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Abstract The static properties of the fundamental model for epidemics of diseases allowing immunity
(susceptible-infected-removed model) are known to be derivable by an exact mapping to bond percolation.
Yet when performing numerical simulations of these dynamics in a network a number of subtleties must be
taken into account in order to correctly estimate the transition point and the associated critical properties.
We expose these subtleties and identify the different quantities which play the role of criticality detector in
the two dynamics.

PACS. 89.75.Hc Networks and genealogical trees – 05.70.Ln Nonequilibrium and irreversible thermody-
namics – 87.23.Ge Dynamics of social systems – 89.75.Da Systems obeying scaling laws

1 Introduction

Epidemic processes on complex heterogeneous topologies,
such as those representing social contact networks [1], can
exhibit surprising features when compared with regular
or fully mixed substrates [2]. Particular among those hall-
marks is a vanishing epidemic threshold [3,4], which makes
heterogeneous networks exceedingly prone to the spread-
ing of an infection, even in the case of a very small infec-
tive power. A cornerstone model for the understanding of
diseases that confer immunity is the susceptible-infected-
removed (SIR) model [5]. In this model, the nodes in the
network (individuals) can be in three different states: sus-
ceptible (S), i.e. able to contract the disease; infected (I),
i.e. able to propagate the disease to a nearest neighbor
contact; and removed (R), immune to the disease. The
dynamics of the model is as follows: each infected node
connected to a susceptible node can propagate the disease
to the latter with a rate (probability per unit time) λ;
on the other hand, each infected individual recovers and
becomes removed with a rate µ (which, without loss of
generality, we fix to µ = 1). Notice that the total rate of
infection of neighbours of a node is proportional to the
number of susceptible ones. The behavior of the SIR model
is characterized in terms of the statistical properties of
the epidemic outbreaks it generates, measured by the av-
erage number of removed individuals NR at the end of
an outbreak. In this sense, it is important to discern the
existence of an epidemic threshold λc, separating a phase
λ ≤ λc in which the total number of affected individuals
is sublinear with the network size N , with NR/N → 0 for
N →∞, from a phase λ > λc in which the disease affects

a finite fraction of the population, NR/N → const. > 0 for
N →∞.

The properties of the SIR model have been analytically
studied applying different approaches [2]. In particular the
so-called heterogeneous mean-field theory (HMF) [6,7,8]
focuses on the dynamic properties of nodes grouped in
classes with the same degree and assumes an annealed
network approximation [9], neglecting the actual network
structure and considering only an ensemble of random
networks, all sharing some statistical properties (degree
distribution, degree correlations) [10]. An alternative, more
accurate, approach is based on a mapping of SIR outbreaks
to a bond percolation process in the network, with a per-
colation probability depending on the rate of infection and
recovery of the SIR process [11,2]. Both approaches predict
the presence of an epidemic threshold that, in degree un-
correlated networks [12], is a function of the first 〈k〉 and
second

〈
k2
〉

moment of the network’s degree distribution.

Despite the strength of these theoretical predictions
the use of numerical techniques is still important, for both
percolation and SIR on networks, since the theoretical
approaches are based on the omission of topological and
dynamical correlations [12]. Most computational efforts
devoted to determine the position of the critical point in
either SIR or percolation [13,14,15,16] rely on some form
of numerical “susceptibility”, defined in terms of moments
of the cluster or outbreak sizes. These susceptibilities are
designed to behave as “criticality detectors”, in the sense
that they should exhibit a peak in the vicinity of the critical
point, and decrease sensibly away from it. The variation
of the position and height of the peak as a function of
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the network size is then used to determine the position
of the critical point in the thermodynamic (infinite net-
work) limit, as well as the associated critical exponents,
by applying finite-size scaling (FSS) theory [17]. While
the susceptibilities used so far in the literature usually
work numerically, there has not been, to the best of our
knowledge, any effort to put them on a sound theoretical
footing, in particular, in what refers to the differences in
the susceptibilities used for percolation and the SIR model,
and in the relation with the mapping from one process to
the other.

The purpose of this paper is to undertake this effort,
by examining critically the different numerical methods
applied so far to determine the critical properties of the
bond percolation and the SIR transitions. We find that,
despite the exact mapping existing between the two models,
different quantities must be considered in the numerical
study of the two cases. Moreover, particular care must be
used in the evaluation of the critical properties of SIR and
its comparison with theoretical predictions.

The paper is structured as follows. In Sec. 2 we briefly
summarize the results for percolation and SIR that will
be needed in the rest of the paper. In Sec. 3 we define
different quantities that may be detectors of criticality for
percolation processes on networks, we determine analyti-
cally and verify numerically which one is the most suitable.
We then adapt the same framework to the SIR model,
highlighting the differences between the two cases, which
result in different quantities being optimal detectors of
criticality. A discussion of the implications of our findings
and a reinterpretation of previous literature, followed by
conclusions is presented in Sec. 4.

2 Background on percolation and the SIR
model

In this section we briefly summarize standard results on
percolation and the SIR model that will be needed in the
rest of the paper.

2.1 Percolation in lattices

In bond percolation, edges are removed with probability
1 − p and kept with probability p. In regular Euclidean
lattices [18], a critical value pc separates a subcritical phase
at p ≤ pc in which only small clusters of connected sites
exist, from a supercritical phase at p > pc, where there is
an infinite, spanning cluster. In finite Euclidean systems,
the spanning cluster is defined as any cluster that touches
two opposite boundaries along a given coordinate axis. The
order parameter is thus defined as the probability P (the
percolation strength) that a randomly selected site belongs
to the spanning cluster. In an infinite system, above the
transition

P ∼ (p− pc)β , (1)

defining the critical exponent β. The principal quantity in
percolation, from which all others can be derived, is the

normalized cluster number, ns(p), defined as the number
of finite clusters of size s per lattice site. A consequence of
this definition is that sns(p)/

∑
s′ s
′ns′(p) is the probability

that a randomly chosen site belongs to a finite cluster of size
s [18]. In order to determine numerically both the critical
point and the associated critical exponents, one usually
studies the so-called mean cluster size (or susceptibility)
[18],

χ =
∑
s

s
sns(p)∑
s′ s
′ns′(p)

. (2)

The susceptibility χ assumes, in an infinite lattice, a finite
value for any p except at the critical point, pc, where it
diverges as

χ ∼ |p− pc|−γ (3)

This divergence is related to the scaling form of the nor-
malized cluster number, which, close to the critical point,
obeys

ns(p) ' s−τF(s∆1/σ), (4)

with ∆ = |p− pc|, F is a scaling function, while τ and σ
are other critical exponents, related to β and γ through
the relations [18]

σ =
1

β + γ
, τ = 3− γ

β + γ
. (5)

Right at the critical point, we can apply FSS theory
[18,17] to see how quantities depend on system size in
finite systems. The basic FSS hypothesis states that the
system size dependence enters in the system by the ratio
ξ/L, where L is the longitudinal length and ξ ∼ ∆−ν

the correlation length [18]. Thus, assuming that the order
parameter follows, close to criticality, the scaling form

P(p, L) = L−β/νF (∆νL) (6)

we are led to susceptibility scaling at the critical point as

χ(pc) ' Lγ/ν , (7)

while the order parameter scales as

P(pc) ' L−β/ν . (8)

Notice that these last expressions can be simply obtained
by replacing ∆ ∼ L−1/ν in Eqs. (1) and (3).

2.2 Percolation in networks

In networks all definitions presented above can be used,
with only one caveat: Since there is no network boundary, it
is not possible to define a spanning cluster, and hence one
has to use alternative definitions of the order parameter P .
The natural modification involves the consideration of the
largest component of the network, which has size S. In the
limit of infinite network, below the critical point the size
of the largest component is subextensive: S/N → 0; above
the critical point, on the other hand, the largest component
is the giant connected component of the network [19], with
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a size S ≡ G ∼ N , proportional to the network size. In this
way, we can define the percolation strength as P = G/N ,
which is finite above the critical point.

For random uncorrelated networks the condition for
the existence of the giant component is [20]

p > pc =
〈k〉

〈k2〉 − 〈k〉
. (9)

The behavior of the order parameter close to criticality is
P ∼ (p− pc)β , where the critical exponent β depends on
the form of the degree distribution. For scale-free networks
with a degree distribution P (k) ∼ k−γd , one finds [21]

β =

1/(3− γd) for 2 < γd < 3
1/(γd − 3) for 3 < γd < 4

1 for γd > 4
. (10)

Applying the FSS theory, and assuming a scaling of the
order parameter, following Eq. (6), in the form

P(p,N) = N−β/νF (∆νN), (11)

one finds [22,23]

ν =

 2/(3− γd) for 2 < γd < 3
(γd − 1)/(γd − 3) for 3 < γd < 4

3 for γd > 4
. (12)

Notice that ν describes the scaling with respect to the net-
work size and, for the case 2 < γd < 3, one assumes a max-
imum degree in the network scaling as kmax ∼ N1/2 [24].
For any γd > 3 [21], it holds

γ = 1, (13)

while for 2 < γd < 3 the exponent γ is effectively 0 [22].

2.3 Mapping SIR to percolation

The possibility of studying the SIR model by mapping
it to a percolation process was observed as early as in
Refs. [25,26]. In networks, the mapping is worked out as
follows [11]. Let us consider a modified SIR model, in
which infected nodes remain in this state for a fixed time
τ after infection. Consider now an infected node and an
edge joining it to a susceptible node. During the infection
time τ , since the transmission of the disease along the edge
follows a Poisson process with rate λ, the probability that
the infection will be transmitted along the edge is given
by the transmissibility Tτ , which takes the value [27]

Tτ = 1− e−λτ . (14)

As this transmissibility is the same for all infected nodes
and edges, it is clear that the set of removed nodes gen-
erated by a SIR outbreak starting from a single infected
node will be equal to the connected cluster the initial in-
fected node belongs to in a bond percolation process with
occupation probability p = Tτ . From this mapping, the

presence of a critical occupation probability pc implies the
existence of a critical transmissibility Tτ,c, which translates
into a critical spreading rate λc. For uncorrelated networks,
Eq. (9) for pc implies, using Eq. (14),

λc =
1

τ
ln

〈
k2
〉
− 〈k〉

〈k2〉 − 2 〈k〉
. (15)

The previous expression was derived assuming a constant
infection time τ . In general, the original definition of the
SIR model, in terms of a constant recovery rate µ, implies
that recovery is a Poisson process, with a distribution of
recovery times Prec(τ) = µe−τµ [27]. One possibility to deal
with this fact is to consider the average transmissibility

〈T 〉 =

∫ ∞
0

TτPrec(τ) dτ =
λ

1 + λ
, (16)

where we have set µ = 1 [11]. The averaging performed
in Eq. (16) is in principle an approximation, which never-
theless leads to exact results for the threshold [28,2]. In
the case of uncorrelated networks, using Eq. (9), the exact
threshold is

λc =
〈k〉

〈k2〉 − 2 〈k〉
. (17)

3 Numerical analysis of percolation and the
SIR model on networks

3.1 Percolation

From a numerical point of view, the identification of the
percolation critical point in regular lattices can be per-
formed by applying the FSS hypothesis to the susceptibility
χ. Thus, assuming the analogous scaling form [18]

χ(p, L) ' Lγ/νF (∆νL) (18)

we are led in finite systems to the presence of a peak
in χ(p, L), located at pc(L) shifted from the infinite size
critical point as

|pc(L)− pc| ∼ L−1/ν . (19)

The value of the susceptibility at this peak scales as

χ(pc(L)) ∼ Lγ/ν , (20)

while the order parameter scales as

P(pc(L)) ' L−β/ν . (21)

In the case of networks, the application of this proce-
dure is hindered by the impossibility of defining a cluster
to be spanning, and thus distinguishing between percolat-
ing and finite clusters. A different approach is thus often
followed [14] based on the fluctuations of the order param-
eter. We analyze here this approach, which can be applied
to study also the SIR model, [while the one based on χ
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(Eq. (2)) obviously cannot, because for SIR only one cluster
per run is generated]. Let us define the order parameter

φ =
S

N
(22)

where S is the size of the largest cluster. In the limit
N →∞, for p ≤ pc, there is no giant component and S is
the size of a finite component, so that φ→ 0. For p > pc
instead, S = G, and thus φ = P is finite.

From this quantity and its moments, different defini-
tions of susceptibility, aiming at determining the critical
point and associated critical exponents, can be considered:

– Standard susceptibility in non-equilibrium phase tran-
sitions [29]

χ1 = N [
〈
φ2
〉
− 〈φ〉2] =

〈
S2
〉
− 〈S〉2

N
(23)

– Susceptibility proposed for epidemic processes in net-
works [30,14,15]

χ2 = N

〈
φ2
〉
− 〈φ〉2

〈φ〉
=

〈
S2
〉
− 〈S〉2

〈S〉
(24)

– Epidemic variability [31,16]

χ′3 =

√
〈φ2〉 − 〈φ〉2

〈φ〉
=

√
〈S2〉
〈S〉2

− 1 (25)

Inspired by this definition, we will consider here the
simplified form

χ3 =

〈
φ2
〉

〈φ〉2
=

〈
S2
〉

〈S〉2
. (26)

In all previous definitions brackets 〈·〉 indicate averaging
over different realizations of the percolation process. We
now analyze the suitability of each of these quantities as
detectors of criticality, by checking whether they fulfill
the requirement that they show a maximum close to the
critical point, whose position tends to pc while the height
diverges as the system size N grows.

All three susceptibilities defined above (χ1, χ2, χ3) tend
to a finite value for all values of p > pc as the system size
diverges, because 〈S〉 ∼ N ,

〈
S2
〉
∼ N2 and the fluctuations

are Gaussian
〈
S2
〉
−〈S〉2 ∼ N . In the opposite limit p→ 0,

considering p of the order of N−1, we have that all moments〈
Sk
〉

are independent of N (since essentially the number
of edges added does not depend on N), so that χ2 and χ3

go to a constant for p→ 0, while χ1 goes to zero.
Let us now analyze the behavior at the critical point for

large N . At criticality, the largest component in Euclidean
lattices coincides with the incipient spanning cluster Gi
[18], that is, the spanning cluster observed at the percola-
tion threshold, whose size scales as a power of the system
size, 〈Gi〉 ∼ Ld−β/ν . In Ref. [32], it is proven that, in a
regular d-dimensional lattice of size L (N = Ld) one has〈
G2
i

〉
− 〈Gi〉2

N
∼
〈
G2
i

〉
N
∼ 〈Gi〉

2

N
∼ Lγ/ν , 〈Gi〉

N
∼ L−β/ν .

(27)

Assuming that the same scaling laws can be extended to
the behavior of the largest cluster size Sc at the percolation
threshold in networks, with the system size L replaced by
the network size N , we have〈
S2
c

〉
− 〈Sc〉2

N
∼
〈
S2
c

〉
N
∼ 〈Sc〉

2

N
∼ Nγ/ν ,

〈Sc〉
N
∼ N−β/ν ,

(28)
with the corresponding change in the definition of the
exponent ν. As we will see below, the previous scaling
forms are confirmed by percolation simulations in random
networks. The scaling relations in Eq. (28) can be also
obtained by assuming the so-called first scaling law [33]
for the probability distribution of the order parameter at
criticality

P (Sc) =
1

〈Sc〉
F (Sc/ 〈Sc〉), (29)

which implies 〈
Skc
〉
∼ 〈Sc〉k . (30)

This leads to the results in Eq. (28), assuming 〈Sc〉 /N '
N−β/ν and the hyperscaling relation

2β

ν
+
γ

ν
= 1. (31)

Inserting Eqs. (28) into the definitions of the suscepti-
bilities we obtain the behavior at criticality

χ1(pc) ∼ Nγ/ν , χ2(pc) ∼ N (γ+β)/ν , χ3(pc) ∼ const.
(32)

The previous relationships show that χ1 and χ2 are suitable
criticality detectors: They diverge at the critical point,
while tending to a constant value away from criticality.
In this respect, χ2 should be numerically preferred, as
it diverges with a larger exponent. The susceptibility χ3

instead does not depend on N at criticality. This makes it
rather unsuitable as criticality detector in the usual sense
of a susceptibility with a diverging peak; however χ3 might
play in this case a role analogue to Binder’s cumulant for
Ising-like equilibrium transitions [34,35,36]: a function of
the control parameter p changing with the system size
N for all values of p except pc, so that the latter is the
estimated as the value where curves of χ3(p), computed
for different of N , intersect each other.

We have checked the performance of these three differ-
ent criticality detectors by performing bond percolation
experiments using the Newman-Ziff algorithm [37,38] on
two examples of networks for which exact values of the
percolation point and critical exponents are available: Ran-
dom regular networks and scale-free networks generated
with the uncorrelated configuration model (UCM) [39]. In
random regular networks (RRN) all nodes have the same
degree K, with edges randomly distributed among them,
preventing self-connections and multiple connections. The
critical point is, according to Eq. (9),

pc =
1

K − 1
, (33)

while the values of the associated critical exponents are,
from Eqs. (10), (12), and (13), βth = γth = 1, and νth = 3.
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N

102

104

104 105 106 107

102

104

<S> ~ N0.66

<S2>/N ~ N0.33

<S>2/N~ N0.33

[<S2> - <S>2]/N ~ N0.33

Figure 1. Numerical check of the scaling relations in Eq. (28)
on RRN with fixed degree K = 5.

In our simulations, we fix K = 5, leading to the theoretical
critical point pRRN,th

c = 0.25. For scale-free networks, we
consider a degree exponent γd = 3.5, with a minimum
degree kmin = 3 and a maximum degree kmax = N1/(γd−1),
equal to the so-called natural cut-off [24]. In this case, the
percolation threshold takes the form of Eq. (9). Considering
a pure discrete power-law form P (k) = k−γ/

∑∞
q=kmin

q−γ ,

we obtain pUCM,th
c = 0.15054. For this degree exponent,

from Eqs. (10), (12), and (13), we have βth = 2, γth = 1,
and νth = 5. In our simulations, the moments of the largest
cluster

〈
Sk
〉

are computed averaging over 10000 bond
percolation realizations on fixed networks of different size.

In the first place, we proceed to verify that the scaling
relations in Eqs. (28) are observed numerically for percola-
tion on RRN networks. Thus, in Fig. 1 we plot different
moments of the distribution of the largest cluster size,
computed at the theoretical critical point pRRN,th

c = 0.25.
As we can see, the scaling relations assumed in Eq. (28)
are perfectly satisfied, within the numerical accuracy of
our simulations.

We next plot the different susceptibilites as a function
of p for different network sizes in the case of RRN, Fig. 2,
and UCM networks, Fig. 3. As we can see, in both cases
χ1 and χ2 show peaks of height increasing with N , located
at positions pc(N) that change with network size, moving
with increasing N towards smaller p values. From the
divergence of the height of the peaks of the susceptibilities
we can obtain the values of exponent ratios involving γ.
Indeed, assuming that the susceptibilities χ1 and χ2 obey
the FSS form (see Eq. (18))

N−αi/νχi(p,N) = Fi[(p− pc)N1/ν ], (34)

where α1 = γ and α2 = γ+β, we obtain that the height of

the susceptibilities at their peak, χpeak
i = χi(pc(N)), must

satisfy

χpeak
1 ∼ Nγ/ν , χpeak

2 ∼ N (γ+β)/ν . (35)

From a linear regression in logarithmic scale of the peak
height as a function ofN , we obtain for RRN (Fig. 2(d)) the
exponent ratios γ/ν = 0.33(1), (β + γ)/ν = 0.67(1), which
compare very well with the theoretical values γth/νth = 1/3
and (γth + βth)/νth = 2/3. For UCM networks (Fig. 3(d))
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peak ~ N0.33

χ2
peak ~ N0.67

a) b)
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d)

Figure 2. Panels (a,b,c): Different susceptibilities for bond
percolation in RRN networks with degree K = 5. Panel (d):
Scaling of the height of peaks of the susceptibilities χ1 and χ2

as a function of the network size.
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peak ~ N0.19

χ2
peak ~ N0.60
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Figure 3. Panels (a,b,c): Different susceptibilities for bond
percolation in UCM networks with degree exponent γd = 3.5.
Panel (d): Scaling of the height of peaks of the susceptibilities
χ1 and χ2 as a function of the network size.

we find γ/ν = 0.19(1), (γ + β)/ν = 0.60(1), in excellent
agreement with the theoretical expectations γth/νth = 0.2
and (γth + βth)/νth = 0.6.

From the positions of the peaks pc(N) as a function of
N we can obtain information on the asymptotic critical
point (in the infinite network size limit) and the exponent
ν, assuming the validity of Eq. (19). In this case, we can
write

pc(N) = pc − aN−1/ν , (36)

where a is some constant prefactor. By means of a non-
linear fitting of data to Eq. (36), the values of pc and ν can
be estimated. From such a non-linear fitting, we obtain
for RRN the value ν = 3.1(2) for χ1 and ν = 3.2(2) for
χ2, with a critical point pc = 0.2498(1) coincident for both
susceptibilities, see Fig. 4. In the case of RRN networks,
a single network sample is sufficient, due to the fact that
the position of the peaks pc(N) fluctuates very slightly



6 C. Castellano and R. Pastor-Satorras: Numerical study of percolation and epidemics critical properties in networks

0.00 0.01 0.01 0.01 0.02 0.03 0.03
0.250

0.252

0.254

0.256

0.258

p c(N
)

χ1, ν = 3.1(2)
χ2, ν = 3.2(2)

0.00 0.02 0.04 0.06 0.08
N-1/ν

0.160

0.180

0.200

p c(N
)

χ1, ν = 4.5(4)
χ2, ν = 4.7(6)

pc = 0.2498(1)

pc = 0.153(2)

a)
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Figure 4. Plot of the peak position as a function of N for bond
percolation on RRN (a) and UCM networks with γd = 3.5 (b).
The linear behavior is in agreement with Eq. (36).

from sample to sample. These fluctuations are stronger in
UCM networks, so we proceed to estimate the peak in 10
different samples of networks of given size N , and compute
from them the average position pc(N) and associated error,
see Fig. 4. Applying to this data a non-linear fitting to the
form of Eq. (36), we obtain ν = 4.5(4) for χ1 and ν = 4.7(6)
for χ2, with a common critical point pc = 0.153(2). The
values thus obtained show a very good match with the
theoretical expectations for the RRN, pRRN,th

c = 0.25 and
νth = 3, and provide a quite reasonable approximation in
the case of UCM networks, pRRN,th

c = 0.15054 and νth = 5.

In order to check the accuracy of the different suscepti-
bilities with respect to the known exact values of the critical
point and critical exponents, we perform a data collapse
analysis. The validity of FSS hypothesis above implies that
plotting the values of the susceptibilities rescaled according
to Eq. (34) curves for different values of N will collapse onto
the same universal function Fi(x) for x = (p − pc)N1/ν ,
when the correct values of the critical points and critical
exponents are used. In Fig. 5 we show the data collapse
analysis for the RRN. In this case, a perfect data collapse is
obtained with the exact theoretical results pRRN,th

c = 0.25,
νth = 3, γth/νth = 1/3, (βth + γth)/νth = 2/3. Concerning
the scale-free UCM networks, a very good data collapse
is obtained using the numerical parameters previously es-
timated from the analysis of the peak height and peak
position of the susceptibilities, namely pUCM

c = 0.153,
γ/ν = 0.19, (γ + β)/ν = 0.60, and ν = 4.7.

As we have pointed out above, one could think on using
the constant value of the susceptibility χ3 as a method
to determine the critical point in the sense of the Binder
cumulant: Since χ3(pc) does not depend on network size,
curves of χ3(p) for different values of N should cross exactly
at pc, allowing thus to identify pc. The usefulness of this
method, however, is hindered by the fact that, at odds

10-6

10-4

10-2

100

N
−γ

/ν
χ 1(p

, N
)

N=3 x 104

N = 105

N = 3 x 105

N = 106

N = 3 x 106

N = 107

-5.0 0.0 5.0
(p - pc) N

1/ν
10-4

10-2

100

N
−(

β 
+ 

γ)
/ν

 χ 2(p
, N

)

Figure 5. Data collapse analysis of the susceptibilities χ1 (top)
and χ2 (bottom) for bond percolation on RRN of degree K = 5.
We have used the exact theoretical values pRRN,th

c = 0.25,
νth = 3, γth/νth = 1/3, (βth + γth)/νth = 2/3.

10-4

10-2

100

N
−γ

/ν
χ 1(p

, N
)

N = 105

N = 3 x 105

N = 106

N = 3 x 106

N = 107

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
(p - pc) N

1/ν

100

102

N
−(

β 
+ 

γ)
/ν

 χ 2(p
, N

)

Figure 6. Data collapse analysis of the susceptibilities χ1

(top) and χ2 (bottom) for bond percolation on UCM of degree
exponent γd = 3.5. We have used the numerical critical point
pUCM
c = 0.153, and the exponents ν = 4.7, γ/ν = 0.19 and

(γ + β)/ν = 0.60.

with the originally defined Binder cumulant, χ3(p) has in
general an asymptotic form that is not a step function [34]:
The limits for large and small values of p are very similar,
and the function exhibits a peak close to pc. In the case
of RRN, see a close up in the vicinity of the critical point
in Fig. 7(a), the peaks are so close to the critical point
that in general two intersection points can be observed
for every pair of curves, rendering them unsuitable for the
determination of pc. In the case of UCM networks with
γd = 3.5, Fig. 3(b), the crossing is sufficiently away from
the peak to allow an estimate of the crossing point which is
in reasonable agreement with the estimated numerical one,
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Figure 7. Close up of the susceptibility χ3 in the vicinity of
the critical point for RRN networks (a) and UCM networks
with γd = 3.5 (b). In this last case, we consider the average
over 10 different network samples.

pUCM
c ' 0.153, for the largest network sizes considered, see

the corresponding close up in Fig. 7(b).

3.2 SIR model

The SIR process is mapped exactly to bond percolation.
However, when the two processes are simulated numerically,
there is a crucial difference: In a percolation experiment,
we have information on the whole cluster structure for
each percolation configuration, and we can pick the largest
cluster to perform statistics. On the other hand, in the
SIR process, we obtain only one outbreak, corresponding
to a particular percolation cluster, in every run. Therefore,
averages over different outbreak sizes are the only available
information. Moreover, since the seed of SIR outbreaks is
chosen randomly among all vertices, epidemic outbreaks
are bond percolation clusters sampled with a probability
proportional to their size. In other words, when an outbreak
occurs above the critical point, this corresponds to the
giant component, of size G, with probability PG = G/N ,
and to a finite cluster with probability PF = 1− PG. On
the other hand, when the system is below the critical
point, all outbreaks correspond to finite clusters. Thus,
if we define the order parameter as the relative outbreak
size, φ = NR/N , when computing its moments in SIR
simulations we are performing, in the general case, an
implicit double average:

1. For a fixed percolation configuration, we are selecting
the giant component with probability PG, and finite
clusters with probability 1− PG1. In the latter case, a
finite cluster of size s is selected with probability ∼ sns.
Importantly, this first average is made at constant G
(the size of the giant component of the fixed percolation
configuration).

1 We assume PG = G = 0 below the critical point.

For the fixed percolation configuration, the n-th mo-
ment of the order parameter φ is thus

φn =

(
G

N

)n
PG +

∑
s<G

( s
N

)n sns∑
s′<G s

′ns′
PF

=

(
G

N

)n+1

+ µ
∑
s<G

( s
N

)n
sns

(
1− G

N

)
(37)

where µ−1 =
∑
s′<G s

′ns′ is a normalization factor that
tends to a constant in the limit of large N .

2. After this average, an average over different percolation
configurations, described by the distribution of giant
component sizes g(G), must be performed. Thus we
have

〈
φn
〉

=

〈(
G

N

)n+1
〉
g

+ µ
∑
s<G

(
1

N

)n〈
sn+1ns

(
1− G

N

)〉
g

≡
∑
S

(
G

N

)n+1

g(G) + µ
∑
s<G

(
1

N

)n〈
sn+1ns

(
1− G

N

)〉
g

Assuming that the largest cluster and the finite clusters
are uncorrelated (〈sn+1G〉 = 〈sn+1〉〈G〉) we have

〈
φn
〉

=

〈
Gn+1

〉
Nn+1

+ µ

〈
sn+1

〉
Nn

(
1− 〈G〉

N

)
(38)

where the averages
〈
sk
〉

of finite clusters are performed
with the probability ns(p).

Let us analyze the scaling of the three candidate sus-
ceptibilities at the critical point. Considering first the
approach to criticality from below. Since there is no giant
component, we have

〈
φn
〉

=

〈
sn+1

〉
Nn

. (39)

Below the critical point, the moments
〈
sk
〉

can be com-
puted from the scaling ansatz for the normalized cluster
number ns(p), see Eqs. (4) and (5), leading to〈

s2
〉
' ∆−γ ,

〈
s3
〉
' ∆−(4−τ)/σ ' ∆−(β+2γ). (40)

Applying the FSS hypothesis, substituting ∆ ∼ N−1/ν , we
have, at criticality,〈

s2
〉
c
' Nγ/ν ,

〈
s3
〉
c
' N (β+2γ)/ν , (41)

and from here〈
φ
〉
c
' Nγ/ν−1,

〈
φ2
〉
c
' N (β+2γ)/ν−2. (42)

Therefore, we have

χ1(λc) = N [
〈
φ2
〉
c
−
〈
φ
〉2
c
] ' N (β+2γ)/ν−1 ' N (γ−β)/ν ,

(43)
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where the hyperscaling relation Eq. (31) has been used.
For χ2(λc), in the limit of large N , we have

χ2(λc) =
χ1(λc)〈
φ
〉
c

' N1−β/ν , (44)

and, finally, for χ3

χ3(λc) =

〈
φ2
〉
c〈

φ
2
〉

)c
' Nβ/ν . (45)

Results for the same quantities can be derived when
approaching criticality from above. In this case,

〈
Gk
〉

has

the leading behavior and terms
〈
sk
〉

can be disregarded.
The definitions of the candidate susceptibilities become
therefore

χ1 = N [
〈
φ2
〉
−
〈
φ
〉2

] =

〈
G3
〉
−
〈
G2
〉2
/N

N2
(46)

χ2 = N

〈
φ2
〉
−
〈
φ
〉2〈

φ
〉 =

〈
G3
〉
−
〈
G2
〉2
/N

〈G2〉
(47)

χ3 =

〈
φ2
〉

〈
φ
〉2 =

N
〈
G3
〉

〈G2〉2
(48)

For fixed λ > λc and large N , the numerator of χ1 and
χ2 increases as N3 so that both χ1 and χ2 grow linearly
withN . This is already enough to declare the two quantities
unsuitable as detectors of criticality. Instead it is trivial to
see that χ3 goes to a finite limit as N → ∞. Let us also
check the behavior at criticality. Right at the critical point
we assume that the size of the largest component obeys〈
S3
c

〉
∼
〈
S2
c

〉
〈Sc〉, which follows from the scaling relation

Eq. (29). Hence, from Eq. (28),
〈
S3
c

〉
∼ N2+(γ−β)/ν so that

χ1(λc) '
〈
S3
c

〉
N2

∼ N (γ−β)/ν (49)

We conclude that this function is in general not a good
detector of criticality, since in general γ ≤ β, and therefore
χ1(λc) decreases with network size. It may however be of
use in the case γ = β (as in MF), because in this case all
curves for different N cross each other at the critical point,
thus allowing its identification.

With regard to χ2, making the same assumptions about

the scaling of
〈
S3
c

〉
and the irrelevance of

〈
S2
c

〉2
/N we find

now
χ2(λc) ' 〈Sc〉 ∼ N1−β/ν . (50)

Hence the value of χ2(λc) grows at the critical point but,
since it grows even more strongly above the critical point,
χ2 has no maximum at λc (see Fig. 8). It is hence unsuitable
as detector of criticality.

Under the same assumptions about the behavior at
criticality, we also obtain

χ3(λc) '
N 〈Sc〉
〈S2
c 〉
∼ Nβ/ν . (51)
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λ
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χ 2

0.3 0.31 0.32 0.33 0.34 0.35 0.36
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peak ~ N0.33

a) b)

c)
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Figure 8. Panels (a,b,c): Different susceptibilities for the SIR
process in RRN networks with degree K = 5. Panel (d): Scaling
of the height of peak of the susceptibility χ3 as a function of
the network size.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
λ

10-8

10-6

10-4

10-2

100

102

χ 1

0.1 0.15 0.2 0.25 0.3 0.35 0.4
λ

10-2

100

102

χ 2
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Figure 9. Panels (a,b,c): Different susceptibilities for the SIR
process in UCM networks with degree exponent γd = 3.5. Panel
(d): Scaling of the height of peak of the susceptibility χ3 as a
function of the network size.

It is therefore a good detector of criticality.
We have tested these predictions for the SIR model

on RRN with fixed degree K = 5 and UCM scale-free
networks with degree exponent γd = 3.5. For RRN net-
works, the mean-field theoretical prediction for the epi-
demic threshold is λRRN,th

c = 1/(K − 2) = 1/3; in the
case of UCM networks, Eq. (17), with a discrete power-
law distribution P (k) = k−γ/

∑∞
q=kmin

q−γ , leads to the

threshold λUCM,th
c = 0.1772. In both cases, the theoretical

predictions for the critical exponents should be the same
as in percolation, namely βth = γth = 1, and νth = 3 for
RRN networks, and βth = 2, γth = 1, and νth = 5 for UCM
networks with γd = 3.5. In our simulations, the moments
of the relative outbreak size

〈
φk
〉

are computed averag-

ing over at least 10000 realizations (up to 107 realizations
close to the critical point) of the epidemic process on fixed
networks of different size.
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Figure 10. Plot of the peak position as a function of N for
the SIR dynamics on RRN (a) and UCM networks with degree
exponent γd = 3.5 (b). The linear behaviors are in agreement
with Eq. (36).

In Figs. 8 and 9 we plot the three susceptibilities as
a function of the spreading rate λ in different network
sizes, for the RRN and UCM cases, respectively. Figures
shows that χ3 exhibits a well pronounced maximum, λc(N),
growing with N ; χ2 instead does not possess a maximum.
In the case of RRN, where β = γ, χ1 does not exhibit a
maximum either, but the critical point can be detected as
the point where curves for different values of N meet. This
is not possible in UCM networks, where β > γ.

Assuming a FSS hypothesis for χ3 of the form

N−β/νχ3(λ,N) = F [(λ− λc)N1/ν ], (52)

implies that the height of the susceptibility peak χpeak
3 =

χ3(λc(N)), scales as

χpeak
3 ∼ Nβ/ν . (53)

From here, using a linear regression in logarithmic scale,
we obtain the estimates β/ν = 0.33(1) for the RRN, and
β/ν = 0.44(2) for UCM networks, in reasonable agreement
with the theoretical values βth/νth = 1/3 and βth/νth =
0.40, respectively, see Figs. 8(c) and 9(c).

As in the case of percolation we can fit the position
λc(N) of the peak of the susceptibility χ3 to formula anal-
ogous to Eq. (36) to obtain the values of the asymptotic
critical point λc and of the exponent ν. From such a non-
linear fitting, see Fig. 10, we obtain for RRN the value
ν = 2.4(5) and a critical point λc = 0.333(4). For UCM
we obtain instead ν = 4.3(1.0) and λc = 0.177(5). In both
cases there is a fair agreement with the expected theoretical
values.

Performing a data collapse analysis, according to Eq. (52),
we observe that data for RRN exhibits, as in the case of
percolation, an almost perfect collapse using the exact the-
oretical values λRRN,th

c = 1/3, νth = 3, and βth/νth = 1/3,

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
(λ − λc) N

1/ν

10-1

100

N
−β

/ν
χ 3(λ

, N
)

N = 104

N = 105

N = 106

Figure 11. Data collapse analysis of the susceptibility χ3 for
SIR model on RRN networks with degree K = 5. We have
used the exact theoretical values λRRN,th

c = 1/3, νth = 3,
βth/νth = 1/3.

-2.0 -1.0 0.0 1.0 2.0
(λ − λc) N

1/ν
10-2

10-1

100

N
−β

/ν
χ 3(λ

, N
)

N = 105

N = 106

Figure 12. Data collapse analysis of the susceptibility χ3 for
SIR model on UCM networks of degree exponent γ = 3.5. We
have used the numerical epidemic threshold λUCM

c = 0.185(5)
and the exponents ν = 4.3(5), β/ν = 0.43(3).

see Fig. 11. In the case of scale-free UCM networks, neither
the theoretical predictions nor the numerically estimated
parameters provide a good collapse of the susceptibilities
χ3 for different network sizes. This is again due to the un-
certainties in the position of the epidemic threshold, which
are perceptible in the single network sample data used of
the collapse2. In this case, we proceed to estimate the best
collapse by minimizing the distance between the rescaled
plots using the Nelder-Mead unconstrained optimization al-
gorithm, as implemented in the Python package fssa3. The
best collapse is obtained using the values λUCM

c = 0.185(5),
ν = 4.3(5) and β/ν = 0.43(3). The exponents are quite

2 Notice that we cannot average the data for the whole χ3(p)
since it would lead to a smoothing and rounding of the suscep-
tibility peak.

3 Available at http://pyfssa.readthedocs.org/en/stable/.
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Figure 13. Close up of the quantity χ4 in the vicinity of the
critical point for RRN networks (a) and UCM networks with
γd = 3.5 (b). In this last case, we consider the average over at
least 10 different network samples.

close to the theoretical predictions. With respect to the
value of the numerical epidemic threshold, we can compare
it with the numerical critical point obtained for percolation
by noticing that, from Eqs. (17) and (9), we have

1

λc
=

1

pc
− 1. (54)

Using the numerical percolation value for UCM networks,
pUCM
c ' 0.153 in Eq. (54), we obtain λUCM

c ' 0.181, in
good agreement with the best critical point from the data
collapse analysis.

Finally, in analogy with the case of percolation we
consider also an additional quantity, analogue to Binder’s
cumulant. In view of the scalings in Eq. (42), the quantity

χ4 =

〈
φ
〉3〈

φ2
〉2 (55)

should scale at criticality as N1−(2β/ν+γ/ν) and hence be
constant due to the hyperscaling relation Eq. (31). In
Fig. 13 we plot the behavior of this analogue of Binder’s
cumulant for this dynamics in the vicinity of the critical
point. For RRN this quantity allows to determine with
excellent precision the location of the critical point as the
intersection of the curves for different size N . In the case
of UCM instead, the presence of large sample-to-sample
fluctuations spoils the determination of a single intersection
point. In this case, even averaging the value of χ4 over
several realizations does not lead to a reliable estimate of
the critical point.

4 Discussion and conclusions

The numerical evaluation of epidemic thresholds in net-
works represents an important issue, with practical im-
plications in real world situations [2]. Despite this fact,
in the case of the SIR model no clear prescription has
been defined so far, and several alternative approaches [29,
30,14,15,31,16] have been proposed and applied in the

10-4 10-3 10-2 10-1 100

λ − λc

10-4

10-2

100

<φ
>

N = 103

N = 104

N = 105

N = 106

Figure 14. Order parameter
〈
φ
〉

(average outbreak size) for
the SIR model on RRN with degree K = 10 as a function of
λ− λc. The dashed line represent the behavior (λ− λc)

2.

literature, based on the use of a ”susceptibility” measure,
defined as a quantity that, as a function of the spreading
rate (in the SIR model) or the occupation probability (for
percolation), ought to show a maximum located in the
vicinity of the putative critical point, while decreasing to
a constant value away from it, in a similar fashion as the
susceptibility usually considered in equilibrium statistical
mechanics [40]. In the present paper we have performed
a theoretical analysis of different forms of susceptibilities
that have been applied to study the SIR model and the
related percolation process. The analysis of three possible
candidate susceptibilities indicates that different forms of
susceptibility are better suited to analyze percolation or
the SIR process. More specifically, the susceptibility χ3,
Eq. (26), is the correct one for the SIR model, while the
susceptibilities χ1, Eq. (23), and χ2, Eq. (24) are better
suited for percolation, the latter outperforming the former
due to its fastest divergence at criticality. This different
performance is traced back to the different nature of the
numerical observables in SIR and percolation. While both
models can be exactly mapped one onto the other, different
observables can be measured for each of them in numerical
simulations. So, while for the percolation process one can
easily extract the largest cluster of each percolation sample
in order to define an order parameter, and perform aver-
ages restricted over it, in the SIR process such distinction is
impossible, and one is forced to define an order parameter
in terms of averages over all outbreaks (clusters), sampled
intrinsically with a probability proportional to their size.

An additional consequence of the biased sampling of
clusters in the SIR model is an effect regarding the de-
termination of the exponent β, associated to the growth
of the order parameter in the supercritical phase. When
using the natural definition of the order parameter for the
SIR model, given by the average relative outbreak size,〈
φ
〉
, from Eq. (38) we get, in the supercritical phase

〈
φ
〉

=

〈
G2
〉

N2
∼ [λ− λc]2β . (56)
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As a consequence, if the order parameter
〈
φ
〉

is plotted
versus λ − λc an effective exponent βSIR = 2β is found.
This is confirmed in Fig. 14, where we present results
from simulations of the SIR process on RRN with fixed
degree K = 10, for which β = 1. This result by no means
invalidates the connection between SIR and percolation.
It is only a consequence of the unavoidable bias in the
selection of percolation clusters induced by the random
choice of the initial seed of SIR outbreaks. On the other
hand, Fig. 14 could potentially cast some doubts on the
validity of the HMF prediction for the exponent β [6], which
coincides with the prediction in Eq. (10). A closer scrutiny
shows however that the HMF prediction for SIR is correct:
The order parameter considered in the HMF theory is not〈
φ
〉
, the average outbreak size, but rather the probability

that, at the end of the outbreak, a randomly chosen node is
recovered. In the thermodynamic limit N →∞, above the
critical point, this quantity coincides with the relative size
of the giant component of the corresponding percolation
problem. This explains why the critical exponent β found
by HMF theory for SIR rightly coincides with the β of
bond percolation and is equal to a half of the exponent
found in SIR numerical simulations for the order parameter〈
φ
〉

determined numerically.

The analysis presented here allows finally to reinter-
pret and clarify some results appeared in the literature. In
Ref. [16] it was found numerically that epidemic variabil-
ity χ′3 [31] provides precise estimates of the SIR epidemic
threshold, while using χ2 leads to systematic errors. The
scaling analysis performed in Sec. 3.2 allows to understand
the reasons of this observation. On the other hand Ref. [13]
observed that the average outbreak size does not corre-
spond to the order parameter in percolation, in agreement
with the discussion above. The authors of [13] provide a
numerical technique to make these two quantities coincide:
fix an outbreak size threshold sc, and perform averages
only over outbreaks larger than this threshold. Again, our
results justify this recipe: The threshold introduced biases
the clusters averaged towards the theoretical largest clus-
ter, which is indeed the observable used to determine the
order parameter in percolation.
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