Kopernik: Modeling Business Processes for
Digital Customers

Montserrat Estafiol', Manuel Castro?, Sylvia Diaz-Montenegro?, and Ernest
Teniente!

! Deparment of Services and Information Systems Engineering
Universitat Politécnica de Catalunya, Barcelona, Spain
estanyol | teniente Qessi.upc.edu
2 Léelo - Process as a service
Calle de Albasanz, 65 - Madrid, Spain

manuel.castro | sylvia.diazm @leelo.es

Abstract. This paper presents the Kopernik methodology for modeling
business processes for digital customers. These processes require a high
degree of flexibility in the execution of their tasks or actions. We achieve
this by using the artifact-centric approach to process modeling and the
use of condition-action rules. The processes modeled following Kopernik
can then be implemented in an existing commercial tool, Balandra.

Keywords: business artifacts, business process modeling, artifact-centric
business process modeling, tool, methodology

1 Introduction

Business processes are a key element in organizations, as they are directly in-
volved in the achievement of an organization’s goals. Representing those business
processes using models can facilitate the communication between the parties in-
volved in the process, they provide a basis for the process improvement and can
help to perform process management.

Traditionally, business processes have been represented or visualized as a
workflow which contains a set of tasks or actions that should be performed in a
certain order in order to achieve the process’s goals.

However, these representations are not appropriate for processes which deal
with digital customers. These customers wish to perform the different actions
on their own, through different channels (e.g. telephone, e-mail), and a bad
experience may mean that they severe all ties with the company. An example of
such processes is contracting an insurance policy or the process for on-line debt
collection [12].

These processes are very flexible: they require a set of actions to achieve their
goals, but it does not matter the order in which these actions are performed or,
more precisely, this order is driven by the data collected from the customer
and not by the flow of process execution itself. Considering this, traditional
approaches for process modeling are not appropriate, as they force the execution

of the actions in a certain order. In contrast, modeling business processes for
digital customers requires a representation which is able to reflect their flexibility.

We believe that the artifact-centric approach for process modeling is ap-
propriate for this purpose. According to this approach, the key elements of a
business process are the data and the definition of the actions in the process and
it does not necessarily force the actions to execute in any particular order. We
will take advantage of this capability to allow for the required flexibility.

There are some tools in the market, such as Balandra [13], which are capable
of modeling these flexible processes for digital customers and then automatically
generating and customizing software systems for digital customers from these
models. However, as we will see, current (artifact-centric) methodologies do not
fit well with the features required by the models supported in these tools.

For this reason, in this paper we outline a generic methodology, which we call
Kopernik, for modeling these flexible processes from an artifact-centric perspec-
tive. It builds upon the BALSA framework [11] to structure the artifact-centric
process and the resulting methodology is applicable to real-world flexible pro-
cesses. Although we focus on Balandra, Kopernik can be easily adopted to use
in any tool which is able to model these flexible processes.

This methodology is a result of a joint work between a research group at the
Universitat Politécnica de Catalunya and the company that created and manages
the Balandra Software, Léelo.

2 The Kopernik Methodology

This section begins by giving a brief overview of the BALSA framework and
introduces the Kopernik methodology to model flexible business processes.

The BALSA framework for artifact-centric process modeling defines four di-
mensions which should be present in any such model [11]. The business arti-
facts represent the key data for the business. These artifacts evolve during their
life, and this evolution is represented by means of a lifecycle. The services,
or actions, represent atomic units of work that create, update and delete the
business artifacts. Finally, the associations establish restrictions in the manner
in which the services may make changes to the artifacts.

To illustrate the Kopernik methodology, we will use an example based on the
process of on-line debt collection.The goal of an on-line debt collection process
is to be able to amicably recover the debt incurred by a client. The client’s debt
file may be, in fact, related to various debts acquired over time and the payment
of the whole debt may be divisible in installments. We will call the client’s debt
file OnlineDebtPayment.

There are two possible ways of making the payment(s): either by credit card
or by bank transfer. We assume that the client will have to choose at least one
of these two methods, and he will have to respect that choice. However, he can
change the payment method at any time.

An online debt payment may be in three different states: being processed,
canceled or completed. Being processed means that the debt has not been repaid

yet. The OnlineDebtPayment will be canceled if the client’s debt is canceled.
Finally, it will be in state completed when the whole debt is repaid, that is,
when the sum of the amount of all payments equals the sum of the amount of
the debts linked to that online debt payment.

After this brief introduction to BALSA and our running example, the re-
mainder of the section is structured according to the dimensions in the BALSA
framework.

2.1 Business Artifacts

According to the BALSA framework, business artifacts represent the relevant
data for the business. We are interested in defining the details of the data and
the relationship between them.

In this context, we will distinguish between a lead and business entities. The
lead represents the key business artifact in the process, and it is generally related
to other complementary data, the entities.

We represent the lead and its related entities using a special type of UML
class diagram. Both the lead and the entities will correspond to classes, and
the relationships between them will be represented as associations. However, we
establish some restrictions in the way they are related to each other.

To begin with, the classes in the diagram will be placed in a star or snowflake-
like shape, with the lead at the center of the diagram and the remaining entities
surrounding it. A relationship between a lead L and an entity E will have a
multiplicity of * and 1. That is, an instance of an entity E will be related to
exactly one instance of L and an instance of the lead L may be related to N
instances of E.

We allow entities to be related to other entities, however, only one of these
entities may be linked to the lead. That is, the lead and the business entities
have a tree-like structure (with the lead as the root) with no cycles. In this way,
the lead acts as an aggregated summary of the process. This contrasts with other
approaches, such as [8, 9], which model the artifacts using a standard UML class
diagram.

The class diagram for our example can be seen in Figure 1. Notice its star-
like shape, with artifact OnlineDebtPayment at the center of the diagram. On-
lineDebtPayment is the lead in this example. It represents the total debt that a
certain Client owes, and it will correspond to the sum of several Debts (notice
that OnlineDebtPayment may be related to several Debts). It is also related to
one or more Agents who follow up on the evolution of the OnlineDebtPayment
and the Payments themselves. Note that an OnlineDebtPayment is related to
zero or more Payments as the global debt may be paid in several installments,
and at the very start no payment has been made.

Client Debt Agent Payment <<document>>
email amount email date Confirmation
name reason name amount 101
id type : PaymentType
telephone 1.* 1 .

1
1 1 1 1

OnlineDebtPayment

reason
reference <<enumeration>>
availablePaymentMethod : PaymentType [1..*]

PaymentType
selectedPaymentMethods : PaymentType [*]
BankTransfer
CreditCard

instalmentsAllowed : boolean
maxInstalmentsNr [0..1]
delayedPaymentAllowed : boolean
deadlline [0..1]

Fig. 1. Class diagram for the online debt collection example.

2.2 Lifecycles

Lifecycles represent the evolution of artifacts. In general, existing artifact-centric
approaches such as [3, 6, 9] represent states using a single model, which may be,
for instance, a state machine diagram or a variable.

The Kopernik methodology presents two different, complementary ways of
representing the lifecycles of the business artifacts: internal states and tagsets.
Intuitively, internal states correspond to the “traditional” way of representing the
lifecycle of the business artifacts. In contrast, tagsets are views over the artifacts
which provide a customized overview of the evolution of the process, as they
can be defined for each user/role type. This section presents in detail both the
internal states and tagsets.

Internal States Both leads and entities may have internal states. In order to
represent these states and how the artifact evolves through them, we will use a
state machine diagram. We refer to these states as internal because they are not
necessarily perceived by the user, but they are relevant from the point of view
of the business process evolution.

Each of these states may have several incoming and/or outgoing transitions,
indicating the conditions which will trigger the change from one state to the
other. These transitions reference exactly one service or action: when the task is
performed, if the artifact or object is in the appropriate state (the source state),
then the artifact will change to the target state. Note that many actions do not
have an impact on the internal state.

For instance, as shown in Figure 2, the lead in our example, OnlineDebtPay-
ment, has three internal states: BeingProcessed, Completed or Canceled. When
OnlineDebtPayment is first created it has state BeingProcessed. If, while it is in
state processed, cancel online_debt payment executes, it changes its state to
Canceled. On the other hand, if complete _online_debt payment takes place, it
changes its state to Completed.

. create_online_debt_payment ‘BeingProcessed]complete_onIine_debt_payment { Completed l

cancel_online_debt_payment

[Canceled]

Fig. 2. State machine diagram showing the internal states for OnlineDebtPayment.

Due to space limitations, we only show the state machine diagram for a lead.
If an entity also had internal states, it would be represented in the same way.

Tagsets Apart from the internal states, it is possible to define views over the
business artifacts. We call these views tagsets. A tagset will give the user an
idea of the global state of the process and they can be configured for every user
profile. A user profile represents the role of a user within the process. Examples
could be the client, an agent or the manager. Note, however, that the definition
of user profiles is out of the scope of this paper.

Every tagset has, as the name implies, a set of tags. Each tag represents
a relevant state from the point of view of the user and it has an associated
condition. The conditions may refer to an internal state of the artifact, as defined
in its state machine diagram, to the values of its attributes or the classes related
to it. All the conditions of the tags in a same tagset must be mutually exclusive
and collectively exhaustive; that is, at every point in time, exactly one tag should
be active.

We propose representing these tagsets in the class diagram using derived
subclasses and a table to define their conditions. Each tagset will make up a
(multi-level) hierarchy, in which each level fulfills the disjointness and covering
constraint. That is, an instance of an artifact must have exactly one of the
subtypes (or tag). The derivation conditions should be defined for each of the
leaves in the hierarchy.

The conditions which determine the derivation of the classes can be defined
using a table. Figure 3 shows an example tagset for a client that owes money. The
top row will contain the relevant class (or artifact) names and the last column
the tag. The conditions in each column must be mutually exclusive, e.g. an
OnlinePaymentDebt cannot be canceled and completed simultaneously. And the
tags in the last column must be mutually exclusive and commonly exhaustive.

Note that the four different tags in the table depend on the states or values of
classes OnlineDebtPayment and Payment (Figure 3). If the state of OnlineDebt-
Payment corresponds to Cancelled or Completed, as defined in its internal state
machine diagram, the client will see tags Debt canceled or Completed payment,
respectively.

OnlinePaymentDebt Payment Tag
Canceled Debt canceled
Completed Completed payment
N N
In process 0 payment yet 0 payment
At least one payment Payment begun

Fig. 3. Table showing a simple tagset for our running example.

On the other hand, if the OnlineDebtPayment is in state InProcess, the tag
will be determined by looking at Payment. If there is no payment related to the
online debt payment, the tag will be No payment. On the other hand, if at least
one payment has been made, the tag will correspond to Payment begun.

OnlineDebtPayment

A

{disjoint, complete}

DebtCanceled CompletedPayments BeingProcessed

ZF{disjc:im,cz:.mplete}

NoPayment PaymentBegun

Fig. 4. Tagset for the OnlineDebtPayment. The definition of the conditions can be seen
in Figure 3.

Figure 4 shows the hierarchy that corresponds to the tagset defined in Fig-
ure 3. Each class in the leaves corresponds to one of the tags in the table.

Note that tagsets are a mere view over the existing system. These views are
meant to be flexible and easily changeable. Therefore, they cannot be referenced
by the actions or any of the system’s specification, as they are prone to change.

2.3 Services

Services correspond to actions, that is, atomic units of work that create, update
or delete the business lead and the entities. We will represent them by means of
operation contracts.

Each service or task has a set of input parameters, a precondition, a postcon-
dition and may have an output parameter. The precondition states the conditions
that must be true before the operation can execute. The postconditions indicate
the state of the system after the operation’s execution. Both preconditions and
postconditions may refer to the input parameters, but the output parameter can

only be modified by the postcondition. We assume that all the elements that do
not appear in the postcondition keep their state from before the execution of the
operation.

In terms of the language to specify the operation contracts, the best option
would be to use a formal or semi-formal language such as OCL. This would avoid
ambiguities and errors in the definition of the contracts. However, as OCL is not
as readable as natural language, we opt for the latter in this paper.

For example, Listing 1 shows the specification of action Create Online Debt
Payment (it also appears in the state machine diagram in Figure 2) in terms of
an operation contract in natural language. The precondition of this operation
ensures that there is not an existing OnlineDebtPayment with the given input
payment_ref, which acts as its identifier. If this precondition is met, then the
operation creates an OnlineDebtPayment with the given input values, together
with a Debt, Client and Agent. The OnlineDebtPayment changes its state to
BeingProcessed.

Note the redundancy between the specification of this contract and the state
machine diagram. That is, the contract specifies that the action changes the state
of the lead, although this change is also reflected by the state machine diagram.
Although in general it is best to avoid redundancy, in this case we use the state
machine diagram to have a more intuitive representation of the evolution of leads
and entities, but not as main component to determine the effects of the actions.

Listing 1. Specification of create online debt payment

create_online_debt_payment(p_reason: String, payment_ref: String,
amount: real, reason: String, emailAg: String, nameAg:
String, idCl: String, nameCl: String, emailCl: String,
phoneCl: int,)

precondition:
- There is no OnlineDebtPayment whose payment_reference =
payment_ref

postcondition:

- A new OnlineDebtPayment is created with the following values:

reason = p_reason, reference = payment_ref, ticket = ticket,

instalmentsAllowed = false, delayedPaymentAllowed = false and

availablePaymentMethod = {BankTransfer,CreditCard}

new Debt is created with amount = amount and reason = reason

relationship is created between the new Debt and the new

OnlineDebtPayment

- A new Client is created with id = idCl, name = nameCl, email =
emailCl and telephone = phoneCl.

- A relationship is created between the new Client and the new
OnlineDebtPayment

- A new Agent is created with email = emailAg and name = nameAg.

- A relationship is created between the new Agent and the new
OnlineDebtPayment
- The created OnlineDebtPayment is in state "BeingProcessed"

On the other hand, Listing 2 shows the specification of an action which
reminds the client of the next payment she has to make. In this case, it does so
by sending an e-mail to the client.

Listing 2. Specification of remind client of payment deadline mail

remind_client_of_payment_deadline_mail (online_payment:
OnlineDebtPayment)

postcondition:

- An e-mail is sent to the Client related to the
OnlineDebtPayment to remind her that a payment is overdue in
a few days

2.4 Associations

Associations establish restrictions in the way the services, or actions, may make
changes to the artifacts. In many cases they are represented using some kind of
workflow diagram. However, as we mentioned in the Introduction, using work-
flows is not appropriate in this case, as we do not wish to force the execution
of the actions in any particular order. On the contrary, we wish to restrict the
actions as little as possible to allow for maximum flexibility.

Therefore, we will use condition-action rules to determine when an operation
or task will be available to execute or will execute automatically. The conditions
indicate the circumstances under which the action can execute. They may refer
to content that is available on the information base but not to the actions that
may have executed previously. They will have the following form:

if <cond> then <allow execution | execute> opName

We distinguish between two types of rules:

1. Action enablers: They allow the execution of actions, showing the condi-
tions which must be true for an action to execute, but by themselves they do
not trigger the action’s execution. We use the keywords allow execution
in their definition. The conditions may take into consideration the following
elements: the communication channel (e.g. website, phone), the user profile,
the content in the information base, or time.

If an action is always available, we use the keyword true as a condition in
the condition-action rules.

2. Action triggers: When certain conditions are met, these rules automati-
cally execute an action. We use the keyword execute in their definition. The
condition of these rules refers to the content of the information base or time.

The rule below is an example of a rule that enables an action. It states that
create online debt payment may execute at any time (condition true):

1f true then allow execution create_online_debt_payment

The second rule below shows that remind client of payment deadline mail
executes automatically under very specific circumstances: the OnlineDebtPay-
ment must be in state BeingProcessed, a delayed payment must be allowed and
the current date is seven days before the payment is overdue.

1f online_payment_debt is in state ‘‘BeingProcessed’ and
(delayedPaymentAllowed = true) and (today() + day(7) = deadline)
then exzecute remind_client_of_payment_deadline_mail

3 The Tool: Balandra

As we mentioned in the Introduction, there is already at least one tool, Balandra
[13], which is available commercially and that it is able to provide the required
degree of management and control over the processes which deal with digital
customers.

The companies that use the tool can specify their requirements and use the
Kopernik methodology to define their models. Afterwards, these models can be
easily incorporated into Balandra, which allows them to automatically generate
and customize a software system to manage the behavior of digital customers
according to the models.

Figure 5 shows the visualization of the business artifacts in the tool. Notice
that in this case it has the form of a tree-like structure, that is equivalent to the
class diagram we showed in Figure 1. New instances of the different leads and
entities can be created using the graphical interface of the tool.

T en_PROCESO
DraleadDemoPago0niine | coiPLETADO
e ANULADO

NODE raCliente
T PERSON

NODE DraDeuda
TN cusTom

NODE DraAgente
TN PERSON

]]]
o

PACO_DEVUELTO

NODE DraPago PAGO_COBRADO

. PAGO_ERRONEQ

=l cusTom PACO_CANCELADO

PAGO_CONFIRMADO
PACO_ANULADO
PAGO_A_FUTURO

NODE
TN

Fig. 5. Screenshot showing the lead and the entities related to it.

For the lifecycle dimension, there is no graphical representation in the form
of a state machine diagram. The internal states of an artifact, be it a lead or a

10

entity, are shown next to the artifact in the tree-like structure in Figure 5. In
contrast, tagsets can be visualized using the tool in the form of a table, similar
to what is shown in Figure 3. Due to space limitations, we do not show them
here.

Given a certain lead, the tool can also show the available actions that can be
executed over that lead. See Figure 6 for an example. The attributes and entities
related to lead appear on the left-hand side, whereas the list of actions appears
on the right.

(vbol Expediente] Postis Expedient] Datos Expediente] Contactos] Documentos] Controles] Ciente £3780] Deuda #3781] Formas de paga posibles £3794] Pago #3504 SR

Contole Y rccions] andesed] envi
S 43779 B3 Leaapago Amigable
*El
=
£130] E1| cro: vz 6
-
192 [o comuNCACION PAGo, A TSI ETEED 5
© 0K Report
#3793 DRA_COMUNICACION_PAGO_SMs [ESITEVESIEI EXERr] 55
©0/X Report
%
#3781) ow wezem 38 eI, 1, R TN
#3794 Formas de pago posives TR 5
i %
#3785)) ago por Tarsteenca aETEE (8] 6
798| @) Revaso Pago NETERY
[oAioco TaaTaRoRTGs
#3803) ago con Taie WD 95
#3004 @) puge T %
#3005 &) commacon Nz 08 (8] 6 —

Fig. 6. Screenshot with the available actions to execute

Finally, the condition-action rules can be easily defined using structured nat-
ural language. Figure 7 shows an example of a rule. In this particular case, the
rule triggers the execution of an action.

bil - SDK de Eclipse

: e e
T—

: Evaluar pago retrasado

I~ Informacion general | [~ Filio de categoria

Nombre - Evaua pago retasado .
i Categoris: Cualauiera. Edias

" Dacumentacion

| Codigo

sea ‘el lead pago online' igual a ‘el lead de pago online' ;

el importe total de la deuda de ‘el lead pago online’ es mayor o igual que 100
entonces

e3ecuter accién DEMO_PERMITIR_RETRASO_PAGO en 'el lead pago online' con parémetro 'FECHA TOPE' igual a *31/12/2015"
sino

ejecutar accién DEMO_PERMITIR_RETRASO_PAGO en 'el lead pago online' con parémetro 'FECHA TOPE' igual a *30/11/2015" ;

o5

#l@ 8 G olenzel
No hay cambios en'SVN (Espacio de rabaio)’.

Fig. 7. Screenshot showing an example of a condition-action rule

11

4 Related Work

The methodology we propose in this paper is related to the work presented in
[8,9], although there are two main significative differences. To begin with, [8,9]
do not allow flexible execution of the actions or services, as their execution order
is established by an activity diagram. Moreover, these works do not distinguish
between internal states and tagsets, and only represent states for what would be
the lead artifacts in this proposal.

One of the most well-known alternatives for artifact-centric process modeling
is the Guard-Stage-Milestone model [7]. The GSM approach shows the stages in
the evolution of an artifact and the guard conditions, but adding the concept of
milestone to them. A milestone is a condition that, once it is fulfilled, it closes
a state. It does not strictly enforce the execution of the actions or services in
a certain order, as states may be opened or closed depending on the received
events. Moreover, when a certain state is entered a certain action or actions may
be executed simultaneously. It does not distinguish, however, between internal
states and tagsets, and artifacts are represented as a set of attributes.

Other flexible approaches are presented in [1,5,4,2,6,10]. This flexibility is
achieved by using condition-action rules or preconditions to limit the execution
of the services. However, they are based on logic, which makes them formal and
unambiguous, but impractical from the point of view of the business. Moreover,
they do not have a specific representation for potential states of an artifact’s
lifecycle, which is important for the purpose of this work, as we wish to represent
both internal states and tagsets.

Finally, [3] uses natural language to represent the services and associations.
The associations are also represented using condition-action rules and the ser-
vices using pre and postconditions. Natural language makes the specifications
easier to understand than those defined in logic. However they are more error-
prone. This approach does not distinguish either between internal states and
tagsets, although they also represent lifecycles using state machines.

In summary, due to their limitations (i.e. using activity diagrams, lacking a
detailed representation of business artifacts, missing the lifecycle dimension or
having no tagsets), none of these approaches are appropriate for the purpose of
modeling flexible processes for digital customers.

5 Conclusions

In this paper we have presented the Kopernik methodology for modeling business
processes following an artifact-centric approach. The goal of this methodology
is to model processes for digital customers which require a high degree of flex-
ibility, in order to allow the client to execute the actions at any time and in
any order, according to the data he has previously provided. Unfortunately, cur-
rent (artifact-centric) methodologies do not fit well with modeling the flexibility
required by this kind of processes.

Kopernik is based on the BALSA framework and it uses the following models:
a special UML class diagram to represent the artifacts, UML state machine

12

diagrams to represent the internal lifecycles of artifacts (whether they are leads or
entities), operation contracts with pre and postconditions to specify the services,
and condition-action rules for the associations. Both services and associations
are represented in natural language. We complement the lifecycle dimension by
using a hierarchy of classes to represent the tagset: a set of views over the model
which are customizable according to user profiles and which are derivable using
a set of conditions.

As we have shown, Kopernik can be easily adopted to use in an existing tool,
Balandra [13|, which models processes for digital customers requiring a high
degree of flexibility, and which has been used commercially and successfully in
big companies such as ING direct or Zurich connect.

References

1. Bagheri Hariri, B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali, M.: Veri-
fication of relational data-centric dynamic systems with external services. In: Hull,
R., Fan, W. (eds.) PODS. pp. 163-174. ACM (2013)

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Nezhad, HR.M. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 142-156. Springer (2011)

3. Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Busi-
ness Processes. In: Handbook of Research on Business Process Management, pp.
1-28 (2009)

4. Calvanese, D., Giacomo, G.D., Lembo, D., Montali, M., Santoso, A.: Ontology-
based governance of data-aware processes. In: Krotzsch, M., Straccia, U. (eds.)
RR. LNCS, vol. 7497, pp. 25-41. Springer (2012)

5. Cangialosi, P., Giacomo, G.D., Masellis, R.D., Rosati, R.: Conjunctive artifact-
centric services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6470, pp. 318-333. Springer (2010)

6. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 22 (2012)

7. Damaggio, E., Hull, R., Vaculin, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with Guard — Stage — Milestone lifecycles. Infor-
mation Systems 38(4), 561 — 584 (2013), special section on BPM 2011 conference

8. Estafiol, M., Queralt, A., Sancho, M.R., Teniente, E.: Artifact-centric Business
Process Models in UML. In: La Rosa, M., Soffer, P. (eds.) Business Process Man-
agement Workshops 2012. LNBIP, vol. 132, pp. 292-303. Springer (2013)

9. Estafiol, M., Queralt, A., Sancho, M.R., Teniente, E.: Specifying artifact-centric
business process models in UML. In: Shishkov, B. (ed.) BMSD 2014, Revised Se-
lected Papers. LNBIP, vol. 220, pp. 62-81. Springer (2015)

10. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In: Fagin, R. (ed.) ICDT. ACM International Conference Proceeding
Series, vol. 361, pp. 225-238. ACM (2009)

11. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp.
1152-1163. Springer (2008)

12. Léelo: Léelo procesos documentales (2015), http://leelo.es/

13. Léelo: Balandra (2016), http://balandrasw.com

