is defined as: 



hi (0) hi (1) e - .  h,(L)O e . .  

l l i (L)  : 
0 1 (4) 1 -  0 ... 0 hi (0) hi (1) - - * hi ( L )  

0 hi (0) hi (1) ... 
0 

H,(W)= : 

Stacking the M vectors y,{n) yields the MW-dimensional vector 

And the received signal gives: 

y(n)=H(W).s(n)+n(n) (6) 

With H(W) the MW x (W+L) matrix resulting of stacking the M 
Hi(W) matrices, y(n) a wide-sense cyclostationary process and 
n(n) a MW vector. On the other hand, to assure identifiability, H 
should have full column rank. Conditions under this occur can be 
found in [2] and references therein. 

2.2 Subspace Approach 
The additive noise n(n) is modeled as a Gaussian, stationary, 
white and zero mean random process. For simplicity we take a 
spatially white noise, i. e., its MW x MW covariance matrix yields 
R, = E[n(n).nH(n)] = d.1, where the function E[.] denotes 
mathematical expectation and superscript is the hermitic 
operator. The covariance matrix of the received signal is: 

Where R, is the covariance matrix of s and full column rank. The 
signal subspace is defined as the space spanned by columns of H, 
and the noise subspace is its orthogonal complement. Both 
subspaces can be obtained from the SVD of covariance matrix: 

MW 
R, =CAi.ei-ei" =E,.A,.E,H +E,.A,.E~ (8) 

i=l 

With Ai>$ for i = l ,  ..., r (signal eigenvalues, r=W+L), A=$ for 
i=r+l,  ..., MW (noise eigenvalues), As= diag(;l, ... A,.) and &= 
diag(&+, ... AMw). Defining the MW X r matrix E, and the MW X 
M W-r matrix E,: 

E, =[esl es2 ... Eo =Leal eo.MW-r] (9) 

Since columns of E, span the signal subspace and columns of E, 
the noise subspace, orthogonality between subspaces provides: 

ezi . H = 0 for i=l,. . ,  MW-(W+L) (10) 

3. WEIGTED SUBSPACE FITTING 

3.1 Cost Functions 
Since covariance matrix R,, is in practice estimated from a 
limited amount of received data, only an approximation of Ryy is 
available. Then, (10) has to be solved in a least square sense. 
Adapting to blind channel identification the basic subspace 

fitting problem in DOA estimation proposed by Viberg & 
Ottersen [3], we have that, given some representation of the data 
M, we should to find an estimation of h and T such that 

h,T=argrninp-H(h).'$ hT (1 1) 

Where h: h L T  and Ht is the quadratic 
Froebius norm. This is a separable problem, and substituting the 
solution of the first part, T = H+.M into (11) (the superscript + 

denotes the pseudoinverse operator), this gives the generic 
subspace fitting cost function: 

fi=Xgrninv(h) With V(h)=I(I-P,).MI: =TrgA .M.MH}(12) 

Where P,=H.H+ is the LS projector onto the column space of H, 
p i  = I-p, is the orthogonal LS projector and Tr{*) denotes the 
trace operator. As M is a representation of the data, different 
choices of M will provide different cost functions (criterions). 

3.1.1 MUSIC criterion. 
The MUSIC criterion is based on orthogonality between signal 
and noise subspaces. The cost function derived from (10) can be 
written as: 

This is the MUSIC cost function. Since in DOA problem (13) 
does not give accurate results when the signal are highly 
correlated, Schmidt [4] introduced a normalization matrix 
(H"H)-' into (13), resulting the Multi-Dimensional (MD) MUSIC 
algorithm: 

fi = arg minvl (h) 

VI (h) = Tr i H  . H p  . HH E, . e," H}= 

=Trg,.E;E~)=Trg,.G-E, .E:)} (14) 
As the trace of a projection operator is equal to the dimension of 

the subspace on which it projects, minimizing V,(h) gives the 

same result that maximizing V,(h) = 'frbH -E, .E:)= 
=Tr{b-Pi).E, .I?:}, and the cost function of MD-MUSIC 
algorithm can be expressed as: 

fi = w ~ p M D - M " S c ( h )  

V MD - MUSIC (h) = T r g i  .E, -E:} (15) 

Thus, the MD-MUSIC algorithm is a subspace fitting method 
where the representation of data is directly given by the signal 
subspace, M =Es . 

3.1.2 Deterrrliriistic ML criterion. 
Described by Bohme [5], this method try to maximize the log 
likelihood of the received data Y with respect to H and S (the 
columns of the MW x Ne matrix Y are the Ne snapshots y(n) with 
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n=I..Ne, and the columns of the (W+L) x Ne matrix S are the Ne 
transmitted symbol vectors s(n)). This is equivalent to minimize 

with respect to h the cost function vMDL (h) = I Y - H - S  1: . The 

solution of the first part gives $ = H' .Y and the cost function 
becomes: 

h = argrnpvMDL (h) with vMDL(h)= Tr{Pi . R,} (16) 

Connection with subspace fitting can be made using asymptotic 
arguments (see [3]). For large Ne, we have that A, +021, 

R, +&,-A.f%f +02-I and A = A , - 0 2 - I .  As the trace of 

o * P i  is a constant, the cost function is asymptotically (for large 
Ne) equivalent to: 

v,,, (h) = Tr{Pi. 8, - A .  &f } (17) 

Therefore, the deterministic ML method is a subspace fitting 
technique where the data are represented by the weighted signal 
subspace M =E, . W$iL (with W,, = A  ). 

3.1.3 WSF criterion. 
The deterrninistic M L  method allows to us to introduce the 
weighted subspace-fitting concept. This is: 

h =argminV,(h) with vW5,(h)=Tr{Pi~,W,,&f} (18) 

Where W, is a positive definite weighting matrix. The question 
is to find a weighting matrix WwsF that makes the estimation 
statistically (for large Ne) efficient, i. e.; that makes the WSF 
estimates asymptotically achieve the Cramer-Rao lower bound on 
the variance of the estimator error. Viberg and Ottersten [3] have 
shown that the optimal choice for W ~ F  is W,, =A2A;'. 
Thus, the WSF criterion can be expressed in (13) when the 
representation of the data is M =e, . W$$ . 

3.2 Modified Variable Projection Algorithm 
In order to estimate the channel, the criterion function in (18) 
must be minimized over the M(L+l)-dimensional vector h. The 
technique that we propose is the Modified Variable Projection 
(MVP)  method (see [6]  and references therein). This scheme is a 
Kaufmanns's modification of the Gauss-Newton method: 
Consider the nonlinear least square problem given by (13), one 
of the more efficient, globally convergent, optimizing method for 
unconstrained smooth criteria is the damped Newton scheme. 
The estimate is iteratively calculated as: 

h , ,  =hk - / .L~ .G- ' .v '  (19) 

With pk the step length, G the Hessian matrix of the cost function 
and v' the gradient. Every iteration the Hessian and the gradient 
are evaluated in hk If h is well initialized, the Newton method 
guarantees an ultimate quadratic convergence to h . 

Consider first the gradient of the cost function. Introducing the r 
vector by stacking the columns of PHI . M  , the cost function can 

be written as v ( h )  =It-/'. The first derivative of v with respect 

to 11: (complex conjugate of the i"' element of h) is: 

The derivative of the projection matrix is: 

aH Where now H i  =- (do not confuse with Hl(W) defined in 

(4)). Since H+ . P i  = P i .  (H')" = 0 , the derivative yields: 

a/+ 

Consider now the Hessian matrix. Differentiate (20) with respect 
to 11; weobtain: 

The Gauss modification of the Newton method assumes that the 
residual (i. e., the 2"d term in (23)) is small compared to the first 
term (see [6]). For large Ne, hk will be close to the optimum and 
the noise variance will be small. Then, we can approximate the 
Hessian matrix by G ,  = 2.r: -rj , and we have that $rj is: 

Tr {[ H'"HFP$HyH' + P i H i  H'H'HH~Pi]MMH} (24) 

The Kaufmanns's modification of the algorithm consists on 
delete the second term in (24). This approximation can be hold 
because this term is small if the residual is small. Moreover the 
second term in (24) cancels part of the second term in (23). With 
these suppositions, the vr'' component of the approximate 
Hessian matrix is: 

G, =2Tr{[(H'y .Hp .P;.Hr .H'].M.MH} (25) 

Then, (19), (22) and (25) give the MVP algorithm. In order to 
obtain a good initialization of the estimates, we can use the 
MUSIC algorithm proposed by Moulines et al. [2]. This 
approach will provide a good estimation of the channel, and the 
algorithm will achieve a global minimum. The step length factor 
should be chosen in order to guarantee global convergence. It is 
known that quadratic convergence of Newton-type algorithms is 
only achieved if the step length factor converges to unity. 
Derivation of some convergence factors can be found in [7]. 
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4. SIMUL.ATION RESULTS 
A Monte Carlo simulation is carried out in order to evaluate the 
performance of the algorithms in a digital communication 
system. We emitted a burst of N=128 BPSK symbols. The 
oversampling rate (i.e. the number of virtual channels) is M=4. 
The higher order of this virtual channels (ISI) is set to L=2 and 
the width of the temporal window is W=4. 

First, we computed the Mean Square estirnation Error (MSE) 
along the time (iterations) with a SNR of 10 dBs. We take p t= l -  
(0.1)‘. The Oth iteration corresponds to the MSE provided by 
MUSIC algorithm proposed in [2]. Results of 100 Monte-Carlo 
runs are presented in Fig. 1. 

Mean square error ofthe channel estimation 

iterations 

Figure 1. MSE along the iterations. 

As can be seen, in less than four iterations the permanent state is 
achieved, and the minimum of the error is given at first iteration. 
As is expected, the WSF criterion gives the most accurate results. 
Unfortunately, the MD-MUSIC algorithm (i.e. weighting matrix 
set to identity) does not improve the MSE given by MUSIC. 

The second experiment consists on computing the Bit Error Rate 
@ER) as function of S M  with 40 Monte-Carlo simulations and 
4 iterations of the MVP algorithm. In Fig. 2 results are presented. 
On the other hand, simulations of BER have shown that channel 
estimations provided by MVP algorithm with 1 and 4 iterations 
virtually give the same BER. 

811 Error Rate 
1 oo 

MDL WSF method‘, 

2 4 6 8 10 
SNR 

Feure 2. Bit error rate of the estimation. 

As can be seen, both MVP techniques improve in 2 dBs the 
MUSIC algorithm proposed in [2]. On the other hand, MDL 
method has slightly better results in BER. Note that the minimum 
MSE does not guarantee the best BER. 

5. CONCLUSIONS 
The Modified Variable Projection algorithm has been developed 
and applied in a blind channel identification context. As it is 
shown in the figures, weighted subspace methods provide more 
accurate results than the MUSIC method developed by Moulines 
et al. in [2]. However, the MVP algorithm it is not a good choice 
in the unweighted method presented here (the MD-MUSIC 
method). On the other hand, the weighting matrices in MDL and 
WSF methods were defined for DOA problem; as channel 
estimation is not the same problem another weighting matrix can 
be derived for this specific situation as was done in [SI. Another 
simulations have been carried out in order to test the behavior of 
weighted algorithms with larger bursts. Results have shown that 
at larger sample size, less difference in MSE exists between 
MUSIC and the proposed algorithms. Therefore we can conclude 
that the weighting matrices defined in MDL and WSF criterions 
are useful in low sample sizes. 
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