

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Soft Error Mitigation Techniques

For Future Chip Multiprocessors

by

Gaurang Upasani

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Architecture

September 2015

include http://www.upc.edu/
http://personals.ac.upc.edu/gaurang/
http://www.ac.upc.edu/

Declaration of Authorship

I, Gaurang Upasani, declare that this thesis titled, ‘Soft error mitigation techniques

for future chip multiprocessors’ and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a research

degree at this University.

■ Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

ii

‘Here’s to the crazy ones. The misfits. The rebels. The troublemakers. The round

pegs in the square holes.

The ones who see things differently. They’re not fond of rules. And they have no

respect for the status quo. You can quote them, disagree with them, glorify or vilify

them.

But the only thing you can’t do is ignore them. Because they change things. They

invent. They imagine. They heal. They explore. They create. They inspire. They

push the human race forward. Maybe they have to be crazy.

How else can you stare at an empty canvas and see a work of art? Or sit in

silence and hear a song thats never been written? Or gaze at a red planet and see

a laboratory on wheels?

We make tools for these kinds of people.

While some see them as the crazy ones, we see genius. Because the people who are

crazy enough to think they can change the world, are the ones who do!’

Apple Computer, Inc. (Written by Rob Siltanen & Lee Clow)

Dedicated to my wife and family . . .

vi

Abstract

The sustained drive to downsize the transistors has reached a point where device

sensitivity against transient faults due to neutron and alpha particle strikes a.k.a

soft errors has moved to the forefront of concerns for next-generation designs.

Following Moore’s law, the exponential growth in the number of transistors per

chip has brought tremendous progress in the performance and functionality of

processors. However, incorporating billions of transistors into a chip makes it

more likely to encounter a soft soft errors. Moreover, aggressive voltage scaling

and process variations make the processors even more vulnerable to soft errors.

Also, the number of cores on chip is growing exponentially fueling the multicore

revolution. With increased core counts and larger memory arrays, the total failure-

in-time (FIT) per chip (or package) increases. Our studies concluded that the

shrinking technology required to match the power and performance demands for

servers and future exa- and tera-scale systems impacts the FIT budget. New soft

error mitigation techniques that allow meeting the failure rate target are important

to keep harnessing the benefits of Moore’s law.

Traditionally, reliability research has focused on providing circuit, microarchitec-

ture and architectural solutions, which include device hardening, redundant exe-

cution, lock–step, error correcting codes, modular redundancy etc. In general, all

these techniques are very effective in handling soft errors but expensive in terms

of performance, power, and area overheads. Traditional solutions fail to scale in

providing the required degree of reliability with increasing failure rates while main-

taining low area, power and performance cost. Moreover, this family of solutions

has hit the point of diminishing return, and simply achieving 2× improvement in

the soft error rate may be impractical.

Instead of relying on some kind of redundancy, a new direction that is growing in

interest by the research community is detecting the actual particle strike rather

than its consequence. The proposed idea consists of deploying a set of detectors on

silicon that would be in charge of perceiving the particle strikes that can potentially

create a soft error. Upon detection, a hardware or software mechanism would

trigger the appropriate recovery action.

This work proposes a lightweight and scalable soft error mitigation solution. As

a part of our soft error mitigation technique, we show how to use acoustic wave

detectors for detecting and locating particle strikes. We use them to protect both

the logic and the memory arrays, acting as unified error detection mechanism.

We architect an error containment mechanism and a unique recovery mechanism

based on checkpointing that works with acoustic wave detectors to effectively

recover from soft errors.

Our results show that the proposed mechanism protects the whole processor (logic,

flip-flop, latches and memory arrays) incurring minimum overheads.

Acknowledgements

My sincere thanks to:

Xavier Vera for his direct supervision and guidance throughout this work. Xavi

is extremely approachable. Hes one of the smartest people I know. I hope that I

could be as lively, enthusiastic, and energetic as him;

Antonio González for reviewing and providing his insights and experience in im-

provising my papers, tutoring this thesis work, providing the financial support

during initial phase and for providing me with the required logistical support;

My parents for enrolling me into my first computer course at the age of 9 and

buying the first computer (A BBC Micro with 32kB RAM by Acron Comput-

ers™) when I was a kid; and supporting me to take up the research in computer

architecture. My wonderful sister for making me feel home even though I was

away.

My beautiful and loving wife for her constant support and infinite patience...

My good friends, Rakesh Kumar, Amrit Kumar Panda and lab mates for numerous

discussions on random topics of research in microarchitecture.

A special mention to Javier Carretero, Nicholas Axelos and Enric Herrero who

generously gave of their time and assisted me with the part of research of this

thesis and setting up the required infrastructure;

Lastly, thanks to everyone at ARCO, Intel Barcelona Research Center and DAC-

UPC. Thanks to badminton group Manoj, Gaurav and Prashanth. Thanks to the

Generalitat of Catalunya for awarding me the FI-AGAUR fellowship and funding

my research and the DAC administration for arranging the numerous trips to the

conferences and solving countless administrative problems.

Barcelona, April 2015

x

Contents

Declaration of Authorship ii

Abstract viii

Acknowledgements x

List of Figures xviii

List of Tables xxiii

Publications xxv

Glossary xxvi

Physical Constants xxx

1 Introduction 1

1.1 Motivation . 2

1.1.1 Soft Error Trends . 4

1.1.2 Current Solutions and Challenges 5

1.2 Problem Statement . 6

1.2.1 Soft Error Rate Limits the Core Count 7

1.2.2 Soft Errors in the age of Dark Silicon 8

1.2.3 Soft Errors in Large Memories 9

1.2.4 Handling SDC & DUE . 10

1.2.5 Protecting all Computing Segments 11

1.3 Thesis Scope and Contributions . 12

1.4 Organization . 14

2 Soft Errors: Background and Overview 16

2.1 Soft Error Terminologies . 16

2.1.1 Faults, Errors and Failures 17

2.1.2 Metrics . 18

xii

Contents xiii

2.1.3 SDC and DUE . 19

2.2 Realizing Reliable Solution . 20

2.3 Soft Error Sources . 22

2.3.1 Alpha particles . 22

2.3.2 Neutron particles . 23

2.3.3 Neutron induced boron fission 23

2.4 Interaction of Particles with Silicon 24

2.4.1 Generation of Light, Sound and Heat! 25

2.5 Computing Soft Error Rate . 26

2.6 Soft Error Manifestation in Electronics 28

2.6.1 Soft Errors in SRAM . 28

2.6.2 Soft Errors in DRAM . 29

2.6.3 Soft Errors in Logic . 29

2.6.4 Evidence of Soft Errors . 31

2.7 Parameters Affecting Soft Error Rate 32

2.8 Soft Errors and Future Processors 35

2.8.1 Impact of Technology Scaling 35

2.8.1.1 SRAM . 35

2.8.1.2 DRAM . 35

2.8.1.3 Logic Components 36

2.8.2 Impact of New Technologies 37

2.8.2.1 Silicon on Insulator (SOI) 37

2.8.2.2 Multigate-FET Devices 38

2.8.2.3 Non-Volatile Memories 38

2.9 Calculating SER to Make Architectural Decisions 39

2.9.1 Fault Injection: . 40

2.9.2 Architecture Vulnerability Factor (AVF) Analysis: 40

3 Error Detection using Acoustic Wave Detectors 42

3.1 Particle Strike Detectors . 42

3.2 The Microelectromechanical Ears: Acoustic Wave Detectors 46

3.2.1 Structure and Properties of Device 47

3.2.2 Calibrating the Detector . 48

3.2.2.1 False Positives . 48

3.3 Soft Error Detection via Detecting Particle Strikes 49

3.4 Location Estimation of a Particle Strike 51

3.4.1 Example . 53

3.4.2 Obtaining TDOA . 54

3.4.3 Generating TDOA Equations 55

3.4.4 Solving TDOA Equations 56

3.5 Algorithms for TDOA Equations 57

3.5.1 Deterministic Method . 57

3.5.2 Non-deterministic Method 58

3.5.2.1 Non-iterative Algorithms 58

Contents xiv

3.5.2.2 Iterative Algorithm 60

3.5.3 Metrics for Evaluating Algorithms 61

3.5.3.1 Runtime . 61

3.5.3.2 Complexity . 61

3.5.3.3 Location Estimation Coverage 62

3.5.3.4 Accuracy . 62

3.6 Assessing the Algorithms . 63

3.6.1 Placement of Detectors . 63

3.6.1.1 Accuracy . 64

3.6.1.2 Location Estimation Coverage 65

3.6.2 Choosing Detectors for TDOA Equations 69

3.6.2.1 Accuracy . 69

3.6.2.2 Location Estimation Coverage 69

3.6.3 Effect of Solving More TDOA Equations 69

3.6.3.1 Accuracy . 70

3.6.3.2 Runtime . 72

3.6.3.3 Complexity . 74

3.6.4 Effect of Sampling Frequency on Accuracy 74

3.6.5 Detection Latency . 77

3.6.6 Summary of Chosen Configuration 77

3.6.7 Summary of Results . 79

3.7 Related Work . 79

3.7.1 Current Glitch Detectors . 80

3.7.1.1 Built-In Current Sensors (BICS) 80

3.7.1.2 Switching Current Detector 81

3.7.2 Voltage Glitch Detectors . 81

3.7.3 Metastability Detectors . 82

3.7.4 Deposited Charge Detectors 83

3.7.4.1 Thin film silicon detectors 83

3.7.4.2 Heavy-ion Sensing 83

3.7.5 Comparison of Detectors . 83

3.7.5.1 Hardware cost/Area overhead 84

3.7.5.2 Power overhead and detection latency 85

3.7.5.3 False alarms . 86

3.7.5.4 Detected particles/Fault types 87

3.7.5.5 Intrusiveness of the design 87

3.7.5.6 Fault coverage vs. Cost 88

3.8 Chapter Summary . 89

4 Protecting Caches with Acoustic Wave Detectors 91

4.1 Error Detection and Localization in Cache 91

4.2 Providing Error Correction in Caches 93

4.2.1 Reaction upon a Particle Strike 94

4.2.2 Standalone Acoustic Wave Detectors 94

Contents xv

4.2.2.1 Error Area Granularity: Cache Lines 95

4.2.2.2 Error Area Granularity: Exact bit 95

4.3 Acoustic Wave Detectors with Error Codes 97

4.3.1 Error Area Granularity: Cache Lines 97

4.3.2 Error Area Granularity: Exact bit 100

4.3.2.1 Acoustic Wave Detectors + Parity per Block 102

4.3.2.2 Acoustic Wave Detectors + Parity per Byte 105

4.3.2.3 Acoustic Wave Detectors with Physical Interleaving 107

4.4 Handling Multi-bit Upsets in Caches 109

4.5 Cost of Protection . 112

4.6 Related Work . 112

4.6.1 Particle Strike Detection for Soft Errors 113

4.6.2 Soft Error Detection . 113

4.6.2.1 Error Codes . 113

4.6.3 Soft Error Mitigation . 115

4.6.3.1 Physical Interleaving 116

4.6.3.2 Cache Scrubbing 116

4.6.3.3 Cache Flush . 117

4.6.3.4 Early Writeback 117

4.6.4 Comparison of Techniques 117

4.7 Chapter Summary . 122

5 Protecting Entire Core with Acoustic Wave Detectors 124

5.1 ”SDC & DUE 0” Architecture . 124

5.1.1 Effect of Detection Latency on SDC & DUE 125

5.1.2 Achieving SDC-& DUE 0 per Core 127

5.1.3 Divide and Conquer for SDC and DUE 0 129

5.1.4 Containment in Core: Recap 131

5.1.5 Proposed Architecture . 131

5.2 Implementation of Proposed Architecture: Unicore Processor 133

5.2.1 Error Containment Mechanism 133

5.2.1.1 Dealing with Verified Cache. 134

5.2.1.2 Dealing with Not-Verified Cache. 134

5.2.2 Creating Checkpoints . 136

5.2.2.1 Validating the Checkpoint. 138

5.2.3 Recovering from Error . 139

5.2.4 Intrusiveness of Design . 139

5.3 Implementation of Proposed Architecture: Multicore Processor . . . 140

5.3.1 Shared Memory Architecture 140

5.3.1.1 MOESI Protocol for Error Containment. 140

5.3.1.2 MOESI Protocol for Checkpointing. 142

5.3.1.3 Recovering from Error. 142

5.4 Managing System Calls, Interrupts and Exceptions 142

5.4.1 Handling Interrupts. 142

Contents xvi

5.4.2 Dealing with Exceptions. 143

5.4.3 Context switching and Multi-programming. 144

5.5 Performance Evaluation of ”SDC- & DUE 0” Architecture 144

5.5.1 Experimental Setup . 144

5.5.1.1 Single core system. 144

5.5.1.2 Multicore system. 146

5.5.2 Error Detection Latency vs Containment Area 146

5.5.3 Checkpoint Length vs Checkpoint Area 147

5.5.4 Uniprocessor Performance 150

5.5.5 Performance of Multicore for Data Non-Sharing Applications 150

5.5.6 Multicore Shared Memory Performance 152

5.6 Related Work . 152

5.6.1 Error Detection and Recovery in Core 152

5.6.1.1 Dual Modular Redundancy with Recovery 152

5.6.1.2 Lockstepping with Recovery 154

5.6.1.3 Redundant Multithreading (RMT) with Recovery . 156

5.6.1.4 Error Detection and Recovery using Checker Core . 158

5.7 Chapter Summary . 159

6 Protecting Embedded Core with Acoustic Wave Detectors 161

6.1 Experimental Setup . 161

6.2 Handling SDC & DUE in Embedded Core 163

6.2.1 Acoustic Wave Detectors and Error Detection Latency . . . 163

6.2.2 Error Containment Granularity 164

6.2.2.1 Error Containment Granularity: Core 165

6.2.2.2 Error Containment Granularity: Cache 166

6.2.3 Putting everything together 168

6.3 Selective Error Containment . 168

6.3.1 Protecting Individual Data Paths & Latency Guard Bands . 168

6.3.1.1 Traversal of Instructions in Pipeline 169

6.3.1.2 Cost of Error Containment 170

6.4 Error Containment Coverage vs. Vulnerability 172

6.4.1 ACE Analysis . 173

6.4.2 Reducing AVF using Acoustic Wave Detectors 175

6.5 Related Work . 176

6.5.1 Soft Error Sensitivity Analysis 177

6.5.2 Soft Error Protection . 178

6.5.2.1 Hardware Only Approach 178

6.5.2.2 Software Only Approach 179

6.5.2.3 Hybrid Approach 180

6.6 Chapter Summary . 180

7 Related Work 182

7.1 Soft Error Protection Schemes . 182

Contents xvii

7.1.1 Device Enhancements . 182

7.1.1.1 Triple-well technology 183

7.1.1.2 Silicon-on-insulator 183

7.1.1.3 Process techniques 184

7.1.2 Circuit Enhancements . 184

7.1.2.1 Increasing nodal capacitance in the circuit 185

7.1.2.2 Radiation hardened cells 186

7.2 Soft Error Detection Schemes . 186

7.2.1 Spatial Redundancy . 187

7.2.1.1 Detectors for Error Detection 187

7.2.1.2 Error Detection via Monitoring Invariants 188

7.2.1.3 Error Detection via Dynamic Control/Data Flow
Checks . 190

7.2.1.4 Error Detection via Hardware Assertion 191

7.2.1.5 Error Detection via Symptom Checks 192

7.2.1.6 Error Detection via Selective Protection 193

7.2.2 Information Redundancy . 194

7.2.2.1 Error Codes for Combinational Logic 194

7.2.2.2 Signature Based Approach 199

7.2.3 Temporal Redundancy . 199

7.2.3.1 Various Flavors of RMT 200

7.2.3.2 Error Detection via Detecting Anomalies 206

7.2.3.3 Using shifting operations 207

7.3 Error Recovery . 208

7.3.1 Forward Error Recovery . 209

7.3.1.1 Triple Modular Redundancy (TMR) 209

7.3.2 Backward Error Recovery 210

7.3.2.1 Checkpointing Techniques for Recovery 211

7.3.3 Other Recovery Schemes . 215

7.4 Error Detection and Recovery using Software 216

8 Conclusions 220

8.1 Summary of Research . 220

8.1.1 Detecting Particle Strikes for Soft Error Detection 221

8.1.2 Unified Error Detection for Logic & Memory 221

8.1.3 Precisely Locating the Errors 221

8.1.4 Reducing Reliability Cost for Caches and Memory 222

8.1.5 Protecting Entire Processor 223

8.1.6 One Solution for All Computing Segments 223

8.2 Discussions . 224

8.2.1 Future Work . 224

Bibliography 226

List of Figures

1.1 SRAM bit and SRAM system (e.g., cache) soft error rate for differ-
ent technology nodes [17]. The soft error rate of a bit is predicted
to remain roughly constant. However, the soft error rate of a cache
is predicted to increase. 3

1.2 System soft error rate trend for different technologies [29, 33, 34].
The soft error trend has been scaled from the numbers presented for
single core in the works of [35] assuming same system wide masking
rate as [36]. It also shows the soft error rate trends in dotted lines
for three levels of aggressive voltage scaling (V1>V2>V3) for future
sub-32nm technologies. 4

1.3 Soft error rate contribution of different components in a processor
core [56]. Core frontend includes ITLB, decode queue, RAT, IL1,
pre-scheduler, allocate latches etc. Core backend includes DTLB,
MOB, DL1, ROB, ALUs, register file, issue queue, AGU etc. Case
(a) FIT distribution of a processor assuming caches and TLBs are
protected via ECC and therefore, do not contribute to the total FIT
rate. Case (b) FIT distribution of a processor with a protection
mechanism similar to the redundant multithreading (RMT) [57]
and caches, register file, MOB, and queues with data coming from
a protected structured are protected. 6

1.4 Scaling of FIT/Core to accommodate more cores per chip while
maintaining the FIT/Chip constant 7

1.5 TDP modes in modern multicore processor. TDP1 operates at 0.7
VDD and hence there are 4 active cores. In TDP2 the supply volt-
age is scaled down to 0.45 VDD to activate 64 cores. The relative
FIT in TDP2 is increased by 16× compared to TDP1 due to in-
creased active silicon area. However, due to effects of the supply
voltage scaling the relative impact on soft error rate is as high as
30× [77] . 8

2.1 Reliability metrics: Mean time to repair (MTTR), Mean time to
failure (MTTF) and Mean time between failures (MTBF) 18

2.2 Classification of soft errors: silent data corruption (SDC) and de-
tected unrecoverable error (DUE) 20

2.3 Realizing reliability pipeline for soft errors: error detection, error
containment and error recovery . 21

xviii

List of Figures xix

2.4 Alpha particles generate electron-hole pairs in silicon by direct ion-
ization. Inelastic collision of neutrons with a silicon atom generate
electron-hole pairs via indirect ionization by creating a silicon recoil.
Elastic collisions of neutron particles are harmless. 24

2.5 Particle strike on a critical node Q on a 6T-SRAM cell 28

2.6 Structure of a DRAM memory cell 29

2.7 Masking effect in combinational logic circuits. 30

2.8 Impact of frequency on soft error rate 34

2.9 DRAM bit soft error rate for different technology nodes [180]. The
soft error rate of a DRAM bit is predicted to decrease. The soft
error rate of a DRAM memory system has traditionally remained
constant over technology generations moreover, it is predicted to be
dominated by the soft errors in the DRAM peripheral logic. 36

3.1 Transformation of the energy of particle strike upon its impact on
silicon surface into acoustic shock wave 46

3.2 Cantilever beam like structure of acoustic wave detectors [214]. A
particle strike is detected by sensing the deflection of cantilever beam. 47

3.3 A comparison of relative slowdown due to false positive recovery for
different recovery techniques: Seqoia [226], Swich [227], Carer [228],
SPARC64 [229], IBM Z series [59], IBM G5 [58], Encore [230], Re-
Store [231], ReVive [102], SafetyNet [107], IBM Blue Gene [232],
BLCR [233] . 49

3.4 TDOA hyperbolas in a system and location of source. Dashed hy-
perbola is formed using only two detectors S1 and S2. Including a
third detector S3 can successfully locate the source via intersecting
hyperbolas. 52

3.5 Strike detection and localization via triangulation using TDOA
measurements of acoustic wave detectors 53

3.6 Timeline of the events following the particle strike 53

3.7 Strike detection algorithm (firmware) and a hardware control mech-
anism . 54

3.8 Sampling errors in the measurements of the time difference of the
arrival at the acoustic wave detectors 55

3.9 Placement of detectors in a mesh formation 64

3.10 Impact of placement of detectors (while solving 4 TDOA equations)
on accuracy (area unit is the area of 1 bit SRAM cell) 65

3.11 Impact of placement of detectors (while solving 4 TDOA equations)
on location estimation coverage . 65

3.12 Impact of initial guess on coverage (while solving 4 TDOA equa-
tions) on location estimation coverage 66

3.13 Worst-case error area with the selection of different set of detectors
(4 to 10) from a given [4× 5] mesh 68

3.14 Error area with closest detectors for [4× 5] mesh 70

3.15 Comparing accuracy of all algorithms and for the mesh configura-
tions discussed in Table 3.2 . 72

List of Figures xx

3.16 Comparing runtime and complexity of all algorithms and for the
mesh configurations discussed in Table 3.2 73

3.17 Impact of sampling frequency on error area for configurations of
Table 3.2 Iterative Algorithm 4 . 74

3.18 Impact of sampling frequency on error area for configurations of
Table 3.2 for all algorithms . 75

3.19 Worst-case detection latency for mesh configurations of Table 3.2
in a processor running at 2 GHz . 76

3.20 Adding more detectors to reduce worst-case detection latency in a
processor running at 2 GHz . 76

3.21 Built-in current sensor (BICS) . 80

3.22 Switching current detector . 81

3.23 Voltage glitch detector . 82

3.24 Metastability detector (BISS) . 82

4.1 Mapping of the estimated worst-case error area at the granularity
of affected (a) bits (b) bytes and (c) lines. These affected bits, bytes
or cache lines contain the actual erroneous bit, byte or cache line. . 92

4.2 Breakdown of the obtained worst-case error area granularity for
1048 particle strikes at random location and instance for different
mesh configurations in L1 data cache at the sampling frequency of
4 GHz . 96

4.3 Quantification of error area granularity for 5× 5 mesh for L1 data
cache . 101

4.4 3*CEP error area mapping to bits to bits of the L1 cache: (a) 1-bit,
(b) 2-bits, (c) 3-bits (d) 4-bits and (e) 5-bits 102

4.5 Possibilities of 3*CEP error area granularity patterns : (a) 2-bits,
(b) 3-bits, (c) 4-bits and (d) 5-bits 102

4.6 Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per block for 3*CEP error area granularity pat-
terns of (a) 2-bit, (b) 3-bit, (c) 4-bit and (d,e) 5-bit 103

4.7 Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per byte for 3*CEP error area granularity pat-
terns of (a,b) 2-bit, (c-f) 3-bit, (g) 4-bit and (h-m) 5-bit 105

4.8 Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per byte and assuming the bits are physically
interleaved with degree of interleaving: 4 107

4.9 Probability of pin-pointing the erroneous bit and correcting it (i.e.,
DUE improvement) using acoustic wave detectors and combining
acoustic wave detectors with parity at byte and block level and
assuming physically interleaved parity protected bits in L1 data cache108

4.10 Extending the 3*CEP error area granularity of 1-bit and 5-bits for
handling spatial multi-bit upsets using acoustic wave detectors to
locate (a) 2 bit MBU and (b) 3 bit MBU 110

List of Figures xxi

4.11 Probability of locating the 2 bit MBU using acoustic wave detectors
configuration providing 3*CEP error area granularity of 1 bit and
parity per byte . 111

4.12 Basic functionality of encoding and decoding of data bits in error
codes . 114

5.1 Number of detectors vs. detection latency at 2 GHz 128

5.2 Pipeline of a state of the art processor and the latency of stages . . 129

5.3 Error Containment Architecture . 132

5.4 Time-line of the events in cache. D indicates the dirty bit and EDL
stands for error detection latency. Once the cache line has been writ-
ten the cache line enters in quarantine state. After ErrorDetectionLatency
cycles the cache line is now in verified state and also error free. . . . 134

5.5 Error containment in cache for evictions caused by read and write
operations. D indicates the dirty bit. 135

5.6 Checkpointing in the caches due to the evictions caused by read
and write operations. D indicates the dirty bit and CH stands for
the checkpoint bit. 137

5.7 A scenario indicating the importance of validating the checkpoint.
CH indicates the checkpoint bit and EDL stands for error detec-
tion latency. Notice the CheckpointValid counter that indicates the
validity of the checkpoint. 138

5.8 Handling error containment in a shared memory accesses for multi-
core architecture. EDL stands for error detection latency. 141

5.9 MOESI protocol: Transitions are shown in the trigger 7→action for-
mat. Underlined transition triggers and actions are the same as
uniprocessor architecture. The transition triggers in gray boxes are
extensions for multicore shared memory architecture. ”Wr” stands
for write and ”Rd” stands for read operation. ”Stall” 7→ErrorDetectionLatency
cycles. 141

5.10 Extending the architecture to handle interrupts and I/O traffic. . . 143

5.11 Checkpoint events in LLC checkpoint boundary 145

5.12 Average dirty lines to be written back from L1 to LLC 149

5.13 Average wait-cycles until LLC is verified 149

5.14 Performance impact of containment and checkpointing LLC cache
in single core architecture . 150

5.15 Slowdown due to containment and checkpointing LLC cache in the
16-core system for private memory applications 151

5.16 Slowdown due to containment and checkpointing LLC cache in the
16-core system for shared memory applications 151

5.17 Implementation of dual modular redundancy scheme for error de-
tection and recovery. 153

5.18 Lockstep error detection and recovery via retry 155

5.19 Implementation of dynamic implementation verification architec-
ture (DIVA) and the functioning of the checker core 158

List of Figures xxii

6.1 Error detection latency for acoustic wave detectors on embedded
core for different mesh configurations 164

6.2 Error containment granularities in embedded processor 165

6.3 Performance overhead of error containment in cache for a checkpoint
period of 1 million cycles . 167

6.4 Distribution of residency cycles in a state of the art embedded core
pipeline . 169

6.5 Arrangement of FUBs and placement of acoustic wave detectors on
embedded core [313] . 172

6.6 Error containment granularities in embedded processor 173

6.7 Reducing AVF by adapting acoustic wave detectors 175

6.8 AVF of issue queue by protecting them with acoustic wave detectors
for different detection latency . 176

7.1 Triple well technology and the creation of deep n-well which traps
the charge generated upon a particle strike. 183

7.2 The suspended body in partially depleted SOI transistor 184

7.3 Reduction of soft errors by introducing capacitance on the critical
nodes in an SRAM cell . 185

7.4 The C-Element circuit forming the core logic of BISER detection
scheme [322] . 188

7.5 The control flow checker: A high level program, compiler generated
instructions and the corresponding CFG 191

7.6 The hardware assertion and the timestamps 192

7.7 Residue code generation logic for an adder 197

7.8 Functional block diagram of parity prediction circuit in an adder . . 198

7.9 Sphere of replication is shown in shaded part. Both the processor
cores are part of the sphere of replication 202

7.10 Functional implementation of RMT scheme on a processor with two
cores (P0 and P1). The cross coupled cores with a few dedicated
hardware queues can work in unison for error detection. 205

7.11 Using temporal redundancy for error detection via re-execution with
shifted operands . 207

7.12 Classification of error recovery schemes 208

7.13 Triple modular redundancy . 210

List of Tables

2.1 Summary of the sources of soft errors. † indicates the flux at sea
level and ⋆ is the flux at 32,000 feet above sea-level. 25

2.2 Parameters that affect the soft errors and impact the overall soft
error rate . 33

2.3 Impact of important parameters and corresponding impact on soft
error rate . 33

3.1 Comparing different particle strike detectors. † while protecting
memory, ⋆ while protecting combinational logic, ∓ the detection
latency is bounded and configurable. 44

3.2 Worst case error area for best configuration of a given mesh for each
algorithm. † solves only 2 equations 71

3.3 Comparison of algorithms: Algorithm 1 is deterministic and Al-
gorithms 2, 3 and 4 are non-deterministic; ∓ with careful mesh
selections . 78

4.1 Summary of the best mesh configurations and the error area gran-
ularities for the caches . 92

4.2 Summary of the mesh configurations for the caches and correspond-
ing worst case detection latency cycles for a sampling frequency of
2 GHz. Marked configurations are used only for locating errors and
extra detectors are added to reduce the detection latencies. 93

4.3 Comparison of protection capabilities of having only error codes
versus error codes with acoustic wave detectors. HFaults stands for
number of hard faults, SER number of soft errors, D for detection,
C for correction, CT for containment 99

4.4 Minimum required degree of physical bit interleaving (DOI) in a
cache with bit interleaved parity and acoustic wave detectors 111

4.5 Comparing different mechanisms for protecting caches against soft
errors. nD indicates n bits error detection capability, mD–nC in-
dicates m bits error detection and n bits correction capability. †

overheads per SRAM cell, †† overhead per chip, ⋆ overhead per 64
bits, ⋆⋆ doesnt include overhead from the interleaving circuit. 119

xxiii

List of Tables xxiv

5.1 Comparison of different error detection schemes († vulnerability
holes in LSQ logic (i.e., MOB logic), ∗ cannot detect errors in stores,
†† does not detect but prevents error, ⋆ only for simple in-order cores,
⋆⋆ cannot detect if fault does not manifest a symptom, ∓ latency
from actual strike instance) . 126

5.2 Required number of detectors for containment in core 130

5.3 Configuration Parameters . 146

5.4 Containment cost (i.e., #Stalls and wait cycles for each stall) for
containment boundary limited to L1 147

6.1 Configuration Parameters . 162

6.2 Required acoustic wave detectors for full error containment cov-
erage. L1 cache is protected separately using an architecture as
presented in Chapter 4. 171

7.1 AN codes and the functions for which they are invariant 195

7.2 Residue codes and the functions for which they are invariant. Divi-
sion is not directly encodable however division holds D - R = Q ×
I relation where D is dividend, R is remainder, Q is quotient and I
is divisor . 196

Publications

The following is a list of all publications subject to peer review that are part of

this thesis.

Published papers:

Conferences

• “Framework for Economical Error Recovery in Embedded Cores”, Gaurang

Upasani, Xavier Vera and Antonio González. In the proceedings of 20th

International On-Line Testing Symposium (IOLTS) 2014.

• “Avoiding Core’s DUE & SDC via Acoustic Wave Detectors and Tailored

Error Containment and Recovery”, Gaurang Upasani, Xavier Vera and An-

tonio González. In the proceedings of 41st International Symposium on

Computer Architectures (ISCA) 2014.

• “Reducing DUE-FIT of Caches by Exploiting Acoustic Wave Detectors for

Error Recovery”, Gaurang Upasani, Xavier Vera and Antonio González. In

the proceedings of 19th International On-Line Testing Symposium (IOLTS)

2013.

• “Setting an Error Detection Infrastructure with Low Cost Acoustic Wave

Detectors”, Gaurang Upasani, Xavier Vera and Antonio González. In the

proceedings of 39th International Symposium on Computer Architectures

(ISCA) 2012.

Journals

• “ A Case for Acoustic Wave Detectors for Soft-Errors”, Gaurang Upasani,

Xavier Vera and Antonio González. IEEE Transactions on Computers (ToC).

(preprint available)

• “Particle Strike Detectors for Soft Errors”, Gaurang Upasani, Xavier Vera

and Antonio González. IEEE Computer. (under review)

xxv

Glossary

ACE Architecturally Correct Execution.

ALU Arithmetic and Logic Unit.

APS Active Pixel Sensor.

AR-SMT Active and Redundant Simultaneous Multi Threading.

AVF Architecture Vulnerability Factor.

BER Backward Error Recovery.

BICS Built- In Current Sensor.

BISS Built- In Single-event upset Sensor.

BIST Built- In Self Test.

CEP Circular Error Probable.

CFG Control Flow Graph.

CMOS Complementary Metal- Oxide Semiconductor.

CMP Chip- Multi-processor.

CRC Cyclic Redundancy Code.

DEC-TED Double Error Correction Triple Error Detection.

DFG Data Flow Graph.

DICE Dual Interlocked CElls.

DIVA Dynamic Implementation Verification Architecture.

xxvi

Glossary of Terms xxvii

DMR Dual Modular Redundacy.

DOI Degree Of Interleaving.

DRAM Dynamic Random-access Memory.

DUE Detected Unrecoverable Error.

DVFS Dynamic Voltage and Frequency Scaling.

ECC Error Correcting Code.

EDL Error Detection Latency.

FER Forward Error Recovery.

FIFO First In First Out.

FIT Failure In Time.

FRAM Ferroelectric Random-access Memory.

GPS Global Positioning System.

HCI Hot Carrier Injection.

IC Integrated Circuit.

IQ Issue Queue.

ISA Instruction Set Architecture.

LET Linear Energy Transfer.

LLC Last Level Cache.

LRU Least Recently Used.

LSQR Least Square Roots.

MBU Multiple Bit Upset.

MCA Machine Check Architecture.

MOB Memory Order Buffer.

Glossary of Terms xxviii

MRAM Magnetoresistive Random-access Memory.

MTBF Mean Time Between Failures.

MTTF Mean Time To Failure.

MTTR Mean Time To Repair.

MUX Multiplexer.

NBTI Negative Bias Temperature Instability.

NMOS N-type Metal Oxide Semiconductor.

NOP Null Operation instruction.

NTC Near Threshold Computing.

PBTI Positive Bias Temperature Instability.

PC Program Counter.

PCM Phase Change Memory.

RAT Register Alias Table.

RF Register File.

RMT Redundant Multi Threading.

RNA Register Name Authentication.

ROB Re- Order Buffer.

RTL Register- Transfer Level.

RUU Register Update Unit.

SBU Single Bit Upset.

SDC Silent Data Corruption.

SEC-DED Single Error Correction Double Error Detection.

SER Soft Error Rate.

Glossary of Terms xxix

SES Soft Error Sensitivity.

SET Single Event Transient.

SEU Single Event Upset.

SMT Simultaneous Multi Threading.

SOI Silicon On Insulator.

SRAM Static Random-access Memory.

SRT Simultaneous and Redundant Threading.

SRTR Simultaneously and Redundantly Threaded with Recovery.

SSD Silicon Strip Detector.

STT-RAM Spin-Transfer Torque Random-access Memory.

TAC Timestamp-based assertion checking.

TDDB Time Dependent Dielectric Breakdown.

TDOA Time Difference Of Arrival.

TDP Thermal Design Power.

TLB Translation Lookaside Buffer.

TMR Triple Modular Redundancy.

TTF Time To Failure.

TVF Time Vulnerability Factor.

Physical Constants

Electron Volt eV = 1.60217657× 10−19 joules

Speed of Light c = 2.99792458× 108 ms−s

Speed of Sound in Silicon Cp = 10kms−1

xxx

Chapter 1

Introduction

For several decades, the semiconductor devices have seen tremendous progress in

performance and functionality due to the exponential growth in the number of

transistors per chip. In 1971, the Intel 4004® processor held 2,300 transistors. In

early 2014 Intel released Xeon Ivy Bridge-Ex® with than 4.3 billion transistors [1].

This exponential growth in number of transistors is popularly known as Moore’s

law [2].

Each succeeding technology generation has introduced new obstacles in fulfilling

the on chip transistor count. First, the rate of improvement in microprocessor

speed exceeds the rate of improvement in off chip memory (DRAM) speed [3].

This resulted into the memory wall problem that drives the innovation in having

low latency caches and other higher-level techniques such as prefetching [4, 5] and

multithreading [6] that either reduce the memory latency, or keep the processor

occupied for the longer latency memory operations.

Later, the power dissipation of the microprocessors started reaching sky high and

semiconductor industry hit the power wall, where the performance improvements

of microprocessor were limited by power constraints [7]. It motivated the research

in low power computing techniques such as dynamic voltage and frequency scaling

(DVFS), near threshold computing (NTC) and subthreshold operations. According

to Dennard scaling [8], as transistors get smaller their power density stays constant,

so that the power used stays in proportion with area (i.e., both voltage and current

scale down with length). The breakdown of Dennard scaling and the failure of

Moore’s law to yield dividends in improved performance [9, 10] prompted a switch

among some chip manufacturers to a greater focus on multicore processors [11].

1

Introduction 2

Since the number of cores on chip is growing exponentially fueling the multicore

revolution, operating all cores simultaneously requires exponentially more energy

per chip. However, whereas the energy requirements grow, chip power delivery

and cooling limitations remain largely unchanged across technologies imposing the

power wall [12]. As a result we will soon be incapable of operating all transistors

simultaneously, pushing multicore scaling to an end [13, 14]. This trend is leading

us into an era of dark silicon where we will be able to build denser devices but we

will not be able to power them up.

In this series of challenges, the reliability issues are next in line. Shrinking tran-

sistor dimensions and aggressive voltage scaling increase the sensitivity against

intrinsic and extrinsic noise sources and a corresponding increase in static and

dynamic variations. They lead to higher probability of parametric and wear-out

failures, manufacturing defects and particle strike induced soft errors. This has

elevated reliability into a prime design constraint for current and future processor

design [15, 16]. Among all the failure mechanisms, transient faults from alpha and

neutron particle strikes can induce a higher failure rate than the failure rate of all

other failure mechanisms combined [17]. As the benefits of fault tolerance solu-

tions come at the cost of area, energy and performance overheads, it may prevent

achieving scalable performance leading us to the soft error wall.

1.1 Motivation

Charged particles coming from the atmosphere generate electron-hole pairs as they

pass through a transistor. Transistor nodes can collect these charges. A particle

strike can deposit enough charge to corrupt a data bit stored in the memory (i.e.,

SRAM), or it can create a glitch in any gate in combinational logic. Such faults

in the circuit’s operation may cause a failure by corrupting the data leading to

a system crash. Since these transient errors occur due to an incorrect charge or

discharge of an intermediate capacitive node, they do not cause permanent failure

in the hardware and hence are termed soft errors in the literature.

The soft error rate (SER) is the rate at which a device or system encounters or

is predicted to encounter soft errors per unit of time, and is typically expressed

as Failures-In-Time (FIT). Chip designers have specific FIT targets for different

computing segments similar to power or performance budget [18].

Introduction 3

 Figure 1.1: SRAM bit and SRAM system (e.g., cache) soft error rate for
different technology nodes [17]. The soft error rate of a bit is predicted to
remain roughly constant. However, the soft error rate of a cache is predicted to

increase.

Although soft errors do not permanently damage the device, they are the pri-

mary limit on digital circuit reliability [19]. According to the current trends, soft

errors are more important than all other causes of computing reliability put to-

gether [20]. Typically, the soft error rate can be 250-1000× higher than the hard

failure rates [17].

The existence of this problem in space applications was reported in the early

1950s. Later, researchers found three potential radiation mechanisms that can

also cause soft errors at ground level. In late 70’s alpha particles emitting from

the radioactive impurities in the packaging materials were the dominating source

of soft errors. High energy neutrons (more than 1 MeV) were the dominating

cause of errors in 90’s. Currently, low energy neutrons are also responsible for

causing soft errors in sub-65nm technology nodes [19, 21, 22]. From then on, soft

errors have been consistently reported to be primary cause of failures in many

commercial and academic studies [23–28].

Introduction 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

180 130 90 65 45 32 22 16

So
ft

 E
rr

o
r

R
a

te
 (

R
e

la
ti

ve
 F

IT
/C

h
ip

)

Technology Node(nm)

1 Core/Chip
2 Cores/Chip

10

Cores/Chip

100

Cores/Chip
4 to 6

Cores/ Chip

Voltage scaling,

NTC etc.

V1
V2
V3

1 failure/year

1 failure/month

1 failure/4 days

1 failure/1 day

1 failure/1.5 hour

Figure 1.2: System soft error rate trend for different technologies [29, 33, 34].
The soft error trend has been scaled from the numbers presented for single core
in the works of [35] assuming same system wide masking rate as [36]. It also
shows the soft error rate trends in dotted lines for three levels of aggressive

voltage scaling (V1>V2>V3) for future sub-32nm technologies.

1.1.1 Soft Error Trends

The Figure 1.1 shows the soft error rate per SRAM bit or latch and the cache

(i.e., SRAM system). The soft error rate in an SRAM bit is projected to be con-

stant or decrease slightly per generation [29–32]. This trend is mainly because of

contradicting effects of technology scaling. On one hand, with decreasing transis-

tor dimensions the drain area of each transistor (the region sensitive to particle

strikes) decreases quadratically and it significantly reduces the charge collection

capacity making the SRAM cell less vulnerable. On the other hand, with each

technology generation the supply voltages also scales down reducing the critical

charge making it easy to upset the SRAM cell. However, a system’s error rate will

grow in direct proportion to the number of devices we add to a processor in each

succeeding generation.

Figure 1.2 shows how the the soft error rate of a system scales with technology

scaling and processor design [29, 33, 34, 37, 38]. The soft error rate scaling trend

is plotted using the data presented in [33] and [34]. It shows that, the soft error

rate of current and future processors is expected to increase exponentially because

of exponential growth rate of on-chip transistors, the shrinking feature size and

increasing core count [33, 34, 37, 39–41].

Introduction 5

A chip with 4 cores is expected to encounter roughly 1 failure every month for a

45 nm technology node. This might not be alarming yet and can be efficiently

handled with existing error handling solutions. However, servers with 100 cores

and huge memory capacity may encounter 1 failure everyday due to soft errors.

On top of that, process variations will be more pronounced with every new tech-

nology generation which may worsen soft error rate [33, 42]. Moreover, for future

processors aggressive voltage scaling and NTC will be common for meeting the

power/thermal caps escalating the soft error rate. This dramatic increase in the

soft error rate requires specific soft error tolerance mechanisms for current and

future processors.

Next, we will discuss how the existing solutions to handle soft errors do not scale

to cope up with this increase in soft error rate.

1.1.2 Current Solutions and Challenges

Current solutions for protecting processors with caches and large memory arrays

against soft errors rely on redundancy techniques. Today’s caches and mem-

ory components are protected by parity or error codes [43–49] and hardened

latches [50–54]. Unfortunately, the FIT rate of the other parts of the micro-

processor system have started reaching concerning levels [29, 30, 34, 55].

Figure 1.3 shows the contribution of different elements to the total soft error rate

for a modern processor with state-of-the-art technology [56]. Figure 1.3 (a) shows

the FIT rate contribution from unprotected parts of the processor. It shows that

FIT rate of processor is mainly due to several unprotected components such as

IQ, register files (RF), MOB, ROB, RAT and unprotected latches [56].

Figure 1.3 (b) shows the FIT distribution when the caches and TLBs are protected

with ECC and the register files, queues and MOB are protected with a redundant

multithreading (RMT) approach [57]. Overall, it brings down the FIT of the

processor compared to the case of Figure 1.3 (a). Even in this case the majority

of the FIT rate comes from unprotected latches and structures such as ROB, IQ,

RAT and free–list. These latches and structures are extremely difficult to protect

and the cost of protection in terms of area, power and performance overhead is

extremely high.

Introduction 6

39.27%

60.73%

Frontend Backend

25.22%

74.78%

Frontend Backend

(a) Protected Caches (b) Protected Caches + RMT Core

Figure 1.3: Soft error rate contribution of different components in a processor
core [56]. Core frontend includes ITLB, decode queue, RAT, IL1, pre-scheduler,
allocate latches etc. Core backend includes DTLB, MOB, DL1, ROB, ALUs,
register file, issue queue, AGU etc. Case (a) FIT distribution of a processor
assuming caches and TLBs are protected via ECC and therefore, do not con-
tribute to the total FIT rate. Case (b) FIT distribution of a processor with
a protection mechanism similar to the redundant multithreading (RMT) [57]
and caches, register file, MOB, and queues with data coming from a protected

structured are protected.

Today’s solutions do not scale to cope up with the increasing soft error rate and

providing coverage to all the unprotected components on a processor core increases

the complexity of soft error solutions. Moreover, the cost of protection is extremely

high and the existing solutions have hit the point of diminishing return.

In this thesis, our goal is to propose a soft error mitigation mechanism that is low

cost, simple to implement and scalable to handle the increasing soft error rate.

Instead of relying on some kind of redundancy, we propose to detect the actual

particle strike rather than its consequence. The proposed technique can work for

single and multicore architectures, moreover it allows reusing the same design for

different computing segments without significant modifications.

1.2 Problem Statement

We saw how the future processors will face greater reliability challenges due to

increasing soft errors rates. We also saw how the current solutions to handle soft

errors fail to scale and have hit the point of diminishing returns.

Introduction 7

In particular, the work of this thesis addresses the following problems:

1.2.1 Soft Error Rate Limits the Core Count

FIT/Chip
To

ta
l

F
IT

time

Figure 1.4: Scaling of FIT/Core to accommodate more cores per chip while
maintaining the FIT/Chip constant

With increased core counts per chip and larger memory arrays, the total FIT per

chip (or package) increases. The current soft error handling mechanisms have two

exacerbating challenges to meet FIT rate target in the presence of unprecedented

transistor densities and higher core count per chip: (i) They have to keep the total

FIT of a chip constant and (ii) they have to scale to cope up with the increased

soft error rate to accommodate more cores as shown in Figure 1.4. For example, if

you want to have 100 cores in a chip, and now you have 4 cores, you need 25× FIT

reduction per core to accommodate 100 cores. FIT rate is limiting the number of

cores on a chip just like the power/thermal budget.

To reduce the FIT rate and accommodate more cores and larger caches several ma-

jor vendors have announced aggressive reliability and protection counter measures

for current and future processors [54, 58–64].

Time and space redundancy techniques are very effective and provide very good

coverage but cause 1.5–2× slowdown [56, 57, 65–76]. The caches and larger mem-

ory arrays are equipped with more parity and stronger ECC. While protecting the

caches, the extra delay imposed by ECC computation may increase cache hit and

miss times. Moreover, smaller caches and memory arrays cannot be protected with

Introduction 8

ECC without incurring huge performance penalty. Unprotected latches and flip-

flops are replaced with hardened latches. Replacing the latches in critical paths

with hardened latches increase the length of the critical path severely impacting

performance.

To overcome the performance overhead of the conventional solutions in providing

the necessary reliability and keep increasing the core count, in this thesis we pro-

pose a novel soft error mitigation technique that uses acoustic wave detectors for

detecting particle strikes that may cause soft errors. Upon detection, a hardware

or software mechanism would trigger the appropriate recovery action. Our results

show that the proposed mechanism protects the whole processor (logic, flip-flop,

latches and memory arrays) incurring minimum overheads.

1.2.2 Soft Errors in the age of Dark Silicon

Following the multicore trend, researchers have started designing 100-core and

1000-core chips. These 100-core and 1000-core chips create dark silicon. It im-

poses a limit in terms of the number of active cores per chip leaving some cores

underutilized.

R
e

la
ti

v
e

 F
IT

/C
h

ip

#
A

ct
iv

e
 C

o
re

s

TDP1

Vdd = 0.7

4

64

TDP2

Vdd = 0.45

1x

16x

30x

3.5x

Figure 1.5: TDP modes in modern multicore processor. TDP1 operates at 0.7
VDD and hence there are 4 active cores. In TDP2 the supply voltage is scaled
down to 0.45 VDD to activate 64 cores. The relative FIT in TDP2 is increased
by 16× compared to TDP1 due to increased active silicon area. However, due
to effects of the supply voltage scaling the relative impact on soft error rate is

as high as 30× [77]

Introduction 9

In a conventional multicore processor, there is only one thermal design power

(TDP) mode. It implies that at peak voltage and frequency all cores are powered

on. In contrast, in the age of dark silicon, multicore processors have different TDP

modes with different operating voltages. Each TDP mode have starkly different

and inconsistent impact on soft error rates as well. TDP mode with lower operating

voltage, increases number of active cores on the chip as shown in Figure 1.5. This

results in higher FIT rate of chip due to two reasons: (i) lower voltages decrease the

minimum charge required to cause the soft error and, (ii) due to reduced supply

voltages the applications will take longer to execute prolonging the vulnerability

window of critical structures. To handle dark silicon, powering on 16×more silicon

area can increase the soft error rates by 3.5–30× [77].

We propose a solution that is extremely low cost in terms of area, power and

performance overhead which is crucial in dark silicon era where the chips are

already suffering the performance due to the power limitations.

1.2.3 Soft Errors in Large Memories

Cache memory is a fundamental component used to enhance the performance

of microprocessors. Current high performance processors employ multilevel on-

chip caches. The sizes are in the range of several megabytes and are expected to

increase [58, 64, 78]. On-chip caches occupy roughly 50% of chip real estate [79].

The combination of growing cache size, voltage scaling, shrinking SRAM cell di-

mensions, and increased impact of process variations is causing rapid increase in

the soft error rate. Caches benefit from the positive impact of smaller cell sizes.

However, this benefit is offset by the negative impact of storing less charge per bit

and reduced critical charge to create a soft error; as a result the cache error rate

increases linearly with cache size [30, 31, 38, 80].

To protect the caches designers adapt to error detecting codes such as parity

codes or ECC such as Single Error Correction–Double Error Detection (SEC-

DED) [43, 44]. Every read and write operation requires the encoding or decoding

of the data bits for error detection or correction. Usually, L1 caches are not

protected at all or have only error detection [81]. Large caches (L2 or L3) are

usually protected via ECC [82, 83].

Introduction 10

Most soft errors are single bit upsets and can be detected by parity codes. To

correct single bit errors single error correction can be used. However, larger caches

frequently switch to drowsy mode [84] or subthreshold operating modes [85] to

save energy. Such optimizations in future processors will be very common and

they increase the likelihood of soft errors by 9-10× [86]. Moreover, due to reduced

operating voltages, a single neutron strike can upset more than one bit of memory

in close proximity, causing spatial multibit errors. To handle spatial multibit errors,

designers usually physically interleave the ECC protected bits [87, 88]. Also, in a

cache the error handling policy (e.g., SEC-DED) has to access the erroneous data

to correct it. If not accessed, the first single bit errors may not be corrected by it,

leading to accumulation of such single bit errors over a long time which are called

temporal multibit errors. To detect and correct temporal multibit errors more

complex codes Double Error Correction–Triple Error Detection (DEC-TED) [45,

89] or RS codes [90] are required. Alternatively, there have been proposals to

use cache scrubbing that periodically scans the cache for single bit errors avoiding

their accumulation [91, 92].

Error codes combined with scrubbing is very widely used in commercial proces-

sors. To handle increasing soft error rates complex codes are required. Complex

codes need longer time for encoding and decoding data and may not be able to

provide inline error detection and correction. They may also increase the critical

path severely impacting performance [48]. Scrubbing techniques may cause large

overheads for protecting on-chip caches [93, 94]. Solutions to protect caches in

drowsy mode sacrifice the cache capacity [95, 96].

TIn this work, we propose an error detection and correction architecture that

reduces the failure rate of caches due to soft errors at minimal overheads. As a

result of which larger caches with less complex and economical error protection

techniques can also provide higher degree of reliability.

1.2.4 Handling SDC & DUE

Soft errors can be classified as silent data corruption (SDC) or detected unrecover-

able error (DUE). Corrupted data may go unnoticed by the user and is harmless.

However, corrupted data that ends up as a visible error counts as SDC event. A

DUE event occurs when a system detects the soft error but cannot recover from

it. An SDC event or a DUE event can cause a system crash. However, unlike an

Introduction 11

SDC event, a DUE event prevents data corruption. Once the error is detected the

system contains the error by stopping the error propagation beyond the point of

detection. The system can then reboot itself or it can resume the normal execution

by reverting back to the last known error free state (i.e., checkpoint).

Designers have fixed SDC and DUE FIT rates. Adding error detection can reduce

the SDC FIT rate by orders of magnitude. However, in the absence of any recov-

ery mechanism this reduction in SDC FIT transforms into DUE FIT [97]. This

interesting effect has been observed in parity protected (write–back) L1 caches

and partially protected caches (L2 with parity protected tags). Increasing cache

size causes a super linear increase in DUE FIT [98, 99].

DUE events directly impact the server availability. Increase in DUE FIT rate

causes frequent recovery actions or system reboots and may result into increased

unplanned downtime of the server system [100, 101]. To handle the increased

DUE FIT rate most of the servers today rely on checkpoint based error recovery.

Taking system wide checkpoints for error recovery can be very complex and ex-

pensive [36, 66, 102–112]. Triple modular redundancy (TMR) can eliminate DUE

without halting the system. However, TMR incurs more than 300% area and

power overhead [58, 113–115] and it is only affordable in high availability mission

critical systems.

This thesis proposes to detect and accurately locate all the particle strikes that

may cause soft errors, eliminating SDC. Moreover, proposed solution can signifi-

cantly reduce DUE FIT of entire core in a multicore processor by implementing

an extremely lightweight and scalable checkpoint based recovery mechanism.

1.2.5 Protecting all Computing Segments

Reliability research has focused largely on the high performance server market.

High availability systems rely on redundancy to provide fault tolerance. Area,

power and performance overheads associated with existing solutions for handling

soft errors may be affordable in high performance servers. Unlike high performance

servers, area and power are primary constraints in the embedded design space.

Embedded processors typically have smaller components, longer clock cycle times

and larger logic depths between latches. Due to increased logic depths the relative

area occupied by the combinational logic increases [116]. The combinational logic

Introduction 12

elements are mostly unprotected making them the largest contributors towards

total FIT of the processor. Moreover, in pipelines with larger logic depth the

number of target latches per stage increases due to wider fan-out, which increases

the probability of a fault to propagate and cause a soft error.

In general, error detection and correction codes are effective but very costly for

embedded processors with smaller caches [117–119]. Execution redundancy is

not suitable for embedded processors with limited resources. Also, checkpoint

based error recovery techniques may be complex. Moreover, the area, power and

performance overheads of taking a system wide checkpoint is unacceptable. Other

fault tolerant techniques such as radiation hardened latches require 20-30% extra

logic [50–54].

In this work, we show that the proposed solution can also effectively protect em-

bedded systems against soft errors minimizing area, power and performance over-

heads.

1.3 Thesis Scope and Contributions

To tackle the challenges described in Section 1.2, this work focuses on cost effective

soft error mitigation in microprocessors. In this work, we primarily target the

particle strike induced soft errors since these are the most prevalent soft errors in

chips. We aim to protect: (i) the unstructured, inherently complex and irregular

processor cores (i.e., combinational logic, latches and other unprotected elements

in the pipeline) and (ii) the on-chip caches which occupy large portions of the chip

area and are regular in design and behavior.

Many solutions exist to provide error detection and recovery from soft errors in

logic and memory components. However, providing robustness minimizing area,

power and performance is extremely crucial. The goal of this work is to detect

and recover from all soft errors in a processor core minimizing the overheads.

This thesis proposes a soft error mitigation architecture using acoustic wave de-

tectors. Acoustic wave detectors detect particle strikes that may cause soft errors.

In this work, we also propose a novel, economical and acoustic wave detector

Introduction 13

specific checkpointing technique for error recovery. Proposed architecture is ex-

tremely simple, scalable and it can protect different computing segments without

significant design changes.

The proposed architecture, besides providing a highly reliable core, is able to

recover a significant part of the overheads associated with current reliability tech-

niques by potentially eliminating error codes and radiation hardened latches for

soft errors. It also significantly reduces the design complexity compared to other

mainstream reliability solutions. The benefits of adapting acoustic wave detectors

are numerous and will be detailed throughout this thesis.

Several contributions of this thesis include:

• Detecting Particle Strikes to Detect Soft Errors: We propose to use a low-

cost dynamic particle strike detection mechanism based on acoustic wave

detectors. Instead of relying on error correcting codes or some kind of re-

dundancy, we deploy a set of detectors on silicon for error detection. The

benefits of this solution are twofold: (i) it can detect errors on the entire

chip, including currently unprotected logic at a very low cost, and (ii) it can

decrease the growing costs of protecting large memory arrays.

• Unified Error Detection for Logic & Memory: We develop an architecture

that detects and locates particle strikes on a processor based on acoustic

wave detectors. We first introduce the structure of such detectors, and later

propose the architecture to deploy them. Moreover, the proposed mechanism

can function stand alone or it can be integrated smoothly with other end-

to-end error detection techniques.

• Locating the Particle Strikes: We propose a new methodology that uses

the acoustic wave detectors to precisely locate particle strikes. To provide

successful error correction and recovery, the system must know the precise

location of the error. Once the accurate location is found the system can take

an available recovery action. Our solution is based on measuring the time

difference of arrival across different detectors, generate a set of hyperbolic

equations, and solve them. We implement various algorithms for solving the

hyperbolic equations and we discuss the different trade-offs in terms of cost

versus accuracy.

Introduction 14

• Protecting Caches in a Processor Core: We apply the architecture based on

acoustic wave detectors to detect and correct soft errors in caches. Addi-

tionally, we propose a new solution that combines acoustic wave detectors

with error correcting codes in such a way that we decrease the total cost of

the protection mechanism while providing the same reliability levels.

• Eliminating SDC & DUE of Core: We propose an architectural framework

to completely eliminate the SDC and DUE related to soft errors in single

and multicore processors. We propose a novel recovery solution tailored for

acoustic wave detectors. It relies on an extremely light-weight and scalable

checkpointing mechanism. We discuss different design parameters and eval-

uate the cost of checkpointing & recovery. We evaluate the impact of error

detection latency on the cost and complexity of the required recovery tech-

nique. We present different trade-offs related with complexity of detectors

deployment, detection latency and complexity of recovery mechanism. We

also show that the proposed architecture can provide cost effective recovery

in low cost embedded cores.

1.4 Organization

The rest of the thesis is organized as follows: Chapter 2 discusses in thorough

details about the soft errors, their sources and some details about the historical

background related to them. We discuss how the soft errors are manifested in logic

and memory. We also discuss some important terminologies related to soft errors

which are important to understand the rest of the thesis.

Chapter 3 begins with the physics involved behind the soft errors. We show how

particle strike detectors can be used to detect soft errors. We introduce the acoustic

wave detectors. We discuss several structural aspects of the device and some

important properties. Once we have detected the soft error we discuss how we can

accurately locate the particle strike and hence the error. Using a basic example

we discuss how we can generate the hyperbolic equations based on the relative

time difference of arrival (TDOA) of the acoustic wave generated by the strike

among different detectors. We discuss the implementation of different algorithms

to solve hyperbolic equations for location estimation. Finally, we evaluate the

Introduction 15

error detection and localization architecture taking an example of the core of a

Core™i7 like processor.

In Chapter 4 we show how we can detect and locate errors in caches using acoustic

wave detectors. We compare the trade offs in protecting the caches using stand

alone acoustic wave detectors and combination of error codes (i.e., parity and

ECC) with acoustic wave detectors for error recovery.

Chapter 5 describes the architecture using acoustic wave detectors can be used

for protecting an entire core. We discuss the architecture for eliminating SDC- &

DUE-FIT in a core. We discuss various aspects of error containment and recovery.

We evaluate the architecture on real life workloads and we discuss different design

parameters and evaluate cost of checkpointing & recovery.

Chapter 6 explains how we can use the proposed architecture for protecting an

embedded core against soft-errors. First, we discuss specific aspects of reliability

requirements for an embedded core and tradeoffs involving parameters such as

area and performance overhead against cost of recovery.

Chapter 7 reviews some relevant related work in the field of reliability.

Finally, a summary of conclusions and discussion regarding future work is pre-

sented in Chapter 8.

Chapter 2

Soft Errors: Background and

Overview

In this chapter, we provide a background of soft errors. First, we describe some

terminologies and metrics related to reliability in general to which we will adhere

to for the remainder of the thesis. Next, we discuss the sources and the physics

behind the manifestation of soft error caused by a particle strike, followed by the

discussions of the methods to measure the soft error rate. After that we list the

parameters that play a role in soft error manifestation and show how the soft

errors affect the memory components and logic. Next, we review how the design

of future processors will affect the soft error rate. Finally, we will discuss the

essentials building blocks for a soft error handling solution.

2.1 Soft Error Terminologies

Precisely modeling soft errors and their impact on electronics, predicting soft

error rates and deploying adequate reliability mechanism is challenging and an

interesting field of research. The work of this thesis is focused on handling soft

errors. Before indulging into the specifics of soft errors, we discuss some metrics

and terminologies which are widely used in the field of reliability.

16

Soft Errors: Background and Overview 17

2.1.1 Faults, Errors and Failures

A fault in a computer system is an undesirable event and usually a result of

defects, imperfections or interaction of external environment. Typically faults can

be classified in three types:

• Permanent or hard fault: As the name suggests permanent faults or hard

faults remain in existence for a long period until the faulty part is replaced.

Permanent faults or hard faults can be further categorized as extrinsic or

intrinsic faults. Extrinsic faults are caused due to manufacturing defects or

due to contamination of the device. Intrinsic faults are caused by wearout

of the material over time. Intrinsic faults include faults due to electromigra-

tion [120–122], stress voiding, gate oxide wearout [123], hot carrier injection

(HCI), negative bias temperature instability (NBTI) [124, 125], positive bias

temperature instability (PBTI) [126], errors due to scaled voltages (i.e., low

Vccmin errors [127]), high heat flux or thermal cycling across the silicon

die [128] and time dependent dielectric breakdown (TDDB) [129].

• Intermittent fault: An intermittent fault is a fault that appears under specific

situation (e.g., elevated temperature), and it is usually an early indicator of

an impending permanent fault. A partial oxide wearout may cause intermit-

tent faults.

• Transient fault: Transient faults occur only once and are non–repeatable.

Transient faults in semiconductor devices are caused by noise and erratic

voltage fluctuations [130] within the chip or by external factors such as ra-

diation induced soft errors. Soft errors are transient errors which do not

permanently damage the processor and do not recur.

Handling both permanent and transient faults are important for reliability. Unlike

soft errors, the permanent faults and the transient faults due to noise can be iden-

tified during validation and are fixed before the silicon chip is shipped. However,

soft errors must be handled in the field.

An error is a manifestation of an underlying fault in a computer system. Just like

faults, errors can be permanent, intermittent or transient. A hard fault may cause

a hard error, an intermittent fault may cause an intermittent error, and a transient

fault may cause a transient error. Particle strike induced bit flips are transient in

Soft Errors: Background and Overview 18

nature and do not cause any permanent damage hence they are termed soft errors.

It is important to note that faults are necessary to cause errors, however, not all

faults cause errors.

All those faults that do not cause errors are masked. The masking rate indicates

the percentage of masked faults. Most of the faults get masked or corrected before

they can cause an error. For instance, a fault in a branch predictor will not affect

the correctness of the end result and hence it will not cause an error. We will

discuss about masking effects of combinational logic in a processor in detail in

Section 2.6.3.

A failure is a special case of error, in which the error deviates the system from

the expected action. It is important to note that not all errors cause failures. For

instance, an error in the unmodified L1 cache line will not cause a system failure.

2.1.2 Metrics

System

working

System

working

System

down

Failure Failure

MTTR MTTF

MTBF

Figure 2.1: Reliability metrics: Mean time to repair (MTTR), Mean time to
failure (MTTF) and Mean time between failures (MTBF)

Failure rates can be given by Time to Failure (TTF). It is the time until the

first fault or error occurs. Similarly, Mean time Between Failures (MTBF) indi-

cates the mean time that has elapsed between two faults or errors as shown in

Figure 2.1. Besides MTBF, Mean Time to Repair (MTTR) and Mean Time to

Failure (MTTF) are also commonly used. MTTR indicates the mean time re-

quired to repair an error after it is detected. And MTTF is the time until the

system encounters a failure once it is repaired.

Although MTTF is easy to understand, its computation can be complex for larger

circuits with millions of components. Hence, to express the failure rate an additive

metric Failure in Time (FIT) is more convenient. One FIT is equal to one failure

Soft Errors: Background and Overview 19

in a billion run-time hours. FIT rate of a system is the summation of individual

FIT rates of all the components. For example, if a 6T-SRAM cell with the failure

rate of 0.001 FIT/bit is used to design a 1 MB cache, then the total failure rate

of the cache is 8389 FIT and the cache has an MTTF of about 4900 days.

FIT rate =
109

MTTF in years× 24 hours× 365 days
(2.1)

MTTF and FIT are inversely related to each other as shown in Equation 2.1.

MTTF of 1000 years is equivalent to 114 FIT. Chip designers have fixed FIT (or

MTTF) target just like power budget.

2.1.3 SDC and DUE

As we discussed in Section 1.2.4 of Chapter 1 errors are classified into two cate-

gories: silent data corruption (SDC) and detected unrecoverable errors (DUE).

Correctable errors are errors from which recovery to normal system operation

is possible, either by hardware or software. Detected unrecoverable errors are

errors that are discovered and reported, but from which recovery is not possible.

A failed ECC correction is an example of DUE event. These errors typically

cause a program or system to crash. A silent data corruption, also known as

an undetected error, alters the data without being detected, thus permanently

corrupting program state or user data.

To better understand, we illustrate the possible outcomes once a faulty bit is

accessed as shown in Figure 2.2. If the faulty bit is not protected and an error in

that bit affects the program outcome then such an undetected error is classified

as SDC. Adapting an error detection scheme (e.g., parity codes) can avoid SDC.

However, with only error detection capability once the error is detected it is not

possible to recover. Such detected but uncorrectable errors are classified as DUE.

Usually, SDC event is more harmful than a DUE event. SDC causes data cor-

ruption (or loss) and it goes undetected. Upon a DUE event, once the error is

detected it is possible to handle it by rebooting the system. By rebooting system

it is possible to avoid any meaningful effect of the error on the system. However,

frequent DUE events are responsible for system downtime.

Soft Errors: Background and Overview 20

Is faulty Bit

Read?

Bit has error

protection?

Error

is only detected

(e.g., parity)

yes no

Does bit

matter?

yes

yes

no

yes no

benign fault

no error

Detected, but

unrecoverable error

(DUE) no error

benign fault

no error

Error can be

corrected

(e.g., ECC)

Silent Data

Corruption

(SDC)

Figure 2.2: Classification of soft errors: silent data corruption (SDC) and
detected unrecoverable error (DUE)

Usually, SDC design target is more stringent than DUE since error is undetected

and cannot be trace back and identify its origin. Designers may deploy simple

error detection schemes (i.e., parity or RMT) to handle SDC [18, 131].

DUE target is relatively relaxed since error will be detected and sometimes con-

tained. Once the error is detected the system should be able to stop the propaga-

tion of the error and be able to restore the normal state of operation. For instance,

error correction codes are used to provide recovery in memory which can reduce

the DUE rate.

The acceptable rate of SDC and DUE events also differ for different market seg-

ments. For instance, a database system is expected to maintain data integrity and

can tolerate very low SDC. A web application server with extremely low system

downtime should rarely have any DUE events. On the other hand, a desktop

computer can tolerate relatively higher SDC and DUE events.

2.2 Realizing Reliable Solution

We will now discuss the major components required for an end to end reliability

solution. We show the basic components in Figure 2.3.

Soft Errors: Background and Overview 21

Detection Containment Recovery

Data In
Reliable

Output

Figure 2.3: Realizing reliability pipeline for soft errors: error detection, error
containment and error recovery

Error detection is the first requirement of reliable solutions and it usually involves

an error detection mechanism. It may be specific to the structure it is protecting.

Error detection is usually done via detection of the symptom (i.e., the error itself).

For example, to detect errors in memories one may use parity codes while for error

detection in logic a dual modular redundancy can be used. New direction that is

growing in interest among researchers is to detect the actual particle strike rather

than its consequence [132–135]. Such particle strike detectors detect errors via

detection of currents or voltage glitches, shockwave of sound, a flash of light or a

small amount of heat and will be discussed in Section 2.4.1.

It is possible that the erroneous data is consumed before the error is detected. To

avoid the consumption of the erroneous data and prevent SDC, the detected error

must be contained to the affected part. Error containment restricts the spread of

the error by isolating it. Error detecting codes contain the data by checking the

data every time it is read.

Once the system has detected the error it is desirable to restore the error free

state. This is called error recovery. Error recovery is usually done with some kind

of checkpointing mechanism. Upon error detection, system can revert back in time

to an appropriate checkpoint and restore the correct processor state and resume

execution.

We discuss the traditional solutions for error detection, containment and recovery

in Chapter 7. Error diagnosis and repair can also be included in the reliability

pipeline however, they are specifically used for handling hard errors. This thesis

specifically targets the soft error problem and proposes novel error detection, con-

tainment and recovery technique which will be discussed in the coming chapters.

Next, we will discuss the sources of soft errors and how they interact with semi-

conductor devices.

Soft Errors: Background and Overview 22

2.3 Soft Error Sources

The sources of soft errors include various extra-terrestrial (i.e., solar flares) and

terrestrial (i.e., radioactive decay) phenomena. Terrestrial sources include the

particles generated due to decay of radioactive impurities in the material used in

packaging of the chip. While in extra-terrestrial phenomena, the primary cosmic

rays react with the earth’s atmosphere via strong nuclear interactions, producing

various particles which can induce soft errors [17].

The main sources are as follows:

• Alpha particles

• High-energy neutrons

• Neutron induced boron fission

2.3.1 Alpha particles

The silicon wafer, the packaging material or the contamination in soldering ma-

terial are typical sources of alpha particles and they contribute to the ionizing

radiation in semiconductors. Basically an alpha particle is composed of two pro-

tons and two neutrons.

Primarily, alpha particles come from residual radioactive impurities (e.g., Uranium

(U238), Thorium (Th232), and Lead (Pb210)) in the packaging material of a chip [17,

136, 137]. Traces have been found in the mold compound and underfill, and most

predominantly in solder balls. Packages, which use solder balls for the power

supply and I/Os, are particularly vulnerable to soft errors.

In order to reduce the alpha induced soft errors highly refined materials can be

employed for packaging materials. Strict design rules can also be adapted to sepa-

rate the sensitive circuit areas from alpha emitting hot zones. It is also possible to

shield the chip using thin films coat to prevent the alpha contamination [17]. Alpha

emitting materials have an emission rate of 0.0003-0.0017 alphas/cm2–hr [17, 137].

Soft Errors: Background and Overview 23

2.3.2 Neutron particles

The second significant source of soft errors are high-energy neutrons coming from

cosmic rays. Cosmic rays react with the Earth’s atmosphere and produce complex

cascades of secondary particles. Most of the particles are short-lived while protons

and electrons are attenuated by Coulombic interactions with the atmosphere and

render harmless [17]. Neutrons survive because they carry neutral charge and

relatively high flux. Neutrons have the highest charge generation capacity and are

the dominant among all other particles in producing soft errors.

The cosmic neutron flux is a function of neutron energy and altitude [117, 138].

Neutron flux decreases with increasing neutron energy and increases with increas-

ing altitude. For example, at flying altitude (32,000 feet above the sea level), the

neutron flux increases by 228× compared to sea level neutron flux [139]. Due to

varying neutron flux, cosmic neutron-induced soft error rate for the same device

will be different in different cities and different altitudes.

Although only 1% of the neutrons created by cosmic rays reach the surface of the

Earth, they are still the dominant source of the soft errors in circuits. Both neutron

flux and energy determine the soft error rate experienced by circuits. Neutrons

with energies of 10 MeV or higher are capable of causing soft errors [17, 20, 32, 137,

140–143]. The exact threshold depends on the properties of the silicon device. At

sea-level the flux of neutrons with energies above 10 MeV is approximately 14–20

neutrons/cm2–hr [37, 137, 138, 144, 145].

Unlike alpha particles, reducing the cosmic neutron flux at the chip level is very

difficult and requires mitigation techniques within the chip, such as improving the

robustness of the circuit, using error correction techniques or modular redundancy

techniques (described in Chapter 7).

2.3.3 Neutron induced boron fission

The interaction of low energy cosmic neutrons with boron nuclei is a third source

of ionizing particles in semiconductor devices. Boron is used extensively as a p-

type dopant. Its exposure to neutron results into generation of charges in silicon

and cause soft errors. Using specific device processing techniques soft errors due

to boron fission can be completely eliminated [17, 137].

Soft Errors: Background and Overview 24

2.4 Interaction of Particles with Silicon

STI

NMOS

N+ N+
STI

Substrate

-

-
-

-
-

+

+

+
+

+
+
+

+

-
-

Light charged

particles: α, p, e etc.

Neutrons

Inelastic collision

Si atom

α

p

Si recoil

-

+

+

-
-

-

-
+

+ +

+

+
+

-

-
-
-

-

-

+

+

+

- +

Neutrons

Elastic collision

Figure 2.4: Alpha particles generate electron-hole pairs in silicon by direct
ionization. Inelastic collision of neutrons with a silicon atom generate electron-
hole pairs via indirect ionization by creating a silicon recoil. Elastic collisions

of neutron particles are harmless.

For each incoming cosmic ray particle, the collision of the particle with the nucleus

in the semiconductor medium can be classified into two categories: elastic and

inelastic scattering (see Figure 2.4) [17].

In most elastic events, the cosmic ray particle is deflected slightly from its origi-

nal trajectory (small-angle scattering) without changing its intrinsic energy state.

Elastic collisions of alpha or neutron particles are harmless. Inelastic collisions

are responsible for soft errors. During inelastic collisions, large scale of energies

are exchanged. In the initial stage, secondary protons, neutrons, and pions are

produced, and an excited intermediate nucleus (i.e., recoil) is formed. This nucleus

de-excites by the emission of other secondary particles, and it is finally transformed

into a stable and lighter residual nucleus.

During the impact of energetic particles on silicon atom large amount of energies

are exchanged in a very short duration of time. The amount of energy or charge

generated upon the impact depends on the stopping power or linear energy transfer

(LET). The LET is the amount of energy deposited per unit of length travelled

in silicon. Typically, the lost energy is converted into charge at the rate of 3.6 eV

per electron-hole pair in silicon [146, 147].

Soft Errors: Background and Overview 25

Particle Deposited Charge Flux

Alpha 16 fC/µm 0.0003-0.0017 alphas/cm2–hr

Neutron 25-150 fC/µm
14–20 neutrons/cm2–hr†

∼3000 neutrons/cm2–hr⋆

Table 2.1: Summary of the sources of soft errors. † indicates the flux at sea
level and ⋆ is the flux at 32,000 feet above sea-level.

Alpha particles. In an inelastic collision involving an alpha particle, electron-

hole pairs are generated through direct ionization in silicon as it is shown in Fig-

ure 2.4. The total energy deposited from such an event is in the range of several

MeV [17, 37, 148]. Roughly, an alpha particle with 10 MeV of energy has a

stopping power of 100 KeV/µm and can generate approximately 4.5 fC/µm of

charge [17, 30].

Neutrons. Unlike alpha particles, when the neutrons are involved in inelastic

collisions, first silicon recoil (or Li recoil in the case of interaction with boron

nuclei) and secondary particles are generated which finally result into generation

of electron-hole pairs as shown in Figure 2.4. Impact of a higher energy neutron

results into higher energy recoils. However, the probability of 1 MeV recoil is

100-3000 times higher than the probability of a 15 MeV recoil [17, 143, 149]. Each

neutron can generate about 10× more electron-hole pairs compared to an alpha

particle [17]. The charge density per distance traveled for silicon recoils (25-150

fC/µm) is significantly higher than that for alpha particles (16 fC/µm) and hence,

neutron strikes have higher potential to upset a circuit [30]. Typically, a neutron

with 200 MeV energy, generates a recoil that has stopping power of 1.25 MeV/µm

and maximum penetration range of 3 µm [30]. One such particle strike can deposit

total charge of 55.7 fC [150].

Table 2.1 gives a summary of the soft errors induced due to alpha or neutron

particle strikes.

2.4.1 Generation of Light, Sound and Heat!

When a high-energy particle collides with a silicon nucleus, it causes an ionization

process that creates a large number of electron-hole pairs (shown in Figure 2.4).

Soft Errors: Background and Overview 26

In a few picoseconds the released energy may be in the range of several MeVs.

The spurious electron-hole pairs subsequently produce unstable quasiparticles (i.e.,

phonons or photons).

Generation of phonons and photons indicate that a particle strike results into a

shockwave of sound, a flash of light or a small amount of heat for a very small

period of time. Therefore, it is possible to detect particle strikes by detecting the

sound, light or heat.

The unstable quasi-particles gradually result into a cascade of carriers resulting

into drift current (i.e., transient funneling current) or diffuse current generated due

to diffusion of electron-hole pairs. The generation of electron-hole pairs also result

into a voltage glitch. Therefore, particle strikes may also be detected by detecting

currents or voltage glitches.

In this work, we detect the particle strike that may cause soft errors. We construct

an architecture to detect the acoustic shockwave generated by particle strikes upon

impact on silicon surface.

2.5 Computing Soft Error Rate

Measuring the soft error rate is very challenging mainly because of extremely

low soft error rates. For instance a circuit element with a failure rate of 0.001

FIT will have an MTTF of 1012 hours. It is a very long wait to encounter one

error. Moreover, several errors must be observed to predict the FIT rate of the

component with sufficient statistical confidence. One can measure the soft error

rate by exposing the silicon to the radiation in the field and collect real-time

data [26, 144, 151–155] or in an environment with accelerated particle flux [128,

137, 138].

Alternatively, to evaluate whether chip’s soft error rate meets the desired target

or not before fabricating it, microprocessor designers use sophisticated computer

models to compute the FIT rate for every component (i.e., SRAM cells, latches,

and logic gates) on the chip. Using simulations soft error rate can be modeled

at circuit, microarchitecture or architecture level. We have seen how particle

strikes generate electron-hole pairs. Linear energy transfer can explain how many

electron-hole pairs or charge will be generated upon an alpha particle or a neutron

Soft Errors: Background and Overview 27

strike. However, it does not explain whether the strike will cause a soft error

or not! In fact, most of the electron-hole pairs either recombine or are collected

on reverse-biased p–n junctions that are shorted to a power supply rail without

disturbing the normal operation of the circuit. For the strike to cause a soft error,

it has to generate enough charge and the device has to accumulate enough charge

to cause a malfunction.

The minimum accumulated charge that is necessary to cause a circuit malfunction

is called the critical charge (Qcrit) of the circuit. For memory circuits (e.g., SRAM

cell) the Qcrit is the minimum charge required to flip the value stored in that

memory cell. In a logic circuit, Qcrit is defined as the minimum amount of induced

charge required at a circuit node to cause a voltage pulse to propagate from that

node to the output and be of sufficient duration and magnitude to be latched.

Since a logic circuit contains many nodes that may encounter a particle strike,

and each node may be of unique capacitance and distance from output, Qcrit is

typically characterized on a per–node basis.

Once the Qcrit is determined it can be mapped to the FIT rate. The Qcrit of

a circuit is not a single valued quantity but is a function of the shape of the

transient pulse generated by the particle strike, the position of the circuit on

the chip, the supply voltage, and parametric variations. An accurate calculation

of the critical charge requires a circuit model with detailed process, device, and

operating parameters. Qcrit is estimated by inserting different current pulses in the

circuit model till the circuit malfunctions. Several methods have been proposed

to compute Qcrit for a given circuit [156–158].

Once we have the Qcrit from the circuit simulations, there are several models that

relate soft error rate with Qcrit [21, 25, 156, 159]. One such model is proposed

in [156],

Soft Error Rate = Constant× Flux× Area× e
−Qcrit

Qcoll (2.2)

In equation 2.2, constant is a technology dependent constant, Flux is the neutron

flux at a specific location, Area is the area of circuit that is sensitive to particle

strikes and Qcoll is the collected charge. The critical charge is Qcrit.

Soft Errors: Background and Overview 28

2.6 Soft Error Manifestation in Electronics

The charge deposited upon impact of energetic particles on the silicon devices may

cause soft errors and have huge impact on their reliability. The susceptibility to soft

errors in on-chip caches (SRAM), main memory (DRAM) and combinational logic

differ significantly due to difference in their design and functionality. Moreover,

parameters such as operating voltage, sensitive area, node capacitance etc. also

impact the possibility of soft errors and over all soft error rate.

2.6.1 Soft Errors in SRAM

BIT BIT

WORD

VDD

Q Q

Particle

strike

Figure 2.5: Particle strike on a critical node Q on a 6T-SRAM cell

An SRAM memory cell is a cross coupled inverter circuit. The cell can retain the

data as long as the power is on. An SRAM cell stores the data and its complement

between two nodes Q and Q̄ as shown in the Figure 2.5. Both these nodes store

charges by turning off the driver and load transistors forming reversed bias drain

junctions. If a particle strike on a critical node Q generates enough charge (more

than Qcrit) then it can discharge the node causing the transition. This disturbance

may propagate through the decoupled inverter and cause a transient on the Q̄.

And as Q̄ node drives the Q node towards the wrong value a regenerative action

causes both the nodes to flip. Due to this regenerative action the SRAM cell is

flipped and it now stores a wrong value. Soft errors in SRAM cells are a concern

because of the larger area they occupy on the chip caches increase the probability

of particle strikes.

Soft Errors: Background and Overview 29

2.6.2 Soft Errors in DRAM

BIT

WORD

Figure 2.6: Structure of a DRAM memory cell

Figure 2.6 shows a DRAM memory cell. DRAM cell consists of a capacitor to store

the bit, with a transistor to access the stored data in the capacitor. A particle

strike on the capacitor may impart a large amount of charge (more than Qcrit) and

may alter the stored data causing a bit flip. Initially, the DRAM cells used planar

capacitors with large junction area. In a cell with larger cell area it was easier to

cause the soft error. However, by adapting to 3D capacitors (e.g., stack, trench

etc.) designers could successfully reduce the sensitive volume without decreasing

the nodal capacitance making a DRAM cell one of the more robust electronic

devices. By adapting to 3D capacitors the soft error rate reduced and it was

possible to fit in more memory cells in the same area. The amount of DRAM in

computer systems continues to increase every year, and is predicted to increase

50× over 2009 levels by 2024 [160]. In this situation, The contribution of soft

errors in total DRAM errors (including hard errors) can be as high as 30% [161].

2.6.3 Soft Errors in Logic

The phenomenon that explains bit inversions remains the same for both memories

and logic elements. However, the soft error rate of logic elements and its impact

on the system are much harder to quantify because of their non-regular design

and their period of vulnerability (when they are active rather than idle) which

varies widely depending on the functionality of the design, frequency, and the

workload [32, 34, 117, 162, 163].

Sequential Logic: Logic elements include latches and flip-flops that hold system

event signals and buffer the data before it goes in or out of the microprocessor.

Soft Errors: Background and Overview 30

They provide the interface to other combinational logic (i.e., ALUs) that perform

logical operations based on multiple inputs. Flip-flops and latches are fundamen-

tally similar to the DRAM cell and they use cross-coupled inverters to store the

data state. However, compared to an DRAM cell, the sequential logic is usually

less susceptible to soft errors due to the use of larger transistors (hence larger

capacitance and driving strength) in latches and associated logic gates [34].

1 DFF

CLK

D Q

(a) Electrical masking

DFF

CLK

D Q

1

DFF

CLK

D Q

(b) Logical masking

Error

Latched

(c) Latch-window masking

Figure 2.7: Masking effect in combinational logic circuits.

Combinational Logic: Unlike caches or memories, a transient pulse (glitch) that

is generated in combinational logic can only cause an error at a critical point in

the circuit if the following conditions are fulfilled: (i) The glitch has to be strong

enough to generate a signal on one of the nodes in the circuit and the signal

has to be strong enough to propagate through the combinational logic in the

circuit i.e., electrical masking, (ii) The path that is traveled by the pulse has to be

logically enabled i.e. logical masking and (iii) The fault has to be latched i.e. latch-

window masking. Due to these inherent masking characteristics combinational

Soft Errors: Background and Overview 31

logic components are relatively less sensitive towards particle strikes compared to

memory. Figure 2.7 shows all the three masking possibilities. Figure 2.7(a) shows

the electrical masking where the generated pulse is weak and will not propagate

to the latch. Figure 2.7(b) shows that if the one of the inputs of the or gate is set

high in that case the patch of the fault is not logically enabled and hence it will

not cause an error. The case of latch-window masking is shown in Figure 2.7(c).

Although the glitch generated by particle strike is strong enough if it is not latched

(in this case the rising clock pulse in edge trigger flip flop), it will not cause soft

error.

2.6.4 Evidence of Soft Errors

Soft errors due to cosmic rays have already had an impact on the microelectronics

industry. The existence of this problem in space applications was reported in the

early 1950s [28]. Due to high solar activity in 2003, 28 satellites were damaged,

out of which 2 were unrecoverable [23]. More recently, on October 7th, 2008, an

Airbus A330-303 operated by Qantas Airways, en route from Perth to Singapore,

suffered a failure. When incorrect data entered the flight control systems, the

plane suddenly and severely pitched downwards, injuring 110 passengers and nine

crew members [24]. And now the potential havoc caused by this invisible threat

is growing as more airborne microchip-based devices are used in drones, aircrafts,

spacecrafts and satellites every year.

The threat on the ground is growing too, a number of commercial computer manu-

facturers have reported that cosmic rays have become a major cause of disruptions

at customer sites [25, 26].

In early 2000, Sun Microsystems’s Ultra SPARC II workstations were crashing

at an alarming rate. The root cause of the problem was traced back to IBM

supplied SRAMs that were experiencing upsets due to soft errors. As a result, Sun

had to switch memory vendors and also designed error detection and correction

mechanisms for their caches [27]. In 2003, due to increased solar activity, the

Q cluster located at Los Alamos, recorded highest ever 26.1 errors a week [23].

Soft errors have been blamed for 4096 extra votes being counted by an electronic

voting machine in the county of Schaerbeek, Belgium, in 2003 [164, 165], and for

repeatedly bringing the $1 billion Cypress Semiconductor Corporation factory to

a halt [28].

Soft Errors: Background and Overview 32

Modern servers can host hundreds of virtual machines (VMs). While individual

VMs may not be mission critical, a system crash that could affect a hundred

virtual machines can quickly become a significant outage. On a system without

advanced reliability features, CPU and memory errors can cause a system to have a

long downtime. This downtime can significantly impact the e-commerce industry.

Failure to provide robustness can lead to change in the consumer behavior [100].

The number of chips around us are increasing due to proliferation of semiconduc-

tor devices in everyday life, by 2020 it is expected to have 50 billion networked

devices [166]. Increase in the number of transistors per user implies increase in

the number of soft errors per user for the foreseeable future. We will discuss

the existing techniques to prevent soft errors in logic and memory components in

Chapter 7.

2.7 Parameters Affecting Soft Error Rate

In this section we will discuss and provide a comprehensive summary of the im-

portant parameters responsible for causing a soft error. Ultimately, we will also

see how these parameters affect the resulting soft error rate.

Table 2.2 shows the parameters related to the properties of the impacting particles

which are the root cause of soft errors. The energetic particle flux depends on

altitude and geographical location. Moreover, not all particles cause soft errors, to

cause soft error impacting particle must carry enough energy and it has to transfer

its energy to generate enough charge to cause a fault, this energy transfer depends

on the particle incident angle and its charge production capability. Because of

these factors neutrons with less than 10 MeV energy are harmless [17, 137, 140].

Properties of the semiconductor devices or the material also play a role in deciding

the occurrence of soft error. The location of particle strike (i.e., strike on the p–n

junction, biased region etc.) determines how much charge will be deposited [146,

167, 168]. The doping concentration along with the track length and track angels

of the particle also affect the charge collection capacity [169–172].

Each circuit node forms a capacitor and stores a specific amount of charge. Nodal

charge determines the Qcrit which is exponentially related to the soft error rate

(see Equation 2.2). Upon a particle strike a current pulse is generated. The wider

Soft Errors: Background and Overview 33

Domain Parameters

Energetic
Particle

Properties

• Particle sources and type, Atomic weight, Number of
simultaneously produced secondary particles

• Particle energy, Particle flux, Incident angle and energy,
Charge production capability

Device or
Material

• Position of impact, Track lengths, Track angles
• Stopping power or LET
• Doping Concentration, Charge collection capacity

Circuit

• Nodal Capacitance, Sensitive area, Critical charge
(Qcrit), Resulting shape of the current pulse

• Operating voltage, Frequency, Temperature, Parametric
variations

• Masking rate (Electrical, Logical and Timing masking)

Microarchitecture

• Operating voltage and frequency, Thermal profile, Para-
metric variations

• Microarchitectural masking rate (e.g., Dead instruc-
tions, Unused structures etc.)

Chip Packaging material, Process technology

Environmental Altitude, Geographical location

Table 2.2: Parameters that affect the soft errors and impact the overall soft
error rate

current pulse with higher magnitude are more likely to cause a soft error. Apart

from that in circuit or microarchitecture domain the operating voltage, frequency,

temperature and parametric variations also affect the soft error rate.

Parameter Trend Parameter Soft Error Rate

Increase
Particle flux Linear increase

Temperature Exponential increase

Frequency Linear increase

Decrease
Qcrit Exponential increase

Sensitive Area Linear decrease

Voltage Exponential increase

Table 2.3: Impact of important parameters and corresponding impact on soft
error rate

Table 2.3 enlists the parameters that have the most significant impact on the

soft error rate. According to the equation 2.2, the soft error rate is related to

Soft Errors: Background and Overview 34

the particle flux, the sensitive area and the Qcrit. However, reducing the supply

voltage of the circuit reduces the Qcrit and decreasing Qcrit exponentially increases

the soft error rate. Also, decreasing the area of sensitive region may decrease the

soft error rate. However, reduced cell area implies reduced nodal capacitance (i.e.,

reduced Qcrit) and it is usually accompanied with reduced supply voltage which

cancels out the positive impact of smaller sensitive area on soft error rate.

Error

Latched

(a) At normal frequency only one fault gets latched others are masked

Error

Latched

(b) Doubling the frequency can latch all the faults causing errors

Figure 2.8: Impact of frequency on soft error rate

Soft errors in memory and some sequential logic are frequency independent [173]

but soft errors in combinational logic are frequency dependant. Increasing fre-

quency increases the probability of latching more faults as shown in Figure 2.8.

Increasing the frequency causes all the faults to be latched causing errors as shown

in Figure 2.8(b). The soft error rate of combinational logic increases linearly with

increasing frequency [174].

Moreover, soft error rates depend on the resulting current pulse widths. Increase in

temperature leads to an increase in current pulse widths due to parasitic bipolar

charge collection. Wider current pulse deposits more charge [175]. At higher

temperature the drain current decreases that in turn reduces the Qcrit. This

combined effect due to increased temperature may cause more than 3× increase

in soft error rate [176].

Soft Errors: Background and Overview 35

2.8 Soft Errors and Future Processors

Apart from the parameters of Table 2.2 in Section 2.7, the way future processors

are going to be designed have a significant impact on the soft error rate.

2.8.1 Impact of Technology Scaling

We will see how the technology scaling affects the soft error rate in future proces-

sors.

2.8.1.1 SRAM

Recall the Figure 1.1 from Chapter 1, which shows the effect of technology scaling

on the soft error rate of an SRAM cell and an SRAM system (e.g., cache). The

soft error rate of an SRAM cell is almost constant. The SRAM system soft error

rate which roughly doubles every technology generation. This increasing trend is

because of the increase in the number of transistors following Moore’s law [29, 33,

34].

A particle strike may cause single bit upset (SBU) if it affects only one memory

cell. Although, SBU is the most common failure scenario for memories, with

reduced device dimensions now particles can simultaneously cause multiple bit

upsets (MBU) [48, 87, 88]. The phenomenon that explains bit inversions remains

the same for both cases [117]. However, the literature indicates that two adjacent

bits being upset by a single particle strike is ten times less probable than a single

cell upset, and the probability of three bits being upset is one hundred times less

likely than a single bit upset [32, 80, 87, 88, 177–179]. Although the probability

of MBU is low it is predicted to increasing with technology scaling. MBUs rate

have increased by a factor of four when scaling from 90 nm to 65 nm [87, 88].

2.8.1.2 DRAM

Figure 2.9 shows how the soft error rate of a DRAM cell and the logic scale for

different technology generations [17, 180]. DRAM cell soft error rate is trending

downwards (a reduction of 4 to 5× per generation). It is mainly because of the

Soft Errors: Background and Overview 36

Figure 2.9: DRAM bit soft error rate for different technology nodes [180]. The
soft error rate of a DRAM bit is predicted to decrease. The soft error rate of
a DRAM memory system has traditionally remained constant over technology
generations moreover, it is predicted to be dominated by the soft errors in the

DRAM peripheral logic.

reduction in charge collection capacity due to reduced cell area which has more

dominant effect on the resulting soft error rate compared to the reduction in Qcrit

due to voltage scaling.

Although the DRAM bit SER has decreased by more than 1,000× over seven gen-

erations, the number of memory cells in a DRAM system increased almost as fast

as the soft error rate reduction for each memory cell that technology scaling pro-

vided. Therefore, the DRAM system SER has remained essentially unchanged [17].

Figure 2.9 also show the trend in the soft error rate of peripheral logic in DRAM.

In DRAM memory systems soft error rate of peripheral logic is becoming more

significant.

Similar to SRAM memory cells, in the DRAM memories multiple bit upsets are

less probable compared to the single bit upsets. However, DRAM memories are

becoming denser and with technology scaling the probability of having MBUs is

increasing [180–183].

2.8.1.3 Logic Components

With decreasing feature sizes, the relative contribution of logic soft errors increases

mainly because of following reasons: (i) Logic gates are typically wider devices

but with more rapid technology scaling reduced sizes result into reduced Qcrit

Soft Errors: Background and Overview 37

of combinational logic compared to SRAM, (ii) with decreasing gate delays the

propagation power of transient pulses is increasing and fewer error pulses will

attenuate before resulting into an error, (iii) with increasing degree of pipelining

in advanced processors, the clock cycle window will reduce significantly without

changing the setup and hold time of the latches. This will result in more faults to

be latched causing errors and (iv) soft error rate in combinational logic increases

linearly with increasing frequency while soft error rates of SRAM, DRAM and

latches are frequency independent.

It is also important to notice that most of the mainstream microprocessors are

equipped with ECC to reduce soft error rate of caches (SRAM) and the main

memory (DRAM). When large portions of the on-chip caches and the memory

elements on the chip are protected, logic will quickly become the dominant source

of soft errors.

As we already saw in Section 2.8.1.1, the soft error rate per device (e.g., SRAM cell)

in a bulk CMOS process is projected to remain constant and this will cause increase

in the soft error due to increased number of transistors in multicore processors.

To handle the increasing soft error rate designers have considered using different

technologies.

2.8.2 Impact of New Technologies

We will see how adapting new technologies for designing future processors and

memories affect their soft error rate.

2.8.2.1 Silicon on Insulator (SOI)

A lot of research has been done to explore soft errors in silicon–on–insulator (SOI).

Unlike bulk CMOS, SOI devices collect less charge from an alpha or neutron par-

ticle strike because the silicon layer is much thinner. Experiments on partially–

depleted SOI SRAM devices reported 5× reduction in soft error rate [184, 185].

However, this improvement in sequential and combinational logic is unclear. A

fully depleted SOI can further reduce the soft error rate by almost eliminating

the silicon layer. But manufacturing of fully depleted SOI chips is still a chal-

lenge [185].

Soft Errors: Background and Overview 38

2.8.2.2 Multigate-FET Devices

As the bulk CMOS is reaching its scaling limits, FinFETs and multigate-FETs

(e.g., Tri-Gate FET) devices have been popularized as promising candidates to

keep harnessing the benefits of Moore’s law. Due to their many superior attributes,

especially in the areas of performance, leakage power, intra-die variability, low

voltage operation (translates to lower dynamic power), and significantly lower

retention voltage for SRAMs, FinFETs are replacing planar CMOS as the device

of choice especially in sub–32 nm technologies [186–189].

Upon a particle strike on a planar bulk CMOS device, a lot of generated charge can

reach the drain of the device and collect there, causing enough current to upset the

storage node. In FinFET devices, the conduction is mainly in the channel and,

hence most of the charge dissipates in the substrate and will not collect at the

drain. It is worth noticing that for the same technology node, the Qcrit of FinFET

SRAM and planner CMOS SRAM are same. However, due to reduced charge

collection, compared to planned CMOS device, 15× reduction in soft error rate of

Tri-gate FinFet devices has been reported using device simulations at terrestrial

flux [190].

The soft error rate of FinFET devices depend on their manufacturing process

and the measurement technique. Laser and heavy-ion testing of Tri-Gate devices

manufactured at IMEC indicated that the sensitive area for charge collection in

bulk FinFETs is significantly larger than the actual fin’s structure, increasing the

probability of single event upsets in the cell [191]. On the contrary, proton beam

testing of the 22 nm Tri-Gate SRAM and sequential logic devices observed 1.5–4×
reduction in soft error rate compared to 32 nm planner bulk CMOS [192]. Study

also shows that in Tri-Gate technology a modest increase in combinational soft

error rate relative to sequential soft error rate. Overall, even with Tri-Gate devices

unprotected logic will continue to dominate the soft error rate [192].

2.8.2.3 Non-Volatile Memories

Many memory cell technologies are being considered as possible replacements for

DRAM mainly because they are nearing their scaling limits. DRAM scaling is

especially challenging for sub–30 nm [193, 194].

Soft Errors: Background and Overview 39

Phase change memory (PCM), spin-transfer torque (STT-RAM), ferroelectric RAM

(FeRAM or FRAM), magnetoresistive RAM (MRAM) etc. promise high density,

better scaling, and non-volatility, however, they introduce several new challenges.

DRAM uses a capacitor to store charge and can be upset by an energetic parti-

cle strike causing soft error. Resistive memories (PCM, STT-RAM, FRAM and

MRAM), which arrange atoms within a cell and then measure the resistive drop

through the atomic arrangement, are promising as a potentially more scalable

replacement for DRAM.

Because the FRAM cell stores the state as a piezoelectric polarization, an alpha

hit is very unlikely to cause the polarization to change cell’s state and the MRAM

terrestrial soft error rate needs more measurements. PCM cell arrays may not be

vulnerable to soft error due to particle strikes but they experience soft errors caused

by resistance drift and spontaneous crystallization resulting from gradual atomic

motion at high temperatures [195]. A recent study [196] predicted the failure rate

of PCM to be 109–1011 times higher compared to DRAM. Moreover, soft error

specific studies for resistive memory technologies do not consider the possibility of

soft errors in peripheral circuits which will still use the CMOS transistors [197].

The future solutions for handling soft errors will have to adapt to these new

technologies and should be able to protect the peripheral circuits as well [198].

2.9 Calculating SER to Make Architectural De-

cisions

We discussed how we can compute the soft error rate by computer simulations

in Section 2.5. We also quantified the soft error rate in equation 2.2. However,

not all the particle strikes can cause soft errors. As we have seen in Section 2.6.3,

most of the faults induced by particle strikes are masked. In this situation the

equation 2.2, which does not take the masking effects into consideration, gives a

very pessimistic estimation of soft error rate. Overly pessimistic estimate of soft

error rate may lead to overdesign for reliability and incur huge area, power and

performance overheads. For this reason it is important to derate the soft error

rate.

Soft Errors: Background and Overview 40

To obtain the soft error rate under the masking effects, two main methodologies

are used: statistical fault injection and architecture vulnerability factor (AVF)

analysis.

2.9.1 Fault Injection:

Fault injection is a way to quantify the reliability of a microarchitecture by inject-

ing faults in each state and examining the outcome. In this brute force approach

the number of possible faults to be injected can be astronomical depending on the

number of states. Moreover, identifying all the combinations of the possible fault

locations and the instances at which the fault can occur in a given set of workload

is challenging and complex. Also, to observe the effect a fault has on the final

outcome it is necessary to run a complete simulation and observe any abnormal

behavior due to the injected fault.

One way to optimize the method is by using a subset of faults to observe the

possible outcomes and provide enough statistical confidence in the estimated soft

error rate. In sampled fault injection the accuracy is traded off for simulation

time [199]. More number of simulations are required if a higher degree of confi-

dence is necessary. Moreover, depending on the design if many corner cases are

to be observed then each corner case requires its own set of injected faults for the

required confidence.

2.9.2 Architecture Vulnerability Factor (AVF) Analysis:

Architectural vulnerability factor (AVF) is a probability that a user visible error

will occur given a bit flip in a storage cell or a glitch in combinational logic. The

underlying concept in AVF computation is knowing if a particle strike on a bit

matters or not. The fraction of the bit flips that affect the program outcome is

captured by AVF. The AVF has a significant impact on the effective soft error

rate. The higher the AVF of a structure implies a higher probability of having soft

error in that structure.

AVF analysis is performed via architectural simulations. Architectural simulations

of a processor is fast and abstract. Moreover, the reliability analysis can be done at

design time and hence a detailed RTL or a test chip is not required. By performing

Soft Errors: Background and Overview 41

AVF analysis designers can rank the structures based on their vulnerability in a

very early stage of design.

The AVF of a processor is related with the FIT rate in the following manner:

FIT = FITRaw × TV F × Sizestructure × AV F (2.3)

The raw soft error rate (FITRaw) depends on the circuit characteristics and it can

be obtained by accelerated soft error rate measurements. Time vulnerability factor

(TVF) is the fraction of cycle during the circuit is vulnerable. For an example,

TVF of an SRAM memory cell is 1, however if a latch is accepting data rather than

holding data, a strike on its stored bit may not result into an error, because the

erroneous data that was stored will be overwritten by the correct new input data.

If the latch is accepting data 50% of the time, the latch is vulnerable only for the

50% of the time it is operational. TVF is dependent on the circuit and frequency.

Once we have determined raw FIT rate it has to be derated by TVF. Finally, the

effective FIT rate of a circuit is shown in Equation 2.3. It is the product of its

raw FIT rate, TVF and AVF.

AVF analysis vastly relies on identifying masked faults and it provides a conser-

vative estimate of processor’s reliability. Although it is not accurate, it can help

reliability designers. Substantial amount of research has been done in efficiently

modeling the AVF of different microarchitectural structures [39, 98, 117, 162, 200–

205].

In this work, we implement the AVF model similar to [97]. In Chapters 5 and 6,

we use AVF to identify the vulnerable structures for providing protection. Notice

in Equation 2.3 that AVF and FIT rate are directly related. If the structure is

more vulnerable its AVF increases and it results into increased FIT rate and vise

versa. We show how the proposed architecture can significantly reduce the AVF

and in turn improves the overall reliability.

Chapter 3

Error Detection using Acoustic

Wave Detectors

In this chapter we first study and compare several particle strike detectors. A

detailed discussion of the structures, design issues related to several particle strike

detectors and their comparison of area, power and performance overhead is given

in Section 3.7. We then propose to adopt acoustic wave detectors as a method

to detect such particle strikes by detecting the shockwave they generate upon an

impact on silicon. We present the structure of the acoustic wave detector and

discuss its properties in detail. Next, we will show how to use the acoustic wave

detectors in order to precisely locate the particle strike. We will describe different

algorithms to precisely locate the particle strikes. Finally, we will present a case

study to evaluate how the architecture with acoustic wave detectors performs in

detecting and locating particle strikes on a state of the art processor core.

3.1 Particle Strike Detectors

Several particle strike detector based techniques have been proposed. These detec-

tors detect particle strikes via detection of voltage or current glitches [132–134, 206]

or via detection of the sound [135].

We studied the challenges in adapting the detector based techniques for soft error

detection. We compared them based on following parameters,

42

Error Detection using Acoustic Wave Detectors 43

• Hardware cost, area and power overheads

• Detection latency

• False alarms : False positive is an event when detector triggers indicating an

error without any actual error.

• Fault coverage in a processor

• Design cost

Error detection using particle strike detectors involves adding physical redundancy

to the protected circuit. Depending on the number of required detectors used to

detect particle strikes the overall area overhead varies. Moreover, the detectors are

required to be connected to a controller circuit and interconnecting the detectors

further increases the area overhead. Due to added hardware the power overhead

is also increased.

Detection latency can be defined as the time between a particle strike and when the

first detector triggers. Detection latency is important for providing error contain-

ment. Efficient error containment restricts the spread of error to a specific region.

By containing the error we prevent the error to be visible to the user before its

detection and avoid SDC. Error detection with lower detection latency is desir-

able to avoid SDC. Once the error is detected, a hardware or software mechanism

would trigger the appropriate recovery action for correction (e.g., checkpointing).

False alarms include the false positive events for the given detector type. Fault cov-

erage metric indicates the structures a given particle strike detector can cover. In

other words some detectors can only detect particle strikes in only SRAM memory

cells while some detectors can detect particle strikes in both memory components

as well as logic. The detectors that protects memory and logic has higher coverage

than the detectors that can protect only memory or only logic. And finally design

cost which represents the intrusiveness of the design for including the detectors. It

covers the necessary changes required in the process technology, layout, placement

and routing etc.

Error Detection using Acoustic Wave Detectors 44

D
e
te
ct
o
r
T
y
p
e

C
o
v
e
re
d
S
tr
u
ct
u
re

D
e
te
ct
io
n

F
a
ls
e

F
a
u
lt

A
re
a

P
o
w
e
r

D
e
si
g
n

L
a
te
n
cy

A
la
rm

s
C
o
v
e
ra

g
e

O
v
e
rh

e
a
d

O
v
e
rh

e
a
d

C
o
st

M
e
m
o
ry

L
o
g
ic

@
2
G
H
z

C
u
rr
e
n
t

S
e
n
si
n
g

B
IC

S
[1
32
,
20
6]

!
!

∼
3
cy
cl
es

L
ow

H
ig
h

29
%

† ,
15
%

⋆
[2
06
]

10
0%

⋆
[2
06
]

M
o
d
er
at
e

C
u
rr
en
t

M
ir
ro
r
[2
07
]

!
%

3
−
6
cy
cl
es

M
o
d
er
at
e

H
ig
h

16
−
20
%

[2
07
]

2
−
47
%

[2
07
]
M
o
d
er
at
e

V
o
lt
a
g
e

S
e
n
si
n
g

V
ol
ta
ge

M
on

it
or

[1
34
]

!
!

1
−
3
cy
cl
es

H
ig
h

H
ig
h

20
%

† ,
7%

⋆
[1
34
]

20
%

⋆
[1
34
]

H
ig
h

M
e
ta
st
a
b
il
it
y

S
e
n
si
n
g

B
IS
S
[1
33
]

!
!

3
−
4
cy
cl
es

H
ig
h

H
ig
h

45
%

[1
33
]

H
ig
h

M
o
d
er
at
e

S
h
o
ck

w
a
v
e

S
e
n
si
n
g

A
co
u
st
ic

W
av
e

D
et
ec
to
rs

[1
35
,
20
8]

!
!

30
−
10
0

cy
cl
es

∓
L
ow

10
0%

<
1%

L
ow

L
ow

C
h
a
rg

e
S
e
n
si
n
g

S
i-
P
IN

D
et
ec
to
rs

[2
09
–2
11
]

!
!

10
00
s
of

cy
cl
es

L
ow

H
ig
h

>
10
0%

[2
09
]

>
10
0%

[2
09
]

H
ig
h

H
ea
v
y
-i
on

D
et
ec
to
rs

[2
12
]

O
n
ly

D
R
A
M

%
10
0s

of
cy
cl
es

M
o
d
er
at
e

H
ig
h

M
o
d
er
at
e

M
o
d
er
at
e

L
ow

T
a
b
l
e

3
.1
:
C
om

p
ar
in
g
d
iff
er
en
t
p
ar
ti
cl
e
st
ri
k
e
d
et
ec
to
rs
.

†
w
h
il
e
p
ro
te
ct
in
g
m
em

or
y,

⋆
w
h
il
e
p
ro
te
ct
in
g
co
m
b
in
a
ti
o
n
a
l
lo
g
ic
,
∓

th
e

d
et
ec
ti
on

la
te
n
cy

is
b
ou

n
d
ed

an
d
co
n
fi
gu

ra
b
le
.

Error Detection using Acoustic Wave Detectors 45

Considering all these parameters mentioned above, an ideal solution would be the

one that has minimum area & power overheads and the least detection latency.

It would have minimum false negative rates so it can guarantee detection of all

strikes. It should cover all the possible sources of particle strikes (i.e., alpha, neu-

trons, etc.). It can detect particle strikes in both logic and memory components.

Finally, the solution should pose no major challenges in the implementation pro-

cess, placement and routing etc. to minimize design cost. We summarize our

study in Table 3.1.

As can be seen in Table 3.1, schemes for particle strike detection via the detection

of voltage or current glitches [132–134, 206, 207] provide short detection latency

and provide good coverage. However, their area and power penalties are high.

They also pose design challenges in terms of selective insertion while providing

maximum fault coverage at minimum area penalty.

Charge sensing techniques [209–212] for detecting particle strikes via the detection

of deposited charges are very effective but cost more than 100% in area and power

overhead.

The overheads in terms of area and power penalty while using acoustic wave detec-

tors are low. Moreover, acoustic wave detectors provide bounded and configurable

detection latency. The error is detected within a fixed number of cycles that is

known a-priori or can be set by the designer. Acoustic wave detectors act as unified

error detection mechanism and can detect particle strikes in both logic and mem-

ory components. Based on this survey, we conclude that acoustic wave detectors

based on cantilever structures are the most attractive solution [135].

Detecting the right particle: At 45 nm technology, any particle strike that will

result into a silicon recoil energy less than 10 MeV will not induct enough charge

to create an upset in the memory [20, 141, 149]. Therefore, we need to size the

cantilever accordingly, in such a way that it only detects particle strikes that result

into a silicon recoil energy larger than 10 MeV and therefore avoiding false positive

detection [137]. By calibrating the acoustic wave detectors it is possible to detect

only those particle strikes that are capable of generating single event transient

(SET) in logic or a single event upset (SEU) in memory. The same detectors can

be used for memories as well as logic components [20, 32].

Error Detection using Acoustic Wave Detectors 46

3.2 The Microelectromechanical Ears: Acoustic

Wave Detectors

Figure 3.1: Transformation of the energy of particle strike upon its impact on
silicon surface into acoustic shock wave

Recall from Section 2.3.2 in Chapter 2 that particles with recoil energies of 10 MeV

or higher are capable of causing upsets in the circuits. When a cosmic ray collides

with a silicon nucleus this energy is released in a very short span of time (≤1ps).

This rapid recombination process results into a cloud of phonons spreading out of

the impact site. Hence the cosmic ray is transformed into an intense shock wave

as shown in the Figure 3.1. Such a shockwave travels at the speed of 10km/s on

the silicon surface [213].

We propose to use cantilever like structures [214, 215] as an acoustic wave detector

to detect particle strikes through the sound they generate. To be able to detect

the impact of the cosmic particle, the cantilevers must perform two contradictory

tasks:

1. For detecting all potent particle strikes that may cause soft errors the can-

tilever based detector must absorb as much energy as possible resulting due

to the collision. This implies a thick pliable structure composed of a high

density, high-impedance material, such as gold.

2. For efficient detection at a distance and to avoid thermal noise, the pliable

structure must maximally deflect for the given energy deposition. Thus, the

levers should be light in weight and highly flexible.

Error Detection using Acoustic Wave Detectors 47

3.2.1 Structure and Properties of Device

Figure 3.2: Cantilever beam like structure of acoustic wave detectors [214]. A
particle strike is detected by sensing the deflection of cantilever beam.

Figure 3.2 shows the typical structure of an acoustic wave detector. These devices

are rectangular structures of beams and plates on the silicon surface. A doped

polysilicon grounding layer forms the lower plate of the sensing capacitor. Silicon

oxide serves as the isolating layer between lever and substrate. The fabrication

and placement of these detectors on the surface of active silicon can be performed

without much complications [215, 216].

The particle strike is detected by detecting the change in the capacitance of the

gap between the cantilever and the ground pad of the detector structure as shown

in Figure 3.2. A simple capacitance detector can be designed based on a relaxation

oscillator [217, 218]. A simple microcontroller can be used for the same purpose.

More accurate and faster capacitive detectors circuits can be constructed that are

able to detect changes in capacitance on the order of 10 attofarads [219].

The proposed cantilevers occupy an area of one square micron [142], which is

roughly the area of one bit (a typical 6T SRAM cell) at 45 nm. The cantilever

is designed such that it detects particle strikes that generate silicon recoil with

more than 10 MeV energy. The cantilever can detect shockwave of sound at a

distance of 5 mm from the source of the sound [142]. This means that our selected

cantilever can cover an area of 78.5 square millimeters. This area is equivalent to

the die area occupied by the last-level cache in a Core™i7 microarchitecture at 45

nm technology [220].

These micromechanical levers of desired dimensions can be fabricated by micro-

electronic fabrication techniques [214, 221]. Acoustic wave detectors adopt silicon

based fabrication that is similar to IC fabrication technology. This makes it fea-

sible for detectors to be integrated with the rest of the circuitry on the same

Error Detection using Acoustic Wave Detectors 48

chip [222, 223]. Cantilever based devices of varying lengths have been developed

and used extensively to study bio-interactions at atomic level [216, 224, 225].

3.2.2 Calibrating the Detector

The length of the cantilever beam is very important in detecting the cosmic particle

strike. Too long or very small lever dimensions would not be efficient in detecting

the desired particle strikes. Moreover, failing to calibrate the cantilever device

may cause false positives.

3.2.2.1 False Positives

Precise calibration of acoustic wave detectors will lead to zero false positives.

Failing to properly calibrate the detectors would result into false positives (i.e.,

detectors’ trigger for the particles that do not carry enough charge to create a soft

error). Also, the analysis of false positives due to process variations, temperature

variations, aging and distance between strikes and cantilevers is beyond the scope

of the thesis readers may refer to [214, 221].

Also recall from Chapter 2, that many of the faults induced due to energetic

particle strikes will not cause an error because of several masking effects. If a

circuit has zero fault masking, all the faults will cause soft errors.

However, in a scenario where 100% faults are masked the solution with acoustic

wave detectors will have false positives. The flux of energetic particles at sea

level is approximately 14 neutrons/(cm2-hr), an improbable scenario of detectors

triggering for every harmless particle strike (which also gets masked not causing

an error) would imply detecting 1 false positive every 1.3 minutes for a modern

general-purpose multi-core processor.

Increased false positives cause high performance penalty due to frequent error

recovery actions. Figure 3.3 shows the performance impact of recovery due to

false positive error detection for checkpointing techniques in different granulari-

ties. As you can see in the figure saving the checkpoints in the cache has very

similar cost as recovering only registers (i.e., microarchitecture checkpoint/recov-

ery) [226–229, 234]. As you include more structures in the checkpoint the cost

Error Detection using Acoustic Wave Detectors 49

R
e

la
ti

v
e

 S
lo

w
d

o
w

n

Cost of “False Positive” (ns)

1x

100

100x

10x

101 102 103

Proposed

Sequoia

IBM G5

IBM Z series

Carer

Swich

SPARC64

Cache assisted recovery
Microarchitecture recovery

Architecture recovery
Partial architecture recovery

Enterprise recovery

108 109 1010 1011

>1000x

ReVive
SafetyNet

ReStore

IBM Blue Gene

1000x

BLCR

Encore

Figure 3.3: A comparison of relative slowdown due to false positive recov-
ery for different recovery techniques: Seqoia [226], Swich [227], Carer [228],
SPARC64 [229], IBM Z series [59], IBM G5 [58], Encore [230], ReStore [231],

ReVive [102], SafetyNet [107], IBM Blue Gene [232], BLCR [233]

of recovery increases as in the case of techniques proposed in [230, 231]. Re-

covery techniques at architecture level or at system level incur approx 1000×
slowdown compared to microarchitecture or cache assisted checkpointing/recov-

ery [102, 107]. The recovery in petascale systems can take significantly long time

before a normal operation can resume severely impacting their performance and

availability [58, 232, 233, 235].

Now that we are familiar with the structure of the acoustic wave detector we will

next discuss how we can use them for error detection.

3.3 Soft Error Detection via Detecting Particle

Strikes

In this work, the fundamental idea is to detect the particle strikes via mechanical

deflection of acoustic wave detectors. From functionality point of view one such

Error Detection using Acoustic Wave Detectors 50

acoustic wave detector is analogous to one parity bit. The potential of the detectors

will be exploited by:

1. Detecting errors in the unprotected logic and memory components and there-

fore, reduce the SDC FIT rate.

2. Deploying less number of detectors than the required parity/ECC bits in

already protected memories and accurately localizing the particle strikes/bit

flips in memory arrays.

We discussed that the cantilevers can be used for detecting the existence of particle

strikes on the silicon surface. The acoustic wave detectors can be placed on or off

the chip but on the same silicon surface.

Traditional processor cores have surface are of a few square millimeters. Recall

that acoustic wave detectors have a detection range of 5 mm. It means that just

one acoustic wave detector is enough for error detection on an entire processor

core or a last level cache of Core™i7 microarchitecture.

Acoustic wave detectors detect all soft errors due to alpha and neutron strikes.

However, not only the detection of the error but how soon the error is detected is

also very important. Recall from Section 3.2, that the sound wave traverses the

silicon lattice at 10 km/sec. This means that if only one acoustic wave detector

was used, in the worst-case a particle strike occurring at 5 mm away would be

detected in 500 ns (or 1000 cycles in a processor running at 2 GHz). By putting

more acoustic wave detectors on the surface of silicon, it is possible to reduce the

worst case detection latency.

So far, we discussed the use of acoustic wave detectors for detecting the particle

strikes on the silicon surface. Now, let’s see how to use the acoustic wave detectors

in order to precisely locate the particle strike.

Why Locate Particle Strikes? Using the acoustic wave detectors, we can only

detect all the particle strikes and hence avoid possible data corruption. However,

locating the particle strikes are equally important. Once the error has been de-

tected, a hardware or software mechanism would trigger the appropriate recovery

action for error correction. To provide successful error correction or recovery, the

system must know the precise location of the error. This can be done by exploit-

ing the localization accuracy of acoustic wave detectors to detect and correct the

Error Detection using Acoustic Wave Detectors 51

errors. Once the accurate location is found the system can take available recovery

action. For instance, if the error has occurred in one of the bits in the cache we

may correct the error by flipping the bit.

Next, we present an architecture to precisely locate the particle strikes using acous-

tic wave detectors.

3.4 Location Estimation of a Particle Strike

The estimation location of the particle strike and latency of detection depends on

the following parameters:

1. How many acoustic wave detectors are required to be able to locate the

particle strike?

2. Where the acoustic wave detectors should be placed?

3. What is the accuracy of the found location?

4. What is the latency in detecting the particle strike?

Unlike GPS, any apriori knowledge of the spatio-temporal information about the

impacting particle strike is unavailable. This means that we do not know the

actual time span between the particle strikes and when the detectors trigger. The

only information we have is the relative time difference of arrival (TDOA) [236]

of the acoustic wave generated by the strike among different detectors.

TDOA technique estimates the difference in the arrival times of the signal from

the particle strike at multiple receivers. A particular value of the time difference

estimate defines a hyperbola between the two receivers on which the particle strike

may exist, assuming that the source and the receivers are co-planar as shown in

Figure 3.4. If we have another receiver in combination with any of the previously

used receivers, another hyperbola can be defined and the intersection of the two

hyperbolas results in the position location estimate of the particle strike. This

method is also sometimes called a hyperbolic position location method [236, 237].

TDOA method offers many advantages. It does not require complex receivers, we

use simple acoustic wave detectors as receivers. It does not require any special type

Error Detection using Acoustic Wave Detectors 52

R1

R2

S2

S3

S1

R1-R3

R1-R2

Source

R2-R3

Figure 3.4: TDOA hyperbolas in a system and location of source. Dashed
hyperbola is formed using only two detectors S1 and S2. Including a third

detector S3 can successfully locate the source via intersecting hyperbolas.

of antennas, hence it is cheaper to use it in existing processors. Moreover, multiple

TDOA readings can also provide immunity against timing errors and noise as we

will see later in this chapter.

Let us assume that a particle strikes at location (Xa, Ya). Therefore, a system of

two equations is required to solve both unknowns. Hence, a minimum of three

detectors are needed: with three detectors we obtain two TDOA measurements,

which allows us to derive the required equations.

Hyperbolic position location estimation. The estimation of the location is

carried out as follows:

• The acoustic wave detectors can be placed on or off the protected area but

on the same silicon surface. Notice that the coordinates of the acoustic wave

detectors are known.

• Once the strike is detected, we measure the TDOAs of the sound between

pairs of detectors through the use of time delay estimation.

Error Detection using Acoustic Wave Detectors 53

• Using the TDOA measurements we construct the system of hyperbolic equa-

tions.

• Once the equations are formed, efficient algorithms are applied to obtain a

solution to these hyperbolic equations, which represent the estimated posi-

tion of the particle strike.

3.4.1 Example

To illustrate the particle strike detection and localization problem, a simple case

of particle strike localization using 3 acoustic wave detectors is discussed.

S2
(X2,Y2,t2)

S1
(X1,Y1,t1)

S3
(X3,Y3,t3)

(Xa,Ya,T) d1

d2
d3

Figure 3.5: Strike detection and localization via triangulation using TDOA
measurements of acoustic wave detectors

T t1
t2 t3

∆T1 ∆T2

time

Detection Latency

Figure 3.6: Timeline of the events following the particle strike

Figure 3.5 displays three acoustic wave detectors (S1, S2 and S3) placed at known

coordinates (X1,Y1), (X2,Y2) and (X3,Y3) respectively on the surface of the chip.

Let’s assume that a particle strike occurs at an unknown time T at unknown

location (Xa,Ya). As shown in Figure 3.5, d1, d2 and d3 are unknown absolute

distances from the detectors S1, S2 and S3. Once the strike has occurred, the

ripples of phonons will traverse outward in a circular manner and the closest

detector from the strike will trigger first. In this case S1 will trigger at instance t1.

Error Detection using Acoustic Wave Detectors 54

After that, as the phonons traverse further, other detectors S2 and S3 will trigger

at instances t2 and t3 respectively. A timeline of the events is shown in Figure 3.6.

3.4.2 Obtaining TDOA

yes

No

Get “timer0” value at

event t1

If event

t(i+1) is high?

i=1,2

Get “timer0” value

∆T1 = t2-t1

∆ T2 = t3-t2

∆ D1 = Cp * ∆ T1

∆ D2 = Cp * ∆ T2

Stop

Start

Speed of phonon in Si lattice = Cp

∆ D1 = d2-d1

∆ D2 = d3-d2

Counter

Asynchronous

Control

t1

Sampling

Frequency

Enable
t2

t3

Figure 3.7: Strike detection algorithm (firmware) and a hardware control
mechanism

Figure 3.7 shows a simple system which can measure the timing differences of the

acoustic waves’ arrival. The hardware consists of an asynchronous control (e.g.,

multiple logic OR gates or a multiplexer circuit) which generates an output Enable

signal.

Enable is high whenever one of the triggered detector raises a flag, and activates the

sequential counter that counts the number of clock pulses between two consecutive

triggering detectors. The counter runs at the sampling frequency, which is a design

parameter.

As the speed Cp at which acoustic waves traverse on the silicon surface is known

(recall Section 3.2 of this chapter), using the measured timing differences of the

arrival of the acoustic waves, we can compute the distance differences ∆Di.

Errors in measurements. The effect of errors in the measurements of timing

differences due to the sampling frequency cannot be ignored. We use the example

Error Detection using Acoustic Wave Detectors 55

t1A t2A

e1 e2 e3

t1R t2R t3R
t3A

tp

Figure 3.8: Sampling errors in the measurements of the time difference of the
arrival at the acoustic wave detectors

depicted in Figure 3.8 to illustrate such case: the three detectors S1, S2 and S3

are in synch with each other and are being sampled at the rising edge of the clock

with sampling period tp. The actual arrival times of the acoustic wave generated

due to particle strike at detectors S1, S2 and S3 are t1A, t2A and t3A respectively.

However, the signal will be read only at the rising edge of the clock pulse (i.e.,

at the instances t1R, t2R and t3R) by the detectors. This introduces error in the

measurements of the time differences.

Assume a particle strike occurring at an unknown instance T , sampling period tp

and the actual arrival time of the acoustic wave generated due to particle strike

at detector Si is tiA. The sampling error es at the acoustic wave detector S can

be expressed as:

es = tp − [(T + tiA)mod(tp)] (3.1)

Notice that es ∈ [0, tp). Hence, the error in the time difference of arrival of the

acoustic wave between detectors Si and Si+1 is esi∈(−tp, tp).

3.4.3 Generating TDOA Equations

In order to generate the equations that describe the localization of the particle

strike. We sort detectors based on their proximity to the source of the signal (i.e.,

the order in which they trigger), S1 being the closest detector and Sn the furthest

one. (Xa, Ya) denotes the unknown location of strike and (Xi, Yi) indicates the

known location of the ith detector.

Error Detection using Acoustic Wave Detectors 56

A general model for the two dimensional (2-D) location estimation of a source

using N detectors is adapted, where the mathematical problem is to estimate the

actual location of a strike (Xa, Ya), utilizing the detector positions and the TDOA

readings. First, we define the squared euclidean distance between the source and

the ith detector:

Dia =
√
(Xi −Xa)2 + (Yi − Ya)2 (3.2)

Next we derive the range difference ∆Dia between detectors Si and Si+1,

∆Dia = Dia−D(i+1)a

=
√
(Xi−Xa)2+(Yi−Ya)2

−
√

(Xi+1−Xa)2+(Yi+1−Ya)2 (3.3)

Now, we can set up our set of equations based on the TDOA measurements ∆Tia

between detectors Si and Si+1,

∆Dia = Cp ∗∆Tia + esi , i = 1 . . . N − 1 (3.4)

Where, Cp is the speed of the sound wave on the silicon surface. Notice that if

N>3, we will have a non-determined system (i.e., more equations than unknowns).

Next, we will see how we can solve these hyperbolic TDOA equations to obtain

the estimation of location.

3.4.4 Solving TDOA Equations

Solving a set of hyperbolic equations for accurate location estimation is non-trivial.

The simplest way to estimate the location of particle strike, is to generate a de-

terministic system of TDOA equations. The deterministic algorithms can be used

when the number of hyperbolic equations equals the number of unknown coordi-

nates of the source. In this work we implement an algorithm to solve a determin-

istic system of two hyperbolic equations [238].

A particle strike will be detected by all the detectors within the detection range

of 5 mm. Hence, usually we have more than two TDOA measurements. By using

the redundant TDOA measurements we can improve the accuracy of the position

location estimation. To take advantage of these redundant TDOA measurements,

whenever the number of triggered detectors is larger than three we construct a

Error Detection using Acoustic Wave Detectors 57

non-deterministic system of equations (i.e., ≥ 3 hyperbolic TDOA equations).

A non-deterministic system of equations is more difficult to solve as a unique

solution does not exist. We implement and examine both iterative [237] and non-

iterative [239, 240] algorithms to solve non-deterministic system of equations.

The algorithm to solve TDOA equations is stored in firmware (along with the po-

sition of all detectors) and is transparently run in any of the cores of the processor.

The preferred option is to run the algorithm in a core that is not triggering the

error to facilitate the error recovery if necessary, but it could also be done in the

same core with some checkpointing. Next, we will discuss the implementation and

compare different algorithms for solving TDOA equations.

3.5 Algorithms for TDOA Equations

In this section we implement algorithms to solve deterministic and non-deterministic

system of equations and discuss their computational complexity, runtime, their

ability to provide exact solutions and the risk of not reaching a valid solution.

Later in this chapter, we will discuss in detail how design parameters like number

of detector and their location impact all these metrics, and especially, the quality

of the location estimate.

3.5.1 Deterministic Method

A high-level description of the algorithm to compute an exact solution when the

number of TDOA measurements are equal to the number of unknowns ((X,Y)

coordinates) is shown in Algorithm 1.

Algorithm 1 Deterministic location estimation

1: INPUT: Locations of 3 detectors 7→ (Xi, Yi), i = 1, 2, 3.
2: INPUT: Range difference between receivers 7→ ∆Dia, i = 1, 2.
3: INPUT: Error in TDOA esi ∈ (−tp, tp).
4: Generate hyperbolic equations
5: Linearization 7→ D2

i = (∆Di,1 +D1)
2

6: Quadratic equation in the form of d∗x2+e∗x+f=0

7: X=
−e−
√

e2−4df

2d
, Y substitute X into line 6.

8: OUTPUT: Location (X,Y), CEP.

Error Detection using Acoustic Wave Detectors 58

Lines 1-3 define the inputs for generating the equations: the location of detectors,

as well as the statistical distribution of the error in TDOA measurements, which

is known at design time. The TDOA measurements are calculated online as ex-

plained in Section 3.4.2. First step of the algorithm is generating the equations

and linearizing them by squaring (lines 4-5). Notice that in this implementation

we use only the first 3 detectors that trigger to build the hyperbolic equations.

Then we apply a hyperboloid transformation to obtain a single variable quadratic

equation (lines 6-7). Finally, solving the quadratic equation yields the value of

one of the coordinates and we can obtain the other by substitution in the line 6.

This solution does not utilize the extra TDOA measurements, available when three

or more triggered detectors are available [238].

3.5.2 Non-deterministic Method

Next, we implement iterative and non-iterative algorithms to solve non-deterministic

systems of equations.

3.5.2.1 Non-iterative Algorithms

We describe a non-iterative algorithm to solve a non-deterministic system of equa-

tions similar to [239]. It provides an unambiguous solution when the number of

TDOA measurements are ≥3.

A high-level description is shown in Algorithm 2. Lines 1-8 are basically the same

as lines 1-6 of Algorithm 1. By introducing an intermediate variable, the nonlinear

equations relating TDOA estimates and source position can be transformed into

a set of equations which are linear and function of the unknown parameters (i.e.,

the X and Y co-ordinates) and the intermediate variable. A least square (i.e.,

LSQR [241]) yields a solution (line 9). By exploiting the known relation between

the intermediate variable and the position coordinates, a second weighted LSQR

gives the final solution (lines 10-11).

Algorithm 2 is further extended as shown in Algorithm 3. It derives a bias of

the source location estimate using Algorithm 2. Two methods, called BiasSub

and BiasRed, are developed to reduce the bias. The BiasSub method subtracts

the expected bias from the solution of Algorithm 2, where the expected bias is

Error Detection using Acoustic Wave Detectors 59

Algorithm 2 Non-deterministic non-iterative algorithm for hyperbolic location
estimation
1: INPUT: Number of total detectors 7→ N .
2: INPUT: Locations of the detectors 7→ (Xi, Yi), i = 1, 2, ..., N .
3: INPUT: Range difference between receivers 7→ ∆Dia, i = 1, 2, . . . , N − 1.
4: INPUT: Error in TDOA esi ∈ (−tp, tp) and error covariance matrix 7→ R =

[esi].
5: Identify triggered detectors if N > 3
6: Generate hyperbolic equations
7: Linearization 7→ D2

i =(∆Di,1+D1)
2, i=1, 2, ..., N

8: Quadratic equation: a ∗∆D2
1+b ∗∆D1+c=0

9: f(X,Y,∆DN) 7→ LSQR(f(∆D1)), i = 1, 2, ..., N

10:

A3 B3
...

...
AN BN

[
X
Y

]
=

−D3
...
−DN

11: OUTPUT: Applying another LSQR yields (X,Y), CEP.

Algorithm 3 Extension of Algorithm 2

1: INPUT: Number of total detectors 7→ N .
2: INPUT: Locations of the detectors Si=[(Xi, Yi)], i=1, 2, ..., N .
3: INPUT: Range difference between receivers 7→ ∆Dia, i=1, 2, . . . , N − 1.
4: INPUT: Error in TDOA esi ∈ (−tp, tp) and error covariance matrix 7→ Q=

[esi].
5: Rd,i = ∆Di,1 −∆Di, i = 1, 2, ..., N
6: SLoc using Algorithm 2
7: BiasSub:
8: Biast=f(Si,[0;Rd,i]+norm(SLoc−Si(:,1)), Q, SLoc)
9: SLoc = SLoc−Biast
10: Return SLoc
11: BiasRed:
12: Compute M1=f(weights, Si(:,1))
13: Compute M2=f(weights,M1)
14: SLoc=f(M1(1 : length(M2)))∗

√
|M2|+Si(:,1)

15: Return SLoc
16: OUTPUT: SLoc=(X, Y), CEP.

approximated by the theoretical bias using the estimated source location and noisy

data measurements (lines 7-10). The BiasRed method augments the equation error

formulation and imposes a constraint to improve the source location estimate (lines

11-15). The BiasSub method requires the exact knowledge of the noise covariance

matrix and BiasRed only needs the structure of it [240].

Error Detection using Acoustic Wave Detectors 60

3.5.2.2 Iterative Algorithm

A high-level iterative algorithm is shown in Algorithm 4. Iterative Gauss-Newton

interpolation uses the Taylor-series expansion method [237].

Algorithm 4 Iterative algorithm

1: INPUT: Number of total detectors 7→ N .
2: INPUT: Locations of the detectors 7→ (Xi, Yi), i = 1, 2, ..., N .
3: INPUT: Range difference between receivers 7→ ∆Dia, i = 1, 2, . . . , N − 1.
4: INPUT: Error in TDOA esi ∈ (−tp, tp) and error covariance matrix 7→ R =

[esi].
5: Identify triggered detectors
6: Generate hyperbolic equations
7: Linearization (Tylor series) 7→ Aδ ∼= Z + E
8: Gauss-Newton-Interpolation [(Xv, Yv), N, (Xi, Yi), A, δ, Z]
9: while (δx ̸= 0, δy ̸= 0) do
10: [δx, δy] 7→ LSQR((A), (Z))
11: Xv ← Xv + δx, Yv ← Yv + δy
12: end while
13: Compute Q = [ATR−1A]−1, CEP
14: OUTPUT: Area of Error Distribution, Radius of the circle(CEP), center

(Xv, Yv)

Lines 1-4 show the required inputs for solving the equations. First step of the

algorithm is generating the equations (lines 5-7). Equation 3.3 (and therefore, the

set of equations 3.4) is nonlinear in nature. Unlike Algorithms 1, 2 and 3, we opt

to linearize these equations through Taylor-series expansion and retain the terms

below second order [237].

We also provide an initial guess (Xv, Yv) as shown in Equation 3.5.

(Xv, Yv) =
n∑

i=1

[
(max(Xi),min(Xi))

2
,
(max(Yi),min(Yi))

2

]
(3.5)

The system of equations is solved by computing LSQR iteratively (lines 8-12). In

order to estimate the solution, we keep iterating until δx 7→ 0 and δy 7→ 0. In

each new iteration, the provisional solution is updated through Xv ← Xv + δx and

Yv ← Yv + δy, yielding the estimated location (Xv, Yv) as shown in (line 14) at the

end of the iterative process.

Error Detection using Acoustic Wave Detectors 61

3.5.3 Metrics for Evaluating Algorithms

The algorithms described in Section 3.5, have very different behavior in terms of

runtime, complexity, accuracy and location estimation coverage. To evaluate them

we will first describe the important metrics.

3.5.3.1 Runtime

Runtime of algorithm is the time it takes to obtain the estimated location of strike

after the TDOA equations are generated. Once the first detector triggers, we stall

the processor and obtain all TDOAs. Once all TDOAs are ready, we can execute

any algorithm to generate and solve the equations. It is worth noticing that the

more TDOA equation are generated the longer it takes to solve them.

3.5.3.2 Complexity

Algorithm 1 is computationally the least intensive as it is non-iterative and deter-

ministic (i.e., solves just 2 hyperbolic equations to obtain the location). It does

not use redundant TDOA measurements.

Algorithms 2, 3 and 4 are more complex as they solve more than two hyperbolic

equations to estimate the location. Algorithm 4 is computationally intensive since

an LSQR computation is required in each iteration. Simulations show that at

least three iterations are required for convergence. It demands computing LSQR

at least 3 times. Algorithm 2 and Algorithm 3 also require LSQR computations.

However, they are computationally less intensive than the Algorithm 4, mainly

because of their non-iterative nature. Note that solving more hyperbolic equations

to estimate the location increases the overall complexity.

The runtime memory footprint increases when increasing the number of hyperbolic

equations. Since, Algorithms 2, 3 and 4 utilize redundant TDOA measurements,

they are more memory consuming than Algorithm 1. Most of the memory goes

into storing the data matrices. The LSQR operation itself is less memory inten-

sive [241]. The overall runtime memory footprint of all the algorithms discussed

above is not significant.

Error Detection using Acoustic Wave Detectors 62

3.5.3.3 Location Estimation Coverage

Location estimation coverage is the ability to produce a valid estimation of loca-

tion. Location estimation coverage depends on the placement of detectors. For

example, Algorithms 1, 2 and 3 fail to produce an estimation of location when

all the TDOA equations are formed consisting detectors having either the same X

co-ordinates or Y co-ordinates (i.e., collinear detectors).

Algorithm 4 is an iterative method and requires an initial guess of the location. If

the initial guess is not properly provided, convergence may be compromised and

that reduces the location estimation coverage. Non-iterative algorithms do not

face any convergence problem.

We show a detailed evaluation regarding location estimation coverage in Sec-

tion 3.6.

3.5.3.4 Accuracy

To quantify the accuracy of the estimated location we calculate the error in the

obtained position estimate for all the algorithms mentioned above. Apart from

the sampling errors in TDOA measurements as explained in Section 3.4.2, lin-

earizing the hyperbolic equations (i.e., by squaring operation as in Algorithm 1,

Algorithm 2 and Algorithm 3 or by using Taylor series and eliminating the second

order terms as shown in Algorithm 4) can introduce errors in the final location

estimation.

Estimation of Error: Because of errors in measurements, we cannot exactly

pinpoint the particle strike; instead, we obtain an error distribution area that

contains the actual location of the particle strike. We use circular error probability

(CEP) to express the area of the error with a given probability. CEP is the

measure of the area of the error distribution of the final estimation of the position.

Moreover, the location estimation accuracy depends on various design parameters

such as, (i) the placement of detectors, (ii) choice of triggered detectors, (iii)

number of TDOA equations used for estimating the location and (iv) sampling

frequency. Note that these design parameters also affect runtime, complexity,

location estimation coverage of the algorithms.

Error Detection using Acoustic Wave Detectors 63

Error Area Granularity: The location of the particle strike is given as estimated

(X, Y) coordinates and an estimation of the error area covered by (3*CEP) radius.

Using Rayleigh’s method for approximating the CEP [242], we guarantee that

the actual strike location will always fall within a circle with the center at the

obtained estimated location and the radius equal to the 3*CEP. We analyze the

3*CEP error area for all the algorithms discussed above in Section 3.6. The most

accurate algorithm has the minimum 3*CEP error area.

For simplicity, we will describe the error area in terms of bits. However, the error

area can be easily mapped to relevant functional blocks in the processor pipeline

or to specific lines in caches [135].

3.6 Assessing the Algorithms

In this section we assess how the placement of the detectors, and how the number

of detectors impact the error in the estimation of location (accuracy), runtime,

complexity and coverage for all algorithms discussed in Section 3.5. We demon-

strate the utility of the cantilever detectors for detecting and locating particle

strikes in the core of a Core™i7-like processor. The core has a rectangular shape

with an area of 28 mm2.

3.6.1 Placement of Detectors

After trying different configurations, we have opted to place the detectors in a

mesh as shown in Figure 3.9. Each node in the mesh represents an acoustic wave

detector. For a m × n mesh the area of the core is split into m − 1 equal parts

along the X-axis and n− 1 equal parts along Y-axis.

We have evaluated different mesh configurations. For this experiment, we have

opted for a system of 4 hyperbolic equations. Therefore, we need to construct

a mesh that guarantees that for all possible particle strikes, at least 5 detectors

trigger (recall that only the detectors that are placed within 5 mm of the particle

strike will be able to detect the strike). We inject 1048 particle strike at random

locations at random instances. We chose the sample set to be 1048 because we

wanted to be as accurate as possible in locating the exact erroneous bits while

Error Detection using Acoustic Wave Detectors 64

Figure 3.9: Placement of detectors in a mesh formation

using location estimation algorithms with 95% confidence. It is also backed up by

confidence interval theory. Our studies show that the minimum configuration is a

3×3 mesh with 9 detectors. In those configurations where more than 5 detectors

trigger, we take the first five detectors that trigger and observe the impact of

placement of detectors on accuracy and the location estimation coverage. Note

that the runtime and computational complexity are independent of the placement

of detectors.

3.6.1.1 Accuracy

Figure 3.10 shows how the number and placement of detectors impact the error

area (i.e., accuracy). As one can see, for the iterative Algorithm 4, using only 9

detectors yields an error area of 40 bits, which is a 3*CEP radius of 3.5 bits. It is

also interesting to note that increasing the number of detectors does not increase

the quality of the solution, since the solution is more affected by the location of the

detectors. For instance, using 12 detectors (i.e., a 2×6 mesh) the 3*CEP radius

increases to 9 bits. However, when we change to a 3×5 mesh, area is significantly

reduced to a radius of 3 bits. Algorithm 2 and Algorithm 3 follow a similar pattern.

Algorithm 1 does not produce a valid estimation for some mesh configurations. It

is worth noticing that for the given analysis the iterative algorithm outperforms

all the other algorithms by a factor of about three in terms of area.

Error Detection using Acoustic Wave Detectors 65

0

100

200

300

400

500

600

[3x3] [2x5] [2x6] [3x4] [4x3] [2x7] [3x5] [5x3] [2x8] [4x4] [3x6] [4x5]

E
rr

o
r

A
re

a
 (

#
b

it
s)

Mesh Configuration

Algorithm 1 Algorithm 2

Algorithm 3 (BiasSub) Algorithm 3 (BiasRed)

Algorithm 4

Figure 3.10: Impact of placement of detectors (while solving 4 TDOA equa-
tions) on accuracy (area unit is the area of 1 bit SRAM cell)

3.6.1.2 Location Estimation Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
rr

o
r

Lo
ca

ti
o

n
 C

o
v

e
ra

g
e

Mesh Configuration

Algorithm 2

Algorithm 3 (BiasSub)

Algorithm 3 (BiasRed)

Algorithm 4

Figure 3.11: Impact of placement of detectors (while solving 4 TDOA equa-
tions) on location estimation coverage

Figure 3.11 shows how the number (and placement) of detectors impact the es-

timation coverage explained in Section 3.5.3.3. Note that as the different mesh

Error Detection using Acoustic Wave Detectors 66

configurations alters the placement of detectors but always solves 4 TDOA equa-

tions, the runtime and the complexity are not affected.

We can observe the ambiguity problem of Algorithms 2 and 3 in Figure 3.11.

This problem is prominent in specific mesh configurations (i.e., 2× 5, 2 × 6 etc.)

with more likelihood of having all 5 triggered detectors to be collinear. Ambiguity

problem arises mainly because these algorithms linearize the hyperbolic equations

by a squaring operation. This ambiguity can be easily solved by using a-priori

information regarding the dimensions of the protected area [238–240]. We also

show Algorithm 4 to compare the location estimation coverage. Algorithm 4 is

not affected by ambiguity problem. However, as discussed in Section 3.5.3.3,

Algorithm 4, may have problems regarding the convergence when not provided

with a proper initial guess.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 5 6 7 8 9 10

E
rr

o
r

Lo
ca

ti
o

n
 C

o
v

e
ra

g
e

Number of Detectors for Algorithm 4

Ideal

F[SensorLoc(x,y)] Eqn. 5

Middle

Random

Figure 3.12: Impact of initial guess on coverage (while solving 4 TDOA equa-
tions) on location estimation coverage

Figure 3.12 shows how the choice of the initial guess affects the convergence and

hence the location estimation coverage (for the 1048 analyzed strikes) for Algo-

rithm 4 in a 4×5 mesh. As we can see, when the initial guess is fixed in the

middle of the core for all 1048 strikes, even when solving 9 TDOA equations, 16%

of times the algorithm is not able to converge. For random guess locations 38%

of the times the algorithm does not converge. When the initial guess location is

a function of the locations of the selected sensors as shown in Equation 3.5, the

Error Detection using Acoustic Wave Detectors 67

algorithm converges all the times within 3 iterations providing 100% error local-

ization. To compare the effectiveness of the choice of the initial guess we also

show the ideal case where initial guess is the actual location of the particle strike.

Note that when the algorithm does not converge, the system cannot identify the

location of the strike, but the strike is still detected.

Error Detection using Acoustic Wave Detectors 68

F
ig
u
r
e
3
.1
3
:
W
or
st
-c
as
e
er
ro
r
ar
ea

w
it
h
th
e
se
le
ct
io
n
of

d
iff
er
en
t
se
t
of

d
et
ec
to
rs

(4
to

1
0
)
fr
o
m

a
g
iv
en

[4
×

5
]
m
es
h

Error Detection using Acoustic Wave Detectors 69

3.6.2 Choosing Detectors for TDOA Equations

In this section, we assess the impact of the choice of the TDOA equations on the

accuracy (i.e. 3*CEP error area) and error estimation coverage. For that purpose,

we choose a 4×5 mesh because it guarantees that at least, 10 detectors detect

the particle strike. We also assume a 2 GHz sampling frequency. Note that the

runtime and computational complexity are unaffected by the choice of the TDOA

equations.

3.6.2.1 Accuracy

Figure 3.13 shows the obtained error area for the 4×5 mesh for all algorithms.

We show results for three different methods that select the detectors when more

detectors than necessary are triggered by: (i) choosing the closest, (ii) the farthest

or (iii) choosing randomly. For all the algorithms discussed in Section 3.5, selecting

the closest set of detectors is the most accurate option. This is because the nearest

detectors are placed at locations where it was possible to generate better TDOA

measurements between two detectors. It helps in reducing the error involved in

linearizing hyperbolic equations as discussed in Section 3.5.3.4 and yielding more

accurate solutions.

3.6.2.2 Location Estimation Coverage

The choice of triggered detectors does not affect the complexity or runtime of the

algorithms as same number of equations are solved. However, choosing the closest

set of detectors guarantees 100% error coverage for Algorithm 4 and >97.7% error

coverage for Algorithms 2 and 3 as shown in Figure 3.11.

3.6.3 Effect of Solving More TDOA Equations

Once we select the closest set of detectors, we can observe that solving a higher

number of TDOA equations has a very important impact on the accuracy. More-

over, solving more number of TDOA equations can worsen the runtime and in-

crease the computational complexity.

Error Detection using Acoustic Wave Detectors 70

3.6.3.1 Accuracy

10

20

30

40

50

60

70

80

90

4 5 6 7 8 9 10

E
rr

o
r

A
re

a
(#

b
it

s)

Number of used detectors

Algorithm 2

Algorithm 3 (BiasSub)

Algorithm 3 (BiasRed)

Algorithm 4

Figure 3.14: Error area with closest detectors for [4× 5] mesh

Figure 3.14 shows that by increasing the selected detectors from 4 to 10, the error

area reduces by a factor of 2 for Algorithm 2, Algorithm 3 and Algorithm 4.

Table 3.2 shows the best configurations observed for each algorithm; we consider

different mesh configurations and number of equations for Algorithms 2, 3 and 4.

Algorithm 1 is deterministic and solves only 2 equations for the given mesh. Second

column of the table shows the minimum number of detectors that trigger upon the

particle strike. Third column shows the number of detectors used to set up the

TDOA equations. Last column shows the worst-case error observed for the 1048

particle strikes for the different algorithms discussed in Section 3.5. It is worth

noticing that the improvement in the error area of Algorithm 1 when increasing

the number of detectors is mainly due to the improved quality of the 2 equations

with a denser mesh (as explained in Section 3.6.1). For all the algorithms the best

error area is obtained by setting a 4×5 mesh and using 10 detectors. However,

the complexity of setting and solving the equations makes it too expensive as

explained in Section 3.5.3.2.

Error Detection using Acoustic Wave Detectors 71

M
e
sh

M
in
im

u
m

#
D
e
te
ct
o
rs

#
T
D
O
A

3
*
C
E
P

E
rr
o
r
A
re
a
(#

b
it
s)

C
o
n
fi
g
u
ra

ti
o
n

#
D
e
te
ct
o
rs

u
se
d
fo
r

E
q
u
a
ti
o
n
s
A
lg
o
ri
th

m
1
†
A
lg
o
ri
th

m
2

A
lg
o
ri
th

m
3

A
lg
o
ri
th

m
4

[M
e
sh

,
#
D
e
te
ct
o
rs
]

tr
ig
g
e
re
d

T
D
O
A

so
lv
e
d

B
ia
sS

u
b

B
ia
sR

e
d

[3
×
4,
12
]

4
4

3
15
9

58
60

57
37

[3
×
5,
15
]

9
5

4
14
2

50
50

51
30

[3
×
6,
18
]

10
6

5
14
0

37
37

40
29

[3
×
6,
18
]

10
7

6
14
0

33
33

35
24

[3
×
6,
18
]

10
8

7
14
0

31
31

33
23

[4
×
5,
20
]

12
9

8
10
6

29
29

30
21

[4
×
5,
20
]

12
10

9
10
6

28
28

29
19

T
a
b
l
e
3
.2
:
W
or
st

ca
se

er
ro
r
ar
ea

fo
r
b
es
t
co
n
fi
gu

ra
ti
on

of
a
gi
v
en

m
es
h
fo
r
ea
ch

a
lg
o
ri
th
m
.
†
so
lv
es

o
n
ly

2
eq
u
a
ti
o
n
s

Error Detection using Acoustic Wave Detectors 72

Figure 3.15: Comparing accuracy of all algorithms and for the mesh configu-
rations discussed in Table 3.2

The average improvement in the accuracy for the iterative Algorithm 4 is 1.4×,
1.55× and 5.2× compared to Algorithms 2, 3 and 1 respectively as shown in

Figure 5.11c.

Figure 3.16 shows how increasing the number of equations (for the configurations

of Table 3.2) impacts the runtime and complexity. As per Figure 3.16(a) and Fig-

ure 3.16(b), for the same mesh configuration, with increasing number of equations

the runtime and complexity of Algorithms 2 and 3 increases linearly relative to the

runtime and complexity of Algorithm 1. Algorithms 2 and 3 are non-iterative and

the increase in complexity and runtime is mainly because of the increased size of

working data set (e.g., more equations). In the case of Algorithm 4, for the same

mesh, the runtime and complexity increase exponentially relative to the runtime

and complexity of Algorithm 1. This exponential trend is because more number

of iterations (and the number of LSQR computations) are required to solve higher

number of TDOA equations.

3.6.3.2 Runtime

Generating and solving the TDOA equations has negligible impact on the per-

formance of active tasks and user experience. As per Figure 3.16(a) the iterative

Error Detection using Acoustic Wave Detectors 73

(a) Runtime

(b) Complexity

Figure 3.16: Comparing runtime and complexity of all algorithms and for the
mesh configurations discussed in Table 3.2

Algorithm 4 takes 3.2×, 2.6× and 6.8× longer runtime to produce location esti-

mation compared to Algorithms 2, 3 and 1 respectively.

In a Core™i7 processor, Algorithm 1 is the fastest and takes 0.011 ms. Algo-

rithm 2 and Algorithm 3 take around 0.02–0.03 ms. Algorithm 4, being an iterative

method, has the longest worst-case runtime of 0.07 ms.

Error Detection using Acoustic Wave Detectors 74

3.6.3.3 Complexity

According to Figure 3.16(b) the iterative Algorithm 4 is 2.1×, 1.8× and 6× more

complex compared to Algorithms 2, 3 and 1 respectively.

The ideal algorithm for location estimation would be the one that is the least

complex, with the least runtime and the most accurate. Choosing the best algo-

rithm is balancing a 3-way trade-off involving complexity, runtime and accuracy.

Non-deterministic algorithms are complex but best for accuracy. Deterministic al-

gorithms are least accurate and severely affected by sampling noise and ambiguity

problem. For maximum accuracy Algorithm 4 is the best choice. Algorithms 2

and 3 are almost half as accurate as Algorithm 4 but they are faster and less

complex. We want to precisely locate the error and hence we opt for Algorithm 4

which provides maximum accuracy.

3.6.4 Effect of Sampling Frequency on Accuracy

0

5

10

15

20

25

30

35

40

[3x4,4] [3x5,5] [3x6,6] [3x6,7] [3x6,8] [4x5,9] [4x5,10]

E
rr

o
r

A
re

a
 (

#
 b

it
s)

Configurations [Mesh, Detectors used]

2 GHz

2.5 GHz

3 GHz

3.5 GHz

4 GHz

Figure 3.17: Impact of sampling frequency on error area for configurations of
Table 3.2 Iterative Algorithm 4

Error Detection using Acoustic Wave Detectors 75

The effect of altering the sampling frequency over the final error area is studied

in this section. Figure 3.17 shows the impact of sampling frequency on the worst-

case error area for all best configurations described in Table 3.2 for the iterative

Algorithm 4. The results indicate that doubling the frequency from 2 GHz to 4

GHz reduces the error area by 4×. Our experiments show a similar improvement

while doubling the frequency from 2 GHz up to 4 GHz for all the other algorithms

discussed in Section 3.5.

0

5

10

15

20

25

30

35

2 GHz 2.5 GHz 3 GHz 3.5 GHz 4 GHz

E
rr

o
r

A
re

a
 (

#
b

it
s)

Sampling Frequency

Algorithm 2

Algorithm 3 (BiasSub)

Algorithm 3 (BiasRed)

Algorithm 4

Figure 3.18: Impact of sampling frequency on error area for configurations of
Table 3.2 for all algorithms

In Figure 3.18, we depict the effect of varying the frequency for the best config-

uration described in Section 3.6.3 (i.e., a 3×6 mesh employing 8 detectors) for

all algorithms. We can see that increasing the sampling frequency reduces the

error area; doubling the frequency from 2 GHz to 4 GHz reduces the worst-case

error area from 23 bits down to 5 bits (i.e., a radius of 2.7 bits down to 1.3 bits)

for iterative Algorithm 4, from 31 bits down to 8 bits for Algorithms 2 and for

BiasSub method of Algorithm 3. In the case of BiasRed method of Algorithm 3

the improvement is from 33 bits down to 8 bits.

Notice that varying the sampling frequency has no impact on the complexity,

runtime or location estimation coverage.

Error Detection using Acoustic Wave Detectors 76

230

190
199 196

185
179

167

153

0

50

100

150

200

250

3x3 3x4 4x3 2x6 3x5 4x4 3x6 4x5

W
o

rs
t-

C
a

se
 D

e
te

ct
io

n
 L

a
te

n
cy

(#
C

y
cl

e
s)

Mesh Configuration

Figure 3.19: Worst-case detection latency for mesh configurations of Table 3.2
in a processor running at 2 GHz

0

100

200

300

400

500

600

700

800

900

1000

W
p

rs
t-

C
a

se
 D

e
te

ct
io

n
 L

a
te

n
cy

(#
C

y
cl

e
s)

Number of Detectors on the Core

Detection latency(#Cycles) @ 2GHz

Figure 3.20: Adding more detectors to reduce worst-case detection latency in
a processor running at 2 GHz

Error Detection using Acoustic Wave Detectors 77

3.6.5 Detection Latency

Figure 3.19 shows the worst-case latency observed for the different mesh config-

urations of Table 3.2. As one can observe, adding more acoustic wave detectors

significantly helps in reducing the detection latency. Figure 3.20 shows that in-

creasing the number of detectors in the mesh reduces the worst-case detection

latency exponentially. Small detection latencies allow simple hardware checkpoint

and recovery.

We have considered the option of adding, on top of the detectors deployed for

precise estimation of location, a set of detectors to minimize the detection latency.

According to Figure 3.20, a detection latency of 1 cycle will require > 68K de-

tectors. A mesh consisting of 30-300 detectors can provide detection latency of

30-100 cycles for a processor running at 2 GHz.

3.6.6 Summary of Chosen Configuration

The proposed solution uses of two different meshes. The 3×6 mesh is used to

obtain the TDOA. In that case, the hardware mechanism explained in Section 3.4.2

consists of 18 detectors (i.e., roughly 18 bits area), and a 2-level OR tree (7 3-input

OR gates and 3 2-input OR gates) to generate the Enable signal. Besides, a 10-bit

counter is required for the counting TDOA pulses.

We also use a separate mesh to minimize the detection latency. It consists of 30-

300 detectors achieving 30-100 cycles of latency at 2 GHz (i.e., an area overhead

of 30-300 bits). Depending on the number of detectors in the second mesh we may

need an additional controller circuit (i.e., a MUX or a logic-OR tree structure)

to generate the detection signal. Note that for latency minimization we do not

require a counter since we only want to signal the presence of the strike.

For the given mesh configuration to obtain maximum accuracy in the location

estimation we use Algorithm 4.

Error Detection using Acoustic Wave Detectors 78

A
lg
o
ri
th

m
s

R
u
n
ti
m
e

C
o
m
p
le
x
it
y

C
o
v
e
ra

g
e

A
cc

u
ra

cy
L
im

it
a
ti
o
n
s

A
lg
or
it
h
m

1
1×

1×
90
%

1×
•
C
an

n
ot

b
en
efi
t
fr
om

re
d
u
n
d
an

t
m
ea
su
re
-

m
en
ts

•
L
es
s
ac
cu
ra
te

Non
- ite

ra
tiv

e

A
lg
or
it
h
m

2
2.
1×

2.
8×

10
0%

∓
3.
6×

•
F
ai
ls
w
h
en

d
et
ec
to
rs

ar
e
co
ll
in
ea
r

•
A
m
b
ig
u
it
y
p
ro
b
le
m

•
R
eq
u
ir
es

a-
p
ri
or
i
k
n
ow

le
d
ge

of
co
re

d
i-

m
en
si
on

s

A
lg
or
it
h
m

3
(B

ia
sS
u
b
)

2.
3×

3.
2×

10
0%

∓
3.
6×

A
lg
or
it
h
m

3
(B

ia
sR

ed
)

2.
65
×

3.
2×

10
0%

∓
3.
3×

It
e
ra

ti
v
e

A
lg
or
it
h
m

4
6.
4×

6.
1×

10
0%

5.
2×

•
C
on

ve
rg
en
ce

is
su
es

•
R
eq
u
ir
es

in
it
ia
l
gu

es
s

T
a
b
l
e
3
.3
:
C
om

p
ar
is
on

of
al
go
ri
th
m
s:

A
lg
or
it
h
m

1
is

d
et
er
m
in
is
ti
c
an

d
A
lg
or
it
h
m
s
2
,
3
a
n
d
4
a
re

n
o
n
-d
et
er
m
in
is
ti
c;

∓
w
it
h
ca
re
fu
l

m
es
h
se
le
ct
io
n
s

Error Detection using Acoustic Wave Detectors 79

3.6.7 Summary of Results

Nondetermined system of equations (i.e., when using more than 3 detectors and

setting more than 2 equations) reduces the worst-case error area by a huge margin

compared to determined system of equations. We have also shown the impact of

detectors placement and higher number of equations on the accuracy, runtime and

complexity. Using an iterative algorithm (Algorithm 4) is the best option if highest

accuracy is desired. It also guarantees convergence independently of the type of

the mesh. Algorithms 2 and 3 are almost half as accurate as Algorithm 4 but they

are faster and less complex. Error estimation coverage can be an issue if collinear

detectors form TDOA equations. Deterministic algorithms are the least accurate

and severely affected by sampling noise and ambiguity problem. A comparative

summary of all the trade-offs is described in Table 3.3.

We also studied the effect of sampling frequency on accuracy. Increasing sampling

frequency reduces the sampling error in the measured TDOA. Raising sampling

frequency from 2 GHz to 4 GHz reduces the worst-case error area by 4×. Overall,

our results confirm that increasing the sampling frequency is more effective than

increasing the number of equations. For instance, a system that uses 3 equations

(e.g., 3×4 mesh) sampling at 4 GHz is a better option than a system using 9

equations (e.g., 4×5 mesh) with the sampling frequency of 2 GHz.

Finally, we have also discussed the impact of the number of detectors on the

detection latency. We have concluded that the most effective design is the one that

uses two independent meshes: a small mesh for precise location of the strike, and a

somewhat larger mesh for reducing detection latency. The optimum configuration

for maximum accuracy is to use Algorithm 4 on the studied core with a 3×6 mesh

and construct a nondetermined system of 7 equations, which gives a worst-case

error area of 23 bits (i.e., 23 µm2). We add another mesh (i.e., 30-300 detectors)

for reducing the detection latency, resulting in a latency of 30-100 cycles for a

processor running at 2 GHz.

3.7 Related Work

In this section, we review detectors that detect the particle strikes via detection

of current glitches, voltage glitches, metastability issues or deposited charge. A

Error Detection using Acoustic Wave Detectors 80

detailed discussion of other existing techniques for error detection is given in Chap-

ter 7. We will compare all the particle strike detectors for the parameters discussed

in Section 3.2 against acoustic wave detectors that detect particle strikes by detec-

tion of the sound they generate upon impact on silicon surface. A brief summary

is also given in the form of Table 3.1.

3.7.1 Current Glitch Detectors

3.7.1.1 Built-In Current Sensors (BICS)

Figure 3.21: Built-in current sensor (BICS)

Built-in current sensors (BICSs) detect particle strikes by sensing abnormal current

dissipation in the memory cells. BICS is a high-speed current-mode comparator

which detects transient current pulses and provides logic level output to set the

asynchronous latch. A BICS is composed of two current comparators and an

asynchronous latch as shown in Figure 3.21. The fundamental operation of the

BICS is based on the current controlled current switches. The two comparators

generate logical output pulses which set an asynchronous error latch. They are

placed between the memory cells and the power lines as shown in Figure 3.21,

where one BICS is used for entire memory column [206].

Error Detection using Acoustic Wave Detectors 81

3.7.1.2 Switching Current Detector

Figure 3.22: Switching current detector

This technique detects soft errors in SRAM memories [207]. Any bit flip due to

soft error results in a transient switching current. It detects any soft error by

monitoring the supply current of SRAM in the standby mode. A current pulse

sensing circuit is shown in Figure 3.22. It uses a current mirror circuit to convert

a fast current pulse into a transient voltage pulse. Finally, by using a Schmitt

trigger it is possible to sense this transient voltage pulse and generate an error

signal.

3.7.2 Voltage Glitch Detectors

These detectors monitor the supply rail disturbance caused by a particle strike [134].

A hierarchical soft error detection circuitry which monitors the ground voltage to

detect the pulses as a result of particle strike-induced switching is shown in Fig-

ure 3.23. The detection circuitry has two levels of voltage comparators (differential

amplifier). The first level compares the ground voltages of the functional blocks,

while the second comparator amplifies the error signal. In the design, only the

ground voltage is monitored to detect error. A single NMOS is connected between

the ground bus line and ground terminal of the functional block. The addition of

this transistor helps to separate the ground bus from the functional block ground

terminal, thus creating a virtual ground (GND’) at the ground terminal of the

functional block.

Error Detection using Acoustic Wave Detectors 82

Figure 3.23: Voltage glitch detector

3.7.3 Metastability Detectors

Figure 3.24: Metastability detector (BISS)

Unlike BICS, a Built-in single-event upset sensor (BISS), implements a metastabil-

ity monitor circuit to detect particle strikes. BISS detects the setup and hold time

violations in flip-flops that occur due to several reasons (i.e., clock skew, particle

strikes etc.) [133]. Designers can insert the BISS to detect SEUs at the output of

a flip-flop.

As shown in Figure 3.24, it has three major components: (i) a positive pulse

generator, (ii) a footed dynamic inverter and (iii) a keeper latch. The positive

Error Detection using Acoustic Wave Detectors 83

pulse generator transforms SEU-induced positive/negative pulse to positive pulse.

The footed dynamic inverter is used to widen the pulse generated by the positive

pulse generator, so that it can be easily detected.

3.7.4 Deposited Charge Detectors

3.7.4.1 Thin film silicon detectors

These silicon detectors are constructed as thin planner p-on-n diodes. This planner

diode covers the entire target processor to detect any particle strikes. In principle,

a silicon detector is a solid state ionization chamber [209, 210]. They detect particle

strikes based on the changes in the depletion region of the p-n junction diodes due

to ionization.

Most popular ones are listed below:

• Silicon strip detector (SSD) detects collected charge

• Active pixel sensors (APS) detects collected charge

• Scintillator coupled silicon photodiodes: detects flash of light

3.7.4.2 Heavy-ion Sensing

Heavy-ions deposit a huge amount of charge upon impact on the silicon surface.

Heavy-ion sensors detect the particle strikes by detecting the deposited charge.

The work of [212] proposes to use the DRAM memory cell to collect the charge

upon a heavy-ion strike. When the storage node is discharged to a second voltage,

a sense amplifier coupled to the storage node generates an output signal indicating

that an SEU event has occurred. Also by tweaking the reference voltage to the

sense amplifier the DRAM arrays can be tuned to detect heavy-ion particles with

different energies.

3.7.5 Comparison of Detectors

In this section, we compare all the particle strike detectors for the parameters

described in Section 3.2.

Error Detection using Acoustic Wave Detectors 84

3.7.5.1 Hardware cost/Area overhead

We present the area overhead in terms of extra transistors required to protect one

memory column consisting 128 6T-SRAM cells.

As it can be seen in Figure 3.21, one BICS consists of 27-35 transistors [206]. On

top of that, it incurs extra area penalty in terms of added transistors that are

required to monitor memory columns concurrently to filter the noise due to the

read/write operations [206]. The switching current detector circuit of Figure 3.22

uses 12 transistors [207].

The voltage glitch detector circuit of Figure 3.23 consists of two levels of voltage

comparators. Every column needs one level-1 comparator. Level-2 comparators

take as input all the outputs of level-1 comparators to produce an error signal.

For a single column design one such comparator consisting 12 transistors is re-

quired [134]. Depending on the size of the protected unit and the switching activity

the number of comparators required in the first level increases.

At least one BISS (with 21 transistors) is required to protect one SRAM col-

umn [133]. To reduce the area overhead at the cost of error coverage, selective

BISS insertion is possible [133]. Area overhead is proportional to the number of

BISS inserted at the output of the flip flops.

One acoustic wave detector can detect a particle strike in a circular area of 78.5

mm2 [135]. This means that one detector (i.e., area overhead of 1 6T-SRAM cell)

can detect particle strike anywhere on the area of a last-level cache (LLC) of a

state of the art processor.

SSD are the most common structures used as silicon detectors, and have typical

dimensions in the range of 25 um-200 um. Pads and (APS) are emerging trends

in silicon detectors. A silicon PIN diode is basically used as detector pad or pixel.

Typical pad sizes are 200x200 mm2. Pixels are typically of 50x50 um2 to 200x200

um2 [209, 210]. At least one such pixel is required for particle strike detection in

the given memory column.

For heavy-ion detectors, a separate column of the 128 DRAM cells is occupied to

detect an SEU event. The detector assembly also includes a set of word decoders, a

set of sense amplifiers and a bit decoder for multiplexing the set of sense amplifiers.

Along with this, a controller to adjust refresh intervals, a pre-charged ballast

Error Detection using Acoustic Wave Detectors 85

capacitor to store charges and a reference voltage generator of the sense amplifier

is required to change the sensitivity of the detection [212].

It is important to note that the current/voltage glitch detectors and metastability

detectors will have a detection granularity at the column level. To exactly pin-

point the location of error they will have to be combined with error detection

codes (i.e. parity) [133, 134, 206, 207]. A single parity bit per memory word is

used along with one of the detectors for every memory column. The area cost of

the parity checker/generator providing parity bit per word is significant.

The area overhead of acoustic wave detectors is very less compared to other par-

ticle strike detectors. Moreover, their accuracy can be improved by deploying

more detectors to pin-point errors at word/byte level. Even after deploying more

acoustic wave detectors they significantly reduce the area overhead compared to

ECC [135]. Silicon detectors [209, 210] and heavy-ion detectors are effective but

incur >100% area overhead.

3.7.5.2 Power overhead and detection latency

Particle strike detector that is faster and consumes minimum power is desirable.

Worst case power dissipation of one BICS varies from 4.43 to 24.95 uW for 100

nm technology [206]. And, the worst case detection latency ranges from 650 ps-

1.1 ns [206]. Inserting the BICS may increase the resistance of the critical path

and hence degrades the read-write speed of the memory severely reducing the

performance. The leakage power for a The switching current detector is 12.9uw-

18.9uW [207]. And the detection latency is in the range of 0.92 ns-1.14 ns. In the

low power mode it is even slower and in the range of 2.41 ns-3.0 ns.

The voltage glitch detector [134] consumes less power compared to current glitch

detector and per unit power overhead is in the range of 0.8 uW to 5 uW. However,

this power savings makes it slower and its detection latency varies from 220 ps-1.4

ns.

In the case of BISS the power overhead is more than 10 uW due to increased

number of transistors. To reduce the power overhead, only a selective flip flops

are covered using BISS [133]. Detection latency is in a range of 1.5 ns-2 ns.

The acoustic wave detectors are passive and do not consume power. Power over-

head of the controller circuit is insignificant [135]. The detection latency for the

Error Detection using Acoustic Wave Detectors 86

particle strike occurring anywhere on the LLC is around 30-100 cycles (1200-161

detectors) and can be further reduced by putting more detectors [135].

Silicon detectors typically operate between 10 Volts and 100 Volts [209, 210]. The

power consumption depends on the resistivity of the material used and it normally

consumes >10 Watts. The detection latency of a silicon detector alone is around

25 ns. The delay added by the pre-amplifier and other controlling mechanism will

further increase the overall detection latency [209, 210].

Heavy-ion detector uses flexible supply voltages and consume a few mW of power.

The detection latency is similar to the memory access time.

3.7.5.3 False alarms

BICS, switching current detector and BISS are susceptible to noise. Common

sources of noise are power supply lines, higher switching activities and miss-match

in the inputs of the dynamic logic gates. Presence of noise increases the chances

of false positives. The voltage glitch detector, receives the fluctuations in the

voltage due to transient switching noise from the protected block as well as due to

the particle strikes. The comparator filters switching noises and amplifies spikes

generated by SEU. Tuning the threshold of the comparator is very difficult and if

not set properly, the chances of false alarms increase. In the work of [134], while

protecting memory, 27% and 7% false positives are reported for 1 7→ 0 flips and

for 0 7→ 1 flip respectively.

The acoustic wave detectors are fairly accurate and can be calibrated to detect all

particle strikes in the targeted energy spectrum for the given technology. Further-

more, some studies [17, 117, 142] support that the rate of particle strikes (with

recoil energy > 10 MeV) is not very high. The false positive rate is practically

zero, or in the worst case scenario it is one false positive per 1.3 minutes [135].

The presence of noise in the high voltage supply lines for silicon detectors increases

the possibility of false positives [209, 210]. For heavy-ion detectors, imperfect

calibration of any of the programmable parameters (i.e., VDD, refresh rate or

reference voltage to the sense amplifier) may result into unwanted noise due to

read/write operation and trigger false positives [212].

Error Detection using Acoustic Wave Detectors 87

3.7.5.4 Detected particles/Fault types

Alpha and neutron particle strikes induce soft errors are more frequent [17, 117].

Current and voltage glitch detectors, BISS and acoustic wave detectors can detect

particle strikes due to alpha and neutron particles. Silicon detectors can detect

alpha and neutron strikes and other heavy elements with the energies in the range

of 10 to 100 MeV. Heavy-ion detectors are able to detect particle strikes only

due to heavy-ions such as proton, alpha or any other ions whose atom has been

stripped off its electrons.

3.7.5.5 Intrusiveness of the design

Insertion of particle strike detectors in the design can have significant implications.

Insertion of current glitch detectors involve splitting of the power lines of each

column into smaller parts. The voltage glitch detectors require generating a virtual

ground by partitioning the ground line. These modifications require changes in the

physical layouts and routing. Moreover, to reduce huge area overhead, selective

insertion is desirable for current/voltage glitch detectors and BISS. Identifying

the correct flip-flops for selective insertion of the detector is challenging and can

increase complexity.

The fabrication and placement of acoustic wave detectors on the surface of active

silicon can be performed without complications [135, 142]. The control circuit is

also simple and poses no major challenge to the RTL design or placement and

routing [135].

The assembly of the silicon detector is very complex especially to provide reliability

in processors. It consists of pre-amplifiers and might need to be pipelined requiring

a complex control circuit [209, 210]. Heavy-ion detectors of [212] proposes to use

part of the DRAM memory cell and pose no significant design challenge. However,

providing adjustable sensitivity to detecting particle strikes can have implications

in design cost.

Error Detection using Acoustic Wave Detectors 88

3.7.5.6 Fault coverage vs. Cost

BICS, voltage glitch detectors, BISS, acoustic wave detectors and silicon detectors

can detect particle strikes in both memory cells and combinational logic [133–

135, 206, 209, 210]. While switching current detector can detect particle strikes

only in SRAM memory cells [207]. Heavy-ion detectors can detect particle strikes

only in DRAM memories [212].

To understand the cost vs. coverage trade-off lets compute the cost of protection

for a level-one data cache of 32 KB with 512 columns and 512 rows. In the simplest

arrangement of one BICS per column, it requires 512 BICS. The switching current

detector of Figure 3.22 uses only 12 transistors per detector, and hence the area

and power overheads will be relatively less compared to BICS. However, as the

cache size increases the overhead increases exponentially. To protect a last level

cache (8 MB, 16 way, 8K sets, each way with 8192 columns, 512 rows) >1.3 million

BICS are required. If voltage glitch detector are used to provide the protection to

the last-level cache, the required number of level-1 detectors to protect all caches

would be >1.3 million and apart from that it will require 16 level-2 comparators.

Also the transistor sizes should be increase to drive larger portions of the circuit.

For combinational logic, even when selective insertion is used (only some latches

are protected), protecting a typical 4-bit multiplier with 504 transistors would

require 70 BICS. The BICS area overhead for protecting such a multiplier is

29% [206]. For the same multiplier design, the overhead of protecting using hier-

archical voltage detectors accounts for 18% of the area of the multiplier [134]. The

area overhead of inserting BISS in the design would be 20%-30%.

Because of their large error detection range, acoustic wave detectors and silicon

detectors can potentially guard the entire chip against particle strikes [135, 209].

Only 4 acoustic wave detectors are required, to provide detection capability in

an entire state of the art chipmulti processor with surface area of 245mm2 [135].

However, to accurately locate the strike, 30-40 detectors are required, and to

minimize the detection latency the required detectors are in the range of 450-500.

This means the total area overhead in protecting entire chip is equivalent to 540

6T SRAM cells. SSD can provide detection coverage to the entire core, chip or

system level. If APS are used to detect particle strikes on a chip, they are placed

in the form of an array. One such array with 9x9 pixels covers a surface area of

Error Detection using Acoustic Wave Detectors 89

1 cm2 over the target processor. This area overhead also includes the connectors

for the read out channels to deliver the signal to the outside world [209].

If the error rate in DRAM chips due to heavy-ions is a concern, the DRAMs chips

can be effectively protected using heavy-ion detectors [212]. Depending upon the

size of the DRAM, one or multiple arrays in the same or different DRAMs are

dedicated for particle strike detection.

Protecting larger designs using current/voltage glitch or metastability detectors

require more detectors. Adding more transistors will increase the power con-

sumption. Applying selective insertion on a full processor core can be extremely

challenging. Techniques such as AVF, or fault injection can be used to identify

the vulnerable latches and selectively protect them [117]. Moreover, protecting

the latches on the critical paths can severely degrade performance. Silicon detec-

tors are very effective and provide excellent coverage but they are not economical.

Acoustic wave detectors provide very high levels of reliability at very little area

and power overheads.

3.8 Chapter Summary

In this chapter, we saw how acoustic wave detectors are used for soft error detec-

tion. They detect particle strikes via detection of the shockwave of sound they

generate upon impact on the silicon surface. We first studied several particles

trike detectors that detect voltage/current glitches, metastability, sound or de-

posited charge to detect the soft errors. We compared all the detectors for various

parameters such as area, power, performance overheads.

We provided details regarding the structure and important properties of the can-

tilever based acoustic wave detectors. Due to its detection range it is possible

that just one detector can detect a potent particle strike (and hence soft error)

any where on the surface of a modern processor core or cache. Error detection

using acoustic wave detectors is extremely simple and incurs negligible overheads

compared to other detectors.

Once the error is detected, to provide error correction or recovery, the system

should be able to accurately locate the error. The architecture based on acoustic

wave detectors can be further exploited to precisely locate the particle strikes.

Error Detection using Acoustic Wave Detectors 90

We presented a firmware/hardware approach in which the hardware takes respon-

sibility for TDOA measurements and generating hyperbolic equations while the

firmware is responsible for solving the equations using several algorithms.

Lastly, we presented a case study which helps understanding various trade-offs be-

tween design parameters (e.g., sampling frequency, location of detectors etc.) and

the algorithmic properties (i.e., runtime, accuracy, complexity etc.). We concluded

that for the maximum accuracy and coverage Algorithm 4 is the best option.

In the next chapter, we will discusses how we can use the proposed error detection

and location scheme for protecting caches.

Chapter 4

Protecting Caches with Acoustic

Wave Detectors

In the previous chapter, we understood how we can detect and locate soft errors

via locating potent particle strikes. In doing so we observed how to construct the

hyperbolic equations based on TDOA measurements. We also identified the best

algorithm for accuracy by observing various trade-offs. Now we will proceed to

take advantage of this information by demonstrating the utility of the cantilever

detectors in detecting and locating particle strikes in the caches of a Core™i7-like
processor. Next, we will show how we can leverage the location information in cor-

recting the error using acoustic wave detectors alone. Finally, we will discuss how

we can combine the acoustic wave detectors with error detecting and correcting

codes and reduce the overall cost of protection.

4.1 Error Detection and Localization in Cache

The underlying architecture for detecting and locating errors in caches is similar to

described in previous Chapter 3. The impact of different design parameters on the

accuracy of the obtained location in caches is similar to the study of Section 3.4

of Chapter 3.

The location of the particle strike is given as estimated (X, Y) coordinates and the

worst-case error area (3*CEP) that contains the actual location of particle strike.

91

Protecting Caches with Acoustic Wave Detectors 92

However, this error area can be easily mapped to affected bits, bytes or cache lines

that may contain the erroneous byte or cache line.

Unaffected Region Estimated Location of Strike

Actual Location of Strike Error Area (3*CEP)

(a) (b)

(c)

Figure 4.1: Mapping of the estimated worst-case error area at the granularity
of affected (a) bits (b) bytes and (c) lines. These affected bits, bytes or cache

lines contain the actual erroneous bit, byte or cache line.

We show in Figure 4.1 how the error area maps into bits, bytes and cache lines.

From the discussions in Chapter 3, we know that accuracy of the location can be

improved either by increasing the sampling frequency or by solving more than 2

TDOA equations.

Cache
Mesh #Detectors #Detectors

Frequency
3*CEP Radius Error

Configuration in Mesh used for TDOA (#bits) Area (#bits)

L1 5× 5 25 25 4 GHz 1.5 7

L2 3× 3 9 9
2 GHz 2.9 26

4 GHz 1.7 10

LLC 5× 3 15 5
2 GHz 3.4 38

4 GHz 1.8 11

Table 4.1: Summary of the best mesh configurations and the error area gran-
ularities for the caches

Table 4.1 summarizes the estimated worst-case 3*CEP error area and the 3*CEP

radius for all the caches for the best configurations. The error area of L1 and L2

Protecting Caches with Acoustic Wave Detectors 93

caches are significantly smaller compared to the area of the LLC. Once the affected

bits or cache lines are identified it is possible to isolate the affected cache lines to

contain the error and take an appropriate error correcting action. We will discuss

about error correction in caches in Section 4.2.

We have learned from Section 3.6.5 of Chapter 3 adding more acoustic wave de-

tectors helps in reducing the error detection latency.

Cache
Mesh #Detectors Detection Latency

Configuration in Mesh Cycles @ 2 GHz

L1

3× 3 9 48

5× 5 25 29

12× 17 204 10

137× 150 20550 1

L2
3× 3 9 58

14× 21 294 10

147× 198 29106 1

LLC
5× 3 15 483

23× 7 161 100

200× 94 18800 10

Table 4.2: Summary of the mesh configurations for the caches and corre-
sponding worst case detection latency cycles for a sampling frequency of 2 GHz.
Marked configurations are used only for locating errors and extra detectors are

added to reduce the detection latencies.

Table 4.2 gives a summary of the detection latency for each cache for different mesh

configurations. Shaded configurations are the configurations used only for locating

errors. We put extra detectors to reduce the detection latency in a separate mesh.

Notice that, although the L1 and L2 caches use the same mesh configurations the

detection latencies are different due to their different sizes.

4.2 Providing Error Correction in Caches

In this section, we describe how the error detection and localization architecture

would interact with the normal operation of a processor and which are the most

Protecting Caches with Acoustic Wave Detectors 94

important challenges for achieving high levels of error protection and error contain-

ment. Later, we will consider the case when the caches are protected only with

acoustic wave detectors, and the more reasonable case when they are deployed

with protection codes.

4.2.1 Reaction upon a Particle Strike

Once we know the estimate of the localization of the particle strike and the error

area, it is time to take the appropriate actions to provide, when possible, fine-grain

error correction. The challenges are:

1. We need to provide error containment. For instance, if a read to a cache line

or eviction of a dirty cache line happens before the error is detected (i.e., the

worst-case 100 cycles detection latency in the case of LLC) the error may

propagate through the architectural state and cause SDC.

2. We need to provide recovery capabilities. If we can accurately pin-point the

erroneous bit then one possible way to correct it is by flipping it. By recov-

ering from the error it is possible to reduce DUE FIT of cache. Whenever

it is not possible to pin-point the erroneous bit and the particle strike has

occurred on a dirty cache line it is not possible to recover the error using the

detectors alone.

With faster error detection and proper error containment using acoustic wave

detectors it is possible to avoid SDC but we also want to provide error correction

to reduce the DUE.

4.2.2 Standalone Acoustic Wave Detectors

We discuss the application of acoustic wave detectors for error recovery in caches

considering these two scenarios: (i) when the error area granularity is spread over

a few cache lines which is more general case and (ii) specific case where we will

try to pinpoint the exact erroneous bit.

Protecting Caches with Acoustic Wave Detectors 95

4.2.2.1 Error Area Granularity: Cache Lines

As discussed in Section 4.1, once the particle strike has been localized the error

area would be spanned on several cache-lines. For example, in LLC the worst-

case the error area spans over 7 cache lines. This means that we would have 7

potential cache lines where the particle could have hit. Employing 4 GHz sampling

frequency for LLC reduces the error area granularity to 4 lines from 7 lines (shown

in Table 4.1). Once we have the affected lines, we propose to invalidate the cache

lines within the error area provided by the localization algorithm. If any of the

cache lines is dirty, no recovery would be possible and we would need to throw

a machine check architecture (MCA) exception. Techniques such as early write

back may help in providing recovery by minimizing the number of dirty cache

lines [243].

4.2.2.2 Error Area Granularity: Exact bit

From the discussions in Chapter 3, we know that accuracy of the location can be

improved by either increasing the sampling frequency or by solving more than 2

TDOA equations. We are now interested in finding out for how many strikes out

of 1048, it is possible to have the 3*CEP error area at the granularity of one bit.

Once the erroneous bit has been located we can correct the erroneous bit is by

flipping it.

The area of L1 data cache is 1 mm2 and the detection range of one detectors is 5

mm. Hence, for L1 data cache, in a mesh with N detectors all N detectors trigger

upon a particle strike. Therefore, we can built N − 1 TDOA equations. We tried

different mesh configurations starting from the most basic overdetermined system

(3 TDOA equations) with 4 detectors in 2×2 mesh upto 99 TDOA equations (i.e.

100 detectors in a 10× 10 mesh).

Figure 4.2, shows the best choices for the given number of TDOA equations that

we solve, out of all the mesh configurations that can be used to construct those

many TDOA equations. It summarizes the break-down and the improvement

in the precision for the obtained 3*CEP error area. We collect the information

regarding how many times out of 1048, we can locate the actual strikes within the

area granularity of 1 bit. Figure 4.2 indicates that by increasing number of TDOA

equations in solving the localization algorithm we significantly improve percentage

Protecting Caches with Acoustic Wave Detectors 96

0

10

20

30

40

50

60

70

80

90

100

[2
x

2
,3

]

[2
x

3
,4

]

[2
x

3
,5

]

[3
x

5
,6

]

[4
x

4
,7

]

[3
x

3
,8

]

[5
x

5
,9

]

[3
x

5
,1

0
]

[4
x

4
,1

1
]

[4
x

4
,1

2
]

[4
x

4
,1

3
]

[5
x

5
,1

4
]

[5
x

5
,1

5
]

[5
x

5
,1

6
]

[5
x

5
,1

7
]

[5
x

5
,1

8
]

[5
x

5
,1

9
]

[5
x

5
,2

4
]

[5
x

6
,2

9
]

[5
x

8
,3

9
]

[5
x

1
0

,4
9

]

[6
x

1
0

,5
9

]

[7
x

1
0

,6
9

]

[8
x

1
0

,7
9

]

[9
x

1
0

,8
9

]

[1
0

x
1

0
,9

9
]

%
 o

f
S

tr
ik

e
s

Configurations [Mesh, Equations]

>=10 bits 6 to 9 bits 2 to 5 bits 1 bit

Figure 4.2: Breakdown of the obtained worst-case error area granularity for
1048 particle strikes at random location and instance for different mesh config-

urations in L1 data cache at the sampling frequency of 4 GHz

of 1 bit error area granularity at sampling frequency of 4 GHz. For example, in the

case of solving 10 TDOA equations, out of 1048 strikes 50% of the strikes result

in estimated area of ≤1 bit. Hence,we improve the DUE by 50%. It is noteworthy

that for 50% DUE improvement with 10 equations, we will need a 3×5 mesh with

15 detectors.

As we keep solving more TDOA equations, the improvement curve soon starts

to saturate. Using more detectors increases the over all cost and complexity in

solving the TDOA equations. Observing the cost of solution in terms of number

of detectors against the error area granularity improvement achieved, we conclude

that the best trade-off for L1 data cache is obtained by configuring a 5× 5 mesh

with 25 detectors and solving for 24 TDOA equations with sampling frequency of

4 GHz. This configuration can pin point the exact erroneous bit 71.85% of the

times. It also implies that out of 1048 strikes, 71.85% of the times we can correct

the erroneous bit by flipping it. And whenever this is not possible, to prevent the

corruption of the architectural state, the solution takes advantages of the error

Protecting Caches with Acoustic Wave Detectors 97

codes already deployed for error detection of hard errors (will be discussed in

Section 4.3.2).

Whether it is possible to locate the error at the granularity of several cache lines

or a single bit, providing error containment is somewhat more involved using only

acoustic wave detectors mainly because of their higher error detection latencies.

The error detection latency is summarized in Table 4.2 in Section 4.1. In the

case of LLC, detectors would trigger 100 cycles after the particle has hit the LLC.

This means that any data (assuming the cache does not have error codes) leaving

the LLC may have a bit flip. For cache lines being evicted, this can be easily

solved using a victim buffer that delays write to main memory for 100 cycles. On

the other hand, data being served to the processor would reach the head of the

reorder buffer much earlier than those 100 cycles. A good option to contain the

error would be stalling the commit of the load instruction (with its corresponding

impact on performance) or enabling checkpointing mechanisms (will be discussed

in detail in Chapter 5). Next, we will explore the possibility of combining error

codes with acoustic wave detectors.

4.3 Acoustic Wave Detectors with Error Codes

In this section we present the possibility of combining error codes with acoustic

wave detectors. Similar to the previous section we will consider two cases: (i)

when it is not possible to pinpoint the exact erroneous bit and (ii) the case where

we can pinpoint the exact erroneous bit.

4.3.1 Error Area Granularity: Cache Lines

For the case when the obtained error area spans over few cache lines, the baseline

implementation is the same as explained in the previous section: once the error is

localized, we would go line by line within the error area provided by the localization

algorithm and clear them. Unlike the previous case, now we have the option

of using the error detecting and correcting codes along with the acoustic wave

detectors. If the code offers the correction, we would correct the error (the benefits

would be similar to those of cache scrubbing [92, 93]). If code only offers detection,

we would still need to invalidate the affected cache line.

Protecting Caches with Acoustic Wave Detectors 98

Combining detectors with error codes offers two other benefits: (i) error codes

allow us to contain the error when the cache line is evicted or read before the

detectors trigger, and (ii) they allow us to identify if an error is caused by a hard

fault or particle strike. If a cache line is read or evicted and the code triggers, we

will wait up to the error detection latency cycles (i.e., 100 cycles in the case of

LLC). If the error is caused by a particle strike, a detector will trigger. Otherwise,

it is a hard fault. In either case, correction will be provided by the code when

possible.

Columns Error Codes+Detectors in Table 4.3 summarize the error detection, cor-

rection and containment capabilities of the combined approach. As one can see,

using Error Codes+Detectors we can detect all particle strikes, since detectors

trigger timely and therefore, latent particle strikes do not accumulate. In general,

error containment is achieved when the number of hard faults in the cache line is

strictly less than the error code detection capability (1 for double error detection,

2 for triple error detection). Error correction (of dirty lines) is achieved when the

number of hard faults in the cache line is strictly less than the error code correction

capability (0 for single error correction, 1 for double error correction).

Columns Error Codes in Table 4.3 show the error detection, correction and con-

tainment of the codes without the acoustic wave detectors. If we compare both

approaches (left and right of the table), one can see that the approach of Er-

ror Codes+Detectors is able to detect all temporal particle strikes that cause

bit upsets (i.e., with recoil energy ≥ 10MeV), whereas in the case of only Er-

ror Codes the detection is limited by their detection capability. Moreover, Error

Codes+Detectors provides better error containment. Interestingly, in a scenario

where there is presence of 1 hard fault, SEC-DED codes with detectors provide

the same detection level as DEC-TED, at a much cheaper cost in area and latency

(see light shadowed cells).

Usually, designers use error detection and correction codes to provide detection as

well as correction (i.e., SEC-DED). L2 and L3 caches are often protected by error

detection and correction codes (i.e., SEC-DED) [64, 244–246]. SEC-DED codes are

less attractive for L1 caches because they take a long time to decode [46, 119, 247–

249] and may add some extra cycles to executing the load instruction in high-speed

microprocessors.

Protecting Caches with Acoustic Wave Detectors 99

Error Codes Error Codes+Detectors
Code

HFaults SER C D CT SER C D CT

Odd % ! ! Odd % ! !

0
Even % % % Even % ! %

Parity
Odd % % % Odd % ! %

1
Even % ! ! Even % ! !

1 ! ! ! 1 ! ! !

0 2 % ! ! 2 % ! !

≥ 3 % % % ≥ 3 % ! !

SECDED
1 % ! ! 1 % ! !

1 2 % % % 2 % ! !

≥ 3 % % % ≥ 3 % ! !

1 . . . 2 ! ! ! 1 . . . 2 ! ! !

0 3 % ! ! 3 % ! !

≥ 4 % % % ≥ 4 % ! !

1 ! ! ! 1 ! ! !

DECTED 1 2 % ! ! 2 % ! !

≥ 3 % % % ≥ 3 % ! !

1 % ! ! 1 % ! !

2 2 % % % 2 % ! !

≥ 3 % % % ≥ 3 % ! !

Table 4.3: Comparison of protection capabilities of having only error codes
versus error codes with acoustic wave detectors. HFaults stands for number of
hard faults, SER number of soft errors, D for detection, C for correction, CT

for containment

Protecting Caches with Acoustic Wave Detectors 100

L1 caches are usually protected only with parity codes. Parity codes can be im-

plemented at byte level [250] at word level [251] or at cache block level [64]. Due

to incapability of correcting errors using parity, parity protected write-back cache

is the largest contributor towards the total DUE-FIT of the processor due to soft

errors. This forces designers to provide error correction in L1 cache. However, to

have correction capability, each byte should be protected with ECC. Implementing

ECC for every byte is complex and expensive. Hence, instead of providing ECC

for each byte in a cache block, to reduce the cost of protection designers opt to

protect cache block with ECC. But caches closer to the core have a lot of partial

write operations. Having ECC at cache block level will result into an increase in

read-modifies-writes operations. This incurs huge performance and energy penalty.

Without any error correction mechanism handling DUE-FIT of L1 cache is a big

challenge. Moreover, processors can experience a superlinear increase in DUE-FIT

when the size of the write-back cache is doubled [93]. By combining acoustic wave

detectors with parity codes it is possible to handle the DUE problem in L1 cache.

4.3.2 Error Area Granularity: Exact bit

To provide error correction, the system should be able to accurately locate the

error. To reduce the DUE-FIT, the architecture should be able to recover from

all the errors that are detected. This can be done by exploiting the localization

accuracy of acoustic wave detectors to detect and correct the errors. As discussed

in Section 4.2 using only 25 detectors it is possible to pinpoint and correct the

error in L1 cache for 71.85% of the times. By correcting the erroneous bit we can

improve the DUE-FIT rate of L1 cache by 71.85%.

If an L1 data cache is protected with only acoustic wave detectors in 5× 5 mesh,

71.85% of the times we can exactly locate the upset bit, we call this P1bitAWD
. A

further quantification of error area obtained by 5× 5 mesh is shown in Figure 4.3.

It reveals that for 14.59%, 7.53%, 2.88% and 1.33% of the times we can locate the

error at the granularity of 2 bits, 3 bits, 4 bits and 5 bits respectively. We call

them P2bitAWD
, P3bitAWD

, P4bitAWD
and P5bitAWD

respectively.

DUE(AWD) = P1bitAWD
= 71.85% (4.1)

Protecting Caches with Acoustic Wave Detectors 101

1bit, 71.85%

2 bits, 14.59%

3 bits, 7.53%

4 bits, 2.88%

5 bits, 1.33% >= 6 bits, 1.82%

Distribution of Estimated Error Area in Bits (for 5x5 mesh)

Figure 4.3: Quantification of error area granularity for 5×5 mesh for L1 data
cache

By using only acoustic wave detectors in L1 data cache we can improve the DUE

by 71.85% as shown in Equation 4.1.

Interestingly, we noted that the granularities of error area (i.e. circular area with

CEP radius) obtained by acoustic wave detectors are mapped to bits in specific

patterns as shown in Figure 4.4. The circle in the Figures 4.4(a-e) show the esti-

mated error area obtained by localization algorithm. The bits that are overlapped

or intersected by this circle are also shown in Figure 4.4. For single bit upsets,

one of the bits covered by this circular area is erroneous. Using this mapping, we

show all the possible error area patterns (not to be confused with multi-bit upset

patterns) for bit granularities of 2 to 5 bits in Figure 4.5.

Because of this characteristic, we can further improve the DUE if we can exactly

isolate the erroneous bit out of the error area granularities of 2-5 bits by combining

acoustic wave detectors with error codes. To detect hard errors already parity codes

can be deployed for each block or for every byte in a block. Now we will see how

we can take advantage of combining acoustic wave detectors with parity codes.

Protecting Caches with Acoustic Wave Detectors 102
�

�

�

�

�

�

�

�

�

�

�

�

�

��� ��� ���

���

���

Figure 4.4: 3*CEP error area mapping to bits to bits of the L1 cache: (a)
1-bit, (b) 2-bits, (c) 3-bits (d) 4-bits and (e) 5-bits

�

�

�

�

�

�

�

�

�

�

�

�

�

��� ��� ���

���

Figure 4.5: Possibilities of 3*CEP error area granularity patterns : (a) 2-bits,
(b) 3-bits, (c) 4-bits and (d) 5-bits

4.3.2.1 Acoustic Wave Detectors + Parity per Block

Let’s assume that each cache block is protected by parity bits. Figures 4.6(a-e)

show the error area granularity from 2-5 bits obtained by acoustic wave detectors.

Protecting Caches with Acoustic Wave Detectors 103

In the case of 2-bit patterns, we assume that 2-bit patterns shown in Fig-

ure 4.5(a) are equiprobable (i.e. probability of having each of them is 50%). If both

the bits are located in the same cache block as shown in case 1 of Figure 4.6(a),

we will not be able to locate the exact bit. However, if the 2 bits are located as

shown in case 2 of Figure 4.6(a) we will be able to locate the exact bit that was

upset. This means that out of 2 cases involving 2-bit error area granularity we

can always detect the patterns, that are similar to case 2. Parity per block can

improve the 2-bit contribution towards DUE by further 50%× P2bitAWD
.

�

�

�

�

�

�

�

�

�

�

���
�����	

�����	�

���	
 ���	� ���	� ���	�

���
�����	

�����	�

�����	

�����	�
���

���	
 ���	�

�������

�������	
�

�������

����� ����� ����� ����� �����

�������

�������	��

�������

����� ����� ����� �����

��������

Figure 4.6: Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per block for 3*CEP error area granularity patterns of (a)

2-bit, (b) 3-bit, (c) 4-bit and (d,e) 5-bit

Likewise, in the case of 3-bit patterns all the 3 bits are located in two different

blocks as shown in all the cases of Figure 4.6(b). We will be able to locate the

error only when the erroneous bit is the only bit lying in a different cache block

out of the 3 bits of error area.

Protecting Caches with Acoustic Wave Detectors 104

Again we consider all the 4 cases shown in Figure 4.5(b) are equiprobable(i.e.

probability of having each case is 25%). Furthermore, we can detect the exact

location of the error only when the error is in specific 1 bit out of 3 bits in each

case. This means that we can improve DUE for each case of Figure 4.6(b) by

(1/3)×25%. This yields an overall improvement for the 3-bit contribution towards

DUE by 34%× P3bitAWD
.

In the case of 4-bit pattern as shown in Figure 4.6(c) it is not possible to locate

the exact erroneous bit.

Figures 4.6(d) and (e) show the 5-bit patterns. Here also we consider that all

the patterns shown in Figure 4.5(d) are equiprobable. Hence, each can occur with

a probability of 11.12%.

Similar calculation in the case of 5-bit pattern, shows that for the case 1 of Fig-

ure 4.6(d) when the strike is either in the bit that is in block 1 or block 3, it is

possible to locate the exact error. This means we can correct the error if it is only

in either of the two bits out of the 5 possible bits. The probability of locating

exact error in case 1 of Figure 4.6(d) like patterns is (2/5)× 11.12%.

And as shown in other cases of Figure 4.6(d), it is possible to locate the exact

error only when the erroneous bit is in a different block and it is the only bit of

the 5 bits. This means we can correct the error if it is in only one specific bit out

of the 5 possible bits. The probability of locating exact error bit in case 2, 3, 4

and 5 of Figure 4.6(d) is (1/5) × 11.12% each. As they are all equiprobable the

improvement is (4/5)× 11.12%.

Also in the occurrence of patterns shown in all the cases of Figure 4.6(e) it is not

possible to locate the exact bit that was upset. As each block contains two or

more bits that can be erroneous.

Putting it all together, for 5-bit pattern, parity per block on top of acoustic wave

detectors can increase the DUE improvement by (2/5)× 11.12%+ (4/5)× 11.12%

giving overall DUE improvement of 14%× P5bitAWD
.

DUE(AWD+Parityblock) =P1bitAWD
+ 50%× P2bitAWD

+

34%× P3bitAWD
+

14%× P5bitAWD

=81.89%

(4.2)

Protecting Caches with Acoustic Wave Detectors 105

�

������

������

�	

������

������

	����
	����

������

������

��

������

������

������

������

�	

������

������

	����
	����

������

������

��

������

������

	����
	����

������

������

��

������

������

	���� 	����

������

������

��

������

������

	����
	����

������

������

�	

������

������

�����
�����

������

������

�	

������

������

�����

������

������
������

������

������

��

������

������

�����

������

������
������

������

������

��

������

������

�����

������

������ ������

������

������

�	

������

������

�����

������

������ ������

������

������

��

������

������

�����

������

������ ������

������

������

��

������

������

�����

������

������
������

������

������

Figure 4.7: Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per byte for 3*CEP error area granularity patterns of (a,b)

2-bit, (c-f) 3-bit, (g) 4-bit and (h-m) 5-bit

Hence, deploying parity per block + acoustic wave detectors in L1 data cache will

improve the DUE by 81.89% as calculated in Equation 4.2.

4.3.2.2 Acoustic Wave Detectors + Parity per Byte

Now, we will see the case when each byte in a cache block is protected by parity

bits along with acoustic wave detectors. A cache block in L1 data cache of a

Core™i7-like processor has 64 Bytes. Figures 4.7(a-m) show all the possible cases

for locating the erroneous bit for 2-bit, 3-bit, 4-bit patterns and 5-bit patterns.

As it is obvious that if all the estimated error bits are in the same byte, we will

not be able to locate the exact bit with upset. But if the bits are in different bytes

it is possible to locate the exact erroneous bit.

All 2-bit patterns are shown in Figures 4.7(a) and (b). For the patterns as in

the case 1 of Figure 4.7(a), as both the error area bits are in the same byte we

cannot locate the upset bit. But for the patterns similar to case 2 of Figure 4.7(a)

Protecting Caches with Acoustic Wave Detectors 106

or patterns similar to Figure 4.7(b) both the bits are into two different bytes and

as we have parity at byte level, we can exactly pin-point the upset bit out of the

two bit error area.

For a 64 byte block the probability of having 2-bit pairs, in which both bits are

in different bytes as shown in case 2 of Figure 4.7(a) is 12.3% (i.e. 63 pairs out of

511 total possible combinations). Which also yields probability of having patterns

like case 1 of Figure 4.7(a) to 87.7%. We know that the 2-bit patterns shown

in Figure 4.5(a) are equiprobable (i.e., each of them have probability of 50%).

This concludes that the probabilities of having patterns like case 1 and case 2 of

Figure 4.7(a) are 43.85% and 6.15% respectively and the probability of having

patterns similar to Figure 4.7(b) is 50%. This implies that 56.15% of the times we

can exactly pin-point the upset bit for 2-bit error area granularity. Hence, parity

per byte helps improving the 2-bit DUE rate by 56.15%× P2bitAWD
.

Figures 4.7(c-f) show the 3-bit patterns. For each 3-bit pattern there are two

possibilities, either these 3 bits are spread over 2 different bytes (i.e., case 1 of

Figure 4.7(c)) or all the 3 bits are in 3 different bytes (i.e., case 2 of Figure 4.7(c)).

Probability of having patterns similar to case 1 and case 2 of Figure 4.7(c) is 87.7%

and 12.3% respectively. Moreover, all the 4 possibilities of 3-bit granularities,

shown in Figure 4.5(b) are equiprobable each with the probability of 25%.

For patterns similar to case 1 of Figure 4.7(c) we will be able to locate the ex-

act upset bit if the upset is in the one bit that is in a different byte from the

other two. This means that we can improve DUE for case 1 of Figure 4.7(c) by

(1/3) × (87.7%) × 25%. However, We can exactly pin-point the erroneous bit

in the patterns similar to case 2 of Figure 4.7(c) and this can improve DUE by

(12.3%)× 25%. Summing it up for all 4 possibilities shown in Figures 4.7(c-f) we

conclude, parity per byte helps improving the 3-bit DUE rate by 41.5%×P3bitAWD
.

For 4-bit pattern, as can be seen in Figure 4.7(g) there are two possibilities. If

the pattern bits are spread as shown in the case 2 over 4 different bytes in 2 rows

it is possible to correct the upset. Or if they are spread as shown in the case 1 it

is not possible to find the upset bit with the help of parity per byte. Parity per

byte helps improving the 4-bit DUE rate by 12.3%× P4bitAWD
.

Similar observation for 5-bit patterns of Figures 4.7(h-m) reveal that for 5-bit

patterns shown in Figure 4.7(h) we can locate the upset for case 1 only in only 2

bits out of 5 and the probability of having 3 bits in the same byte in a 64 byte

Protecting Caches with Acoustic Wave Detectors 107

block is 75.3% (i.e., 384 out of 510 total combination of triplets in a block). This

results into the probability to locate the upset for case 1 as (2/5)×(75.3%) and for

case 2 as we can locate 3 bits out of 5, the probability is (3/5)×(24.7%). Again all

the 9 possibilities of 5-bit granularities as shown in Figure 4.5(d) are equiprobable

each with the probability of 11.12%. This yields the joint probability for 5-bit

patterns shown in case 1 and case 2 of Figure 4.7(h) as ((2/5)× (75.3%)+ (3/5)×
(24.7%))× 11.12%.

Similarly, we can correct all the upsets in all case 2 like patterns of Figures 4.7(i-

l), but we can correct only 1 upset out of 5 possible locations in all possibilities

similar to case 1 like patterns in Figures 4.7(i-l). This results into a probability of

(4× (12.3%) + (4/5)× (87.7%))× 11.12%. Also for Figure 4.7(m) the probability

of locating the upset is ((4/5)× (24.7%))× 11.12%. Parity per byte improves the

5-bit DUE rate by 20.5%× P5bitAWD
.

DUE(AWD+Paritybyte) =P1bitAWD
+ 56.15%× P2bitAWD

+

41.5%× P3bitAWD
+

12.3%× P4bitAWD
+

20.5%× P5bitAWD

=83.8%

(4.3)

Summing up, Parity per byte + acoustic wave detectors for L1 data cache will

result into 83.8% improvement in DUE as shown in Equation 4.3.

4.3.2.3 Acoustic Wave Detectors with Physical Interleaving

Block 1

Block 1

Interleaved

P1

P2

P3

P4

Figure 4.8: Probability of pin-pointing the erroneous bit using acoustic wave
detectors + parity per byte and assuming the bits are physically interleaved

with degree of interleaving: 4

Protecting Caches with Acoustic Wave Detectors 108

Now, consider the L1 cache bits are parity protected and physically interleaved.

Usually the degree of interleaving (DOI) of parity protected bits of L1 data cache

is in the range of 4 to 16 [87, 248]. Let’s assume, every byte of an L1 data cache

protected with bit interleaved parity and the DOI is 4 along with acoustic wave

detectors as shown in Figure 4.8. This combination will make sure that all the

bits in all the patterns of Figure 4.5 are associated with a different parity code.

This implies that with DOI of 4 it is possible to exactly locate the upset bit in 2-5

bit error area patterns of Figure 4.5.

Combining physical bit interleaving with DOI = 4 and acoustic wave detector will

improve the DUE to 98.18%.

71.85% 81.89% 83.8% 98.18%

0

10

20

30

40

50

60

70

80

90

100

Only Detectors Detectors +

(Parity/Block)

Detectors +

(Parity/Byte)

Detectors +

Interleaved parity

(DOI >=4 bits)

%
 o

f
D

U
E

 i
m

p
ro

v
e

m
e

n
t

Error Detection Scheme

>= 6 bits 5 bits 4 bits 3 bits 2 bits 1bit

Figure 4.9: Probability of pin-pointing the erroneous bit and correcting it
(i.e., DUE improvement) using acoustic wave detectors and combining acoustic
wave detectors with parity at byte and block level and assuming physically

interleaved parity protected bits in L1 data cache

Figure 4.9 sums up the improvement in the DUE achieved by using only acoustic

wave detectors, and combining acoustic wave detectors with parity per block and

parity per byte scheme. It also shows the improvement in DUE by combining

interleaving of parity protected bits with acoustic wave detectors.

Protecting Caches with Acoustic Wave Detectors 109

4.4 Handling Multi-bit Upsets in Caches

A single neutron strike can upset more than one bits of memory in close proximity,

causing spatial multibit errors. Bit interleaving [87, 248] can be used to demote the

spatial multi-bit fault to several single-bit faults, then simple coding techniques

can correct the several single bit faults separately [252–254]. Temporal multi-bit

fault is the cumulative effect of several single-bit faults in a period of time. For

temporal multi-bit errors, cache scrubbing [91, 92] techniques are more effective.

As explained in Section 4.3, in a system that employs error codes without scrub-

bing, particle strikes may linger and increase the chance of a multiple bit error if lo-

cations go a long time without being read. The approach of Error Codes+Detectors

presented in Table 4.3 of Section 4.3 can detect all temporal particle strikes and

do not let them accumulate eliminating temporal multi-bit errors.

Our scheme takes the spatial multi-bit upsets into account in a very easy manner.

We assume that a set of templates for the shape of the multi-bit upsets caused by

a particle strike are available. Then, we only need to map on top of the perimeter

of the 3*CEP circle the MBU templates of [87], and therefore, extend the area of

affected bits. In the case of L2 and LLC as we studied in Section 4.3 usually a

stronger ECC code (i.e., SEC-DED or DEC-TED) is present and can take care of

multi-bit upsets. We will see how acoustic wave detectors with parity codes can

handle spatial multi-bit upsets with an example of L1 cache.

We consider the spatial multi-bit upset patterns studied in [87]. Figure 4.10(a)

shows the 2-bit upset patterns and Figure 4.10(b) shows 3-bit upset patterns. As

we have already seen in Section 4.3.2, according to Figure 4.3 for the case of single

bit upsets the acoustic wave detector can locate the bit at the granularity of 1 bit

(best case) or 5 bits (worst case).

Now in the case of 2-bit MBUs, as shown in Figure 4.10(a) to be able to cover all

2-bit upsets the single bit error area mask will be transformed into an area mask

of 9 bits. Similarly, the 5-bit error mask will now be transformed into an area of

21 bits. The same scenario for 3-bit MBUs, as shown in Figure 4.10(b) will require

the area masks of 25 bits and 45 bits for the error area accuracy of 1 bit and 5

bits respectively.

This implies that using only acoustic wave detectors to point out the exact lo-

cations of upsets in 2 and 3 bit MBUs is not possible. Also the combination of

Protecting Caches with Acoustic Wave Detectors 110

Figure 4.10: Extending the 3*CEP error area granularity of 1-bit and 5-bits
for handling spatial multi-bit upsets using acoustic wave detectors to locate (a)

2 bit MBU and (b) 3 bit MBU

acoustic wave detectors + parity per block cannot locate the exact locations of the

upset bits.

Figure 4.11 shows the scenario for the combination of acoustic wave detectors +

parity per byte. Undertaking similar exercise as done in the case of single bit upsets

earns, a DUE improvement for 2-bit MBUs by of (3/8) × 24.7% when the error

area granularity of acoustic wave detector is 1 bit. It is worth mentioning here that

acoustic wave detectors + parity per byte cannot detect any 2-bit MBU when the

Protecting Caches with Acoustic Wave Detectors 111

�

�

�

�

������

������

������

�����	

�����
������

����� �����

Figure 4.11: Probability of locating the 2 bit MBU using acoustic wave de-
tectors configuration providing 3*CEP error area granularity of 1 bit and parity

per byte

MBU Area gran. MBU area Min. required
type bits (#bits) mask(#bits) DOI

1 9 4
2 bits

5 21 6

1 25 6
3 bits

5 45 8

Table 4.4: Minimum required degree of physical bit interleaving (DOI) in a
cache with bit interleaved parity and acoustic wave detectors

error area granularity of acoustic wave detector is 5-bits. Also, this combination

is ineffective against 3-bit MBUs.

Acoustic wave detectors + bit interleaving is very effective in improving DUE by

locating both bits in 2-bit MBU and all 3 bits in 3-bit MBU. This can achieve

98.18% DUE improvement for 2-bit and 3-bit MBUs. However, in adapting Acous-

tic wave detectors + bit interleaving, the minimum required degree of interleaving

to be able to locate all bits in the given MBU pattern of Figure 4.10 increases

with the increase in the number of bits required to be located. Increasing degree

of interleaving increases the cost and the complexity of the solution.

Table 4.4 summarizes the minimum required degree of interleaving for adapting

acoustic wave detectors + bit interleaving. In the L1 data cache, to be able to

correct 98.18% 2-bit and 3-bit MBUs the optimum solution is to have acoustic

wave detector with bit interleaved parity with DOI = 8.

Protecting Caches with Acoustic Wave Detectors 112

4.5 Cost of Protection

The proposed solution will make use of two independent meshes: a small mesh for

precise location of the strike (summarized in Table 4.1), and a somewhat larger

mesh for detection latency given in Table 4.2.

In LLC the 5×3 mesh will be used to obtain the TDOA. In that case, the hardware

mechanism will consist of 15 detectors (i.e., roughly 15 bits area), and a 2-level

OR tree to generate the Enable signal. The tree will use 6 3-input OR gates and

2 2-input OR gates. To count the worst-case TDOA clock pulses a 10-bit counter

is necessary. We will also use a 23×7 mesh to minimize the detection latency.

One one hand, it requires 161 detectors (i.e., roughly 161 bits area). On the other

hand, we will need a 4-level OR tree to generate the detection signal. Such tree

is composed of 66 3-input OR gates and 28 2-input OR gates. Notice that in the

second mesh we do not require a counter since we only want to signal the presence

of the strike.

In the case of L1 cache, the area overhead includes 25 detectors (area of 25 memory

bits) and a control circuit (consists of a counter and a few logic gates). Because of

smaller dimensions of L1 data cache and denser mesh, the detection latency is 14.5

ns for 5× 5 mesh with 25 detectors. The latency in solving 24 equations is small

compared to the error detection latency. Moreover, once the error is detected

we stall the processor so the delay in locating error is harmless. The detectors

are passive and do not consume power and the control circuit is trivial and adds

minimal power overhead.

Overhead in combined approach, such as parity per block, parity per byte and bit

interleaving adds to the overall cost of protecting the caches.

4.6 Related Work

A variety of mitigation techniques have been reported to handle the SDC- and

DUE-FIT related to soft errors in caches. In this section we review the basic

works on soft error protection for memory arrays and peripheral logic. Many of

these methods were first proposed for main memory systems. However, due to

cache size increases, these methods have now been adapted to caches.

Protecting Caches with Acoustic Wave Detectors 113

The reliability techniques can be classified into three broader categories: (i) par-

ticle strike detection for soft error detection, (ii) soft error detection and (iii) soft

error mitigation.

4.6.1 Particle Strike Detection for Soft Errors

Several particle strike detector based techniques have been studied in Section 3.7.1

of Chapter 3. These techniques can also be used to detect soft errors in the caches.

These particle strike detectors detect voltage or current glitches [132–134, 206] or

sound [135] generated upon a particle strike. A detailed comparison is provided

in the previous chapter in Section 3.7 and a summary of comparison of particle

strike detectors is given in Table 3.1.

4.6.2 Soft Error Detection

Error detection techniques work by alerting the system when the system is exposed

to erroneous data. For instance, in caches data usually spend a long time before

being read by the processor. In a cache with error detection mechanism the data is

checked for errors on every read and if found corrupted it is marked invalid. Many

error detection techniques are also accompanied by error correction or recovery

methods. Once the error is detected usually an error correction mechanism is

invoked to correct the data.

4.6.2.1 Error Codes

The most popular method of dealing with soft errors in caches is to use error codes

for error detection and correction. Error codes such as parity are often employed to

detect the error and ECC is employed for simultaneously detecting and correcting

errors in caches.

Figure 4.12 shows the basic process of implementing error codes. Error codes have

to encode the data bits for every store operation in the cache and decode data bits

upon every load operation. Every encode operation generates code word using

the check bits. Upon every access to the protected data a decoding operation is

performed and, the code word is re-computed and compared with the original code

Protecting Caches with Acoustic Wave Detectors 114

Data bits

Encoder Data bits
Check

bits

Data Buffer

C
o

d
e

 w
o

rd

C
o

d
e

 w
o

rd

Decoder

Error Signal!

Data bits

No error

Figure 4.12: Basic functionality of encoding and decoding of data bits in error
codes

word to protect against errors in original data. The check bits require separate

storage which incurs area overhead; moreover, if the encoding and decoding of the

data bits is on the critical path it may increase the cache read/write time.

Parity:

Parity is the most common technique for error detection. Parity is a simple form

of information redundancy where one extra bit added for every protected group of

data bits. Parity bit can be encoded based on the number of 1s in the protected

bits. If there are odd number of 1s in the data bits the parity bit is set to zero and

is termed as odd parity. In even parity, the parity bit is set to one if the number

of 1s in the protected data bits is even. Due to this encoding, parity code cannot

detect even number of errors in the protected data bits as two errors will generate

the same parity bit as in the case of error free data bits.

In caches parity is computed whenever the protected cache line is modified. Upon

a read to the cache line parity bit is re-computed. A parity bit match indicate the

error free data. If the parity bits do not match an error is detected and the cache

line can be mark invalid.

Parity can be implemented at byte level [250] at word level [251] or at cache block

level [64]. Parity at byte can allow the architecture to avoid computing the parity

for entire word or block for read/write operations on a byte in a cache block.

Usually, L1 caches are protected with parity codes [81, 255–257] combined with

error mitigation technique.

ECC:

Error correcting codes (ECC) encodes more information redundancy for providing

error detection as well as correction. Similar to parity codes ECC generates a code

word for every protected data word. This code word is computed upon every write

Protecting Caches with Acoustic Wave Detectors 115

and re-computed and compared upon every read to the cache. ECC encoding is

based on the concept of Hamming distance [43]. Hamming distance between two

same length data words is defined as the number of bits by the two data words

differ. For instance, the Hamming distance between data words 0011 and 0001 is

one since they differ only in position two. In order to protect a data word against

a one bit error, Hamming-distance-based ECC assigns code words such that any

two data words having a Hamming distance of less than two will never share the

same code word. By providing code words with Hamming distances greater than

the minimum required for protection, ECC can also provide for error correction.

To correct an n bit error requires a code word of size (2×n + 2). In addition to

correcting n bit errors, this will also detect (n+1) bit errors.

Single error correction double error detection (SEC-DED) can correct one bit error

as well as detect double bit errors. By adding more code bits a DEC-TED can

correct double bit errors and detect triple bit errors. Most common ECC codes

used in today’s processors to protect caches are SEC-DED [43, 44] and DEC-

TED [89]. L2 and L3 caches are protected by SEC-DED or DEC-TED [64, 244–

246, 258]. Error codes are effective way of handling single-bit as well as multi-bit

errors (as explained in Table 4.3 of Section 4.3 and Section 4.4).

4.6.3 Soft Error Mitigation

Unlike error detection techniques, error mitigation techniques can avoid the soft

errors altogether by employing some process or device hardening schemes. At ar-

chitecture level soft error mitigation techniques may employ means to overwrite the

erroneous data and hence architecturally masking the error before it is consumed.

At process level several techniques can be used to reduce the charge collection

capacity of the sensitive nodes in an SRAM memory cell [259]. Using multi-

ple well structures have been proposed to show improved robustness by limiting

charge collection [260]. Another effective process technique for reducing the charge

collections is to use the SOI substrates. Other process techniques include wafer

thinning, mechanisms to dope implants under the most sensitive nodes etc. Pro-

cess level techniques are effective and significantly reduce the soft error rate of the

memories. However these techniques require modifications in the standard CMOS

fabrication process and therefore are less attractive.

Protecting Caches with Acoustic Wave Detectors 116

Another way of protecting the caches at circuit level is by making the memory cell

physically robust. One way of implementing robust SRAM cell is by increasing

the Qcrit of the SRAM cells used in caches. Radiation hardening is another circuit

level approach for handling soft error rates in caches. We talk about soft error

mitigation techniques at process and device level in Chapter 7.

4.6.3.1 Physical Interleaving

Physical interleaving is a technique to arrange physically adjacent bits into dif-

ferent logical code words. Bit interleaving [87] can be used to demote the spatial

multi-bit fault to several single-bit faults, then simple encoding techniques can

correct the several single-bit faults separately [252–254]. Error codes accompany-

ing with bit interleaving can detect and correct several spatial multi-bit errors.

An example of physically interleaved parity code is shown in Figure 4.8. If two

adjacent bits are affected by a single particle strike and as the adjacent bits are

physically interleaved the affected two bits will be detected as two single bit errors.

Degree of interleaving (DOI) is defined as the number of adjacent bit errors the

interleaving scheme can detect. Figure 4.8 shows a scheme with DOI=4. As the

degree of interleaving increases the capacity of error codes to detect or correct

spatial multi-bit errors increases. However, with increased degree of interleaving

the depth of XOR logic tree for computing the parity increases and will require

longer encoding and decoding time which may impact the overall performance.

4.6.3.2 Cache Scrubbing

Temporal multi-bit faults are the cumulative effect of several single-bit faults in a

period of time. When the probability of having temporal multi-bit error is high

cache scrubbing [92, 93] technique is often combined with ECC. Temporal multi-

bit errors can be seen more frequently in large memories (e.g., LLC) where the data

stays without being accessed for a very long time. Because the data is not accessed

the error due to first particle strike goes undetected and upon a second particle

strike it is transformed into double bit error and the SEC-DED will not be able

to correct it. Cache scrubbing avoids the accumulation of errors by periodically

accessing all the cache blocks and hence invoking the error codes for possible single

bit error detection and correction. Typical scrubbers step through cache lines at

fixed times, guaranteeing that all words will be scrubbed at least once during some

Protecting Caches with Acoustic Wave Detectors 117

larger interval. Usually, the scrubbing frequency is set such that each cache line

will be scrubbed on average more often than a bit flip occurs. Determining the

cache scrubbing period can be challenging and also as every cache block is accessed

periodically to check for errors the overall power consumption increases.

4.6.3.3 Cache Flush

As a part of error mitigation in cache flushing techniques a hardware of software

controller mechanism is employed to periodically flush the entire contents of the

cache [203, 226, 261]. By removing all the data from the cache the erroneous data

is also removed improving the overall reliability. However, frequent cache flushing

techniques can incur huge performance overhead due to increased cache miss rate.

4.6.3.4 Early Writeback

Usually, a cache line remains in the cache until it is replaced by another cache line

according to an appropriate replacement policy (i.e., least recently used (LRU)).

The early writeback scheme is motivated by the observation that the dirty cache

lines that have not been accessed recently are unlikely to be read again. Several

proposals have been made in the direction to replace the dirty cache lines in

the cache after a fixed time period, earlier than they would be replaced by the

usual LRU policy [243, 262, 263]. Early writeback schemes enhance reliability of

writeback cache by reducing the exposure of dirty cache lines to the soft errors.

4.6.4 Comparison of Techniques

In this section, we summarize the area, power and performance overheads as-

sociated with techniques discussed above for protecting caches. Table 4.5 gives

compares the process, circuit and architecture level solutions for their area, power

and performance overheads. Process level techniques can be effective in terms of

the reduction in the soft error rate they can achieve. However these techniques re-

quire modifications in the standard CMOS fabrication process and hence difficult

to adapt in existing technology.

Circuit level solutions either employ larger transistors or include redundant tran-

sistors in the SRAM cell. For instance, the DICE cell employs 2× more transistors

Protecting Caches with Acoustic Wave Detectors 118

than a normal SRAM cell it can incur 1.5-2× higher area overhead [264, 265]. Be-

cause of the large number of transistors per cell, these designs consume more area

(and consequently more power) than six transistor cells. Employing larger cells

or increasing the node capacitance can impact performance in other ways (usually

degrades the read/write time of cache). Including redundant transistors may also

increase the overall energy consumption.

Protecting Caches with Acoustic Wave Detectors 119

M
e
ch

a
n
is
m

D
e
te
c
ti
o
n

F
a
ls
e

C
h
ip

S
E
R

A
re

a
P
o
w
e
r

P
e
rf
o
rm

a
n
c
e

D
e
si
g
n

L
a
te
n
c
y

A
la
rm

s
R
e
d
u
c
ti
o
n

O
v
e
rh

e
a
d

O
v
e
rh

e
a
d

O
v
e
rh

e
a
d

C
o
st

P
ro

c
e
ss

L
e
v
e
l

M
u
lt
i-
w
el
l
[2
60

],
S
O
I
[1
84

,
18

5
]

–
%

5×
[1
84

]
L
ow

L
ow

L
ow

H
ig
h

C
ir
c
u
it

le
v
e
l

(V
-I
)
se
n
si
n
g
[1
32

–1
34

]
3-
6
cy
cl
es

!
M
o
d
er
at
e

20
-4
5%

[2
06

]
u
p
to

10
0%

[2
06

]
1-
10

%
[2
06

]
M
o
d
er
a
te

D
ec
ou

p
li
n
g

ca
p
ac
it
or

[2
8
,
26

6
,
2
67

]
-

%
25

-3
2%

[2
68

]
M
o
d
er
at
e

3%
††

[2
68

]
H
ig
h

H
ig
h

H
ar
d
en
ed

ce
ll
[5
4
,
26

4
,
26

5,
26

9]
0-
2
cy
cl
es

%
10
×

[2
65

]
1.
5-
2×

†
[2
64

]
40

-5
0%

†
[2
65

]
6-
8%

[2
70

]
M
o
d
er
a
te

A
rc
h
it
e
c
tu

re
le
v
e
l

P
ar
it
y

0
cy
cl
es

%
1D

1.
5%

⋆
L
ow

L
ow

L
ow

S
E
C
-D

E
D

0
cy
cl
es

%
2D

-1
C

13
%

⋆
M
o
d
er
at
e

M
o
d
er
at
e

L
ow

D
E
C
-T

E
D

0
cy
cl
es

%
3D

-2
C

23
%

⋆
H
ig
h

H
ig
h

M
o
d
er
a
te

In
te
rl
ea
v
in
g

(D
O
I=

8)
+

P
ar
it
y

0
cy
cl
es

%
8D

1.
5%

⋆
⋆

H
ig
h

H
ig
h

M
o
d
er
a
te

S
cr
u
b
b
in
g
+

S
E
C
-D

E
D

1
00

0s
of

cy
cl
es

%
42

%
[2
03

]
13

%
⋆

H
ig
h

H
ig
h

M
o
d
er
a
te

C
ac
h
e
F
lu
sh

10
00

s
of

cy
cl
es

%
10

-2
5
×

[2
61

]
L
ow

H
ig
h

10
%

[2
61

]
L
ow

E
ar
ly

W
ri
te
b
ac
k

10
00

s
of

cy
cl
es

%
H
ig
h

5%
[2
63

]
H
ig
h

<
1%

[2
43

]
L
ow

T
a
b
l
e
4
.5
:
C
om

p
ar
in
g
d
iff
er
en
t
m
ec
h
an

is
m
s
fo
r
p
ro
te
ct
in
g
ca
ch
es

ag
ai
n
st

so
ft

er
ro
rs
.
n
D

in
d
ic
a
te
s
n
b
it
s
er
ro
r
d
et
ec
ti
o
n
ca
p
a
b
il
it
y,

m
D
–n

C
in
d
ic
at
es

m
b
it
s
er
ro
r
d
et
ec
ti
on

an
d
n
b
it
s
co
rr
ec
ti
on

ca
p
ab

il
it
y.

†
ov
er
h
ea
d
s
p
er

S
R
A
M

ce
ll
,
††

ov
er
h
ea
d
p
er

ch
ip
,
⋆
ov
er
h
ea
d

p
er

64
b
it
s,

⋆
⋆
d
o
es
n
t
in
cl
u
d
e
ov
er
h
ea
d
fr
om

th
e
in
te
rl
ea
v
in
g
ci
rc
u
it
.

Protecting Caches with Acoustic Wave Detectors 120

At architecture level, while employing error detection and correction codes, the

generated check bits adds to the original data bits and they are required to be

stored causing area overhead; however, the relative overhead diminishes as the

width of protected data word increases.

Generation and checking of parity and ECC occurs during data reads and writes

and adds energy overhead. ECC encoding is done using complex bit-wise XOR

logic gates across portions of a cache block and generating check bits which are

stored along with the original data in the cache. Employing ECC for protecting

caches can cause area and power overheads [270, 271]. Due to encoding and

decoding delay of code words the ECC may add extra cycles to the cache access

time incurring significant performance penalty [119, 243].

Moreover, as the complexity of code increases the overheads increase exponentially.

Compared to parity the SEC-DED and DEC-TED can increase the energy over-

head by 25% and 50% respectively [254]. In addition, reading and computing the

ECC bits for error checking can be a performance bottleneck parity and ECC are

best applied to data that is not manipulated often. Caches closer to the core have

a lot of partial store operations (i.e., store instructions operating on a few bytes

in a cache block). Having ECC at cache block level will result in computations

of check bits for the entire cache block, incurring huge performance and energy

penalty. The extra area and energy overhead to implement multi-bit error detec-

tion and correction grows quickly as the code strength is increased. Employing

complex codes may also require pipelined encoding and decoding schemes which

may increase the length of the critical path. Thus, parity and ECC protection

of data is difficult to efficiently integrate into modern processor cores that are

performance, power, and complexity constrained.

Cache scrubbing techniques can avoid the ECC latency by periodically scanning

the cache, checking the data integrity. Scrubbing period may vary from 80 ns

to 1000 s of ns [91–93]. Because scrubbing avoids the inline error correction of

traditional ECC; it has lower error coverage than checking ECC on every read [92].

Physical bit interleaving can handle spatial multi-bit errors at the cost of additional

power due to the unnecessary read access of the undesired words in the row as

all cells in a row share common word-line [64, 87, 179, 244]. Additional area and

performance penalty incurs due to the long word-line and column MUX circuits.

The overheads grow significantly as the interleaving factor increases depending on

the memory design [248, 254, 272].

Protecting Caches with Acoustic Wave Detectors 121

The benefits of the early writeback cache against the incurred performance penalty

largely depends on the behavior of the workload. If in a given workload there is

only a portion of the cache that is dirty the benefits achieved will be small.

Plenty of research has been done in inventing schemes to reduce the overheads

associated with error codes [46, 47, 248, 254, 273–276]. We highlight the major

features for reducing the overheads related to error codes for protecting caches:

1. Existing error codes mostly protect a cache block (64 bytes) in caches. How-

ever, by protecting more bits the protection coverage can be increased at

minute increase in area, power and performance overheads. Method pro-

posed in [249, 273] protects multiple cache block or entire cache and signifi-

cantly reduce the area overhead.

2. Another way of reducing the overheads is by decoupling the correction capa-

bility of ECC from the critical path. As we have seen in Table 4.5 the cost

of error detection is significantly smaller than the cost of error correction.

Decoupling the error detection and correction mechanisms can be beneficial

especially where the soft error rate is low. One way of implementing it is to

detect error on every read operation and invoke error correction only when

needed [87, 248, 249, 253, 275]. Using such two-tired schemes it is possible

to off load the error correction codes to DRAM to further reduce the area

overhead [248].

3. Decouple the multi bit correction capability and single bit correction capa-

bility of ECC. A variable length ECC proposed in [258] that protects the

common case of large number (about 96%) of cache lines with zero or one

failures using a simple and fast ECC and the smaller portion of cache lines

with multi-bit failures use a strong multi-bit ECC that requires some addi-

tional area and latency.

4. An alternative approach includes the mechanisms that protect only dirty

cache lines in the cache. The idea is based on the observation that most

of the time a majority of cache contains clean data and as this data is

unmodified, another copy of correct data already exists in the lower levels of

caches. Any error in the clean data can be recovered by restoring the clean

data from the lower level of cache. Therefore, clean data does not require

complex and expensive error correction mechanism. Work of [277] protects

Protecting Caches with Acoustic Wave Detectors 122

the dirty cache lines in L2 and LLC via SEC-DED and the clean lines with

parity code. In [86] authors proposed to protect dirty cache blocks using

ECC and once the dirty cache block turns clean the correction capacity of

ECC is disabled by gating some bits and converting ECC into parity code.

Another variant [274] proposed to use a small cache for saving check bits for

ECC or replicated cache lines. Techniques protecting the dirty cache lines in

a cache can be further benefited by employing policies such as eager write-

back to reduce the number of dirty cache lines in the cache [243, 262, 263].

5. Similar to the idea of protecting only dirty cache lines, cache replication

technique [278] proposes to protect only subset of cache lines using ECC. The

cache lines are selected based upon the access frequency. The mechanism

proposes to store the replicas of frequently accessed cache lines in place of

cache lines that are no longer required. It reduces the ECC overheads by

not protecting the selected cache lines by employing redundancy in terms of

replication. Not all cache lines are replicated leading to a potentially higher

uncorrectable error rate than with the baseline uniform ECC. The work has

been further extended that utilizes replicating dirty cache lines or parts of

dirty cache lines for providing error protection [279].

4.7 Chapter Summary

In this chapter, we saw how acoustic wave detectors are used for soft error detection

and localization in the caches. We first studied the implications of error detection

and localization architecture on the design parameters, detection latency and er-

ror area granularity. Based on the obtained error area granularity, we explored

the possibility of correcting errors. We observed that acoustic wave detectors can

correct the error whenever the exact location of the error is identified. Our ex-

periments concluded that using only 25 acoustic wave detectors it is possible to

correct 71.85% errors in L1 cache.

We then explored the possibility of combining acoustic wave detectors with error

codes. We discussed the architectural modifications for integrating error codes

with acoustic wave detectors. We then studied the DUE problem in caches closer

the the core (i.e., L1 cache). Because of the higher cost of error correction L1

caches only have error detection capability. We showed how by accommodating

Protecting Caches with Acoustic Wave Detectors 123

acoustic wave detectors with bit interleaved parity codes, we can correct 98% of

single bit errors in the L1 cache.

Lastly, we presented a mechanism to handle the multi-bit errors in caches. We

observed how SEC-DED codes with acoustic wave detectors provide the same de-

tection level as standalone DEC-TED, at significantly low overheads. We also

studied how adapting acoustic wave detectors and parity protected physically in-

terleaved bits can provide protection against 2-bit and 3-bit MBUs at very low

cost.

In the next chapter, we will discusses how we can use the proposed error detection

and location scheme for protecting entire processor core.

Chapter 5

Protecting Entire Core with

Acoustic Wave Detectors

In the previous chapter, we understood how we can protect caches against soft

errors using acoustic wave detectors. In Chapter 3 we developed an architecture

that detects and locates the errors in processor core. Now we will proceed to

take advantage of error detection architecture based on acoustic wave detectors

in providing efficient error containment and recovery in the core of a Core™i7-like
processor. By providing error containment and recovery the proposed architecture

can potentially eliminate the SDC and DUE of a processor core. The architecture

uses acoustic wave detectors for dynamic particle strike detection. Moreover, the

architecture does not allow errors to escape to user (i.e., updating main memory or

i/o devices) before detection, eliminating SDC. Eliminating DUE of core is more

involved and our proposal relies on a novel and cantilever-specific checkpointing for

recovery. Next, we will show how the proposed architecture scales to protect multi-

core systems. Finally, we will evaluate the performance impact of the proposed

architecture using real life workloads.

5.1 ”SDC & DUE 0” Architecture

The main objective of the proposed architecture is to achieve 0 SDC- and DUE-

FIT per core. SDC occurs when errors escape and become visible to the user. And

DUE occurs in the absence of an error recovery mechanism. Error correction is

handled by either moving the system to a state that does not contain the error

124

Protecting Entire Core with Acoustic Wave Detectors 125

(e.g., using checkpointing) or by an on-the-fly error correction method, which is

possible only when the error is detected before the erroneous data is consumed.

Next, we will see how error detection latency plays an important role in deciding

the overall cost of SDC and DUE.

5.1.1 Effect of Detection Latency on SDC & DUE

Acoustic wave detectors detect all soft errors due to alpha and neutron strikes.

However, not only detection of error but how soon the error is detected is also

very important. Detection latency defines the degree of error containment. De-

pending on the detection latency, errors can be contained at various granularities

in a processor (i.e., within pipeline or caches etc.). Efficient error containment is

essential for avoiding SDC (e.g., error is visible to user before its detection) and it

also has an impact on the recovery process.

Protecting Entire Core with Acoustic Wave Detectors 126

D
e
te

c
ti
o
n

M
e
c
h
a
n
is
m

P
o
st

C
o
n
su

m
p
ti
o
n

C
o
n
ta

in
m

e
n
t

S
iz
e
o
f

P
r
o
te

c
ts

D
e
te

c
ti
o
n

A
r
e
a

P
e
r
fo
r
m

a
n
c
e

D
e
te

c
ti
o
n

L
a
te

n
c
y

C
o
st

C
h
e
c
k
p
o
in
t

C
o
v
e
r
a
g
e

O
v
e
r
h
e
a
d

O
v
e
r
h
e
a
d

R
e
d
u
n
d
a
n
t

e
x
e
c
u
ti
o
n

L
o
ck

st
ep

[5
8
,
1
1
5
],

D
M
R

[2
8
0
],
D
C
C

[2
8
1
]

C
y
cl
e-
b
y
-c
y
cl
e

d
et
ec
ti
o
n

L
o
w

S
m
a
ll

C
o
re

1
0
0
%

1
0
0
%

[5
8
,
1
1
5
,

2
8
0
],
1
%

[2
8
1
]

>
1
.5
-2
×

R
M
T

[7
2
],
C
R
T

[5
7
],

A
R
-S
M
T

[6
8
]

H
u
n
d
re
d
s
o
f
cy

cl
es

&
u
n
b
o
u
n
d
ed

H
ig
h

L
a
rg
e

C
o
re

<
1
0
0
%

†
L
o
w

>
2
×

In
st
r
u
c
ti
o
n

d
u
p
li
c
a
ti
o
n

E
D
D
I
[2
8
2
],

S
W

IF
T

[2
8
3
],

C
R
A
F
T

[2
8
4
]

L
o
w

&
u
n
b
o
u
n
d
ed

L
o
w

S
m
a
ll

C
o
re

&
M
a
in

m
em

o
ry

[2
8
2
]

<
1
0
0
%

∗
[2
8
3
]

L
o
w

>
1
5
0
%

[2
8
2
]

S
y
m

p
to

m
c
h
e
c
k
s

E
rr
o
r
C
o
d
es

[1
1
7
],

H
a
rd

en
ed

la
tc
h
es

††
[5
4
,
2
6
4
,

2
6
5
,
2
6
9
]

0
cy

cl
es

&
b
o
u
n
d
ed

L
o
w

–
M
a
in

m
em

o
ry

[1
1
7
],

L
o
g
ic

[5
4
]

1
0
0
%

[1
1
7
]

1
2
.5
%

[1
1
7
],

∼
5
5
%

[5
4
]

L
o
w

B
IS
T

[2
8
5
],

B
u
ll
et
p
ro
o
f
[2
8
6
]

P
er
io
d
ic

&
b
o
u
n
d
ed

H
ig
h

L
a
rg
e

C
o
re

O
n
ly

h
a
rd

er
ro
rs

9
0
%

[2
8
6
]

5
%
-6
%

5
%
-2
5
%

⋆

S
W
A
T

[2
8
7
],

S
h
o
es
tr
in
g
[3
5
],

R
es
to
re

[3
6
],

P
er
tu

rb
a
ti
o
n
[2
8
8
]

M
il
li
o
n
s
o
f

cy
cl
es

&
u
n
b
o
u
n
d
ed

H
ig
h

L
a
rg
e

C
o
re

<
1
0
0
%

⋆
⋆
[3
5
]

L
o
w

5
-1
6
%

M
o
n
it
o
r
in

g
in
v
a
r
ia
n
ts

D
IV

A
[6
7
],
A
rg
u
s
[2
8
9
]

L
o
w

&
b
o
u
n
d
ed

L
o
w

S
m
a
ll

C
o
re

B
a
ck
en

d
[6
7
],

C
o
re

[2
8
9
]

1
0
0
%

[6
7
],

∼
1
0
0
%

[2
8
9
]

6
%

[6
7
],

1
7
%

[2
8
9
]

5
-1
5
%

S
e
n
so

r
b
a
se

d

A
co

u
st
ic

d
et
ec
to
rs

[1
3
5
]

1
0
0
cy

cl
es

∓

(c
o
n
fi
g
u
ra
b
le
)
&

b
o
u
n
d
ed

L
o
w

–
C
a
ch

e
1
0
0
%

d
et
ec
ti
o
n

<
1
%

L
o
w

(V
-I
)
d
et
ec
to
rs

[1
3
2
–
1
3
4
]

3
-6

cy
cl
es

&
b
o
u
n
d
ed

L
o
w

–
M
a
in

m
em

o
ry

&
L
o
g
ic

M
o
d
er
a
te

2
0
-4
5
%

[2
0
6
]

1
-1
0
%

[2
0
6
]

P
r
o
p
o
se

d
A
r
c
h
it
e
c
tu

r
e

3
0
-1
0
0
cy

cl
es

∓

(c
o
n
fi
g
u
ra
b
le
)
&

b
o
u
n
d
ed

L
o
w

S
m
a
ll

C
o
re

1
0
0
%

d
et
ec
ti
o
n

&
re
co
v
er
y

<
1
%

0
.6
%

T
a
b
l
e
5
.1
:
C
om

p
ar
is
on

of
d
iff
er
en
t
er
ro
r
d
et
ec
ti
on

sc
h
em

es
(†

v
u
ln
er
ab

il
it
y
h
ol
es

in
L
S
Q

lo
g
ic

(i
.e
.,
M
O
B

lo
g
ic
),

∗
ca
n
n
o
t
d
et
ec
t
er
ro
rs

in
st
or
es
,
††

d
o
es

n
ot

d
et
ec
t
b
u
t
p
re
v
en
ts

er
ro
r,

⋆
on

ly
fo
r
si
m
p
le

in
-o
rd
er

co
re
s,

⋆
⋆
ca
n
n
o
t
d
et
ec
t
if
fa
u
lt
d
o
es

n
o
t
m
a
n
if
es
t
a
sy
m
p
to
m
,

∓
la
te
n
cy

fr
om

ac
tu
al

st
ri
k
e
in
st
an

ce
)

Protecting Entire Core with Acoustic Wave Detectors 127

Table 5.1 reviews the detection latencies for different error detection techniques

once the error is consumed. Bounded latency means the error is detected within a

fixed number of cycles, that is known a-priori or can be set by the designer (e.g.,

periodic BIST). Longer detection latency enforces the error containment to be

done at higher degree of abstraction in a processors, and results in more complex

hardware and/or software checkpointing/recovery mechanisms. Excessively long

detection latencies may not be even recoverable. Long detection latencies can

also prevent the fault diagnosis due to weak correlation between the fault and its

symptoms or due to the limited on-chip tracing storage (i.e., log sizes).

Error detection mechanisms with lower detection latency provide the best tradeoff.

Therefore, to achieve SDC-& DUE 0 core at minimum cost we next explore error

containment and recovery for minimum latency (i.e., containment before error

updates architectural state).

5.1.2 Achieving SDC-& DUE 0 per Core

In order to achieve 0 SDC, we can equip a processor core with acoustic wave

detectors so it detects all particle strikes that may cause an error. To have DUE

0 per core, the architecture must be able to recover from all the errors and restore

correct processor state; this includes architectural register file, RAT, PC etc.

Previous work [135] proposed using acoustic wave detectors in combination with

error correction codes to detect and locate errors in memories. In this section, we

extend it and assess its detection latency and capabilities to address challenges in

achieving SDC-& DUE 0 for an entire core.

Achieving SDC 0 per core: The first option that we explored is protecting the

core for the minimum error detection latency. It requires that the error is captured

before the wrong value is committed.

Given the dimensions of current core designs, a single detector would suffice to

detect all errors. Recall from Section 3.2, using just 1 detector implies the worst-

case detection latency of 1000 cycles at 2 GHz, which may give time for erroneous

instructions to commit before being detected.

Protecting Entire Core with Acoustic Wave Detectors 128

0

200

400

600

800

1000

1200

1400

1600

0

100

200

300

400

500

600

700

800

900

1000 O
v

e
rh

e
a

d
 o

f In
te

rco
n

n
e

cts (#
W

ire
s)

D
e

te
ct

io
n

 L
a

te
n

cy
 (

#
C

y
cl

e
s)

Number of Detectors on the Core [Mesh configuration]

Detection latency(#Cycles) @ 2GHz
Relative Increase in Interconnects (#Wires)

Latency: 100 Cycles

<1 Metal layer

Latency: 30 Cycles

~1 Metal layer

Figure 5.1: Number of detectors vs. detection latency at 2 GHz

Obviously, in order to reduce the detection latency, we can deploy more detectors,

for instance in a mesh formation. Figure 5.1 shows the detection latency and com-

plexity for various mesh configurations. Complexity in terms of increased number

of wires is calculated. It is clear that the detection latency varies exponentially

with number of detectors. Also complexity increases with number of detectors.

According to Figure 5.1, we will need >68,000 detectors to guarantee that no

instruction will be committed before it is checked for errors (error detection latency

of 1 cycle).

Achieving DUE 0 per core: With 68K detectors we contain the errors before

they are committed. If the strike happened in speculative state, a nuke and retry

will suffice to recover. However, if the strike is in the architectural state, recovery is

somewhat more involved. One option is using error correcting codes; nevertheless,

majority of the structures that hold the architectural state (i.e., architectural

register file) do not have error correcting codes. Therefore, we opt to periodically

take checkpoints (that include shadow copies of the architectural state).

In a nutshell, for SDC- & DUE 0 core we will need 68K detectors. This implies

Protecting Entire Core with Acoustic Wave Detectors 129

an area overhead equivalent to having 68K bits of SRAM (∼7KB cache). More-

over, as shown in Figure 5.1 the interconnects to the micro-controller from 68K

detectors increases the complexity and require >5 metal layers and pose significant

challenges in place and route [290, 291].

Next, we will explore an optimized architecture that reduces the number of detec-

tors without compromising the reliability coverage.

5.1.3 Divide and Conquer for SDC and DUE 0

We made the observation that errors in different stages of pipeline take different

time until they propagate outside the containment area (i.e., before they com-

mit). We know from previous section that providing detectors to all the functional

blocks for the same detection latency is expensive in terms of area overhead and it

is complex. To reduce the number of detectors for containment before erroneous

Figure 5.2: Pipeline of a state of the art processor and the latency of stages

instruction is committed, we study pipeline structures and analyze the time each

Protecting Entire Core with Acoustic Wave Detectors 130

instruction spends in traversing through the pipeline. We collect the latency re-

quirements for all structures to provide coverage to all instructions. This gives us

an insight of the required detection latency for each structure in the core.

Figure 5.2 shows the pipeline of our base core running at 2 GHz. It shows the

latency for different stages of the pipeline up to commit. We identified four differ-

ent paths with different latency: (i) fetch/decode until commit takes 20 cycles, (ii)

rename/scheduler to commit takes 15 cycles, (iii) execute to commit takes 8-10

cycles, and (iv) write-back/retire to commit is 4-6 cycles.

For example of fetch stage, once fetched, all instructions will take minimum 20

cycles (considering best case) to reach the commit stage. Providing single cycle

detection latency for structures in fetch stage (i.e., prefetch, branch-predictor etc.)

would be unnecessary.

Pipeline stage #Detectors

Fetch + Decode (including I-Cache, D-Cache, TLBs) 1787
Rename + Schedule 170

Execute 461
Writeback + Commit 139

Total 2561

Table 5.2: Required number of detectors for containment in core

From this initial observation, we identified that some data-flow paths are more

critical (i.e., writeback to commit) and will need stricter detection latency require-

ments for error containment. So, instead of protecting all the functional units in

pipeline for a common detection latency we propose to put detectors for individ-

ual functional units. By protecting each functional units for respective allowable

detection latencies we can reduce the number of detectors and still achieve 0 SDC.

And for 0 DUE we keep low cost shadow copies of architecture state as described

in Section 5.1.2.

Now we contain errors before they commit and as shown in Table 5.2, it requires

2.5K detectors for functional blocks in pipeline for their allowable detection latency

requirements.

Overheads. 2.5K detectors cause an area overhead equivalent to 2.5K bit SRAM.

Complexity for accommodating 2500 (low latency) interconnects occupy ∼4 metal

Protecting Entire Core with Acoustic Wave Detectors 131

layers causing an unacceptable area overhead as shown in Figure 5.1. Moreover,

control circuit for handling 2500 logic inputs is complex and requires a 2500×1
MUX (∼22K extra CMOS cells).

5.1.4 Containment in Core: Recap

We realized that achieving DUE 0 by recovering within the core demands 68K

detectors. To reduce the area overhead, we explore a modification that protects

each pipeline stage based on its allowable detection latencies. By relaxing error

detection latency requirement, the required number of detectors for efficient error

containment goes down to 2.5K. However, the resulting design is complex and the

area overhead of 2.5K interconnects is still unacceptable.

Hence, we propose to extend the error containment area beyond the commit stage

to the cache hierarchy.

5.1.5 Proposed Architecture

There are several advantages of containing and recovering from errors within cache

hierarchy [228, 234, 292], such as (i) cache assisted containment and recovery

techniques are not intrusive on the architecture and require little modifications,

(ii) they accommodate larger checkpoint periods reducing the need of frequent

checkpointing and (iii) the cost of recovery in terms of the amount of work to be

undone is little.

Including caches in the error containment boundary implies that we can further re-

lax the detection latency requirement which in turn reduces the required detectors.

According to Figure 5.1 relaxing detection latency constraint by 10× (i.e., from

10 cycles to 100 cycles) reduces the number of required detectors by 90× and this

reflects in 100× decrease in complexity and interconnects overhead. We believe

that a good trade-off between detection latency, area overhead and complexity lies

within 30-300 detectors, which means 30-100 cycles latency at 2 GHz.

Our proposed architecture to provide DUE 0 cores consists of the following steps:

Error detection. We use acoustic wave detectors to detect particle strikes in the

core. We opt for a simple configuration with a number of detectors in the range of

Protecting Entire Core with Acoustic Wave Detectors 132

Lo
g

ic

L1 L2 Main

Memory

Containment Boundary

Off chip

LLC

Private/

Shared

Core

Includes logic, RF, L1

Includes logic, RF, L1 and L2

Includes logic, RF, L1, L2 and LLC (shared)

Figure 5.3: Error Containment Architecture

30-300, which provides a detection latency in the range of 30-100 cycles running

at 2 GHz.

Data error containment. We choose our containment area to be the cache

hierarchy. Figure 5.3 shows the different error containment boundaries for an

architecture with a single core and three levels of cache. Notice that the boundary

of the containment area can be configured to be at any cache level. We assume

that the caches themselves are protected by some mechanism. A datum will be

correct once it has spent more time than the worst-case error detection latency

in the cache (this way, we guarantee that the datum was produced correctly). In

order to guarantee containment, we do not allow any data to go out of containment

region before making sure that data is error free.

Data checkpointing. Containment boundary helps deciding the checkpoint

boundary. By definition, containment boundary lies within the checkpoint bound-

ary. If not, then there is a possibility of corrupting the checkpoints. Every con-

ceptual checkpoint will consist of the architectural state (e.g., RF, PC, etc) and

the memory data. Process of checkpointing would include saving register values

and flushing cache block values within the checkpoint boundaries that have been

modified since the last checkpoint.

Data recovery. Upon an error, data recovery consists of invalidating all tem-

poral data within the checkpoint boundary, and resume execution from the latest

checkpoint. Notice that this checkpoint will consume the data from outside the

Protecting Entire Core with Acoustic Wave Detectors 133

checkpoint area (and therefore, the containment area), that is guaranteed to be

correct.

Next, we will discuss implementation aspects of proposed architecture.

5.2 Implementation of Proposed Architecture:

Unicore Processor

Without loss of generality, we will use as a running example of a system comprising

a single core and two levels of cache, with LLC as the boundary of the containment

and checkpoint area. For instance, a system with three levels of cache, and L3 as

the boundary would be implemented exactly the same way, with L3 acting as our

described LLC, and L1 & L2 collectively acting as our L1 cache. For the rest of the

text, we assume that worst-case detection latency for the acoustic wave detectors

is ErrorDetectionLatency.

5.2.1 Error Containment Mechanism

The purpose of the containment mechanism is to make sure that only error free

data goes beyond the containment area. In our implementation, where we use

acoustic wave detectors as error detection mechanism, only data that has spent

more than ErrorDetectionLatency (EDL) cycles within the containment bound-

ary has been produced in the right way.

We propose to add one counter for entire cache within the containment area. The

counter monitors the modified data in the cache and keeps track of the correctness

by counting ErrorDetectionLatency cycles.

Initially, the counter is set to force unknown state (i.e. counter = ”X”) as there

is no modified data in the cache. We reset the counter (i.e., counter = ”0”) once

any cache line in the given cache is modified following a write operation. Until

counter finishes counting ErrorDetectionLatency cycles, the cache is in quaran-

tine as we are not sure if it contains erroneous data or correct data. Once counter

reaches ErrorDetectionLatency cycles the cache is said to be verified. A verified

cache means that the updated data is error free as no error has been detected.

Protecting Entire Core with Acoustic Wave Detectors 134

“Verified”

Time (#cycles)

D = 0

Counter = X

D = 1

Counter = 0

WRITE

D = 1

Counter = EDL

EDL cycles

t t + EDL

“Don’t care” Quarantine (“Not Verified”)

Figure 5.4: Time-line of the events in cache. D indicates the dirty bit and
EDL stands for error detection latency. Once the cache line has been written
the cache line enters in quarantine state. After ErrorDetectionLatency cycles

the cache line is now in verified state and also error free.

Remember, counter is reset (i.e., counter = ”0”) upon every write operation from

the core. Read operations do not affect the state of counter.

Example. Figure 5.4 shows the basic events for a cache line in the cache. Before

the write operation the line is clean (i.e., dirty bit, D = ”0”) and counter = ”X”.

Following a write operation at time t, D = ”1” and counter is reset (i.e., counter =

”0”). After ErrorDetectionLatency cycles entire cache is verified. Now, we will

discuss how the normal cache operation is carried out in proposed architecture.

For that purpose we will be using Figure 5.5, which shows different events that

may happen to cache lines within the cache of containment area.

5.2.1.1 Dealing with Verified Cache.

Figure 5.5(ii) shows the case of evictions of dirty cache lines in a verified cache, we

allow them to make forward progress and leave the containment boundary. Later,

they can be part of the new checkpoint.

5.2.1.2 Dealing with Not-Verified Cache.

Not-verified cache is in quarantine. Read operations from the core do not alter the

state of counter, since potentially erroneous data will not leave the containment

area.

Evictions from L1 cache. Figure 5.5(i) shows the actions to be taken upon an

eviction of a dirty cache line when the L1 cache is not verified. First, we will evict

Protecting Entire Core with Acoustic Wave Detectors 135

Dirty (D=“1”)

“Not Verified” Cache

L1 LLC

Read/Write

Miss Eviction of the line to LLC

Dirty (D=“1”)

“Verified” Cache

Read/Write

Miss Eviction of the line to LLC

(i)

(ii)

L1
LLC

Dirty (D=“1”)

“Not Verified” Cache

LLC

Memory
Read/Write

Miss Stall until verified

Force checkpoint then

Eviction of the line to memory

(iii)

Figure 5.5: Error containment in cache for evictions caused by read and write
operations. D indicates the dirty bit.

the cache line to LLC. The counter could be inherited or pessimistically reset at

LLC. Alternatively, we could stall until the L1 cache is verified before evicting

modified cache line to LLC.

Evictions from LLC. Evictions of dirty cache lines from LLC (i.e., containment

boundary) when LLC is not verified are not allowed as is the case of Figure 5.5(iii).

In such event we will stall until LLC is verified.

In Section 3.6 we analyze all the cases discussed above for their impact on perfor-

mance and observe tradeoff between error containment area and cost of contain-

ment using real life workloads.

Protecting Entire Core with Acoustic Wave Detectors 136

5.2.2 Creating Checkpoints

The checkpointing process should include:

• Copying the architectural state.

• Saving the program counter.

• Wait for all caches to be verified.

• Writeback all dirty data in lower (verified) caches to main memory.

For checkpointing architectural state we suggest to use shadow structures as pro-

posed in [293]. The copy of program counter is stored in a special register. All

these structures are assumed to have error recovery capabilities (e.g., ECC).

We anticipate that writing all dirty data present in all caches to memory may be

expensive. Similar to previous works [228, 292], we adopt an incremental check-

pointing where only dirty lines from the caches closest to the core (L1 in our

running example) are written back to the cache in the boundary of the checkpoint

area (LLC in our running example). Dirty lines in the LLC are now part of the

checkpoint. In this configuration, the data part of the checkpoint will be split

between the LLC and main memory.

In order to implement such optimization, we add a checkpoint bit (CH) in every

cache line of the cache in checkpoint boundary (i.e., every cache line of LLC).

Initially the checkpoint bit is set to ”0”, which means that the line is not part of

the checkpoint.

Periodicity. In this proposal we take periodic incremental checkpoints. The

frequency of checkpoints and its implications are further discussed in Section 5.5.

Next, we discuss how we handle events to cache lines of cache in the checkpoint

boundary (LLC in our running example).

Figure 5.6(i) shows the the case of a dirty cache line in LLC that is part of

checkpoint. In that case we allow any eviction since the cache lines are already

part of the checkpoint and do not affect the recovery of the correct architectural

state. Moreover, write hits to a cache line that is part of the checkpoint will result

into an eviction as the cache line cannot be modified without having a safe copy in

main memory. Therefore, we evict the cache line to memory, reset the checkpoint

Protecting Entire Core with Acoustic Wave Detectors 137

Dirty (D=“1”)

Checkpointed (CH = “1”)

Cache line

LLC

Memory
Read/Write

Miss Eviction of the line to memory

(i)

Dirty (D=“1”)

Checkpointed (CH = “1”)

Cache line

LLC

Memory
Write Hit

Eviction of the line to memory

Dirty (D=“1”)

Not Checkpointed (CH = “0”)

Cache line

LLC

Memory
Read/Write

Miss Force checkpoint then

Eviction of the line to memory

(ii)

(iii)

Figure 5.6: Checkpointing in the caches due to the evictions caused by read
and write operations. D indicates the dirty bit and CH stands for the checkpoint

bit.

bit and then serve the write as shown in Figure 5.6(ii). Finally, in the case of

Figure 5.6(iii) an eviction of dirty line that is not part of a checkpoint in LLC will

force a checkpoint before being evicted to memory.

Waiting for verified data. It is important to note that in order to take a

checkpoint, we need to stall until the caches (L1 and LLC) are verified. Once they

are verified, we can start writing back all cache lines to checkpoint boundary to

take checkpoint.

Protecting Entire Core with Acoustic Wave Detectors 138

5.2.2.1 Validating the Checkpoint.

Checkpointing process is not free from suffering particle strikes. Therefore, we

need to pay careful attention to guarantee that the checkpoint is valid.

WRITE Verified

Time (#cycles)

t t + EDL

Checkpoint Valid = “EDL”

tstrike tstrike + EDL

Error Detected

Tc + EDL

Checkpoint Valid = “0”
CH = “1” CH = “1”

Tc

EDL cycles

Figure 5.7: A scenario indicating the importance of validating the checkpoint.
CH indicates the checkpoint bit and EDL stands for error detection latency.
Notice the CheckpointValid counter that indicates the validity of the checkpoint.

Consider a scenario as shown in Figure 5.7. It shows a cache line in LLC. The cache

line is part of checkpoint at instance Tc. Assume a situation where the cache line is

hit by a particle at instance tstrike, where tstrike ∈ [t, t+ ErrorDetectionLatency].

In this case if Tc < (tstrike + ErrorDetectionLatency) the strike will be detected

after taking checkpoint, resulting in incorrect checkpoint.

To avoid creation of corrupted checkpoints, we also add one global counter Check-

pointValid to LLC (i.e., cache in the checkpoint boundary). As soon as the check-

point process is finished the checkpoint bit is set, at the same time the counter

CheckpointValid is set to ErrorDetectionLatency, and we let it decrement. After

ErrorDetectionLatency cycles, When CheckpointValid reaches 0, it asserts valid

signal indicating a valid checkpoint as no error was detected.

CheckpointValid counter guarantees the correctness of the checkpoint in the LLC.

However, in order to be able to recover we must keep two copies of the state (one

for the yet-to-be-valid checkpoint, and the other of previous valid checkpoint) of

RAT, RF and PC. If an error was detected before the CheckpointValid reaches 0,

we would just rollback to last valid checkpoint, ignoring the checkpoint bit of all

cache lines in LLC.

Protecting Entire Core with Acoustic Wave Detectors 139

5.2.3 Recovering from Error

Upon a particle strike, one of the detectors would trigger detecting the error.

Recovering from an error requires a few steps:

1. Once we know the checkpoint is valid (CheckpointValid = ”0”) the recovery

may begin. If not, we have to discard current checkpoint as explained earlier,

and apply the recovery algorithm.

2. Restore architectural state from shadow copy.

3. Invalidate all the dirty lines and set the counter of L1 cache to force unknown

state (i.e. counter = ”X”).

4. Invalidate all the dirty lines of LLC that are not part of the checkpoint.

5. Set the counter of LLC to force unknown state (i.e. counter = ”X”).

5.2.4 Intrusiveness of Design

The proposed architecture is extremely simple. It achieves SDC- & DUE 0 core

using just one counter for caches within the containment area (i.e., L1 and LLC).

It also requires one checkpoint bit for every cache lines in the cache that is the

checkpoint boundary (i.e., LLC). To validate the checkpoint we have one global

counter CheckpointValid for LLC.

Regarding the checkpoint itself, we maintain 2 of the most recent copies of RAT,

RF and PC, encoded using ECC. Having a shadow register file for checkpointing

register files and keeping the log of RAT incurs little area and power overhead [293].

Besides their impact on performance is minimal as retrieving and saving the data

can be done simultaneously and in 1 cycle.

Also during the recovery process, invalidation of cache lines and clearing the check-

point bits and counters can be done in one cycle as proposed in [294].

Protecting Entire Core with Acoustic Wave Detectors 140

5.3 Implementation of Proposed Architecture:

Multicore Processor

In this section, we discuss the scalability of the proposed architecture in multicore

systems and describe the interaction with the processor during normal operation.

We also define the most important challenges for achieving high levels of error

protection and error containment.

5.3.1 Shared Memory Architecture

In a shared memory architecture, the LLC is physically distributed in multiple

banks but logically unified among all cores. As data are shared among different

cores, the allocated blocks and all cache accesses are controlled via a coherency

protocol. For our baseline core, we have chosen a MOESI protocol [7].

5.3.1.1 MOESI Protocol for Error Containment.

The MOESI protocol allows several copies of cache lines across multiple processors

to be different from the copy in shared LLC. Owned (O) cache lines are responsible

to share data among the requesting processors. Owned state also writes back the

data in the case of replacement. All other cache line copies remains in Shared (S)

state. Moreover, cache lines in Modified (M) and Owned (O) states hold dirty

data.

The most important issue in a shared memory architecture is that a dirty block can

be directly read by another processor without writing back to the shared memory.

Let us show the potential issue through an example. We consider 2 cores with

shared memory. Figure 5.8 shows a scenario in which “core 0” has taken a check-

point at time Tc. At instance t1 “core 0” writes in cache. At time t2 “core 1”

requests a read from the cache in “core 0” following a cache miss in local cache.

Now, if there is an error at time tstrike in “core 0”, detectors from “core 0” trigger

after ErrorDetectionLatency cycles at time t3. Now, as soon as “core 0” recovers

using the local checkpoint taken at time Tc, “core 1” will have invalid data. To

Protecting Entire Core with Acoustic Wave Detectors 141

t1 t2tstrike
t3 = tstrike + EDL

Error Detected

EDL cycles

Tc

Checkpoint

Core 0

WRITE

Core 1

READ

Figure 5.8: Handling error containment in a shared memory accesses for multi-
core architecture. EDL stands for error detection latency.

avoid such cases we propose to stall all the read requests coming from other cores

and once the cache is verified, it can service read requests from other cores.

Invalid Exclusive

Shared
Owned

Modified

Rd Hit

Bus Rd

Rd Hit

Wr Hit ->Reset Verify bit

Bus RdX

Rd Miss

Reset

Rd Hit

Rd Miss

(From memory)

Wr Hit-> Reset Verify bit

Figure 5.9: MOESI protocol: Transitions are shown in the trigger 7→action
format. Underlined transition triggers and actions are the same as uniprocessor
architecture. The transition triggers in gray boxes are extensions for multicore
shared memory architecture. ”Wr” stands for write and ”Rd” stands for read

operation. ”Stall”7→ErrorDetectionLatency cycles.

Protecting Entire Core with Acoustic Wave Detectors 142

5.3.1.2 MOESI Protocol for Checkpointing.

We adopt an incremental checkpointing, similar to the case of uniprocessor archi-

tecture explained in Section 5.2.

Compared to uniprocessor system, shared memory introduces a new situation that

needs to be handled to properly create checkpoints: when one processor invalidates

dirty data from another processor that is not part of the checkpoint. If it turns

out that the requestor processor suffers an error, and triggers a recovery, it has to

trigger another recovery in the owner processor in such a way that invalidated data

can be recovered. In order to deal with this case, we employ previously proposed

solutions that keep track of the sharing history [295, 296]. We summarize the

adapted MOESI protocol in Figure 5.9.

5.3.1.3 Recovering from Error.

If a core triggers an error, data recovery takes place in the same way as described

for uniprocessor. The only caveat is that we will have to check the sharing history

in order to initiate the recovery process in other processors cores [295].

5.4 Managing System Calls, Interrupts and Ex-

ceptions

In this section we will discuss how we can handle I/O requests and exceptions.

5.4.1 Handling Interrupts.

Interrupts are asynchronous events coming from the core and external devices

(i.e., disk controller). Interrupts are crucial, as the requestor is outside the error

containment area.

Similar to [297], we allow only error free stores to propagate to memory. We pro-

pose to buffer the requests in local memory, protected with ECC for ErrorDetectionLatency

cycles. This assures the correctness of each outgoing store and all its preceding

instructions. The size of the buffer should be large enough to hold the I/O requests

Protecting Entire Core with Acoustic Wave Detectors 143

Figure 5.10: Extending the architecture to handle interrupts and I/O traffic.

for ErrorDetectionLatency cycles. Also, in order to facilitate successful recovery,

as we allow all the error free stores to commit to memory after the last checkpoint,

we must keep the load values issued so far in the buffer. Upon recovery we replay

the loads so all the committed stores are correctly reproduced.

We propose to have one buffer for each I/O device to facilitate successful recov-

ery, with an expected interrupt response time penalty of 30 to 1000 ns, which is

acceptable for typical asynchronous interrupts.

5.4.2 Dealing with Exceptions.

Exceptions are synchronous events such as a ”div 0” instruction or a page fault on

instruction fetch. When the exception occurs, the corresponding entry of ROB is

marked. Since in modern processors exceptions are rare events [7], we propose to

delay the exception service by ErrorDetectionLatency cycles until all potential

Protecting Entire Core with Acoustic Wave Detectors 144

errors have been detected. In case of no error detection, we assume the exception

to be genuine and invoke the respective handler and handle it precisely.

5.4.3 Context switching and Multi-programming.

In order to handle context-switching, we allow the preempted thread to swap out

and we propose to stall for ErrorDetectionLatency to make sure the preempted

thread is error-free. After the context switch we take a checkpoint of the incoming

thread. This is to make sure that in an event of error due to particle strike the

thread can recover its state from the instance after the context switch.

5.5 Performance Evaluation of ”SDC- & DUE

0” Architecture

In this section, we analyze how error detection latency impacts the choice of error

containment boundary. Next, we study the trade-off between checkpoint period

and the checkpoint boundary. Finally, we evaluate the performance impact of the

selected configuration for uniprocessor and multicore system with data sharing

and non-sharing applications.

5.5.1 Experimental Setup

To evaluate the proposed architecture, we use a full-system execution-driven sim-

ulator extended with OPAL and GEMS tool-set [298]. We modified the memory

hierarchy model to adapt it to the proposed architecture. Table 5.3 enlists the

important configuration parameters.

We simulate two different configurations as follows:

5.5.1.1 Single core system.

All caches are private to the processor. All the LLC misses will be served by the

main memory. We evaluate the performance of single core system using SPEC

CPU2006 benchmark set with the reference input set.

Protecting Entire Core with Acoustic Wave Detectors 145

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100k 500k 1M 2M 3M 5M

A
v

g
.

F
o

rc
e

d
 C

h
e

ck
p

o
in

ts

Checkpoint Period

Avg. forced checkpoints

(a) Forced checkpoints

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100k 500k 1M 2M 3M 5M

A
v

g
 E

v
ic

ti
o

n
s

p
e

r
C

h
e

ck
p

o
in

t
p

e
ri

o
d

Checkpoint Period

Avg. Evictions

(b) Eviction due to write hits

0

5

10

15

20

25

100k 500k 1M 2M 3M 5M

A
v

g
.

W
B

 p
e

r
C

h
e

ck
p

o
in

t
p

e
ri

o
d

Checkpoint Period

Avg. WB L1 to LLC

(c) Writeback from L1 to LLC

Figure 5.11: Checkpoint events in LLC checkpoint boundary

Protecting Entire Core with Acoustic Wave Detectors 146

Parameter Value

Number of Processors 1-16
Instr Window / ROB 16/48 entries
Frequency 2GHz

L1 I/D Cache per Core 16 KB, 4-way, 64B
LLC Cache per bank 256 KB, 4-way, 64B (distributed 1-16 banks)
L1 access Latency 2 cycles
LLC access Latency 6 cycles

Table 5.3: Configuration Parameters

5.5.1.2 Multicore system.

Multi-core system consists of 16 cores. We present analysis of multicore systems

with following categories of applications, where each trace runs for 20 million

cycles.

• Data non-sharing applications: To obtain various trade-off details for

data non-sharing applications we replicate the same application for all 16

cores (i.e., all 16 cores running the same application independently). We

evaluate performance of this configuration using SPEC CPU2006 benchmark

set with reference input set.

• Shared Memory Applications: For this 16 core system we use SPEC

OMP2001 benchmark set with appropriate input set to observe various trade-

offs.

5.5.2 Error Detection Latency vs Containment Area

We first analyze the trade-off between the error detection latency and the size of

the error containment area. As we mentioned in Section 5.2.1, non-verified data

is not allowed to leave the error containment and we need to stall until data is

guaranteed to be correct, which degrades performance. We evaluate the range of

detection latency 30 to 100 cycles as proposed in Section 5.1.5.

Table 5.4 shows result for having one counter for entire L1 cache. It shows total

number of evictions that create stalls when L1 is not verified. With detection

Protecting Entire Core with Acoustic Wave Detectors 147

Detection latency Total #Stalls Avg. Wait cycles

10 cycles 6111 3.45
30 cycles 15729 25.99
100 cycles 38049 40.67
1000 cycles 55164 108.2

Table 5.4: Containment cost (i.e., #Stalls and wait cycles for each stall) for
containment boundary limited to L1

latency of 100 cycles the total stalls (i.e., over a period of 20 million cycles) are

more than 35K, which implies that having one stall every 1K cycles. It also shows

the average number of cycles that we need to stall for the non-verified L1 cache

to be verified. Overall, we observe that for ErrorDetectionLatency of 100 cycles,

we experience a 7% slowdown only due to containment in L1. Even for 30 cycles,

slowdown is 2%.

For the sake of comparison, we also experimented with more expensive solutions:

(i) having one counter for each line, and (ii) one counter per set. Compared to

having a counter per line, we observe an increase in total stalls by 5% for one

counter per set, and 21% to one counter for the whole cache. Unfortunately, the

slowdown due to containment is still high when having a counter per line, with

5.4% slowdown with 100 cycles of ErrorDetectionLatency, and 1.6% for 30 cycles.

When moving containment boundary to LLC, we observed only a handful of stalls.

Therefore, we conclude that the best option is to have LLC as containment bound-

ary, with error detection latency of 100 cycles (which requires 30 detectors) and

slowdown of 0.01%.

5.5.3 Checkpoint Length vs Checkpoint Area

Now, we observe the tradeoff between the checkpoint length and the cost of the

checkpointing. LLC is the checkpoint boundary. In our adopted architecture as

described in Section 5.2.2, we have identified the major factors that affect the

performance as follows:

1. Wait cycles to guarantee that caches in containment boundary are verified.

Protecting Entire Core with Acoustic Wave Detectors 148

2. The write-back of dirty cache lines to the checkpoint boundary upon check-

point creation.

3. Forced checkpoint events due to evictions of dirty lines that are not part of

checkpoint.

4. Evictions to memory due to write hits on dirty and checkpointed lines.

Notice that factors 3-4 are runtime factors, and will largely depend on the footprint

of the application (and therefore, the size of the selected checkpoint boundary and

the checkpoint period). On the other hand, factors 1-2 are the overhead that is

paid at checkpoint creation.

Figure 5.11(a) shows the number of forced checkpoints, per checkpoint length, for

different checkpoint periods. As one can see, the number of extra checkpoints is

negligible, and therefore we can opt for long checkpoints in the order of millions

of cycles. Figure 5.11(b) shows the number of extra evictions to main memory

caused by write hits on checkpointed lines. Numbers are relative to the length of

the checkpoint period. Regarding the cost of creating a checkpoint, we show in

Figure 5.11(c) the extra write-backs we have to perform when taking a checkpoint.

As shown in the figure, increasing the checkpoint period from 100K cycles to 2

million cycles brings down the write-back traffic by more than 10×, and after that

benefits flatten. Therefore, we opt for 2 million cycles checkpoint length.

We detail the results for a checkpoint period of 2 million cycles for our workloads

in Figure 5.12. The results indicate that, for every 2 million cycles we will have

to write-back 97 dirty cache lines from verified L1 cache to LLC.

Finally, we assess how much time we need to wait until we can create the check-

point. Figure 5.13 shows the average wait cycles for the LLC to be verified before

taking a checkpoint for a checkpoint period of 2 million cycles. For detection la-

tency of 100 cycles, every 2 million cycles we will have to wait 50 cycles to take a

checkpoint in LLC.

Next, we will see how the performance is impacted in the proposed architecture.

Protecting Entire Core with Acoustic Wave Detectors 149

117

182

1
14

69 69

92

60
44

112

158

207

1

81
69

159

61

107

72

251

121

200

94 91

36 37

110
97

0

50

100

150

200

250

300

 4
0

0
.p

e
rl

b
e

n
ch

 4
0

1
.b

zi
p

2

 4
0

3
.g

cc

 4
1

0
.b

w
a

v
e

s

 4
2

9
.m

cf

 4
3

3
.m

il
c

 4
3

4
.z

e
u

sm
p

 4
3

5
.g

ro
m

a
cs

 4
3

6
.c

a
ct

u
sA

D
M

 4
3

7
.l

e
sl

ie
3

d

 4
4

4
.n

a
m

d

 4
4

5
.g

o
b

m
k

 4
4

7
.d

e
a

lI
I

 4
5

0
.s

o
p

le
x

 4
5

3
.p

o
v

ra
y

 4
5

4
.c

a
lc

u
li

x

 4
5

6
.h

m
m

e
r

 4
5

8
.s

je
n

g

 4
5

9
.G

e
m

sF
D

T
D

 4
6

2
.l

ib
q

u
a

n
tu

m

 4
6

4
.h

2
6

4
re

f

 4
7

0
.l

b
m

 4
7

1
.o

m
n

e
tp

p

 4
7

3
.a

st
a

r

 4
8

1
.w

rf

 4
8

2
.s

p
h

in
x

3

 4
8

3
.x

a
la

n
cb

m
k

A
v

e
ra

g
e

A
v

e
ra

g
e

 W
ri

te
b

a
ck

s

SpecCPU

Writeback Events

Figure 5.12: Average dirty lines to be written back from L1 to LLC

53 54

45

50 50
46

51 50
48 48

54

49
47 48

59

48 49 48
51 52

50 50 49
46 46

56 54

50

0

10

20

30

40

50

60

70

4

0
0

.p
e

rl
b

e
n

ch

4

0
1

.b
zi

p
2

4

0
3

.g
cc

4

1
0

.b
w

a
v

e
s

4

2
9

.m
cf

4

3
3

.m
il

c

4

3
4

.z
e

u
sm

p

4

3
5

.g
ro

m
a

cs

4

3
6

.c
a

ct
u

sA
D

M

4

3
7

.l
e

sl
ie

3
d

4

4
4

.n
a

m
d

4

4
5

.g
o

b
m

k

4

4
7

.d
e

a
lI

I

4

5
0

.s
o

p
le

x

4

5
3

.p
o

v
ra

y

4

5
4

.c
a

lc
u

li
x

4

5
6

.h
m

m
e

r

4

5
8

.s
je

n
g

4

5
9

.G
e

m
sF

D
T

D

4

6
2

.l
ib

q
u

a
n

tu
m

4

6
4

.h
2

6
4

re
f

4

7
0

.l
b

m

4

7
1

.o
m

n
e

tp
p

4

7
3

.a
st

a
r

4

8
1

.w
rf

4

8
2

.s
p

h
in

x
3

4

8
3

.x
a

la
n

cb
m

k

A
v

e
ra

g
e

A
v

g
.

W
a

it
cy

cl
e

s

SpecCPU

Waitcycles to verify

Figure 5.13: Average wait-cycles until LLC is verified

Protecting Entire Core with Acoustic Wave Detectors 150

5.5.4 Uniprocessor Performance

Figure 5.14 evaluates the proposed single core architecture in terms of performance

vs. cost of containment and recovery. The experimentation shows that the average

performance slowdown is 0.1% and the worst case performance degradation is

0.42%. We notice that the average performance degradation due to containment

is almost 0, since there are no eviction of dirty lines from non-verified LLC. The

performance degradation comes from writing back dirty data from L1 to LLC

during periodic and forced checkpoints.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

 4
0

0
.p

e
rl

b
e

n
ch

 4
0

1
.b

zi
p

2

 4
0

3
.g

cc

 4
1

0
.b

w
a

v
e

s

 4
2

9
.m

cf

 4
3

3
.m

il
c

 4
3

4
.z

e
u

sm
p

 4
3

5
.g

ro
m

a
cs

 4
3

6
.c

a
ct

u
sA

D
M

 4
3

7
.l

e
sl

ie
3

d

 4
4

4
.n

a
m

d

 4
4

7
.d

e
a

lI
I

 4
5

0
.s

o
p

le
x

 4
5

3
.p

o
v

ra
y

 4
5

4
.c

a
lc

u
li

x

 4
5

6
.h

m
m

e
r

 4
5

8
.s

je
n

g

 4
5

9
.G

e
m

sF
D

T
D

 4
6

2
.l

ib
q

u
a

n
tu

m

 4
6

4
.h

2
6

4
re

f

 4
7

0
.l

b
m

 4
7

3
.a

st
a

r

 4
8

1
.w

rf

 4
8

2
.s

p
h

in
x

3

 4
8

3
.x

a
la

n
cb

m
k

A
v

e
ra

g
e

S
lo

w
d

o
w

n

SpecCPU

WB Cycles: Periodic Checkpoints

WB Cycles: Force Checkpoints

Containment Cycles

Figure 5.14: Performance impact of containment and checkpointing LLC
cache in single core architecture

5.5.5 Performance of Multicore for Data Non-Sharing Ap-

plications

We observe similar results for 16 core system for data non-sharing workloads in

Figure 5.15. Notice, that we depict the results for the slowest core of the 16 running

cores. The average total degradation in performance is 0.1% and the worst case

degradation is 0.45%.

Protecting Entire Core with Acoustic Wave Detectors 151

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

 4
0

0
.p

e
rl

b
e

n
ch

 4
0

1
.b

zi
p

2

 4
0

3
.g

cc

 4
1

0
.b

w
a

v
e

s

 4
2

9
.m

cf

 4
3

3
.m

il
c

 4
3

4
.z

e
u

sm
p

 4
3

5
.g

ro
m

a
cs

 4
3

6
.c

a
ct

u
sA

D
M

 4
3

7
.l

e
sl

ie
3

d

 4
4

4
.n

a
m

d

 4
4

7
.d

e
a

lI
I

 4
5

0
.s

o
p

le
x

 4
5

3
.p

o
v

ra
y

 4
5

4
.c

a
lc

u
li

x

 4
5

6
.h

m
m

e
r

 4
5

8
.s

je
n

g

 4
5

9
.G

e
m

sF
D

T
D

 4
6

2
.l

ib
q

u
a

n
tu

m

 4
6

4
.h

2
6

4
re

f

 4
7

0
.l

b
m

 4
7

3
.a

st
a

r

 4
8

1
.w

rf

 4
8

2
.s

p
h

in
x

3

 4
8

3
.x

a
la

n
cb

m
k

A
v

e
ra

g
e

S
lo

w
d

o
w

n

SpecCPU

WB Cycles: Periodic Checkpoints

WB Cycles: Force Checkpoints

Containment Cycles

Figure 5.15: Slowdown due to containment and checkpointing LLC cache in
the 16-core system for private memory applications

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

S
lo

w
d

o
w

n

SpecOMP

WB Cycles: Periodic Checkpoints

WB Cycles: Force Checkpoints

Containment Cycles

Figure 5.16: Slowdown due to containment and checkpointing LLC cache in
the 16-core system for shared memory applications

Protecting Entire Core with Acoustic Wave Detectors 152

5.5.6 Multicore Shared Memory Performance

Figure 5.16 shows the impact on performance for 16 cores shared memory ar-

chitecture. Again, we collect data for the slowest core to reach the 20 million

executed cycles. As one can see, the average slowdown is 0.4%. Again even in the

case of shared memory we do not have any dirty evictions from LLC before LLC

is verified. Hence, the slowdown due to containment is zero. In shared memory

architecture we have more cache lines evicting after the LLC is verified. This

results into increased forced checkpoints. Forced checkpoints attribute to about

0.3% average slowdown.

5.6 Related Work

In this section, we will describe some techniques used for protecting the entire core.

We will discuss techniques for detecting and recovering from errors. Usually, an

error detection scheme (i.e., DMR) is combined with error recovery scheme (i.e.,

Checkpointing) for providing recovery. Several popular error detection mechanisms

have been compared and summarized in Table 5.1.

5.6.1 Error Detection and Recovery in Core

Unlike error codes, the execution redundancy techniques resort to fault detection

via comparing outputs from redundant stream of instructions. Execution redun-

dancy is a widely used technique to detect errors in entire core, either using the

multithreading capabilities [57, 68] or hardware redundancy [58, 115]. Execution

redundancy techniques can provide higher error coverage across the processor chip

compared to other error detection techniques (i.e., error codes). However, execu-

tion redundancy can cost a lot in terms of area, power and performance overheads

compared to error codes as detailed in Table 5.1.

5.6.1.1 Dual Modular Redundancy with Recovery

Modular redundancy can be applied to provide error detection for entire modules

of both data storage and combinational logic. DMR is the simplest form of mod-

ular redundancy with a comparator as shown in Figure 5.17(a). DMR provides

Protecting Entire Core with Acoustic Wave Detectors 153

Processor 0

Processor 1

Comparator

Error = 1

Output

(a) Error detected in DMR

Processor 0

Processor 1

Comparator

Internal

Error Signal

(b) Internal error signal in processor 1

Processor 0

Processor 1

Comparator

(c) Copying state of processor 0 to pro-
cessor 1

Processor 0

Processor 1

Comparator

Error = 0

Output

(d) Normal operation resumes

Figure 5.17: Implementation of dual modular redundancy scheme for error
detection and recovery.

excellent error detection because it detects all errors except for errors due to design

bugs, errors in the comparator, and unlikely combinations of simultaneous errors

that just so happen to cause both modules to produce the same incorrect outputs.

For error detection DMR can be implemented at various granularities. For in-

stance, in a coarse grain implementation it is possible to replicate an entire pro-

cessor or replicate a cores within a multicore processor as shown in Figure 5.17.

At a finer grain, it is possible to replicate individual functional unit or a cache

line. Finer granularity can provide finer diagnosis, but it also increases the relative

overhead of the comparator. In modular redundancy the redundant modules do

not have to be identical to the original hardware.

Protecting Entire Core with Acoustic Wave Detectors 154

Once the output mismatch is detected as shown in Figure 5.17(a). The system

triggers an error and stalls until the error is located and an internal error signal is

generated which is shown in Figure 5.17(b). For instance, in processor 0 and pro-

cessor 1 the caches are parity protected and any bit flip will be detected via parity

which is responsible to generate the internal error signal. Without this information

it is not possible to identify location of the error. Once the erroneous processor

is identified the clean processor state from processor 0 is copied to processor 1

(Figure 5.17(c)). Once both the processor states are identical normal operation

can resume. Such a system’s recovery depends on its ability to generate the in-

ternal error signal and the internal error detection mechanisms. Alternatively, a

DMR system can also recover using checkpoints. Checkpointing mechanisms will

be discussed in Chapter 7.

A system with DMR uses more than two times as much hardware (one redun-

dant module and a voter) compared to an unprotected system. Adding redundant

hardware also increases corresponding energy consumption. These overheads are

unavoidable while designing systems in which the reliability requirements are ex-

tremely high. However, these overheads are not acceptable for commodity pro-

cessors where extracting maximum performance in a given power envelope is a

primary concern.

5.6.1.2 Lockstepping with Recovery

Lockstepping detects the error by executing the same instructions in redundant

threads and comparing them. Figure 5.18 shows one such implementation of lock-

stepped architecture where thread–0 and thread–1 both execute same instructions.

In lockstepping, both the redundant copies are cycle synchronized. A hardware

comparator compares the state of redundant computations every cycle as shown

in Figure 5.18. As a result, any error in one of the copies will produce different

output and will be detected in the same cycle. Lockstepped architectures are very

popular and provide great degree of coverage because of which they are part of

several commercial architectures [54, 113, 299, 300]. A lockstepped architecture

can reduce the SDC of system. However, for reducing the DUE it still requires a

separate error recovery mechanism. As the lockstepped architectures have detec-

tion latency of 1 cycle, usually the recovery can be done via maintaining copies of

Protecting Entire Core with Acoustic Wave Detectors 155

Thread 0

Thread 1

Copying clean state

State mismatch

Error = 1

Figure 5.18: Lockstep error detection and recovery via retry

architecture states (i.e., shadow copies of register file etc. per thread). As the in-

structions commit the speculative state is written to a temporary state from where

subsequent instructions can read and execute. Once the threads are checked for

errors (after one cycle) the temporary state can be copied to architecture state.

Upon an error the architecture state is loaded back to both the redundant threads

and execution can restart from the instruction after the last correctly retired in-

struction.

Lockstepping can be implemented purely in hardware which makes it easy to

implement. It can detect almost all soft errors and permanent errors as long as

the two redundant copies are fed the exact same inputs. The errors it cannot

detect are the ones which affect both the redundant threads in exactly the same

way.

Lockstepping has significant disadvantages. Due to redundantly executing threads

it incurs huge area and power overheads. Moreover because of redundantly execut-

ing threads the performance impact is more than 1.5–2×. Cycle synchronization

in shared memory architectures can pose additional challenges. Validating lock-

stepped architectures are also considerably challenging. Lockstepping requires

both the redundant copies to execute deterministically to produce the same out-

put. This can be a problem in the floating point computations where modern

processors assume random values due to the circuit properties. This will not

cause incorrect execution, however, it can cause a lockstep failure. Lockstepping

on its own can only provide error detection and hence additional mechanisms are

essential for providing error recovery.

Protecting Entire Core with Acoustic Wave Detectors 156

5.6.1.3 Redundant Multithreading (RMT) with Recovery

Redundant Multithreading (RMT) is an error detection mechanism, that like lock-

stepping, runs redundant copies of the same instruction set and compares the

output to detect the error [113, 301, 302]. Unlike lock-stepping in RMT solu-

tion compares the outputs of only committed instructions. Because of this the

internal states of redundant threads can be significantly different in RMT. By re-

laxing the constraint of cycle by cycle comparison RMT is more flexible compared

to lockstepping. For the same reason RMT is also known as loose lockstepping.

RMT can be implemented on any mutlithreaded architecture (i.e., Simultaneous

Multithreading (SMT) [68]) or a multicore architecture [281].

An SMT core with N thread contexts can simultaneously execute N threads of the

given application [303, 304]. The fundamental idea is to use the unutilized threads

for error detection by executing redundant threads, whenever an SMT core has

fewer than N useful threads to run. RMT, depending on its implementation, may

require little additional hardware beyond a comparator to determine whether the

redundant threads are behaving identically. Implementing RMT on an SMT core

impacts on performance mainly because of the extra contention for core resources

due to the redundant threads [69]. The reason for using multiple cores, rather

than a single SMT core, is to avoid having the threads compete for resources on

the SMT core.

A large amount of work has been done in implementing redundant multithreading

for both SMT cores and multicore processors. Usually, RMT is also accompanied

by a recovery mechanism for providing error recovery. Most of the research is in

the direction of enhancing the RMT to provide recovery and reduce the associated

power and performance overheads [56–58, 65, 68–72, 75, 111, 115, 280, 281, 305,

305–307].

Now, we will discuss one such RMT implementation simultaneous and redundant

threaded processor (SRT) that protects the core in which the error is detected be-

fore the instruction commits as proposed in [65]. The SRT architecture utilizes an

underlying SMT core [6]. In the SRT implementation one of the two redundant

threads is designed to run ahead of the other thread. The outputs of the leading

and trailing threads are compared to detect the error. Here, we will discuss the

SRT implementation that compares the outputs before the register value is com-

mitted to the architecture state. The register value comparison from the leading

Protecting Entire Core with Acoustic Wave Detectors 157

and the trailing threads can be done in the register update unit (RUU) as the in-

struction retires. However, this implementation will have significant performance

overhead due to limited RUU entries. Alternatively a buffer can be employed to

hold the values of retiring instruction of the leading thread. Once the same in-

struction of the trailing thread retires the values can be compared with the values

stored in the buffer and if there is a match then only the architecture state is

updated. To avoid complex issues such as forwarding values to the subsequent

instructions in the same thread it is possible to employ separate register file per

thread [308]. These separate register files will hold the unverified register values.

Once the register values are compared and are verified to be error free they can

be written back to another register file that is protected (i.e., via ECC) and holds

the architectural state. Having separate register file to hold verified and protected

copy of architecture state also facilitates simpler recovery as upon a mismatch in

the outputs of leading and trailing thread the processor can revert back to the

clean architecture state.

The replication of the register values for leading and trailing thread is trivial in

SRT implementation. However, replicating the cached data is more involved and

require special hardware modifications [65].

In the proposed SRT technique, the trailing thread can benefit from the a-priori

information of the leading thread’s cache and branch prediction behavior to reduce

the performance impact. However, due to the comparisons of outputs the average

performance degradation is 32% compared to the SMT processor running a single

thread. The leading cause of this performance overhead is the comparison of store

instructions. Increasing the size of store queue can improve the performance by 5%.

Another disadvantage of the proposed SRT technique is in a multicore processor

with SMT cores, enabling the SRT mechanism will reduce the throughput by 100%

since half of the threads are occupied with redundant threads.

Several implementations of Core and Chip level RMT have been proposed. These

techniques try to achieve locakstepping architecture’s error coverage and reduce

the power, performance and area overheads of SRT technique. Notice that RMT

techniques have unbounded and large detection latencies (refer to Table 5.1). To

handle large detection latency some RMT proposals include checkpointing the

caches and main memory for successful error recovery. The cost of taking system

wide checkpoint is very high and we will discuss in detail various implementation

in along with other RMT enhancements in Chapter 7.

Protecting Entire Core with Acoustic Wave Detectors 158

5.6.1.4 Error Detection and Recovery using Checker Core

Main Core

C
o

m
m

it

C
o

m
p

a
re

E
x
e

cu
te

C
h

e
ck

O
p

e
ra

n
d

R
e

a
d

Bypass

Checker Core

Match?

[Inst, Result]

Figure 5.19: Implementation of dynamic implementation verification archi-
tecture (DIVA) and the functioning of the checker core

Similar to RMT where the outputs of leading and trailing threads are compared

to detect errors. Dynamic implementation verification architecture (DIVA) [67]

uses a simple in-order core that is paired with an out-of-order core as a checker

as shown in Figure 5.19. As processor designs grow in complexity, they become

increasingly difficult to fully verify and debug. DIVA proposes to implement a

relatively simple and fully verified backend processor to perform dynamic (while

the processor is in use) verification of a processor. While the main purpose of

DIVA is to ease the challenge of verification and debugging complex processor

cores, DIVA also serves to detect soft error events. Assuming that a fault affects

only the complex processor core or the backend checker, DIVA will detect the fault

and can be configured to attempt recovery.

As can be seen in Figure 5.19, DIVA ensures the error free state by making sure

that for each instruction the operation has executed correctly and also the operand

values of the given instruction flows correctly through register, memory or bypass

logic. DIVA implements simpler checker core to perform the verification. The

checker core recomputes all the operations based on the source operands and

compares it with the value that the main processor has generated. If the values

match it verifies the error free operation. However, in the event of an error it

triggers an error flag. To verify that the instructions executed in the main processor

Protecting Entire Core with Acoustic Wave Detectors 159

received the correct operands the checker core also reads the operands from its own

register file (or bypass network) and it verifies the correctness of the operands.

DIVA can detect permanent, transient as well as design errors in the main core.

The main disadvantage of DIVA is that it assumes the checker is always correct

and upon a mismatch in the result it commits the output of the checker core.

This can lead to reliability issues in the cases of executing uncached load/store

operations which cannot be executed twice. Due to added hardware DIVA causes

an average slowdown by 3–15%.

5.7 Chapter Summary

This proposed architecture potentially eliminates particle strike induced SDC &

DUE-FIT in a processor core. The architecture uses acoustic wave detectors to

detect errors. It is extremely light-weight and uses 30 detectors (i.e., area is

30 SRAM memory cells) for error detection, and provides a worst-case detection

latency of 100 cycles. The area overhead of 30 interconnects is also minimum.

Controller circuit to signal error detection is extremely simple and requires 6 3-

input and 2 2-input logic-OR gates.

Next, we proposed an error containment mechanism within the cache hierarchy to

manage the detection latency. We implement the containment boundary at the

LLC. By containing all the errors we eliminate SDC. The containment architecture

consists of L1 and LLC with one counter each, to count 100 cycles. Additionally,

we will need one counter for LLC to check the checkpoint validity. All 3 counters

are 7-bit, non-repeating word counters.

Finally, we eliminate DUE-FIT by enabling a low cost checkpointing mechanism.

Checkpointing requires a physical Checkpoint bit for every cache line in LLC. We

propose to use 2 million cycles as checkpoint length, which guarantees a good trade-

off between checkpoint overhead and recovery time. For recovery of architecture

state it requires 2 shadow copies of the architectural state (register files, RAT and

PC). We also make use of a trivial control circuit for clearing Checkpoint bit and

counters in one cycle.

Protecting Entire Core with Acoustic Wave Detectors 160

Proposed architecture eliminates particle strike induced SDC & DUE-FIT, for

systems ranging from one core to 16-core with shared memory with the worst-case

performance overhead is 0.8% for shared memory systems.

Chapter 6

Protecting Embedded Core with

Acoustic Wave Detectors

In the previous chapter, we understood how we can protect an entire processor

core against soft errors using acoustic wave detectors in a unicore and multicore

processor chip. Now we in this chapter we will take advantage of error detection

architecture based on acoustic wave detectors in providing efficient error contain-

ment and recovery in the core of an embedded processor. We target embedded

processors which are used to provide moderate performance. The architecture pro-

posed in Chapter 3 can detect and locate the errors. The architecture uses acoustic

wave detectors for dynamic particle strike detection. To provide error containment

and recovery in the embedded core first we will utilize the architecture proposed

in Chapter 5. However, our experiments conclude that in an embedded core ar-

chitecture proposed in Chapter 5 is not economical. Therefore in this chapter

we will show the modification required in the architecture to provide economical

error containment and recover in embedded domain. Finally, we will evaluate the

performance impact of the proposed architecture using embedded applications.

6.1 Experimental Setup

First, we describe the evaluation method and experimental set-up of the proposed

architecture. We evaluate the performance impact of the selected configuration

for single core embedded system.

161

Protecting Embedded Core with Acoustic Wave Detectors 162

Parameter Value

Number of Cores 1
Issue Queue (Int/FP) 15 entries
ROB 8 entries
Frequency 333 MHz
Issue Width 2
Commit Width 2
Load Queue 8 entries
Store Queue 8 entries

L1 Inst./Data Cache 16 KB, 2-way, 32B

Memory Bus Latency 100 cycles

Table 6.1: Configuration Parameters

Table 6.1 enlists the important configuration parameters and their respective

values. Notice that the embedded core is extremely simple and has just L1

cache. Such architectures have been used in many applications including smart-

phones [309]. To evaluate the proposed architecture for embedded core we use

SimpleScalar [310]. A new version of SimpleScalar has been adapted to the ARM

instruction set and is used to evaluate the performance of architectures of current

and next generation of embedded processor. It is a cycle accurate microarchi-

tecture simulator that is modified to necessitate the changes required to simulate

a state of the art embedded processor [309]. Using this experimental set up we

evaluate the error containment architecture presented in this chapter.

In this work we evaluate the performance of proposed architecture on real-life

workload for embedded systems using the Mibench benchmark set [311]. It consists

of six categories including: Automotive and Industrial Control, Network, Security,

Consumer Devices, Office Automation, and Telecommunications. These categories

offer different program characteristics that enable us to examine the architecture

more effectively.

The small data set represents a light-weight, useful embedded application of the

benchmark, while the large data set provides a more stressful, real-world appli-

cation. We run each trace for complete execution with the reference large input

set.

Protecting Embedded Core with Acoustic Wave Detectors 163

6.2 Handling SDC & DUE in Embedded Core

As we have seen in Section 1.2.5 of Chapter 1, unlike high performance servers,

embedded processors typically have smaller components, longer clock cycle times

and larger logic depths between latches. Since the design constraints for the em-

bedded systems differ from those in the high-performance domain, it implies that

the robustness techniques also differ dramatically.

Now we will explain how we can contain the soft-errors in embedded cores us-

ing acoustic wave detectors. First, we briefly discuss the placement of acoustic

wave detectors and corresponding detection latency for the studied embedded

core. Later, we detail various error containment granularities and tradeoffs involv-

ing error containment boundary and its impact on cost of recovery for embedded

core.

6.2.1 Acoustic Wave Detectors and Error Detection La-

tency

As proposed in Chapter 3 we use acoustic wave detectors to detect errors on the

core of an embedded processor. Recall from Chapter 2, the speed of acoustic waves

on silicon surface is 10 km/s and the detection range of acoustic wave detectors is

5 mm. Given the dimensions of current embedded core designs, the surface area

of an embedded core is about 4− 6mm2 including caches [309]. A single detector

would be sufficient to detect all errors occurring anywhere on the entire core area.

However, with just 1 detector the worst-case detection latency (i.e., latency to

detect a strike that is 3.5 mm away from the detector) is 350 ns (117 cycles at

333 MHz). By deploying more detectors we can reduce the detection latency.

We propose to deploy detectors in a mesh formation as discussed previously in

Chapter 3, Chapter 4 and Chapter 5.

Figure 6.1 shows the error detection latency for various mesh configurations cov-

ering an entire core area. It shows that with 18 detectors we can detect an error

on the entire core (including cache, register files etc.) within 10 cycles. To de-

crease the detection latency by 10×, the required number of detectors in the mesh

formation increases by 140×. As we can see in from the figure, 2.5K detectors are

required to obtain single cycle detection latency.

Protecting Embedded Core with Acoustic Wave Detectors 164

10

9

8

7

6

5

4

3

2

1

0

2

4

6

8

10

12

1
8

 [
6

x
3

]

2
4

 [
8

x
3

]

3
2

 [
8

 x
 4

]

4
4

 [
1

1
 x

 4
]

5
5

 [
1

1
 x

 5
]

8
4

 [
1

4
 x

 6
]

1
2

6
 [

1
8

 x
 7

]

2
2

0
 [

2
2

 x
 1

0
]

4
9

5
 [

3
3

 x
 1

5
]

2
5

0
0

 [
5

0
x

5
0

]

D
e

te
ct

io
n

 L
a

te
n

cy
 (

#
C

y
cl

e
s)

#Detectors [Mesh]

Detection latency (#Cycles)

Detection latency(#Cycles) @ 333 MHz

Figure 6.1: Error detection latency for acoustic wave detectors on embedded
core for different mesh configurations

Since, we want to eliminate SDC and DUE of the embedded core we must pro-

vide error containment and recovery. As discussed in detail in the Chapter 5, the

detection latency of acoustic wave detectors is important in deciding error contain-

ment boundary. Smaller detection latencies are desirable. Next, we will analyze

different error detection latency for different error containment granularities and

its impact on cost of containment.

6.2.2 Error Containment Granularity

The main objective of the proposed architecture is to provide error containment

for economical recovery in an embedded core. This means that we need to detect

all errors, and once an error is detected, we must contain it in order to avoid the

penetration of error into a state that is free from errors. Choosing the correct error

containment boundary is very important. It impacts the complexity and cost of

containment and recovery.

Different granularities of error containment in an embedded processor is shown

in Figure 6.2. If error is contained within the core, it implies that we guarantee

Protecting Embedded Core with Acoustic Wave Detectors 165

Figure 6.2: Error containment granularities in embedded processor

that every instruction that is being committed is error free. At this granularity, a

simple nuke & restart mechanism [312] can act as checkpointing and recovery.

Another option, similar to the proposal of previous chapter, is to contain the error

in cache hierarchy (i.e., the L1 cache). Containing errors in L1 cache implies that

we allow the erroneous data from core to go to the L1 cache but not beyond that.

In other words, the dirty data in the L1 cache can be erroneous. Containing errors

in L1 cache means that nuke & restart will not be enough to recover from errors,

and a more expensive checkpoint that includes the modified data in L1 cache will

be necessary.

The selection of the error containment boundary is deciding factor to determine

size and frequency of costly checkpointing for recovery. The closer we are to the

core, the fewer components are required to be included in checkpoint.

6.2.2.1 Error Containment Granularity: Core

The first option that we have is to contain the error within the core. The core holds

the speculative architectural state until the instruction is committed. The error

containment in core requires that every instruction is checked for error at every

cycle before it commits to the architectural state. Summarizing from Chapter 5,

the advantages of containing error in core are: (i) Error is confined to such a small

Protecting Embedded Core with Acoustic Wave Detectors 166

boundary that avoids system-wide recovery, (ii) A simple nuke & restart can be

used for recovery that will have little or no performance impact.

Error containment within core is lucrative especially for embedded cores due to

above mentioned advantages. The only caveat is it demands an error detection

latency of <1 cycle. Latency of 1 cycle will not be enough since in 1 cycle instruc-

tion is committed and if the error is in the commit stage it will end up outside

the containment boundary. So to contain the error in the commit itself we have

to have detection latency of <1 cycle. To eliminate SDC one option is to stall the

instructions by 1 cycle but that will have huge performance penalty. Alternatively,

hardened latches can be used to protect the ”commit” stage (i.e., ROB, RF etc.).

According to Figure 6.1, it will need more than 2.5K detectors to achieve er-

ror detection latency of <1 cycle for entire embedded core. This causes an area

overhead equivalent to a 2.5Kbit cache without counting for the overhead of in-

terconnects and controller circuit. This area overhead is unreasonable especially

for an embedded core where silicon estate is scarce.

6.2.2.2 Error Containment Granularity: Cache

Having minimum error detection latency is best-case scenario for having cost ef-

fective and trivial error containment. Figure 6.1 shows that for error detection

latency of 1 cycle for the entire embedded processor we will need 2.5K detectors.

This area overhead is unacceptable. However, for detection latency of 10 cycles we

will need just 18 detectors in the mesh covering embedded processor. This reduces

the area overhead by a huge margin. But now we have to contain the error for

10 cycles. One option is to stall the commit for 10 cycles until we make sure that

there is no error. But this will have huge performance impact. So we go for the

other option and allow the error to commit and go outside the core into L1 cache.

Now, we include the core and the L1 cache in the error containment boundary

as shown in Figure 6.2. By extending error containment boundary to L1 cache

we can afford to have longer detection latency and minimize number of required

detectors. The advantages are similar to the ones discussed in Chapter 5.

In our implementation we assume that the L1 cache itself has an error detection

and recovery mechanism via ECC or a technique based on acoustic wave detectors

as discussed in Chapter 4 to detect & correct the errors occurring on the L1 cache.

Protecting Embedded Core with Acoustic Wave Detectors 167

The error containment in L1 cache can be implemented in similar manner as

discussed in Chapter 5. To contain the error in L1 cache, we have to include one

counter that counts 10 detection latency cycles. This is to make sure that any data

in the cache is error free before it goes out of the cache. We need one counter for

entire cache. This counter is reset on every write operation to the cache to keep

track of all modified data. With the help of single counter, we can identify error

free cache lines which are modified. We can also know ”dirty and unverified” cache

lines, lines which are modified and in the process of being verified. Evictions of

the dirty unverified cache lines causes a stall impacting performance due to error

containment.

0%

5%

10%

15%

20%

25%

P
e

rc
e

n
ta

g
e

 o
v

e
rh

e
a

d

Overheads for Extra Writebacks

Forced Chkpt WB

Normal Chkpt WB

STALLS

Figure 6.3: Performance overhead of error containment in cache for a check-
point period of 1 million cycles

Now that we can contain the errors, we want to provide error recovery eliminate

the DUE. To provide error recovery we will need a checkpointing mechanism that

includes L1 cache. We implemented a simple checkpointing mechanism similar to

the one described in previous chapter.

We evaluate the architecture to analyze the cost of recovery for containing errors in

L1 cache. Our analysis shows that a checkpoint period of 1 million cycles is enough

to balance the cost of containment, checkpointing and performance. Figure 6.3

shows the impact on performance due to the write-back of updated cache lines

to memory for both periodic checkpoints and forced checkpoints (eviction of dirty

Protecting Embedded Core with Acoustic Wave Detectors 168

lines that are not part of checkpoint from L1 cache causes a forced checkpoint).

It also shows the cost due to stalls to make sure evicting dirty lines are free from

error. Our results show that stalls have little impact on the average performance.

The worst case slowdown (in the case of patricia) due to stalls is 1.4%. The

average slowdown due to checkpointing is 3.8% and worst case is 22.3% due to

high memory footprint of rijndael. The performance overhead of error containment

in L1 cache is not affordable.

6.2.3 Putting everything together

Overall, we saw that error containment in the core will benefit from cheap recov-

ery (i.e., nuke & restart) but requires detection latency to be less than one cycle

and that is expensive in terms of the number of required detectors. On the other

hand error containment in L1 cache, relaxes the required number of detectors but it

requires little modification in microarchitecture. However, it will require an expen-

sive checkpointing mechanism for recovery and results in an average performance

penalty of 3.8% and for worst case 22.3% which is unaffordable. Extending error

containment boundary to main memory invites non-trivial challenges associated

with checkpointing entire main memory.

This demands the necessity of a more refined error containment in the core that

reduces the overall cost of containment and recovery.

6.3 Selective Error Containment

Now, we will see how acoustic wave detectors can help in providing selective er-

ror containment within core, reducing the overall area, power and performance

overheads.

6.3.1 Protecting Individual Data Paths & Latency Guard

Bands

As we have seen from the Section 6.2.2.2, to reduce the impact of error contain-

ment on performance, we want to contain the error in the core. At the same time,

Protecting Embedded Core with Acoustic Wave Detectors 169

according to Section 6.2.2.1, to contain the error within core we have to pay the

area overhead of 2.5K detectors. We want to reduce the number of required detec-

tors and still be able to contain the error within the core without compromising

reliability.

Similar to what we have seen in Section 5.1.3 of Chapter 5, we limit our analysis

to the pipeline structures and collect the latency requirement of each structure

for providing error containment coverage to all instructions. We analyze the time

each instruction spends in traversing through the pipeline. This gives us an insight

of minimum required detection latency constraint for every structure in the core.

Later, we further try to relax the detection latency requirement and observe the

tradeoff of required number of detectors vs. error containment coverage.

6.3.1.1 Traversal of Instructions in Pipeline

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 >10

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
In

st
ru

ct
io

n
s

Issue to Commit Cycles

Issue to Commit in Pipeline

adpcm

blowfish

bit count

crc

dijkstra

fft

patricia

qsort

rijndael

sha

susan

Figure 6.4: Distribution of residency cycles in a state of the art embedded
core pipeline

A typical out-of-order embedded core has 9-stage pipeline. We identified four

different paths with different best case latencies: (i) Once the instruction has

been fetched from instruction cache until commit takes 9-10 cycles, (ii) decode to

Protecting Embedded Core with Acoustic Wave Detectors 170

commit 7-8 cycles (ii) rename/issue to commit takes 3-5 cycles, (iii) execute to

commit takes 2-3 cycles, and (iv) writeback to commit is 1-2 cycles [309].

Consider an example of fetch stage: from our observation we noticed that all

instructions that are fetched will take minimum 9 cycles (considering best case) to

reach the commit stage. Providing single cycle detection latency for structures in

fetch stage (i.e., prefetch, branch-predictor etc.) would be unnecessary. The same

holds true for structures in decode stage.

From this initial observation, we identified that paths from issue to commit, exe-

cute to commit and writeback to commit are critical and will need stricter detec-

tion latency requirement for error containment. To have a better understanding

of the error detection latency constraints of issue, execution unit and writeback

we have to know how much time each instruction spends to reach commit from

issue, execution units and writeback.

Figure 6.4 shows the distribution of number of cycles it takes for each instruction

since they are issued until commit (including the wait cycles in ROB). Histogram

of Figure 6.4 shows that 100% of instructions are committed in ≥3 cycles. Similar

experiments indicate that from write-back stage 100% of instructions reach commit

in ≥1 cycle and 100% of instructions reach commit in ≥2 cycle from execution

units. Once in ROB, instructions wait until it is their turn to commit.

6.3.1.2 Cost of Error Containment

Now we know that to provide error containment coverage for 100% instructions

before they commit, the issue queue requires error detection latency of 3 cycles,

for ALUs detection latency should be 2 cycles and structures of writeback stage

(i.e., register file, ROB) must have error detection latency of 1 cycle.

However, error containment in the ROB is little more involved. It is also responsi-

ble for instruction commit. If the detection latency of error in commit (i.e., ROB)

is 1 cycle, implies that an error in the commit itself cannot be contained within

core (i.e., before the commit is over). So to have full error containment coverage

(i.e., including errors in commit), detection latency for ROB must be less than 1

cycle.

Table 6.2 summarizes the required number of detectors to provide selective error

containment before the instruction is committed. It shows the number of detectors

Protecting Embedded Core with Acoustic Wave Detectors 171

Structure Detection Latency #Detectors
(#Cycles)

Fetch 9 3
Decode 7 4
Issue queue 3 4
ALU (3 in total) 2 4
ROB and Commit 0.15 2
Load Queue 1 1
Store Queue 1 1

Total 19

Table 6.2: Required acoustic wave detectors for full error containment cov-
erage. L1 cache is protected separately using an architecture as presented in

Chapter 4.

required for given detection latency constraints. It shows that to provide selective

error containment we will need 19 detectors for 100% error containment coverage.

It is worth mentioning that with 2 detectors ROB achieves error detection latency

of 0.15 cycle. This implies that a glitch generated by a particle strike in commit

needs to propagate within 0.15 cycles to cause SDC, this increases the possibility

of masking the error before it will be committed. Alternatively, hardened latches

can be used to protect ROB [117].

Figure 6.5 shows the structural map of an embedded core and also the placement

of acoustic wave detectors. Majority of the area is occupied by caches, TLBs and

register files. To contain the error in these structures, we propose to use ECC, or

adapt a low cost acoustic wave detector based solution similar to the one that is

described in Chapter 4.

Overheads. The area overhead for selective error containment for full coverage

is equivalent to 19 6T-SRAM bit cells at 45 nm. The controller circuit is also very

cheap and will require (roughly 10 logic-OR gates). As the number of detectors are

less the intrusiveness of solution on placement and routing is minimum. Acoustic

wave detectors are passive and hence they do not consume power, so the power

overhead comes only from control circuit and interconnects, which is negligible.

Protecting caches alone for 1 cycle detection latency costs 1680 detectors. Using

the architecture for protecting caches as presented in Chapter 4, it is possible to

reduce detection latency to 10 cycles for L1 cache with just 15 detectors.

Protecting Embedded Core with Acoustic Wave Detectors 172

Figure 6.5: Arrangement of FUBs and placement of acoustic wave detectors
on embedded core [313]

6.4 Error Containment Coverage vs. Vulnera-

bility

Now, we want to see if we can further relax the detection latency constraint to

reduce the required number of detectors for reducing area overhead even further

compared to what we saw in previous section. Reducing the number of detectors

may result into some instruction escaping the error containment boundary reduc-

ing the error containment coverage. To observe the tradeoff of relaxing detection

latency requirement and its impact on reliability, we perform an estimation of

structure’s AVF. The concept of AVF is discussed in great detail in Section 2.9 of

Chapter 2.

Protecting Embedded Core with Acoustic Wave Detectors 173

6.4.1 ACE Analysis

To estimate a structure’s AVF we track the state bits required for architecturally

correct execution (ACE) for all committed instructions. Let’s understand the

concept of ACE bit via one example in a program that runs for 10 billion cycles

in a processor. Out of these 10 billion cycles a particular bit in the processor core

is required to be correct just for 1 billion of cycles. The state of the bit during the

rest of the 9 billion cycle does not affect the correctness of the program. In this

case, the AVF of the bit is 10%. This concludes that the bit is ACE for 1 billion

cycles and un-ACE for 9 billion cycles.

Similar to the notion of an ACE bit at architecture level instructions can be ACE

or un-ACE. In ACE instructions all the bits are ACE bits. However, in un-ACE

instructions only some of the bits are ACE. It is possible to compute the ACE and

un-ACE bits for an instruction through out its journey in a processor pipeline.

If the error is in one of the ACE bits, it will cause the silent data corruption if

it is not contained. ACE analysis of the entire execution is difficult and hence

conservatively we assume every bit is ACE unless we can prove it to be un-ACE.

Once we classify ACE and un-ACE bits for a structure, AVF of a structure is

simply the fraction of time that it holds ACE bits. AVF analysis gives us better

insight into a structure’s vulnerability because depending upon the application, a

structure holds ACE bits at some times and un-ACE bits at other times.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prefetching ACE NOP Unknown Dynamic Dead

Figure 6.6: Error containment granularities in embedded processor

Protecting Embedded Core with Acoustic Wave Detectors 174

Using cycle accurate simulation, we track average ACE bits through structures

holding both microarchitecture and architecture states and we collect the res-

idency cycles of ACE bits and structure usage cycles. We identify sources of

un-ACE instructions (i.e., NOP instructions, Performance enhancing instructions

etc.) similar to [117]. Figure 6.6 shows the distribution of instructions in the

analyzed benchmark suit.

As suggested in [97], we classify the instructions into 5 clusters. The Unknown

category includes the instructions whose destination registers’s lifetimes can not be

determined within the instruction analysis window. Dynamically dead instructions

include instructions whose computation results are simply not utilized by any other

instructions. NOP instructions and perfecting instructions are easily identified.

Once we have obtained the information of ACE and un-ACE bits it is possible to

compute the AVF of a given hardware structure. As discussed in Section 2.9 of

Chapter 2 the AVF of a storage cell is the fraction of time (i.e., ACE cycles) an

upset in that cell can cause a user visible error. AVF of a hardware structure (i.e.,

issue queue) is the average of the AVF of all storage bits in the structure.

AV Fstructure =

N∑
i=0

ACE cyclesi

Total cycles× Size of the structure (N bits)
(6.1)

The AVF of a hardware structure can be given as shown in Equation 6.1. ACE cyclesi

denotes the ACE state of ith bit and the Total cycles are the cycles over which the

state of the ith bit is observed. N represents the total number of storage cells in

the observed structure.

The equation can be further simplified to,

AV Fstructure =
Average number of ACE bits in a structure in a cycle

Size of the structure (i.e., total number of bits)
(6.2)

Now, that we are familiar with how to obtain AVF of a structure, next we will

analyze the AVF undertaking an example structure. Moreover, we will also explore

the possibility to reduce the AVF of a structure in an architecture protected via

acoustic wave detectors.

Protecting Embedded Core with Acoustic Wave Detectors 175

6.4.2 Reducing AVF using Acoustic Wave Detectors

Residency cycles Saved cycles

Clk

Without

Detectors

With

Detectors

ErrorDetectionLatency = 3 cycles

Residency cycles = 5

Figure 6.7: Reducing AVF by adapting acoustic wave detectors

Figure 6.7 shows how the vulnerability of a structure protected by acoustic wave

detectors can be reduced. Consider an example as shown in Figure 6.7(a) where

the residency time of ACE bits of an instruction in a structure is 5 cycles. So the

ACE bits are vulnerable for all the 5 cycles they spend in the structure, and all 5

cycles contributes towards AVF.

Now, imagine the structure is protected with acoustic wave detectors as in the case

of Figure 6.7(b). The error detection latency is 3 cycles. Instruction still stays for

5 cycles in the structure but now the ACE bits are vulnerable only for 2 cycles as

we will detect the error within 3 cycles. Only 2 cycles will contribute towards AVF.

This implies that if the detection latency of the acoustic wave detectors protecting

a structure is less than the residency cycles of ACE bits in that structure then the

AVF of given structure can be reduced substantially.

We leverage this observation to evaluate vulnerability factor of issue queue pro-

tected with detectors. We collect the ACE bits and the amount of time they

spend in issue queue for different detection latency cycles. And we show how

the architecture with different detection latency cycles impacts the AVF of issue

queue.

Figure 6.8 shows the AVF of issue queue (relative to the AVF of unprotected IQ

= 100%) for containing errors using acoustic wave detectors for different error

detection latency. Figure 6.8 shows that for error detection latency of 6 cycles,

the average AVF of IQ is 45%. And if provided with enough detectors to achieve

detection latency of 4 cycles the AVF of IQ goes down to 2.2%.

Protecting Embedded Core with Acoustic Wave Detectors 176

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IQ AVF for DetectionLatency

6 Cycles 5 Cycles 4 Cycles 3 Cycles

Figure 6.8: AVF of issue queue by protecting them with acoustic wave detec-
tors for different detection latency

Summarizing, containing the error with acoustic wave detectors for error detection

latency of 3 cycles will provide 100% error containment coverage and in this case

the AVF of IQ is 0. Now, if we provide error containment for just 4 cycles to IQ, the

AVF is 2.2%. This means that the error detection latency of 4 cycles reduces the

error containment coverage of IQ reducing the reliability of IQ by 2.2.%. Similarly,

providing error containment for 5 cycles reduces the error containment coverage

of IQ to reduce its reliability by 31%. It is worth mentioning that this reduction

in reliability is computed considering that there is zero error masking. In reality,

error masking can mask many errors that we are allowing to escape and hence, it

may not have any impact on the overall correctness of the architectural state and

reliability.

6.5 Related Work

Several fault tolerant methods exists that detects and recovers from soft errors.

Thus, the techniques discussed in Section 5.6 of Chapter 5 and Chapter 7 can be

used with any design including embedded processors. However, other techniques

Protecting Embedded Core with Acoustic Wave Detectors 177

exist that are specific to embedded processors. These techniques depend on the

architecture and functionality of microprocessors. The most well known of those

techniques are briefly explained in this section.

6.5.1 Soft Error Sensitivity Analysis

In this section we will see the proposals that characterize the soft errors and soft

error rate specifically embedded processors. The presented work suggests that

soft errors in embedded processors are important and require specific techniques

to handle them.

The work of [314] conducted fault injection on an RTL model of the PicoJava-II

microprocessor to characterize the soft error sensitivity of logic blocks within the

embedded processor. Similar to the AVF, they derive a soft error sensitivity (SES)

metric. And SES represents the probability that a soft error within a given logic

block will cause the processor to enter an incorrect architectural state. Similar

to the AVF, the SES information is used in devising an integrity checking scheme

for the picoJava-II, and evaluate how well the existing robustness techniques of

current microprocessors reflect the soft error behavior.

The main outtakes of their analysis are as follow: (i) Most of the faults are masked

and do not cause soft errors. Similar to AVF, few structures with a very high SES

are more vulnerable to soft errors. The SES of a structure is a function of its

architectural properties; logical situation, its behavior in collaboration with other

structures; and the operating frequency, (ii) Variations in the tested workloads do

not significantly vary the SES of a structure, (iii) Based on the SES analysis primer

concern of soft errors are the memory components and should be protected. Soft

errors in control logic generally have a shorter lifetime than those in the memory

arrays and can be easily masked, and (iv) The sensitivities of many structures in

the pipeline are easily predictable from processor architecture and organization.

A similar soft error sensitivity analysis is presented in [315]. It performs the soft

error injection in both sequential state elements and combinational logic on a DLX

microprocessor model. It collects the soft error sensitivity data to assess (i) the

soft error sensitivity of control and speculation logic compared to that of other

functional blocks, (ii) how vulnerable the combinational circuits are compared

to flip-flops, and (iii) how many errors get masked while propagating from one

Protecting Embedded Core with Acoustic Wave Detectors 178

functional unit to the other. Their analysis indicates that sensitivity of control

and speculation blocks in an embedded core to soft errors is comparable to the soft

error sensitivity of ALUs. Moreover they conclude that the combinational logic,

though less sensitive than flip-flops, could potentially lead to increased soft error

rate in future technologies.

6.5.2 Soft Error Protection

Now, we will see some hardware, software and hardware/software hybrid tech-

niques for handling soft errors in embedded domain.

6.5.2.1 Hardware Only Approach

The proposal of [118] focused on circuits for detecting delay faults caused by

electrical noise, particle strikes and inadequate voltage levels. The fundamental

idea relies on strategic placement of transient fault detectors. The work exploits

the circuit-level characteristics of embedded microprocessors in order to efficiently

place the detectors on the given chip. For mitigating soft errors, two complemen-

tary techniques are proposed. The first technique, uses a register value cache. It

is an architectural solution that provides twice the fault coverage compared to

ECC when applied to the register file and costs less to implement in terms of both

area and power. The register value cache maintains duplicate copies of only the

most recently used register data in order to provide high fault coverage. Unlike

traditional mechanisms, such as ECC, the register value cache can handle faults in

both the combinational logic and the memory buffers. By storing redundant val-

ues it can yield more than double fault coverage compared to ECC. The coverage

provided by the register value cache may be increased by adding more redundant

entries to the cache.

The second technique uses time delayed shadow latches for fault detection. In

this technique all high fan-in nodes in the processor pipeline are covered with

shadow latches. These shadow latches stores the redundant data and compares it

to detect the transient errors. Moreover, once error is detected it is possible to use

these detectors to flush speculative state and correct transient errors occurring in

microarchitectural state. The process of determining the most effective location

for these pulse detectors and inserting them into the design can be challenging.

Protecting Embedded Core with Acoustic Wave Detectors 179

The two proposed fault tolerance techniques can be used in conjunction and they

collectively provide approximately 84% fault coverage while incurring less than

5.5% area overhead and about 14% power overhead.

6.5.2.2 Software Only Approach

A software only approach for detecting soft errors in embedded processors was

proposed in [316]. It is based on two well known areas of prior research in the

field of soft error detection: symptom-based fault detection and software-based

instruction duplication (will be discussed in Chapter 7).

This work uses use edge profiling, memory profiling and value profiling in the

context of code duplication for protection against soft errors. With profiling infor-

mation we can exploit the common case behavior of a program to duplicate only

those critical instructions. Different types of profiling information enables us to

ignore unnecessary duplication of instructions that are unlikely to cause program

output corruption in the presence of a transient fault.

1. Edge profiling is based on the intuition that frequently executed instructions

should not be duplicated to protect an infrequently executed instruction.

The probability of a soft error affecting an infrequently executed instruction

is relatively low and so to protect such a instruction, unnecessary duplication

of frequently executed instructions should not be performed.

2. Memory profiling is used to obtain information about load/store dependency,

aliasing between loads and stores and information about silent stores (i.e.,

stores that update the same value to a memory location that is already

present at that location).

3. Value profiling is used to observe the values generated by an instruction

during the execution. If an instruction generates the same value almost

100% of the time, it is possible to use that value and compare it to the value

generated by the same instruction at runtime for error detection. If the value

generated at runtime differs from the one that the instruction generates very

frequently an error is detected and appropriate recovery action is triggered.

The solution also uses of symptom-based detection, which relies on anomalous

microarchitectural behavior to detect soft errors. And it can achieve 92% fault

Protecting Embedded Core with Acoustic Wave Detectors 180

coverage. However, this technique requires redundant instruction to be added for

fault detection and causes upto 20% instruction overhead. These extra instructions

may cause average 51% performance overhead.

6.5.2.3 Hybrid Approach

A hardware/software approach for detecting and recovering from errors is proposed

in [317]. The fundamental idea of this approach is to re-engineer the instruction

set. The proposal decomposes the application into multiple instructions for a spe-

cific processor. These instructions typically are composed of micro-ops. Several

micro-ops are added to the native instruction set of the embedded processor to

enable checkpointing. The checkpoint based error recovery mechanism is imple-

mented using three custom instructions. These custom instructions can recover

from (i) the changes in the general purpose registers, (ii) the data memory values

which were modified and (iii) the changes in the architecture special registers (PC,

status registers etc.).

At run-time, instructions execute the native functionalities (e.g., adding two operands

of the ADD instruction) as well as the additional functionality which is to generate

checkpoint data of destination register for the given instruction. The checkpointing

storage varies for each executing application. Results show that the hardware/-

software approach degrades performance by 1.45% under fault free conditions. In

the event of an error the recovery takes 62 clock cycles (worst case). Due to added

storage for checkpointing and recovery it incurs area overhead of 45% on average

and 79% in the worst case. Due to the added functionality to each instruction

the power overhead of this approach is upto 75%. The main disadvantage of this

approach is that the the processor’s architecture needs to be modified to support

the additional custom instructions.

6.6 Chapter Summary

In this chapter we presented an architecture that uses acoustic wave detectors to

detect and contains the error with minimal hardware overhead incurring zero per-

formance cost. We have shown how the choice of error containment granularity can

affect the cost of recovery and performance for embedded core. Containing error in

Protecting Embedded Core with Acoustic Wave Detectors 181

the cache can cause 22% performance overhead in the studied embedded core. For

error containment in the core, we show that providing selective error containment

can reduce the required number of detectors by 130×. The solution proposed in

Chapter 5 may be useful for some complex embedded multicore processors.

Next, we explained how we can obtain AVF of a structure using performance

simulator. We presented the sources of un-ACE and ACE instructions for embed-

ded core while simulating real world embedded applications. Moreover, we also

explored the possibility to reduce the AVF of a structure in an architecture pro-

tected via acoustic wave detectors. We also showed that by trading off the error

containment coverage by as little as 2.2% the required detectors can be further

reduced to 17.

Chapter 7

Related Work

Along with power, performance and temperature, reliability is now considered as

a key design parameter. Typically, silicon chip vendors have market specific SDC

and DUE FIT budgets that they require their chips to meet [18, 318]. Keeping the

consumer needs in mind chip vendors decide a certain FIT budget. FIT budget

is typically kept constant across years. In other words, designers are motivated to

incorporate various techniques to satisfy the FIT budget, by making the system

more robust. This section will describe such techniques at device and circuit level,

this section will also discuss techniques to improve reliability by adding redundancy

at circuit, micro-architecture and system level.

7.1 Soft Error Protection Schemes

Soft error protection schemes can protect the device against soft errors by making

the device inherently robust by deploying various device and circuit enhancement

techniques.

7.1.1 Device Enhancements

The most famous and effective device enhancement schemes to reduce the avoid

soft errors are triple well and SOI technology. We have already introduced these

techniques in Section 4.6.3 of Chapter 4.

182

Related Work 183

7.1.1.1 Triple-well technology

Figure 7.1: Triple well technology and the creation of deep n-well which traps
the charge generated upon a particle strike.

At process level several techniques can be used to reduce the charge collection ca-

pacity of the sensitive nodes in an SRAM memory cell [259]. Using multiple well

structures have been proposed to show improved robustness by limiting charge col-

lection [260]. Triple-well technology is used in deep submicron CMOS technology

to improve the device performance. As shown in Figure 7.1, a triple-well device

completely isolates the NMOS in a p-type substrate reducing the substrate noise

and resulting into better performance of the NMOS. This helps reducing the device

soft errors because the deep n-well makes it difficult for the electrons generated

by the particle strike to penetrate and collected by the drain of the NMOS.

7.1.1.2 Silicon-on-insulator

SOI primarily introduced due to its benefits in improving the performance in deep

submicron technologies. As shown in Figure 7.2, SOI technology introduces a

buried oxide layer between the source (or drain) and the substrate. This eliminates

the junction capacitance of traditional CMOS technology improving the switching

speed.

Apart from improving the performance, SOI also reduces the sensitive volume,

which ends up reducing the charge collection capacity and hence improving the

soft error rate. SOI techniques can reduce a reduction of soft errors by as much

as 5× [184, 185]. No detailed data is available to give any insights of SOI in

Related Work 184

Figure 7.2: The suspended body in partially depleted SOI transistor

reducing soft errors in latches and combinational logic. Literature shows that a

fully depleted SOI has the lowest sensitive region and can be the most effective

in reducing the soft error rate. Nevertheless, manufacturing fully depleted SOI

devices in large volumes still remains a major challenge. Physical solutions are

hard to implement and may end up alleviating the cost of handling soft errors.

7.1.1.3 Process techniques

Other process techniques include wafer thinning, mechanisms to dope implants

under the most sensitive nodes etc. Process level techniques are effective and

significantly reduce the soft error rate of the memories. However these techniques

require modifications in the standard CMOS fabrication process and therefore are

less attractive.

7.1.2 Circuit Enhancements

The most common and obvious techniques to reduce the vulnerability against the

soft errors at circuit level is to increase the nodal capacitance of the cell and to use

the radiation hardened cells. We have discussed the use of circuit level techniques

for protecting caches in Section ?? in Chapter 4.

Related Work 185

WORD

BIT BIT

Capacitors

Q Q

Figure 7.3: Reduction of soft errors by introducing capacitance on the critical
nodes in an SRAM cell

7.1.2.1 Increasing nodal capacitance in the circuit

Another way of protecting the caches at circuit level is by making the memory cell

physically robust. One way of implementing robust SRAM cell is by increasing the

Qcrit of the SRAM cells used in caches. Such SRAM cells are designed via incorpo-

rating extra resistors or capacitors in the feed back path of the decoupled inverter

circuit of the SRAM cell [266]. One such implementation is shown in Figure 7.3.

Adding the capacitor to the critical node can also significantly increase the Qcrit

making the cell more robust. Such techniques can reduce the soft error rate of

latches upto 3× but due to higher capacitance, this results into a slower latch and

also 3% increase in chip-level power according to the studies [319] and [320].

However, addition of the resistor or a capacitor may increase the cell area by 13-

15%, moreover RC response delay increases due to increased capacitance making

the cell slower and it may increased access time by 6-8% [270]. Increasing Qcrit by

adding extra RC elements can also increase the power [28, 267, 321].

Related Work 186

7.1.2.2 Radiation hardened cells

Radiation hardening is another circuit level approach for handling soft error rates.

In radiation hardening the SRAM cell is made stronger by increasing its overall

size or by adding more transistors. Increasing the size of an SRAM cell may

make it slower impacting performance. By adding more transistors to the original

SRAM cell to make it more robust the underlying idea is to maintain a redundant

copy of the data which can provide the correct data upon a particle strike and also

recover from the error [264, 269]. Such DICE can reduce the soft error rate upto

10× [265]. Another set of circuit level solutions include, a high speed scan logic

circuit in which the transient fault is detected by quickly by comparing the outputs

of the redundant SRAM cells [85, 322, 323]. However, such high speed scan logic

adds extra hardware increasing the area overhead. Moreover, the scan logic must

be maintained at the same speed as the protected cache all the time increasing the

power overhead [117]. However, it is worth noticing that this robustness comes at

the cost of 1.7× to 2× increased area and almost doubled energy penalty.

All the circuit level soft error protection techniques are attractive at first because

they guarantee higher levels of robustness but on the other hand this robustness

comes at huge penalties in terms of area and energy. Also they increase the

complexity of post silicon validation.

7.2 Soft Error Detection Schemes

Detecting faults is the most crucial problem for any fault tolerance system. A

system cannot recover from a problem of which it is not aware of. Fault detection

provides the minimum measure of safety and efficient fault detection helps to

reduce the SDC to almost zero. Error detection can be implemented in three

ways: (i) physical or spatial redundancy, (ii) information redundancy and (iii)

temporal redundancy. In this section we will see each one of them in greater detail

with examples.

Related Work 187

7.2.1 Spatial Redundancy

Spatial redundancy is very common and simplest techniques to detect transient

and permanent errors. Basically these techniques add extra hardware (redundant

hardware) to detect the errors. Spatial redundancy can be implemented via exe-

cuting the same task on two different components as is the case of the most basic

implementation of the DMR technique. A DMR system comprises of a comparator

as explained in Section 5.6 of Chapter 5.

Modular redundancy is a widely used technique in the industry as it can detect and

recover from both transient and permanent faults in microprocessors by using non

homogeneous replicas which provides design diversity. It is possible to implement

physical redundancy at various granularities. Replicating the entire system or a

core within multi-core processors are also possible and replicating parts of the core

has also been explored depending upon the required level of robustness and amount

of overheads. The IBM G3 [58] employs lockstepped pipeline implementation and

to reduce the performance penalty, instruction fetch and execution units were

replicated and the error checking was performed at the end of the pipeline. This

however, led to area penalty of 35%.

These techniques provide excellent error detection for all kinds of failures provided

that the redundant copies are non-homogeneous but they have huge impact in area,

power and delay, as the output of each replicated component has to be compared.

7.2.1.1 Detectors for Error Detection

Implementing physical redundancy for error detection also includes adding de-

tectors. The detectors that detect the particle strikes via detection of current

glitches, voltage glitches, metastability issues or deposited charge are discussed in

great detail in Section 3.7 in Chapter 3.

Several other detector based techniques have been proposed. One such famous

circuit level technique is Razor [85, 323]. It mainly deals with the voltage drop

induced errors (caused by transient and intermittent errors) in combinatorial logic.

The fundamental idea behind this mechanism is to use double-sampling of values

at certain pipeline stages, to guarantee robustness but at the cost of huge area

overheads. Razor works via pairing each flip-flop within the data path with a

Related Work 188

shadow latch that is controlled by a delayed clock. After the data propagates

through the shadow latch, the output of both of the blocks is compared. If the

combinational logic meets the setup time of the flip-flop, the correct data is latched

in both the data path flip-flop and the shadow latch and no error signal is set. Upon

a mismatch between the outputs of the flip-flop and shadow latch an error signal is

triggered and hence an error is detected. Razor uses extra circuitry to determine

if the flip-flop is metastable. If so, it is treated as an error and appropriately

corrected. An important property of Razor flip-flops is that the shadow latch is

designed to pick up the correct result upon the delayed clock. Using Razor it is

possible to correct the value via stalling the result from the latch by one cycle.

Input A

Input A’

Output

VDD

Latch A

Shadow

Latch A

Figure 7.4: The C-Element circuit forming the core logic of BISER detection
scheme [322]

Another circuit level technique is proposed in [322]. It relies on a at-speed scan

logic based on a C-Element circuit as shown in Figure 7.4. It can be used to detect

the error by comparing the stored values in the storage elements. It acts as an

inverter when both inputs A and A’ are same. However, it does not let any input

to propagate when the inputs are different.

7.2.1.2 Error Detection via Monitoring Invariants

Rather than replicate a piece of hardware, another approach to error detection is

dynamic verification. Added hardware checks whether certain invariants are being

satisfied at runtime. These invariants are true for all error-free executions and

Related Work 189

thus dynamically verifying them detects errors. The key to dynamic verification

is identifying the invariants to check. As the invariants become more end-to-

end, checking them provides better error detection. Ideally, if we identify a set

of invariants that completely defines correct behavior, then dynamically verifying

them provides comprehensive error detection. That is, no error can occur that will

not lead to a violation of at least one invariant, and thus, checking these invariants

enables the detection of all possible errors. We present work in dynamic verification

in an order that is based on a logical progression of invariants checked rather than

in chronological order of publication.

DIVA as discussed in Section 5.6 of Chapter 5 uses heterogeneous physical redun-

dancy. It detects errors in a complex, speculative, superscalar core by checking

it with a core that is architecturally identical but microarchitecturally far simpler

and smaller.

DIVA [67] uses a simple in-order core as a checker for an out-of-order core. As

processor designs grow in complexity, they become increasingly difficult to fully

verify and debug. DIVA proposes to implement a relatively simple and fully ver-

ified back-end processor to perform dynamic (while the processor is in use) veri-

fication of a processor. While the main purpose of DIVA is to ease the challenge

of verification and debugging complex processor cores, DIVA also serves to detect

soft error events. Assuming that a fault affects only the complex processor core or

the backend checker, DIVA will detect the fault and can be configured to attempt

recovery.

Argus framework consists of checkers for each control flow, data flow, computation,

and interacting with memory [289]. It achieves near-complete error detection,

including errors due to design bugs, because its checkers are not the same as

the hardware being checked. However, it cannot detect errors that occur during

interrupts and I/O. Moreover, checkers use DFG signatures (will be discussed in

Section refDFG). Signatures represent a large amount of data by hashing it to

a fixed length quantity. Because of the lossy nature of hashing, there is some

probability of aliasing, that is, an incorrect history happens to hash to the same

value as the correct history. It cannot detect the errors whenever the checker is

using lossy signatures.

Similar to DIVA implementation, a watchdog processor can be employed to observe

the invariants and detect an error. A watchdog processor is a simple co-processor

Related Work 190

that watches the behavior of the main processor and detects violations of invari-

ants [324].

7.2.1.3 Error Detection via Dynamic Control/Data Flow Checks

Detecting errors in control logic is generally more difficult than detecting errors in

data flow. Data errors can be easily detected via parity codes. Checking errors in

control flow involves monitoring errors in control logic as well as control flow.

Efficient control checking is based on the observation that for a given instruction

a subset of the control signals are always the same as proposed in [325]. Special

hardware is added that compute a fixed-length signature of these control signals,

and the these signature that is generated runtime is compared with a signature that

is stored a-priori for that instruction. If the comparison results into a mismatch

of signatures an error is detected.

In another approach as proposed in [326] specific microarchitectural checkers are

added to check a set of control invariants. These added hardware also compute

signatures for control signals. However, instead of computing signatures for ev-

ery instruction, microarchitectural checkers generate a signature over a cluster of

instructions. Instead of comparing signatures for every instruction, now the run-

time comparison is done between the runtime signature with the signature that

is generated when the last time that cluster of instructions was encountered. A

mismatch indicates an error.

In high-level control flow checker a program’s expected control flow graph (CFG)

can be generated and compared to detect errors. A control flow checker [324, 327–

331] compares the statically known CFG generated by the compiler and embedded

in the program to the CFG that the core follows at runtime. If they differ, an error

has been detected. In an example as shown in Figure 7.5, the CFG represents the

sequence of instructions executed by the core. Now the control flow of instruction

can be stored a-priori and any deviation from the desired flow can be due to an

error. The most challenging aspect of the control flow checker is the complex-

ity of the compiler. Due to conditional branches, indirect jumps, and returns it

impossible for the compiler to know the entire CFG of a program in advance.

Similar to control flow checking, checkers that can check for error by comparing

the data flow graph (DFG) of a program have also been explored. A data flow

Related Work 191

Inst:1

Inst:2

Inst:3

Inst:4

Inst:5

Inst:6

R3 = R2 + R1

if (R3 == 0)

goto A

else

goto B

end

A :

R3 = R3-R4

R5 = R3*R3

B :

R5 = R3+R3

R6 = R5 and R3

Inst1: add R3, R2, R1

Inst2: beqz R3, A(Inst3), B(Inst5)

Inst3: sub R3, R3, R4

Inst4: mult R5, R3, R3

Inst5: add R5, R3, R3

Inst6: and R6, R5, R3

Figure 7.5: The control flow checker: A high level program, compiler gener-
ated instructions and the corresponding CFG

checker [332] generates a cluster of instructions called basic block. A DFG of each

basic block in the program is stored. At runtime the comparison between the DFG

of currently executing basic block and the statically generated DFG of the same

basic block is used to indicate an error.

A data flow checker can detect any error that manifests itself as a deviation in data

flow and can thus detect errors in many core components, including the reorder

buffer, reservation stations, register file, and operand bypass network. A data flow

checker must also check for the generated values and not only the flow. Data flow

checking faces similar challenges as control flow checking. Additionally data flow

checkers face a non trivial challenge which is the size of the generated DFG. To

handle the unbounded size of the DFG it is possible to generate a fixed-length

hash entry for each DFG.

7.2.1.4 Error Detection via Hardware Assertion

Similar to invariant monitors hardware assertions are used to detect errors [333].

We will discuss assertions that require architecture specific knowledge. Hardware

assertions are specific to each hardware structure and cannot be generalized. For

example, one such hardware assertion can be used to monitor the coherence engine

in the caches. Assuming a MOESI cache coherence protocol is implemented. The

Related Work 192

finite state machine should have five states for each cache block namely: Modified,

Owned, Exclusive, Shared and Invalid. A specific implementation of the protocol

requires the cache block to follow the transition in specific order Invalid 7→ Exclu-

sive 7→ Modified. Now if a block undergoes Invalid 7→ Modified transition skipping

the Exclusive state a hardware assertion can trigger an error.

Timestamps

InstA: mul R2, R1, R1 0x01

InstB: add R1, R2, R3 0x02

InstC: add R3, R1, R4 0x03

Figure 7.6: The hardware assertion and the timestamps

The work of [333] proposed two such assertion techniques: (i) Timestamp-based

assertion checking (TAC) and (ii) Register name authentication (RNA). TAC im-

plementation specifically targets the instruction issue logic. To detect errors it

timestamps the instructions as they are issued to the execution units. For in-

stance, as shown in Figure 7.6 each instruction waiting in the issue buffer has

been assigned a timestamp. Notice that the instruction A updates the R2 with

a multiplication. It has a timestamp associated with it. The the instruction B

utilizes the R2. The latency of the instruction A is L. The assertion holds if

Timestamp(B) ≥ Timestamp(A) + L. In the event that condition doesn’t hold

(i.e., multiplication operation of instruction A takes longer than one cycle) an

error signal is asserted.

In an another approach towards hardware assertions the work of [334] implements

a separate checker engine which takes care of asserting error signals upon failure

to meet the assertion condition for number of hardware structures.

7.2.1.5 Error Detection via Symptom Checks

Detecting errors by symptom checks include error detection via detecting anoma-

lous behavior of generated data. Symptom checks can be implemented via using

some sort of information redundancy (i.e., error detecting codes). Using spatial

redundancy for symptom checks relies on checker core or watchdog core which can

trigger an error signal.

Related Work 193

The idea of symptom checks is based on the observation that the value of generated

data remains constant for a given window of execution time. Any deviation from

this constant value within the execution window may be used to indicate the

presence of an error. The expected range of values within the execution time

window can be obtained either by statically profiling the program’s behavior or

by dynamically profiling it at runtime [335]. However, if the value of datum goes

beyond the known profiled range of values it may result into false positive.

The work of [288] proposes hardware fault screener that employs several anomaly

detectors that check data value ranges (i.e., history based approach), data bit

invariants (i.e., generating bit-masks for each static instruction), and whether a

data value matches with the one of a set of recent values (i.e., bloom filter based

approach). A fault screener operates by examining program state for internal

inconsistencies with past behavior. Consider an example of a static instruction

that generates a result value between 0 and 16 the first thousand times it is

executed, then generates a value of 50. Since the new value of 50 does not fall

within the profiled range of values for that static instruction, the new value is an

example of a perturbation. Other works in the same direction that detects the

anomalous.

7.2.1.6 Error Detection via Selective Protection

Another scheme to detect the errors is by providing selective protection. One

way of implementing it is by duplicating a subset of values in the shadow latches

and comparing them with the generated values. For instance, a core’s register

file holds a significant amount of architectural state that must be kept error-free.

A simplest approach for protecting the registers would be to protect them using

error codes. However, associating error codes can cause huge area, power and

performance overhead at this granularity.

Alternatively, proposals have been made to selectively protect the most vulnerable

registers by copying their values in the shadow register files [336]. The register

file that includes a primary storage portion configured to store a first value, and

a secondary storage portion that is coupled to the primary storage portion. The

secondary storage portion is configured to act as a shadow register buffer and holds

replicas of live register values. The mechanism also includes an error detection

scheme that is coupled to the primary register file and the secondary storage

Related Work 194

portion (i.e., shadow register file) and is configured to indicate a difference between

the first value and the second value, caused by a soft error. Every read to the

register file is also done twice on both the original register file and the shadow

register file. Then the two values are compared. If they are unequal, an error has

been detected.

Similarly, the work [337, 338] realized that protecting all registers is unnecessary.

Intuitively, not all registers hold live values, and protecting dead values is unnec-

essary. They proposed maintaining error codes only for those registers predicted

to be most vulnerable to soft errors.

7.2.2 Information Redundancy

The fundamental idea behind information redundancy for error detection is to add

some extra bits to a set of data bits to detect an error. Error coding techniques

incur two kinds of area overheads : (i) number of added redundant bits and (ii)

logic to encode and decode. However, the penalty due to added logic is negligible

compared to the area penalty due to added redundant bits.

The most common technique for detecting errors in the cache and memory com-

ponents is to use parity codes and are discussed in detail in Section 4.6.2.1 in

Chapter 4. Now we will see the error detection codes for protecting execution

units in a processor core.

7.2.2.1 Error Codes for Combinational Logic

The most effective method of dealing with soft errors in memory components (i.e.,

caches, main memory, register file etc.) is to use codes like parity, or ECC [117].

Unlike memory components the data in functional units in the processor pipeline

is less vulnerable to soft errors mainly due to masking properties discussed in

Section 2.6.3 of Chapter 2. Another important factor that affects the overall

vulnerability of the functional unit is the period of time the instruction stays in

the functional unit. For instance, instruction queue holds the issue until they

can be issued and hence the period of time instructions spend in issue queue is

much higher compared to the execution units. Vulnerable functional units can be

Related Work 195

protected with error codes such as arithmetic codes (i.e., AN codes and residue

codes) and parity prediction codes [76].

Arithmetic error codes are those codes that are preserved under a set of arithmetic

operations. This property allows us to detect errors which may occur during

the execution of an arithmetic operation in the defined set. Such concurrent

error detection can always be attained by duplicating the arithmetic unit, but

duplication is often too costly to be practical.

We expect arithmetic codes to be able to detect all single-bit faults. Note, however,

that a single-bit error in an operand or an intermediate result may well cause

a multiple-bit error in the final result. For example, when adding two binary

numbers, if stage i of the adder is faulty, all the remaining (n i) higher order

digits may become erroneous.

AN codes:

The simplest arithmetic codes are the AN codes, formed by multiplying the data

word N by a constant A. The encoded data word Nc is given as: Nc = A × n

where A > 1. Only multiples of A are valid code words and every operation

processing AN-encoded data has to preserve this property. Code checking is done

by computing the modulus with A. For a valid code word it is zero: Nc mod A =

0. The data value N is retrieved by an integer division N = Nc/A.

Function Residue Relation

Addition N1c + N2c = A(N1) + A(N2) = A(N1 + N2)
Subtraction N1c - N2c = A(N1) - A(N2) = A(N1 - N2)
Multiplication N1c × N2c = (A(N1) × A(N2))/A = A(N1 × N2)
Division ⌊ N1c / N2c ⌋ = ⌊ (A × A(N1))/A(N2) ⌋ = A| N1

N2
|

Table 7.1: AN codes and the functions for which they are invariant

The arithmetic operations valid for AN codes are given in Table 7.1. For example,

two bit strings N1 and N2 then the AN code would hold A(N1 Θ N2) = A(N1)

Θ A(N2), where Θ can be addition, subtraction, multiplication or division. The

choice of A determines the number of extra bits require to encode N. For example,

if A = 3, we multiply each operand by 3 (obtained as 2N + N which can be

obtained by a left shift operation on N followed by an addition). It is possible to

check the result of an add or subtract operation to see whether it is an integer

Related Work 196

multiple of 3. Let’s understand the functionality of AN code by an example, the

number 01102 = 610 is represented in the AN code with A = 3 by 0100102 = 1810.

A fault in bit position 3 may result in the erroneous number 0110102 = 2610. This

error is easily detectable, since 26 is not a multiple of 3.

Using AN codes all error magnitudes that are multiples of A are undetectable.

Therefore, we should not select a value of A that is a power of the radix 2 (the

base of the number system). An odd value of A will detect every single digit

fault, because such an error has a magnitude of 2i. Setting A = 3 yields the least

expensive AN code that still enables the detection of all single errors.

Residue codes:

Residue code are also arithmetic codes. Unlike AN codes, residue codes can be

used to protect large range of function units including multipliers, dividers and

shifters [339–341].

Function Residue Relation

Addition (N1 + N2) mod M = ((N1 mod M) + (N2 mod M)) mod M
Subtraction (N1 - N2) mod M = ((N1 mod M) - (N2 mod M)) mod M
Multiplication (N1 × N2) mod M = ((N1 mod M) × (N2 mod M)) mod M
Division ((D mod M) - (R mod M)) mod M = ((Q mod M) × (I mod M)) mod M
logical and (N1 && N2) mod M = ((N1 mod M) × (N2 mod M)) mod M
logical or (N1 || N2) mod M = ((N1 mod M) + (N2 mod M) - ((N1 mod M) × (N2 mod M))) mod M
logical not (!N1) mod M = (1 - (N1 mod M)) mod M

Table 7.2: Residue codes and the functions for which they are invariant.
Division is not directly encodable however division holds D - R = Q × I relation

where D is dividend, R is remainder, Q is quotient and I is divisor

Residue codes use modulo operation as the bases. For instance, two bit strings N1

and N2 then the residue code would hold (N1 Θ N2) mod M = ((N1 mod M) Θ (N2

mod M)) mod M, where Θ can be addition, subtraction, multiplication, division

or shift operation. The invariant functions and the relationship they hold is given

in Table 7.2.

Figure 7.7 shows the functional block diagram of the logic to generate the residue

code to detect error in an adder. In the error detection block shown in this figure,

the residue modulo-M of the N1 + N2 input is calculated and compared to the

result of the mod M adder. A mismatch indicates an error. Taking an example,

assume in the figure N1 = 5, N2 = 14 and M = 3. Now the (N1 Θ N2) mod M

yields (19 mod 3) which is 1. And (((5 mod 3) + (14 mod 3)) mod 3) also yields

1. Similar computation can be done on subtraction, multiplication and division.

Related Work 197

Adder

Adder

mod M

Residue Compute

Comparator
Residue(N1) + Residue(N2)

(N1 + N2)

Error

N1

N2

Residue(N1)

Residue(N2)

Residue(N1 + N2)

Figure 7.7: Residue code generation logic for an adder

Shifting operation is also very similar to multiplication with 2 or division with 2

and can be performed in similar manner as multiplication or division.

A residue code with M as a check modulus has the same undetectable error mag-

nitudes as the corresponding AN code. For example, if M = 3, only errors that

modify the result by some multiple of 3 will go undetected, and consequently,

single-bit errors are always detectable. In addition, the checking algorithms for

the AN code and the residue code are the same: in both we have to compute the

residue of the result modulo-M. Even the extra bits needs to be added in word

length is also same for AN codes and residue codes. The most important difference

is known as the property of separability. A code is separable if functional part and

redundancy of a code word are processed separately and the functional value can

directly be read from the code word. In other words, it has separate fields for

the data and the code bits (e.g., Parity, ECC etc.). A non-separable code has the

data and code bits integrated together and extracting the data from the encoded

word requires some processing. In the case of residue codes the arithmetic unit for

the generating the residue is completely separate from the main unit operating on

data, whereas only a single unit (of a higher complexity) exists in the case of the

AN code.

Parity prediction:

Parity prediction circuits similar to arithmetic codes computes the parity of the

results of an operation. It computes the parity from the source operands and then

computes the parity on the result itself. By comparing these two parity codes it

Related Work 198

Adder

Parity Generator

Comparator
(Ac XOR Bc XOR Carry)

Error

A

Ac

Bc

Sc

B

Carry “C”

S = A+B

Figure 7.8: Functional block diagram of parity prediction circuit in an adder

can detect an error upon a mismatch. Parity prediction circuits have been used

in commercial processors [229].

A functional block diagram of parity prediction is given in Figure 7.8. In the figure

a parity prediction is implemented for the addition: S = A + B. A, B and S are

bit strings. In the figure Ac, Bc and Sc are the parity coded bits for A, B and S

respectively. Sc can be obtained by
n−1
XOR
i=0

Si. Sc can also be computed by Ac XOR

Bc XOR Carry. Where Ccarry =
n−1
XOR
i=0

Ci. Comparing Sc by two independent ways

it is possible to compare them for a mismatch and detect an error. For example,

assume A = 010102 = 1010, B = 010012 = 910 then S = A + B = 100112 = 1910.

Obtaining the parity on A, B and S yields Ac = 0, Bc = 0 and Sc = 1. Now the

summation of A + B also gives the carry C = 010002. Computing Sc from Ac XOR

Bc XOR C yields 1.

Parity prediction circuits have been successfully implemented for adders [342–

344] and multipliers [345, 346]. It is worth mentioning here that the circuit must

ensure an error is not triggered due to an error or particle strike in the comparator.

Moreover, if the error is in the carry itself which feeds to both the modules that

are computing Sc. If the same error propagates to both the data that computes

Sc the error will not be detected.

Arithmetic codes and parity prediction circuits both are effective in protecting

functional blocks. Parity prediction circuits incur less in terms of area overhead for

smaller adders and multipliers. Arithmetic codes are better option while protecting

larger functional units. Both these techniques incur little performance degradation

Related Work 199

as they strive for near-instantaneous error detection putting detection to be on the

critical path.

7.2.2.2 Signature Based Approach

Another mechanism was proposed in [347], where a Π bit is used to identify pos-

sible errors in each instruction and only for the instructions that are needed for

architecturally correct execution signals an error before they leave the pipeline.

Also, they propose to stall the fetch (and therefore reduce the AVF) on long la-

tency stalls.

Signatures have been used to protect the control flow [324]. A signature is calcu-

lated at compile time and inserted in the code. Later, a new signature is generated

at runtime and compared to the one generated at compile time. This approach

implies a non negligible design cost, due to the required modifications to the ISA,

as well as power consumption increase and impact on performance, because of the

required signature calculation during runtime.

The work of [348] proposes an end-to-end protection scheme based on signatures

which is a token associated to a chunk of information. The concept of end-to-

end protection is based on identifying a path either for data or instructions where

there is a source from which data or instructions originate, and a consumption site

where they are finally consumed. The end-to-end scheme involves generating a

protection code at the source, sending the data or instructions with the protection

code along the path, and checking for errors only at the end of the path, where

data or instructions are consumed. Any error found at the consumption site can be

caused by any logic gates, storage elements, or buses along the path. Other works

have focused on using signature based mechanisms to protect the microprocessor

pipeline against errors caused by defects and degradation [349].

7.2.3 Temporal Redundancy

There are several ways to incorporate temporal redundancy for error detection.

The most common idea is to be able to detect faults from redundant streams of

instructions within a single core or multiple cores. Once executed the outcome of

the instructions on redundant threads are compared to detect possible faults.

Related Work 200

Redundant execution techniques are widely accepted by the industries in the forms

of lockstepping and redundant multithreading as discussed in detail in Section 5.6

of Chapter 5. The Stratus ftServer [299], HP Himalaya [350] and IBM-Z [300] series

are all lockstepped in which the redundant streams are run on two separate but

identical cores and they must have exact the same state at each cycle, which is very

costly and incur huge performance penalty. More recent server architectures such

as Marathon Endurance and HP’s NonStop Advanced Architecture implement

RMT [350].

These techniques can provide greater fault coverage across a processor chip com-

pares to error coding techniques. It is important to note that these methods cannot

detect hard faults and design bugs. The main reason for this is, as both threads

use the same hardware it is impossible to find permanent errors, and due to ho-

mogeneous nature of the chip design errors can not be found due to lack of design

diversity among the cores. Moreover, due to redundant execution these class of

techniques cause huge power and performance overheads (almost 2×). The area

overhead can be as much as 100% since the multithreading capability is used for

error detection. A lot of modifications to the classical RMT technique has been

attempted to reduce the performance penalty, by using only the idle resources for

error checking [73, 74] and by replicating instructions only when the processor has

available resources [71].

7.2.3.1 Various Flavors of RMT

Implementing RMT on an SMT core was first proposed in the work of AR-

SMT [68]. The redundant threads are called active (A) and redundant (R) thread.

The A-thread runs ahead of the R-thread and saves the results of each committed

instruction in a FIFO. The R-thread compares the result of each instruction it

completes with the corresponding result of A-thread in the FIFO. Whenever the

results of instructions match they are committed. The R-thread commits instruc-

tions that have been successfully compared. By checking for error before commit

they establish an error free recovery state. Since RMT can only detect error, this

error free recovery state can be later used for recovery upon an error.

If the instructions have to be compared before commit huge performance overhead

may occur due to the limited size of the FIFO. When the FIFO is full the A-

thread must stall and it cannot complete more instructions. When the FIFO is

Related Work 201

empty the lagging R-thread has no value to compare its result with. R-thread

cannot commit more instructions. The slowdown can be even worse if RMT is

implemented on multiple cores (instead of an SMT processor) due to longer latency

in communicating the results between threads. To avoid the performance overhead

AR-SMT allows the A-thread to commit instructions before the comparison [111].

To consistently detect errors due to hard faults AR-SMT suggests to bound the

A-thread and R-thread to use specific and different resources in the pipeline. For

instance in a core with multiple ALUs, the two threads can be enforced such that

they always use different ALUs.

Three main causes of the performance overheads have been identified while em-

ploying RMT schemes for error detection. We go through them one by one and

briefly discuss the enhancements in each category.

Choice of Sphere of replication:

It was observed that the majority of the performance overhead comes from where

and when to the redundant threads are compared. The work [65] concludes that by

carefully managing core resources and by more efficiently comparing the behaviors

of the two threads it is possible to reduce the performance impact of traditional

RMT core. The authors introduced the notion of sphere of replication. Sphere

of replication includes the logical domain that is protected by the RMT scheme.

It also implies that any error within the sphere of replication will be detected by

RMT. Sphere of replication clearly defines the components that must be protected

by RMT scheme. It provides necessary freedom for deciding what needs to be

replicated. For example, should the thread be replicated before or after each

instruction is fetched? Moreover, sphere of replication clearly sets a boundary and

decides when comparisons need to be performed. For example, the threads can be

compared at every store or at every I/O event.

Figure 7.9 shows the concept of sphere of replication. It shows that the sphere of

replication includes both the processor cores and one of them is redundant. The

sphere of replication does not include the main memory, storage disks and any

I/O devices. Moreover, specific hardware takes care of replicating all the inputs

coming from the components out of the sphere of replication. Similarly, all the

outputs from the main and the redundant cores leaving the sphere of replication

are compared via hardware comparator.

Related Work 202

P0 P1

Sphere of replication

Input replication Comparator

Incoming

I/O, Main memory and Network

Outgoing

I/O, Main memory and Network

Figure 7.9: Sphere of replication is shown in shaded part. Both the processor
cores are part of the sphere of replication

Sphere of replication can also be defined within a core. For example, if the thread

is replicated after each instruction is fetched, then the sphere of replication does

not include the fetch logic and the scheme cannot detect errors in fetch. Similarly,

if the redundant threads share a data cache and only the R-thread performs stores,

after comparing its stores to those that the A-thread wishes to perform, then the

data cache is outside the sphere of replication.

The work of [305] analyzed the tradeoffs between different sphere of replication.

Specifically their study was focused on the impact of the point of comparison

on the size of the data to be compared. Moreover, they also study the impact

of sphere of replication on the detection latency. Including more components

into the sphere of replication drastically increases the number of instructions to

be compared and verified for errors. The authors proposed an optimized the

storage fingerprint. Fingerprint is a cryptographic hash value (generated using

a linear block code such as CRC-16) computed on the sequence of updates to

a processor’s architectural state during program execution. A simple fingerprint

comparison between the mirrored processors effectively verifies the correspondence

of all executed instructions covered by the fingerprint. The threads’ fingerprint are

compared at the end of every checkpointing interval. Compared to a traditional

RMT scheme that compares the threads on a per-instruction basis Fingerprint has

longer error detection latency. Since fingerprints are generated using lossy hash

function over the thread execution history there is a possibility of aliasing causing

false positive error detection.

Related Work 203

Partial/Selective Thread Replication:

Alternative research explores the possibility to replicate only selective instructions

or a subset of instructions from the active thread.

Slipstream core [115] provides some degree of the error detection of classical re-

dundant multithreading. However, it provides a performance that is greater than

a single thread operating alone on the core. The contribution is based on the

intuition that the partially redundant A-thread can run ahead of the original R-

thread. By doing so the lagging thread can benefit from various performance

enhancing decisions already made by the leading thread. For instance, the lag-

ging thread can utilize the branch predictor decisions and prefetcher decisions

to speed up the execution of the trailing thread. A compiler takes care of par-

tially replicating instructions in leading thread by using heuristics that effectively

guess which instructions are most helpful for generating predictions for the trail-

ing thread. Retaining more instructions in the leading thread enables it to predict

more instructions and provides better error detection because more instructions

are executed redundantly. However, due to more redundancy the leading thread

takes longer to execute and may not run ahead enough to help the trailing thread

in improving performance.

An extension to this work has been proposed in [307]. It assumes a mixture of

partial duplication and confident predictions in the context of slipstream processors

to approximate full coverage. A similar approach [70] adapts the register renaming

to issue instructions from a single thread redundantly in the dynamic execution

path. As a result, the effective dispatch bandwidth, entries in the ROB, and size

of the register file are reduced by the factor of 2 which is the total amount of

redundancy.

Proposal of [75] suggests to partially replicate the leading thread. Further, it

views RMT scheme as a leading thread generating outputs stores that emanate

from the processor, and a redundant thread verifying the integrity of these outputs.

The redundant thread can be further envisioned as intertwined dependency chains

of instructions that ultimately lead up to these stores. They suggest to choose a

partial set of instructions for redundant execution from these chains. For instance,

for each store instruction, if either the address or the store value predictor produces

a misprediction, the mechanism considers that an indication of a possible error that

Related Work 204

should be checked. In this situation, the proposal replicates the backward slice of

instructions that led to this store instruction.

Furthermore the work of [71] proposed to keep the leading thread unchanged. And

observe the impact of selectively replicating the trailing thread and its impact

on performance and error detection coverage. They observed that the amount

of redundancy can be tuned at runtime and that there are often times when

redundancy can be achieved at minimal performance loss. For example, when

the leading thread misses in the L2 cache, the core would otherwise be partially

or mostly idle without trailing thread instructions to keep it busy. They further

claim that instead of replicating each instruction in the leading thread, they can

store the value produced by an instruction and, when that instruction is executed

again, compare it to the stored value.

The work of [56] proposes Selective replication. Their selective replication scheme

is guided by the vulnerability of the instructions to protect the back-end. They

opt for an inexpensive way of estimating the AVF that allows re-execution as

soon as possible. To selectively reissue and re-execute those instructions that are

above the selected vulnerability threshold in order to achieve maximum coverage

by replicating a minimum number of instructions. Instructions that are placed in

the IQ are also inserted into the Selective Queue (SQ). They use the time that

an instruction spends in the IQ as an indicator of the AVF. Whenever there is

an empty port for execution, an instruction in the SQ (whose counterpart in the

IQ has already been issued) is issued and executed. Once instructions finish their

execution, they keep the result in the widened ROB. When the replica execution

finishes, it compares its result against the one stored for validation purposes.

A dependence based checking scheme was proposed in [66] and extended in [111].

They selectively try to reduce the number of instructions required to be compared

for detecting errors. The proposal is based on the intuition that as instruction ex-

ecute, the fault propagates through instructions via control or data flow creating a

chain. The proposed scheme builds short chains of instructions which are required

to be checked for errors.

Redundant Threads in Multicore System:

There have been attempts to implement the RMT on a chip multiprocessor. The

basic idea of implementing RMT in a CMP is to generate logically redundant

threads similar to SRT scheme [65]. The difference however comes from the fact

Related Work 205

that the leading and the trailing threads execute on different cores. The redundant

threads can run on different cores within a multicore processor or on different cores

that are on different chips. The reason for using multiple cores, rather than a single

SMT core, is to avoid having the threads compete for resources on the SMT core.

P0 P1

Leading

Thread A

Trailing

Thread R

Trailing

Thread A

Leading

Thread R

Thread A

Load Q

Store Q

Branch Outcome Q

Thread R

Load Q

Store Q

Branch Outcome Q

Figure 7.10: Functional implementation of RMT scheme on a processor with
two cores (P0 and P1). The cross coupled cores with a few dedicated hardware

queues can work in unison for error detection.

The proposal [57] performed a detailed simulation study of redundant multithread-

ing. We show this implementation in Figure 7.10. Trailing thread’s load value

queue and branch outcomes now receive inputs from the leading threads execut-

ing on another core [301]. The same holds true for store instructions. It may also

possible that the cores executing the two threads are very far from each other

increasing the latency to forward data back and forth. However, the advantage

is that the queues implemented to store the values of load, stores and branch

outcomes decouple the execution of the redundant threads and now they are not

on the critical path. This design point differs from lockstepped redundant cores

in that the redundant threads are not restricted to operating in lockstep. They

Related Work 206

show that this design point outperforms lockstepped redundant cores, by avoiding

certain performance penalties inherent in lockstepping.

The DCC technique proposed in [281] uses redundant threads on multiple cores,

but it removes the need for dedicated hardware queues for the leading thread to

communicate its results to the trailing thread. DCC uses the existing intercon-

nection network to carry this traffic.

While implementing RMT on multicore the biggest challenge is in handling the

interaction between the threads and the memory system. The threads perform

loads and stores, and these loads and stores must be the same for the threads

in normal conditions. If the threads share the same address space then a load

instruction in the leading thread may return a different value than the same load

instruction in the trailing thread. For instance, if both threads load from address

X. If the leading thread loads X before the trailing thread loads X it may possible

that the leading thread also try to modify the content following a store to address

X causing an invalidation. In this event the trailing thread may read a different

value from X. A solution was proposed in [351], which is to let the trailing thread

perform reads and detect those violations when the trailing thread’s load reads

different value from that of the leading thread and recover to a checkpoint from

which forward progress is guaranteed.

7.2.3.2 Error Detection via Detecting Anomalies

Error detection via data and control value anomalies have been discussed in Sec-

tion 7.2.1.3. Restore [36] architecture detects transient errors by detecting a higher

level microarchitectural anomalies.

Errors are detected through temporal redundancy on demand. The symptom de-

tectors trigger in situations that are likely to occur in the presence of an error.

These behaviors include exceptions, page faults, and branch mispredictions that

occur despite the branch confidence predictor having high confidence in the predic-

tions. Their intuition is that these anomalous behavior are possible in an error-free

execution but they are rare enough to be suspicious. If ReStore observes any of

these behaviors, it recovers to a pre-error checkpoint and replays execution. If the

anomalous behavior does not recur during replay, then it was most likely due to a

Related Work 207

transient error. If it does recur, then it was either a legal but rare behavior or it

is due to a permanent fault.

7.2.3.3 Using shifting operations

Shifter Shifter

ALU

Shifter

Register

Comparator

Error

Carry “C”

A BK

K

Output

(a) Functional diagram

Original Addition

X X 0 0 1 0

X X 1 0 0 1

X X 1 0 1 0

+

A = 2

B = 9

S = 10

Error bit

0 0 1 0 X X

1 0 0 1 X X

1 0 1 1 X X

+

A = 2

B = 9

S = 11

Corrected

Shifted by 2 Addition (K = 2)

(b) Example

Figure 7.11: Using temporal redundancy for error detection via re-execution
with shifted operands

Another approach to functional unit error detection is a variant of temporal re-

dundancy that can detect errors due to permanent faults. A permanently faulty

functional unit that is protected with pure temporal redundancy computes the

same incorrect answer every time it operates on the same operands; the redun-

dant computations are equal and thus the errors are undetected. Re-execution

Related Work 208

with shifted operands (RESO) [352] overcomes this limitation by shifting the in-

put operands before the redundant computation. RESO can detect errors in both

the arithmetic and logic operations. RESO uses the principle of time redundancy

in detecting the errors and achieves its error detection capability through the use

of the already existing replicated hardware in the form of identical bit slices.

The example in Figure 7.11(a) illustrates how RESO detects an error due to a

permanent fault in an adder. During the first step, three shifters don’t shift the

data, therefore the input and output of shifter is same. During the second step,

the first two left-shifter shift input data by K bits and the right-shifter shifts input

data by K bits. Note that a RESO scheme that shifts by K bits requires an adder

that is K -bits wider than normal. Figure 7.11(b) shows the error detection by an

example of addition. By comparing the 0th bit of the output of the original addition

with the second output bit of the shifted-left-by-K (K=2) addition, RESO detects

an error in the ALU.

7.3 Error Recovery

S0 S3S2S1

BER

FER

Error

FER: S0->S1->S2->S3 BER: S0->S1->S2->S1->S2->S3

Figure 7.12: Classification of error recovery schemes

Error recovery schemes are classified based on the state where the system is taken

when the error recovery mechanism is triggered. As shown in the Figure 7.12,

the system has two options upon encountering the error in state S2: (i) it can

go to state S3 or (ii) fall back to state S1. In this section we will discuss two

fundamental methods to handle the error recovery: (i) Forward error recovery and

(ii) Backward error recovery.

Related Work 209

7.3.1 Forward Error Recovery

Forward error recovery (FER) techniques can correct the errors on the fly. In other

words the system is allowed to make forward progress under the event of an error.

According to Figure 7.12 in FER the system goes to state S3 from S2. FER sys-

tems are required to maintain redundancy that allows the system to reconstruct

the most recent error free state. FER can be implemented by incorporating phys-

ical, temporal or information redundancy in the system. Error correcting codes

can also provide forward error correction by incorporating information redundancy

as explained in the Section 4.6.2.1 in Chapter 4. The most common example of

forward error recovery technique is to employ modular redundancy (i.e., a TMR).

Implementing FER via modular redundancy in full computing systems (i.e., repli-

cating all the memory, registers, ALUs etc.) can be very hardware intensive and

can cause huge power overhead.

7.3.1.1 Triple Modular Redundancy (TMR)

We have seen the use of DMR system for error detection in Section 5.6.1.1 in Chap-

ter 5. It detects the error by comparing the outcomes of two replicas. Adding one

more replica of the modules gives the TMR, that is triple modular redundancy

system [353] as shown in Figure 7.13. The TMR system consists of three identical

replicas of the execution system and the state and a comparator. The fault detec-

tion can be similar to the lockstepping (i.e., cycle by cycle comparison) or similar

to the RMT techniques (i.e., comparing before the output goes out of the sphere

of replication). So long as a majority (2 or 3) of the modules produce correct

results, the system will be functional. Usually, after detecting and identifying the

erroneous module the TMR system isolates the faulty module and keeps running

in a degraded DMR system. To bring back the faulty module the DMR system

copies the new system state from the error free modules to the faulty module

and resumes the execution. The advantage of TMR is that it can provide error

correction. It can also help to isolate the erroneous module and assist in system

diagnosis. TMR can significantly improve the system downtime and can eliminate

DUE without requiring to roll-back.

The first use of TMR in a computer was the Czechoslovak computer SAPO, in

the 1950s [354]. Today triple redundancy systems are used in several commercial

Related Work 210

Processor 0

Processor 1

Processor 2
Comparator

Error

Figure 7.13: Triple modular redundancy

processors (i.e., HP NonStop architecture [113]) and ”Pair & spare” systems [114].

Many variations of the traditional TMR have been proposed and implemented.

The Boeing 777 [355] uses heterogeneous triple-triple modular redundancy [76].

7.3.2 Backward Error Recovery

Unlike forward error recovery schemes, backward error recovery (BER) restores

the system to the last known error free state and resumes the execution from that

state. As shown in Figure 7.12 the system state is traced back to S1 once the

error has been detected in S2. To be able to trace back the system to S1 the

exact system state must be saved in a checkpoint. Moreover, the backward error

recovery mechanisms should also make sure that any output which the system

cannot recover from is error free before exiting the recovery boundary. Thus,

errors must be contained within the sphere of recoverability so that the error

Related Work 211

does not propagate to a component that cannot be recovered. If an error escapes

the sphere of recoverability, then the error is unrecoverable and the system fails.

For instance a backward error recovery scheme that does not save the I/O state

cannot recover from any erroneous outputs that has propagated and modified the

I/O state. Similarly, a backward error recovery mechanism should make sure that

once the system reverts back to the checkpoint all the inputs including the ones

that have arrived from outside of the recovery boundary are replayed.

Basically a checkpoint can comprise any or all of the following: (i) architecture

register files, (ii) caches and memory and (iii) I/O state of the processor. What

comprises the checkpoint directly depends on the fault detection mechanism and

the detection latency. There are several options for choosing the sphere of recover-

ability [356] and the options are discussed at length in Chapter 5. If checkpointing

is implemented just on the core, then errors cannot be allowed to propagate to

the caches or memory or beyond. If checkpointing includes the memory hierarchy,

then errors can be allowed to propagate into the memory system but not to I/O

devices. A backward error recovery scheme recover the system to a precise, con-

sistent and error free state from which it can resume execution. For a processor to

resume execution, it requires all of the architectural state, including the program

counter, architectural registers, status registers, and the memory state.

Checkpoints can be taken at regular periodic intervals or in response to certain

events. Taking checkpoints more frequently is likely to increase the performance

penalty of checkpointing, but it reduces the amount of error-free work that must be

replayed after a recovery. Logging, like checkpointing, is useful in contexts other

than architectural BER. Many programs, such as word processors and spread-

sheets, log changes to data structures so that they can provide recovery. Because

checkpointing and logging have different costs for different types of state, many

BER systems use a hybrid of both [107].

7.3.2.1 Checkpointing Techniques for Recovery

Now, we will discuss the most relevant checkpoint based hardware error recovery

techniques in which the system maintains snapshots of the architectural state of

the system to which it can revert back to in the event of an error.

Related Work 212

1. Error recovery before register commit: Backward error recovery within

core has been adapted in many commercial cores as a mainstream solution

for error recovery [58, 62, 229]. Checkpoint/recovery hardware is used for

recovering from the effects of misprediction instead of being used for error

recovery. The proposal modifies the speculative recovery mechanism to meet

two important criteria: (i) guaranteeing creation of error free checkpoints and

(ii) by performing the error detection before the instruction is committed [66,

357]. These recovery technique can be used only when the error detection

happens before the register values are committed to the architecture register

file. For recovery the processor just have to flush the speculative register

values as the architecture register files holds the most recent and error free

state.

Now, we will discuss one such implementation simultaneously and redun-

dantly threaded processor with recovery (SRTR) which was proposed in [66].

SRTR is an enhancement of redundant multithreading on an SMT core which

provides in core error recovery. To avoid stalling leading instructions at com-

mit while waiting for their trailing counterparts, SRTR exploits the time be-

tween the completion and commit of leading instructions. SRTR compares

the leading and trailing values as soon as the trailing instruction completes,

typically before the leading instruction reaches the commit point. SRTR

relies on the register value queue (RVQ) to hold register values for checking.

Upon a mismatch all the instructions are squashed. The leading thread waits

until the trailing thread also encounters the offending instruction and then

resumes the normal execution.

2. Error recovery after register commit: These techniques allow the regis-

ter values to be committed to the architecture register file but not to caches

or memory and hence they must keep checkpoints of the consistent and error

free architecture state. Checkpoints can be taken periodically or whenever

new values are generated or updated (i.e., incremental checkpointing).

Incremental checkpointing used history buffer to keep a record of all the

register values whenever they are generated [308, 358]. A history buffer

consists of several entries containing information about program counter,

old destination register value and the mapped physical register for every

retired instruction. When an instruction retires but it is still waiting in

the ROB for its turn to commit an entry is allocated in the history buffer.

Related Work 213

Once the retired instruction is verified to be error free the corresponding

entry from the history buffer is deallocated. Whenever a fault is detected

all the speculative instructions which are not retired are flushed. And the

correct architecture state is reconstructed from the existing register file and

the history buffer. The architecture register file holds the state up to the last

retired instruction prior to the erroneous instruction. The values must be

obtained via a roll back to the state prior to the erroneous instruction which

is done by finding the latest update from history buffer to the architecture

register file. The system has to iterate through all the entries in the history

buffer. Once found the architecture state can be restored and the history

buffer is flushed.

Periodic checkpointing takes the snapshot of the processor state periodi-

cally. Unlike incremental checkpointing periodic checkpoints can accommo-

date longer checkpoint periods and reduces the constraint of detecting errors

on every instruction for generation of clear checkpoint. However, the amount

of state has to be copied to create the checkpoint [102, 103, 107, 359–361].

Fingerprinting as proposed in [305] and discussed in Section ?? of this chap-

ter, contains the summary of the outputs of any new register values, memory

values or addresses generated by executing instructions.

3. Cache assisted Checkpointing: More recently checkpointing schemes

have been used for enabling error recovery using caches and memory. In-

cluding caches in the checkpoint can support longer checkpointing periods.

One of the landmark papers on backward error recovery Cache-Aided Roll-

back Error Recovery (CARER) explores how to use the cache to hold check-

point [228]. CARER permits committed stores to write into the cache, but

it does not allow them to be written back to memory until they have been

validated as being error-free. Thus, the memory and the clean lines in the

cache represent the checkpoint. Dirty lines in the cache represent state that

could be recovered if an error is detected. During a recovery, all dirty lines

in the cache are invalidated. If the address of one of these lines is accessed

after recovery, it will miss in the cache and obtain the checkpoint value for

that data from memory. Any cache or memory state, including TLB entries,

that is not part of the recovery point, should be flushed. Otherwise, we may

use incorrect values. CARER also observes that the memory state does not

Related Work 214

need to be restored to the same place where it had been. For example, as-

sume that data block X had been in the data cache with the value 21 when

the checkpoint was taken. The recovery process could restore block X to the

value 21 in either the data cache or the memory.

While extending CARER architecture to provide backward error recovery in

a multiprocessor requires a little modification and apart from the state of

the cores, caches, and memories, we need to maintain the history of shared

data. Consider the following example for a two-core processor that uses its

caches to save part of its checkpoint state (like CARER [228]). When the

checkpoint is saved, core 1 has block A in a modified coherence state, and

core 2’s cached copy of block A is invalid. Upon recovery, if the shared

history is not maintained then both core 1 and core 2 may end up having

block A in the modified state and thus both might believe they can write

to block A. Cherry(-MP) [292] & others [112, 234, 281, 286, 295, 296] are

popular techniques that saves the checkpoints within the cache hierarchy.

4. Checkpointing memory and I/O: Now we will discuss the checkpointing

schemes that allow the processor to commit values in the main memory and

hence these schemes along with the architecture state and caches take snap-

shot of the entire main memory for successful error recovery. By including

the main memory in the checkpoint these checkpointing schemes can allow

very long checkpointing periods. The main challenge in generating system

wide checkpoint is to maintain a consistent recovery point such that in a

multiprocessor system upon encountering an error all the computing nodes

can be restored to a consistent error free state. SafetyNet [107] and Re-

Vive [102] famous examples that maintain system wide checkpoints and can

recover from soft errors, hard errors and system errors.

ReVive [102] creates a system wide checkpoint by halting all the nodes and

coordinating the individual checkpoint generation. It relies on distributed

parity to detect faults in memory and also to guarantee the generation of

error free checkpoints. ReVive incorporates a log based scheme to keep track

of the order of memory writes once the checkpoint is created. It augments

all the memory blocks with an additional log bit and this bit is set on the

first write after the creation of the checkpoint. This log bit helps it identify

modifies writes after the checkpoint which must be undone upon recovery.

ReVive implements a state machine to maintain the global coordination

Related Work 215

while creating checkpoints. The process involves flushing and writing back

all the modified data in the caches to main memory.

SafetyNet [107] generates local checkpoints such that it can create a global

consistent state. This global consistent state can act as the point of recovery

whenever a recovery is required. A combination of local checkpoints together

constitute a global consistent state. To maintain the global consistent state

SafetyNet relies on the fact that coherence transactions are atomic once they

are completed. In other words, the global consistent state is not created until

all the outstanding transactions are completed and are error free.

Including I/O devices in the checkpoint is non trivial and can be very com-

plex. Moreover, it is difficult to recover from some I/O operations. For

instance an erroneous print command to the printer cannot be undone. A

known approach to handle I/O in checkpointing systems is to delay the com-

mit of output until the next checkpoint (output commit problem). To ac-

complish this, adding a ”virtual” device driver layer between the kernel and

the device drivers has been proposed [106, 362]. ReViveIO [103] discusses

about recovering disc operations. Disk output requests are redirected to the

”virtual” device driver rather than the device driver. The ”virtual” device

driver blocks any output-requesting process until the next checkpoint, after

which the output is performed. The ”virtual” device driver can be considered

an extremely thin virtual machine layer for I/O checkpointing.

7.3.3 Other Recovery Schemes

Referring to Figure 7.12 once the error is detected in S2 it is always possible

to revert back to the very initial S0 state. Reverting back to S0 requires the

system to be rebooted. For transient errors rebooting can be economical if the

latency of re-execution and the amount of work lost is non-critical. Rebooting

is not a valid recovery option for hard errors because the system will most likely

encounter the error again. Other recovery schemes include throwing MCA which

throws an exception upon encountering an error and invokes a specific system

handler for recovery [363]. Another technique is popularized as Nuke and Restart

that involves flushing the pipeline to clear the processor state (i.e., Nuke) and

restarting the execution [312].

Related Work 216

7.4 Error Detection and Recovery using Soft-

ware

Software based techniques to improve the system reliability are gaining momentum

due to the higher level of customization and the possibility to deploy it even in the

already established systems. The primary appeal of software redundancy is that

it has no hardware costs and requires no invasive design modifications. It also

provides good coverage of possible errors, although it has some small coverage

holes that are fundamental to all-software schemes. However, the costs of software

redundancy are significant. They degrade performance more than the hardware

techniques due to the overheads incur in the implementation. The dynamic energy

overhead is more than 100%.

Software based checkers for error detection have been studied in [324]. Assertion

based and signature based checkers have been studied and thoroughly. Assertion

based checkers work by asserting or defining rules such as memory bound violation

or coherence violations that can happen due to an error. These assertions can

be inserted by the programmers or by a compiler or through binary translation.

Signature based checkers are popular to detect faults in control flow. One such

implementation is based on Signatured Instruction Streams (SIS). SIS performs

error detection by comparing signatures that are generated statically at compile

time with the ones generated dynamically at run-time [329].

There have been extensive efforts to implement RMT system entirely in software.

Unlike hardware RMT the software RMT instantiation can implement redundant

version of threads within the same hardware context. Software RMT techniques

can provide higher error coverage than software checkers but incur huge perfor-

mance degradation compared to their hardware implementations. Error detec-

tion by duplicated instructions (EDDI) [282], Software implemented fault tolerance

(SWIFT) [283] and Spot [364] are popular software RMT implementations.

EDDI takes advantage of compiler to insert redundant instructions in a single

thread to create two redundant execution streams. Both the streams share the

existing architecture register file and memory address space. Compiler also inserts

specific instructions to compare the outcomes of the redundant streams for fault

detection. EDDI causes performance degradation upto 111%.

Related Work 217

SWIFT combines the approach of achieving fault tolerance by replicating instruc-

tions at compiler level and implementing signature based physical error detec-

tors [283]. SWIFT is very similar to EDDI in its implementation. SWIFT du-

plicates the instruction streams and compare the inputs to both the load/store

instructions to make sure they receive the correct inputs. However, unlike EDDI,

SWIFT does not protect the store instructions. For instance, store instruction can

be corrupted in the store buffer even after receiving correct inputs. The SWIFT

assumes that the memory is protected via ECC. Note that by reducing the num-

ber of duplications and comparisons SWIFT can optimize the performance over

EDDI.

Unlike EDDI or SWIFT Spot does not require the source code since it operates

directly on binary [364]. Spot can dynamically trade off the reliability for perfor-

mance.

Compiler assisted fault tolerance (CRAFT) [365] improves the fault coverage and

reduces the overhead by undertaking hybrid approach instead of pure software

RMT like SWIFT. Unlike SWIFT, CRAFT introduces redundant store instruc-

tions. Moreover, CRAFT implements hardware buffers for checking load/store

instructions for errors and can provide higher coverage by protecting the entire

data path.

SWAT [287] observes the software anomalies induced by hardware errors to achieve

low-cost error detection for cores. SWAT scans for the suspicious software anoma-

lies such as fatal exceptions, program crashes, an unusually high amount of op-

erating system activity, and system hangs. Such behavior can occur due to a

hardware error or a software bug. SWAT focuses on the hardware errors and with

the help of embedded hardware detectors all of these anomalous behaviors are eas-

ily detectable. SWAT benefits from low additional hardware and software costs,

little performance overhead and no false positives. The limitation of SWAT is that

not all hardware errors manifest themselves in software anomalies. For instance

a hardware error in computing floating point values may not necessarily cause a

software error.

Shoestring [35] uses of minimally invasive software solution to provide just enough

resilience to transient faults. The key insight that Shoestring exploits is that the

majority of transient faults do not ultimately propagate to user-visible corruptions

Related Work 218

at the application level or are easily covered by light-weight symptom-based detec-

tion. Shoestring relies on symptom based error detection to supply the bulk of the

fault coverage at little to no cost. Shoestring characterizes all instructions in the

program and identifies symptom generating instructions such as: (i) ISA defined

exceptions: these are exceptions defined by the ISA and must already be detected

by any hardware implementing the ISA (e.g., page fault or overflow), (ii) Fatal

exceptions: these are the subset of the ISA defined exceptions that never occur un-

der normal user program execution (e.g., segment fault or illegal opcode) and (iii)

Anomalous behavior: these events occur during normal program execution but

can also be symptomatic of a fault (e.g., branch mispredict or cache miss) etc. To

address the remaining faults, compiler analysis is utilized to identify hot regions of

the application code that are susceptible to soft errors and causes the corruption.

These hot portions of the code are then protected with instruction duplication.

In essence, Shoestring intelligently selects between relying on symptoms and judi-

ciously applying instruction duplication to optimize the coverage and performance

trade-off. Shoestring transparently provides a low-cost, high-coverage solution for

soft errors in processors targeted for the consumer electronics market. Shoestring

provides limited opportunistic coverage.

EverRun [366] by Marathon technologies has given a full software based solution

for fault tolerance, it uses redundant virtual machines like structure to implement

fault detection in software. It also allows recovery in the case of one of the virtual

machines crashes. It copies the entire state of one virtual machine to another and

transparently restart the entire server.

SWIFT-R as proposed in [367] can also provide forward error recovery purely via

implemented software RMT. SWIFT-R uses triple redundant instructions streams

and a voter similar to hardware TMR. SWIFT-R also combines AN codes for error

detection. Due to triplication of instructions SWIFT-R degrades the performance

by ≥200%.

Major disadvantages of software based solutions are as following: (i) many faults

are missed (i.e., transient errors) in scenarios that are worse than the real (i.e.,

overclocking the processor), (ii) detecting a high-level error like a program crash

provides little diagnostic information which is very important for handling hard

errors, (iii) relying only on high-level error detection has a longer and unbounded

error detection latency. This implies that a bit flip may not result in a program

crash for a very long time. To recover from a crash requires the processor to

Related Work 219

recover to a state from before the error’s occurrence. Longer detection latencies

thus require the processor to keep saved recovery points from further in the past.

Unbounded detection latencies imply that certain detected errors will be unrecov-

erable because of unavailability of a recovery point of the state prior to the error.

Longer detection latency also implies that the effects of an error may propagate

farther, (iv) Software based error detection complicates the recovery process and

to recover from the errors these techniques requires extensive amount of check-

pointing or logging. Recovering the state of a small component is often easier

than recovering a larger component or an entire chip-multiprocessor system.

Chapter 8

Conclusions

The work of this thesis introduces, develops, and analyzes a novel method to detect

and recover from soft errors and improve the reliability of a state of the art micro-

processor. The goal of the thesis was to provide a soft error mitigation mechanism

that is low cost, simple to implement and scalable to handle the increasing soft

error rate. Instead of relying on some kind of redundancy, the proposed method

detects the actual particle strike rather than its consequence.

Many solutions exists to provide error detection and recovery from soft errors

in logic and memory components. However, providing robustness minimizing

area, power and performance is extremely challenging. As Chip Multi-Processors

(CMPs) become ubiquitous, it is imperative to have a robust error handling mech-

anism that is low cost, less complex, scalable and capable of analyzing the complex

behaviors and interactions that result. Existing solutions do not scale to cope up

with the increasing soft error rate and providing coverage to all the unprotected

components on a processor core increases the complexity of soft error solutions.

Moreover, the cost of protection is extremely high and the existing solutions have

hit the point of diminishing return.

8.1 Summary of Research

In this section we will provide a brief summary of the research carried out in this

dissertation:

220

Conclusions 221

8.1.1 Detecting Particle Strikes for Soft Error Detection

The major novel contribution of this dissertation is using the acoustic wave detec-

tors for detecting soft errors via detecting particle strikes and use their information

to locate particle strikes within processor and to protect and recover.

The impact of a high-energy particle with a silicon nucleus can be detected by

detecting the sound, light or heat generated upon impact due to various quantum

physical phenomenons. By detecting particle strikes we are detecting the cause of

soft errors and not wait for the symptom (i.e., an actual error) like other redun-

dancy based solutions. We detect only those particle strikes that may cause soft

errors.

We observed how acoustic wave detectors are used for soft error detection. We

also studied several particles strike detectors that detect voltage/current glitches,

metastability, sound or deposited charge to detect the soft errors. We compared

all the detectors for various trade-offs such as area, power, performance overheads.

8.1.2 Unified Error Detection for Logic & Memory

The proposed architecture uses acoustic wave detectors to detect soft errors.

Acoustic wave detectors can detect the soft errors by detecting the sound the

energetic particle makes upon impact on silicon. And hence, the proposed error

detection architecture is not dependent on the functional or behavioral properties

of the underlying component that is being protected. This eliminates the necessity

of having different schemes for detecting errors in memory and logic components in

a processor and hence, the proposed architecture acts as a unified error detection

mechanism protecting the entire processor.

8.1.3 Precisely Locating the Errors

Using the acoustic wave detectors, we can only detect the particle strikes and hence

avoid possible data corruption. To provide successful error correction or recovery,

the system must know the precise location of the error. Once the error has been

detected, a hardware or software mechanism would trigger an appropriate recovery

action for error correction.

Conclusions 222

We presented an architecture to precisely locate the particle strikes using acous-

tic wave detectors. We demonstrated a solution based on measuring the TDOA

across different detectors, generating a set of hyperbolic equations, and solving

them to obtain the location of particle strike. We presented a firmware/hardware

approach in which the hardware takes responsibility for TDOA measurements and

generating hyperbolic equations while the firmware is responsible for solving the

equations using several algorithms. We implemented algorithms to solve determin-

istic and non-deterministic system of equations and discuss their computational

complexity, runtime, their ability to provide exact solutions and the risk of not

reaching a valid solution. We also discussed in detail how design parameters like

number of detectors and their location impact complexity, runtime and especially,

the accuracy. Lastly, we presented a detailed case study which helped us under-

standing various trade-offs between design parameters (e.g., sampling frequency,

location of detectors etc.) and the algorithmic properties (i.e., runtime, accuracy,

complexity etc.). We concluded that for the maximum accuracy and coverage

non-deterministic iterative algorithm is the best option.

8.1.4 Reducing Reliability Cost for Caches and Memory

We proposed a new solution that combines acoustic wave detectors with error

correcting codes in such a way that we decrease the total cost of the protection

mechanism while providing the same reliability levels. Our analysis concluded that

SEC-DED combined with acoustic wave detectors can provide the same degree

of protection as stand-alone DEC-TED, at a significantly low overheads. We

discussed the architectural modifications for integrating error codes with acoustic

wave detectors.

We specifically focused on caches closer to the core (i.e., L1 cache) that have only

error detection capability. Because of higher costs of error correction designers

cannot afford to provide error correction in L1 cache. Lack of error correction

makes them the highest contributors to the over all DUE FIT budget. We showed

that by accommodating acoustic wave detectors with bit interleaved parity codes,

we can correct 98% of single bit errors in L1 cache. We then presented a mechanism

to detect and correct multi-bit errors in L1 caches. We showed how adapting

acoustic wave detectors and parity protected physically interleaved bits can provide

error correction against 2-bit and 3-bit MBUs at very low cost.

Conclusions 223

8.1.5 Protecting Entire Processor

We proposed an architectural framework to completely eliminate the SDC and

DUE related with soft errors in single and multicore processors. The architec-

ture uses acoustic wave detectors for error detection. We tailored a novel error

recovery mechanism that is less intrusive on design and highly scalable. The er-

ror recovery scheme relies on an extremely light-weight checkpointing mechanism.

The proposed architecture stores checkpoints in caches. We discussed different de-

sign parameters and evaluated cost of checkpointing & recovery. We also observed

the impact of error detection latency on the cost and complexity of the required

amount of checkpointing. We discussed in detail different trade-offs related with

complexity of detectors deployment, detection latency and complexity of recovery

mechanism. The proposed error detection and recovery mechanism can eliminate

SDC and DUE related with soft errors at a negligible 0.8% of performance penalty.

8.1.6 One Solution for All Computing Segments

In general, most of the reliability techniques that are applicable to high perfor-

mance computing are render useless for protecting embedded processors due to the

area, power and performance overheads and complexity. The design constraints

for the embedded systems are different from those in the high-performance domain

and hence robustness techniques specific to the embedded processors are required.

As a part of this dissertation we presented an architecture to provide reliability

in high-performance multicore processors and we showed that the same architec-

ture can be configured to provide reliability in embedded processors with little

design modification. In this thesis we presented an architecture that uses acoustic

wave detectors to detect and contains the error with minimal hardware overhead

incurring negligible area, power and performance cost. The presented architec-

ture provides the flexibility to configure various design parameters such as error

detection latency and error containment boundary which significantly affect the

cost of recovery and performance overhead. This flexibility is very important for

providing robustness in an embedded processor.

We also showed that the proposed architecture can optimize the trade-off between

degree of reliability and performance for non-mission critical embedded applica-

tions. We explained how we can quantify the vulnerability of processor structures

Conclusions 224

and explored the possibility to reduce the vulnerability of a structure in an archi-

tecture by protecting it using acoustic wave detectors.

8.2 Discussions

In this section, we discuss the limitation of the work as presented so far as well as

the potential future applications and uses that are enabled by the use of acoustic

wave detectors.

8.2.1 Future Work

The main goals of this dissertation work were as follow: (i) we wanted to analyze

the possibility of detecting soft errors via particle strike detection using acoustic

wave detectors, (ii) once the error detection mechanism is in place explore the

mechanism to precisely locate the particle strikes and hence soft errors, (iii) once

we have identified the location of the error build architecture to protect the caches

and the explore the feasibility of combining acoustic wave detectors with existing

solutions for protecting caches and memory and (iv) build an extremely simple,

scalable and cost effective architecture that can detect, contain and recover from

soft errors while protecting entire chip-multiprocessor system.

In this work, various properties such as error detection latency, sensitivity to

detect only particle strikes etc. of acoustic wave detectors are entirely based

on simulations. Perhaps an implementation of an actual micro-electromechanical

acoustic wave detector prototype would provide the first hand insight towards these

properties. By fabricating such device the experimental results would benefit from

a more summarized view of the questions such as if the acoustic detector is able

to determine whether the particle strikes has really caused an upset, or if it can

only determine the strike? Moreover, an experimental prototype can also help to

determine if it is feasible to fabricate and calibrate the acoustic wave detectors for

detecting only potent particle strikes and accurately characterizing and eventually

eliminating false positives.

Another aspect of the future work is to focus on the optimization of the firmware

to precisely locate the particle strikes. It may be possible to always pinpoint the

Conclusions 225

exact location of error. By identifying the exact erroneous bit can simplify the

error correction mechanism.

The applicability of this architecture can be shown by extending it to protect

off-chip components such as DRAM, memory controller, buses, interconnects and

switching fabric etc. It will be interesting to explore the architecture based on

acoustic wave detectors to provide reliability to these off-chip components and

studying its impact on the area, power and performance overheads while comparing

with the improved system reliability and availability.

Bibliography

[1] AnandTech Ian Cutress. Intel readying 15-core xeon e7 v2. Online, February

2014. http://www.anandtech.com/show/7753/intel-readying-15core-xeon-

e7-v2.

[2] Gordon E Moore et al. Cramming more components onto integrated circuits.

Proceedings of the IEEE, 86(1):82–85, 1998.

[3] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications

of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24,

1995.

[4] Shlomit S Pinter and Adi Yoaz. Tango: a hardware-based data prefetch-

ing technique for superscalar processors. In Proceedings of the 29th annual

ACM/IEEE international symposium on Microarchitecture, pages 214–225.

IEEE Computer Society, 1996.

[5] Glenn Reinman, Brad Calder, and Todd Austin. Fetch directed instruc-

tion prefetching. In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd

Annual International Symposium on, pages 16–27. IEEE, 1999.

[6] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous multi-

threading: Maximizing on-chip parallelism. In ACM SIGARCH Computer

Architecture News, volume 23, pages 392–403. ACM, 1995.

[7] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach, 4th Edition. Elsevier Science Publishers B. V., 2007.

[8] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and

Andre R LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268, 1974.

226

Bibliography 227

[9] Kate Greene. A new and improved moore’s law. MIT Technology Re-

view, September 2011. http://www.technologyreview.com/news/425398/a-

new-and-improved-moores-law/.

[10] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper.

Solid-State Circuits Society Newsletter, IEEE, 12(1):11–13, 2007.

[11] Stefanos Kaxiras and Margaret Martonosi. Computer architecture tech-

niques for power-efficiency. Synthesis Lectures on Computer Architecture, 3

(1):1–207, 2008.

[12] Semiconductor Industry Association et al. International technology roadmap

for semiconductors (itrs), 2003 edition. Hsinchu, Taiwan, Dec, 2003.

[13] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore scaling. In

Computer Architecture (ISCA), 2011 38th Annual International Symposium

on, pages 365–376. IEEE, 2011.

[14] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Aila-

maki. Toward dark silicon in servers. IEEE Micro, 31(4):6–15, 2011.

[15] Sani R Nassif, Nikil Mehta, and Yu Cao. A resilience roadmap. In Proceed-

ings of the Conference on Design, Automation and Test in Europe, pages

1011–1016. European Design and Automation Association, 2010.

[16] T. Karnik, J. Tschanz, N. Borkar, J. Howard, S. Vangal, V. De, and

S. Borkar. Resiliency for many-core system on a chip. In Design Automation

Conference (ASP-DAC), 2014 19th Asia and South Pacific, pages 388–389,

Jan 2014.

[17] Robert Baumann. Soft errors in advanced computer systems. In Proceedings

of IEEE Design and Test of Computers, pages 258–266, Los Alamitos, CA,

USA, 2005. IEEE Computer Society.

[18] Douglas Bossen. Cmos soft errors and server design. IEEE 2002 Reliability

Physics Tutorial Notes, Reliability Fundamentals, 121:07–1, 2002.

[19] James F Ziegler, Huntington W Curtis, Hans P Muhlfeld, Charles J Mon-

trose, and B Chin. Ibm experiments in soft fails in computer electronics

(1978–1994). IBM journal of research and development, 40(1):3–18, 1996.

Bibliography 228

[20] R. Baumann. Soft errors in advanced semiconductor devices-part i: the three

radiation sources. IEEE Transactions on Device and Materials Reliability,

1(1):17–22, 2001. ISSN 7045-483.

[21] JF Ziegler and WA Lanford. Effect of cosmic rays on computer memories.

Science, 206(4420):776–788, 1979.

[22] JF Ziegler and WA Lanford. The effect of sea level cosmic rays on electronic

devices. Journal of applied physics, 52(6):4305–4312, 1981.

[23] H. Quinn and P. Graham. Terrestrial-based radiation upsets: A cautionary

tale. Technical Report LA-UR-08-1643, Los Alamos National Laboratory,

2008.

[24] Australian Transport Safty Bureau. In-

flight upset-airbus a330-303 vh-qpa. online.

http://www.atsb.gov.au/publications/investigation reports/2008/aair/ao-

2008-070.aspx.

[25] Eugene Normand. Single-event effects in avionics. Nuclear Science, IEEE

Transactions on, 43(2):461–474, 1996.

[26] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors

in the wild: a large-scale field study. In ACM SIGMETRICS Performance

Evaluation Review, volume 37, pages 193–204. ACM, 2009.

[27] Actel. Understanding soft and firm errors in semiconductor devices. White

paper, Actel. http://www.microsemi.com.

[28] James F Ziegler and Helmut Puchner. SER–history, Trends and Challenges:

A Guide for Designing with Memory ICs. Cypress, 2004.

[29] Robert Baumann. The impact of technology scaling on soft error rate perfor-

mance and limits to the efficacy of error correction. In IEDm: international

electron devices meeting, pages 329–332, 2002.

[30] Tanay Karnik and Peter Hazucha. Characterization of soft errors caused by

single event upsets in cmos processes. Dependable and Secure Computing,

IEEE Transactions on, 1(2):128–143, 2004.

[31] Scott Hareland, Jose Maiz, Mohsen Alavi, Kaizad Mistry, Steve Walsta,

and Changhong Dai. Impact of cmos process scaling and soi on the soft

Bibliography 229

error rates of logic processes. In VLSI Technology, 2001. Digest of Technical

Papers. 2001 Symposium on, pages 73–74. IEEE, 2001.

[32] Anand Dixit and Alan Wood. The impact of new technology on soft error

rates. In Proceedings of the International Reliability Physics Symposium

(IRPS), 2011.

[33] Shekhar Borkar. Designing reliable systems from unreliable components:

the challenges of transistor variability and degradation. Micro, IEEE, 25(6):

10–16, 2005.

[34] Premkishore Shivakumar, Michael Kistler, Stephen W Keckler, Doug

Burger, and Lorenzo Alvisi. Modeling the effect of technology trends on

the soft error rate of combinational logic. In Dependable Systems and Net-

works, 2002. DSN 2002. Proceedings. International Conference on, pages

389–398. IEEE, 2002.

[35] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.

Shoestring: probabilistic soft error reliability on the cheap. In ACM

SIGARCH Computer Architecture News, volume 38, pages 385–396. ACM,

2010.

[36] Nicholas J Wang and Sanjay J Patel. Restore: Symptom-based soft error

detection in microprocessors. IEEE Transactions on Dependable and Secure

Computing,, 3(3):188–201, 2006.

[37] Tanay Karnik, Bradley Bloechel, K Soumyanath, Vivek De, and Shekhar

Borkar. Scaling trends of cosmic ray induced soft errors in static latches

beyond 0.18 u. In Symposium on VLSI circuits digest of technical papers,

pages 61–62, 2001.

[38] Subhashish Mitra, Norbert Seifert, and Pia Sanda. Soft errors: Trends,

system effects, and protection techniques. IOLTS-Tutorial Slides, December

2007.

[39] Niranjan Soundararajan, Anand Sivasubramaniam, and Vijay Narayanan.

Characterizing the soft error vulnerability of multicores running multi-

threaded applications. In ACM SIGMETRICS Performance Evaluation Re-

view, volume 38, pages 379–380. ACM, 2010.

Bibliography 230

[40] Cristian Constantinescu. Trends and challenges in vlsi circuit reliability.

IEEE micro, 23(4):14–19, 2003.

[41] Hang T Nguyen, Yoad Yagil, Norbert Seifert, and Mike Reitsma. Chip-level

soft error estimation method. IEEE Transactions on Device and Materials

Reliability, 5(3):365–381, 2005.

[42] Ethan H Cannon, A KleinOsowski, Rouwaida Kanj, Daniel D Reinhardt,

and Rajiv V Joshi. The impact of aging effects and manufacturing variation

on sram soft-error rate. Device and Materials Reliability, IEEE Transactions

on, 8(1):145–152, 2008.

[43] Richard W Hamming. Error detecting and error correcting codes. Bell

System technical journal, 29(2):147–160, 1950.

[44] Mu-Yue Hsiao. A class of optimal minimum odd-weight-column sec-ded

codes. IBM Journal of Research and Development, 14(4):395–401, 1970.

[45] Chin-Long Chen and MY Hsiao. Error-correcting codes for semiconductor

memory applications: A state-of-the-art review. IBM Journal of Research

and Development, 28(2):124–134, 1984.

[46] Timothy J Dell. A white paper on the benefits of chipkill-correct ecc for pc

server main memory. IBM Microelectronics Division, pages 1–23, 1997.

[47] Weldon E J. Peterson W W. Error-Correcting Codes. MIT Press, 2003.

[48] C W Slayman. Cache and memory error detection, correction, and reduction

techniques for terrestrial servers and workstations. IEEE Transactions on

Device and Materials Reliability, 5(3):397–404, 2005.

[49] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe.

Multi-bit error tolerant caches using two-dimensional error coding. In Pro-

ceedings of International Symposium on Microarchitecture (MICRO), pages

197–209. Ieee, 2007.

[50] Jiri Gaisler. A portable and fault-tolerant microprocessor based on the sparc

v8 architecture. In Proceedings of International Conference on Dependable

Systems and Networks, 2002. DSN 2002., pages 409–415, 2002.

Bibliography 231

[51] Ken Yano, Takanori Hayashida, and Toshinori Sato. Analysis of ser improve-

ment by radiation hardened latches. In IEEE 18th Pacific Rim International

Symposium on Dependable Computing (PRDC), 2012, pages 89–95, 2012.

[52] Liang Wang, Yuhong Li, Suge Yue, Yuanfu Zhao, Long Fan, and Liquan

Liu. Single event effects on hard-by-design latches. In Radiation and Its

Effects on Components and Systems, 2007. RADECS 2007. 9th European

Conference on, pages 1–4, 2007.

[53] Sheng Lin, Yong-Bin Kim, and Fabrizio Lombardi. Design and performance

evaluation of radiation hardened latches for nanoscale cmos. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 19(7):1315–1319,

2011.

[54] Timothy J Slegel, Robert M Averill III, Mark A Check, Bruce C Giamei,

Barry W Krumm, Christopher A Krygowski, Wen H Li, John S Liptay,

John D MacDougall, Thomas J McPherson, et al. Ibm’s s/390 g5 micropro-

cessor design. IEEE Micro, 19(2):12–23, 1999.

[55] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim.

Robust system design with built-in soft-error resilience. Computer, 38(2):

43–52, 2005.

[56] Xavier Vera, Jaume Abella, Javier Carretero, and Antonio González. Selec-

tive replication: A lightweight technique for soft errors. ACM Transactions

on Computer Systems (TOCS), 27:8:1–8:30, January 2010.

[57] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. Detailed

design and evaluation of redundant multithreading alternatives. In Proceed-

ings of International Symposium on Computer Architecture (ISCA), 2002.

[58] Lisa Spainhower and Thomas A Gregg. IBM S/390 parallel enterprise server

G5 fault tolerance: a historical perspective. IBM Journal of Research and

Development, 43(5/6):863–873, 1999.

[59] Patrick J Meaney, Scott B Swaney, Pia N Sanda, and Lisa Spainhower. Ibm

z990 soft error detection and recovery. Device and Materials Reliability,

IEEE Transactions on, 5(3):419–427, 2005.

[60] Blaine Stackhouse, Sal Bhimji, Chris Bostak, Dave Bradley, Brian

Cherkauer, Jayen Desai, Erin Francom, Mike Gowan, Paul Gronowski, Dan

Bibliography 232

Krueger, et al. A 65 nm 2-billion transistor quad-core itanium processor.

Solid-State Circuits, IEEE Journal of, 44(1):18–31, 2009.

[61] Reid Riedlinger, Ron Arnold, Larry Biro, Bill Bowhill, Jason Crop, Kevin

Duda, Eric S Fetzer, Olivier Franza, Tom Grutkowski, Casey Little, et al. A

32 nm, 3.1 billion transistor, 12 wide issue itanium® processor for mission-

critical servers. Solid-State Circuits, IEEE Journal of, 47(1):177–193, 2012.

[62] Myron L Fair, Christopher R Conklin, Scott B Swaney, Patrick J Meaney,

William J Clarke, Luiz C Alves, Indravadan N Modi, Fritz Freier, Wolfgang

Fischer, and Norman E Weber. Reliability, availability, and serviceability

(ras) of the ibm eserver z990. IBM Journal of Research and Development,

48(3.4):519–534, 2004.

[63] Alan Wood, Robert Jardine, and Wendy Bartlett. Data integrity in hp

nonstop servers. In Workshop on SELSE, 2006.

[64] Nhon Quach. High availability and reliability in the itanium processor. IEEE

Micro, 20(5):61–69, 2000.

[65] S.K. Reinhardt and S.S. Mukherjee. Transient fault detection via simulta-

neous multithreading. In Proceedings of the 27th International Symposium

on Computer Architecture (ISCA), New York, NY, USA, 2000. ACM Press.

[66] T.N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery

using simultaneous multithreading. In Proceedings of the 29th International

Symposium on Computer Architecture (ISCA), 2002.

[67] Todd M Austin. DIVA: a reliable substrate for deep submicron microarchi-

tecture design. In Proceedings of International Symposium on Microarchi-

tecture (MICRO), 1999.

[68] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance

in microprocessors. In Proceedings of International Symposium on Fault-

Tolerant Computing (FTC), page 84, 1999. ISBN 0-7695-0213-X.

[69] J.C. Smolens, J. Kim, J.C. Hoe, and B. Falsafi. Efficient resource sharing in

concurrent error detecting superscalar microarchitectures. In Proceedings of

the 37th International Symposium on Microarchitecture (MICRO), 2004.

Bibliography 233

[70] Joydeep Ray, James C Hoe, and Babak Falsafi. Dual use of superscalar dat-

apath for transient-fault detection and recovery. In Proceedings of the 34th

annual ACM/IEEE international symposium on Microarchitecture, pages

214–224. IEEE Computer Society, 2001.

[71] M.A. Gomaa and T.N. Vijaykumar. Opportunistic transient-fault detec-

tion. In Proceedings of International Symposium on Computer Architecture

(ISCA), 2005.

[72] Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomeranz.

Transient-fault recovery for chip multiprocessors. In Proceedings of 30th

Annual International Symposium on Computer Architecture, 2003, pages

98–109. IEEE, 2003.

[73] S. Kumar and A. Aggarwal. Reducing resource redundancy for concurrent

error detection techniques in high performance microprocessors. In Pro-

ceedings of the International Symposium on High-Performance Computer

Architecture (HPCA), 2006.

[74] M.K. Qureshi, O. Mutlu, and Y.N. Patt. Microarchitectural-based inspec-

tion: a technique for transient-fault tolerance in microprocessors. In Pro-

ceedings of International Conference on Dependable Systems and Networks

(DSN), 2005.

[75] Angshuman Parashar, Anand Sivasubramaniam, and Sudhanva Gurumurthi.

SlicK: slice-based locality exploitation for efficient redundant multithreading,

volume 40. ACM, 2006.

[76] D.K. Pradhan. Fault-tolerant computer system design. Computer Science

Press, 2003.

[77] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu.

The eda challenges in the dark silicon era: Temperature, reliability, and

variability perspectives. In Proceedings of the The 51st Annual Design Au-

tomation Conference on Design Automation Conference, pages 1–6. ACM,

2014.

[78] Douglas Bossen, Joel M Tendler, and Kevin Reick. Power4 system design

for high reliability. Micro, IEEE, 22(2):16–24, 2002.

Bibliography 234

[79] Naveen Muralimanohar. Wire Aware Cache Architecture. PhD thesis, Cite-

seer, 2009.

[80] Eishi Ibe, Hitoshi Taniguchi, Yasuo Yahagi, Ken-ichi Shimbo, and Tadanobu

Toba. Impact of scaling on neutron-induced soft error in srams from a 250

nm to a 22 nm design rule. Electron Devices, IEEE Transactions on, 57(7):

1527–1538, 2010.

[81] Joel M Tendler, J Steve Dodson, JS Fields, Hung Le, and Balaram Sinharoy.

Power4 system microarchitecture. IBM Journal of Research and Develop-

ment, 46(1):5–25, 2002.

[82] John Wuu, Don Weiss, Charles Morganti, and Michael Dreesen. The asyn-

chronous 24mb on-chip level-3 cache for a dual-core itanium®-family proces-

sor. In IEEE International Solid-State Circuits Conference Digest of Tech-

nical Papers, 2005.

[83] Chetana N Keltcher, Kevin J McGrath, Ardsher Ahmed, and Pat Conway.

The amd opteron processor for multiprocessor servers. IEEE Micro, 23(2):

66–76, 2003.

[84] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and

Trevor Mudge. Drowsy caches: simple techniques for reducing leakage

power. In Computer Architecture, 2002. Proceedings. 29th Annual Inter-

national Symposium on, pages 148–157. IEEE, 2002.

[85] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,

Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flaut-

ner, et al. Razor: A low-power pipeline based on circuit-level timing spec-

ulation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, pages 7–18. IEEE, 2003.

[86] Lin Li, Vijay Degalahal, Narayanan Vijaykrishnan, Mahmut Kandemir, and

Mary Jane Irwin. Soft error and energy consumption interactions: a data

cache perspective. In Low Power Electronics and Design, 2004. ISLPED’04.

Proceedings of the 2004 International Symposium on, pages 132–137. IEEE,

2004.

[87] Zhang K Maiz J, Hareland S. Characterization of multi-bit soft error events

in advanced srams. In IEEE International Electron Devices Meeting, 2003.

Bibliography 235

IEDM’03 Technical Digest, pages 21–24, Los Alamitos, CA, USA, March

2003. IEEE Computer Society.

[88] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, B C. Brookreso-

nand A. Voand S. Mitraand B. Gill, and J. Maiz. Radiation-induced soft er-

ror rates of advanced cmos bulk devices. In Proceedings of International Re-

liability Physics Symposium, pages 217–225, Los Alamitos, CA, USA, March

2006. IEEE Computer Society.

[89] D Costello and Shu Lin. Error control coding. Pearson Higher Education,

2004.

[90] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite

fields. Journal of the Society for Industrial & Applied Mathematics, 8(2):

300–304, 1960.

[91] AMD Bios. kernel developers guide for amd athlon 64 and amd opteron

processors. Technical report, Technical Report Pub. 26094, AMD, 2006.

[92] A.M. Saleh, J.J. Serrano, and J.H. Patel. Reliability of scrubbing recovery

techniques for memory systems. IEEE Transactions on Reliability, 39(1):

114–122, 1990.

[93] S.S. Mukherjee, J. Emer, T. Fossum, and S.K. Reinhardt. Cache scrubbing

in microprocessor. In Proceedings of International Symposium on Pacific

Rim Dependable Computing (PRDC), 2004.

[94] Shuai Wang, Jie Hu, and Sotirios G Ziavras. On the characterization and

optimization of on-chip cache reliability against soft errors. Computers,

IEEE Transactions on, 58(9):1171–1184, 2009.

[95] Kazunari Ishimaru. 45nm/32nm cmos–challenge and perspective. Solid-State

Electronics, 52(9):1266–1273, 2008.

[96] Vijay Degalahal, Lin Li, Vijaykrishnan Narayanan, Mahmut Kandemir, and

Mary Jane Irwin. Soft errors issues in low-power caches. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 13(10):1157–1166, 2005.

[97] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. A

systematic methodology to compute the architectural vulnerability factors

Bibliography 236

for a high-performance microprocessor. In Proceedings of the 36th Inter-

national Symposium on Microarchitecture (MICRO), New York, NY, USA,

2003. ACM Press.

[98] Arijit Biswas, Charles Recchia, Shubhendu S Mukherjee, Vinod Ambrose,

Leo Chan, Aamer Jaleel, Athanasios E Papathanasiou, Mike Plaster, and

Norbert Seifert. Explaining cache ser anomaly using due avf measurement.

In High Performance Computer Architecture (HPCA), 2010 IEEE 16th In-

ternational Symposium on, pages 1–12. IEEE, 2010.

[99] Jinho Suh, Mehrtash Manoochehri, Murali Annavaram, and Michel Dubois.

Soft error benchmarking of l2 caches with parma. ACM SIGMETRICS

Performance Evaluation Review, 39(1):85–96, 2011.

[100] Ishwar Parulkar. Impact of soft errors on reliability and

availability of servers in the internet computing era. online.

http://www.slideshare.net/ishwardutt/vts2006softerrorimpactservers2.

[101] Vision Solutions. Assessing the financial impact of downtime. white paper,

2008.

[102] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. Revive: cost-effective

architectural support for rollback recovery in shared-memory multiproces-

sors. In Computer Architecture, 2002. Proceedings. 29th Annual Interna-

tional Symposium on, pages 111–122. IEEE, 2002.

[103] Jun Nakano, Pablo Montesinos, Kourosh Gharachorloo, and Josep Torrel-

las. Revivei/o: Efficient handling of i/o in highly-available rollback-recovery

servers. In High-Performance Computer Architecture, 2006. The Twelfth

International Symposium on, pages 200–211. IEEE, 2006.

[104] Michel Banâtre, Alain Gefflaut, Philippe Joubert, Christine Morin, and

Peter A Lee. An architecture for tolerating processor failures in shared-

memory multiprocessors. Computers, IEEE Transactions on, 45(10):1101–

1115, 1996.

[105] Elmootazbellah N Elnozahy and Willy Zwaenepoel. Manetho: Transpar-

ent roll back-recovery with low overhead, limited rollback, and fast output

commit. IEEE Transactions on Computers, 41(5):526–531, 1992.

Bibliography 237

[106] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B

Johnson. A survey of rollback-recovery protocols in message-passing systems.

ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

[107] Daniel J Sorin, Milo MK Martin, Mark D Hill, and David A Wood. Safe-

tynet: improving the availability of shared memory multiprocessors with

global checkpoint/recovery. In Computer Architecture, 2002. Proceedings.

29th Annual International Symposium on, pages 123–134. IEEE, 2002.

[108] Brian T Gold, Jangwoo Kim, Jared C Smolens, Eric S Chung, Vasileios

Liaskovitis, Eriko Nurvitadhi, Babak Falsafi, James C Hoe, and Andreas G

Nowatzyk. Truss: a reliable, scalable server architecture. Micro, IEEE, 25

(6):51–59, 2005.

[109] Daniel J Sorin, Milo MK Martin, Mark D Hill, and David A Wood. Fast

checkpoint/recovery to support kilo-instruction speculation and hardware

fault tolerance. Dept. of Computer Sciences Technical Report CS-TR-2000-

1420, University of Wisconsin-Madison, 2000.

[110] James S Plank, Yuqun Chen, Kai Li, Micah Beck, and Gerry Kingsley.

Memory exclusion: Optimizing the performance of checkpointing systems.

Software-Practice and Experience, 29(2):125–142, 1999.

[111] M. Gomaa, C. Scarbrough, T.N. Vijaykumar, and I. Pomeranz. Transient-

fault recovery for chip multiprocessors. In Proceedings of the 30th Interna-

tional Symposium on Computer Architecture (ISCA), 2003.

[112] K-L Wu, W. Kent Fuchs, and Janak H. Patel. Error recovery in shared

memory multiprocessors using private caches. IEEE Transactions on Parallel

and Distributed Systems,, 1(2):231–240, 1990.

[113] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine,

Jim Klecka, and Jim Smullen. Nonstop® advanced architecture. In Proceed-

ings. International Conference on Dependable Systems and Networks, 2005.

DSN 2005., pages 12–21. IEEE, 2005.

[114] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A tale

of two systems. IEEE Transactions on Dependable and Secure Computing,,

1(1):87–96, 2004.

Bibliography 238

[115] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. Slipstream pro-

cessors: improving both performance and fault tolerance. In Proceedings of

the 33th International Symposium on Microarchitecture (MICRO), 2000.

[116] ARM. Arm926ej-s™technical reference manual. Online, February 2014.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0198e/index.html.

[117] Shubhendu S Mukherjee. Architecture Design for Soft Errors. 1st edition,

2009.

[118] Jason Blome, Scott Mahlke, Daryl Bradley, and Krisztián Flautner. A mi-

croarchitectural analysis of soft error propagation in a production-level em-

bedded microprocessor. In Proceedings of the 1st Workshop on Architectural

Reliability, 38th International Symposium on Microarchitecture, Barcelona,

Spain, 2005.

[119] L.G. Szafaryn, B.H. Meyer, and K. Skadron. Evaluating overheads of multi-

bit soft-error protection in the processor core. Micro, IEEE, 33(4):56–65,

July 2013.

[120] James R Black. Electromigrationa brief survey and some recent results.

Electron Devices, IEEE Transactions on, 16(4):338–347, 1969.

[121] JEDEC Solid State Technology Association et al. Failure mechanisms and

models for semiconductor devices. JEDEC Publication JEP122-B, 2003.

[122] C-K Hu, R Rosenberg, HS Rathore, DB Nguyen, and B Agarwala. Scaling

effect on electromigration in on-chip cu wiring. In Interconnect Technology,

1999. IEEE International Conference, pages 267–269. IEEE, 1999.

[123] E Wu, J Sune, W Lai, E Nowak, J McKenna, A Vayshenker, and D Harmon.

Interplay of voltage and temperature acceleration of oxide breakdown for

ultra-thin gate oxides. Solid-State Electronics, 46(11):1787–1798, 2002.

[124] Jaume Abella, Xavier Vera, and Antonio Gonzalez. Penelope: The nbti-

aware processor. In Microarchitecture, 2007. MICRO 2007. 40th Annual

IEEE/ACM International Symposium on, pages 85–96. IEEE, 2007.

[125] Taniya Siddiqua and Sudhanva Gurumurthi. Recovery boosting: A tech-

nique to enhance nbti recovery in sram arrays. In VLSI (ISVLSI), 2010

IEEE Computer Society Annual Symposium on, pages 393–398. IEEE, 2010.

Bibliography 239

[126] Rakesh Vattikonda, Wenping Wang, and Yu Cao. Modeling and minimiza-

tion of pmos nbti effect for robust nanometer design. In Proceedings of the

43rd annual Design Automation Conference, pages 1047–1052. ACM, 2006.

[127] Jaume Abella, Javier Carretero, Pedro Chaparro, Xavier Vera, and An-

tonio González. Low vccmin fault-tolerant cache with highly predictable

performance. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 111–121. ACM, 2009.

[128] Cristian Constantinescu. Neutron ser characterization of microprocessors.

In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. Inter-

national Conference on, pages 754–759. IEEE, 2005.

[129] Ennis T Ogawa, Jinyoung Kim, Gad S Haase, Homi C Mogul, and Joe W

McPherson. Leakage, breakdown, and tddb characteristics of porous low-k

silica-based interconnect dielectrics. In Reliability Physics Symposium Pro-

ceedings, 2003. 41st Annual. 2003 IEEE International, pages 166–172. IEEE,

2003.

[130] Marty Agostinelli, J Hicks, J Xu, B Woolery, K Mistry, K Zhang, S Jacobs,

J Jopling, W Yang, B Lee, et al. Erratic fluctuations of sram cache vmin

at the 90nm process technology node. In Electron Devices Meeting, 2005.

IEDM Technical Digest. IEEE International, pages 655–658. IEEE, 2005.

[131] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. The soft

error problem: An architectural perspective. In High-Performance Computer

Architecture, 2005. HPCA-11. 11th International Symposium on, pages 243–

247. IEEE, 2005.

[132] Balkaran Gill, Michael Nicolaidis, Francis Wolff, Chris Papachristou, and

Steven Garverick. An efficient bics design for seus detection and correction

in semiconductor memories. In Proceedings of the conference on Design,

Automation and Test in Europe-Volume 1, pages 592–597. IEEE Computer

Society, 2005.

[133] Zheng Feng Huang and Mao Xiang Yi. Biss: A built-in seu sensor for soft

error mitigation. Applied Mechanics and Materials, 130:4228–4231, 2012.

[134] Ashay Narsale and Michael C Huang. Variation-tolerant hierarchical voltage

monitoring circuit for soft error detection. IEEE, 2009.

Bibliography 240

[135] Gaurang Upasani, Xavier Vera, and Antonio González. Setting an error

detection infrastructure with low cost acoustic wave detectors. In Proceed-

ings of the 39th International Symposium on Computer Architecture (ISCA),

2012.

[136] Timothy C May and Murray H Woods. Alpha-particle-induced soft errors

in dynamic memories. Electron Devices, IEEE Transactions on, 26(1):2–9,

1979.

[137] Tino Heijmen. Radiation-induced soft errors in digital circuits–a literature

survey. 2002.

[138] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. Measurement

and reporting of alpha particle and terrestrial cosmic ray-induced soft errors

in semiconductor devices. Technical Report JDEC89A, Electronic Industries

Alliance, 2006.

[139] www.seutest.com. Soft error testing resources. online, September 2006.

URL http://www.seutest.com/cgi-bin/FluxCalculator.cgi.

Available online.

[140] Hajime Kobayashi, Nobutaka Kawamoto, Jun Kase, and Ken Shiraish. Al-

pha particle and neutron-induced soft error rates and scaling trends in sram.

In Reliability Physics Symposium, 2009 IEEE International, pages 206–211.

IEEE, 2009.

[141] Robert Baumann. Silicon amnesia: a tutorial on radiation induced soft

errors. In International Reliability Physics Symposium (IRPS), 2001.

[142] Eric Hannah. Cosmic ray detectors for integrated circuit chips. United States

Patent Number 7309866B2, December 2007. Available online (17 pages).

[143] J.R. Letaw and E. Normand. Guidelines for predicting single-event upsets in

neutron environments [ram devices]. IEEE Transactions on Nuclear Science,

38(6):1500–1506, 1991. ISSN 4108617.

[144] MS Gordon, P Goldhagen, KP Rodbell, TH Zabel, HHK Tang, JM Clem,

and P Bailey. Measurement of the flux and energy spectrum of cosmic-ray

induced neutrons on the ground. Nuclear Science, IEEE Transactions on,

51(6):3427–3434, 2004.

http://www.seutest.com/cgi-bin/FluxCalculator.cgi

Bibliography 241

[145] James F Ziegler. Terrestrial cosmic rays. IBM journal of research and de-

velopment, 40(1):19–39, 1996.

[146] Chang-Ming Hsieh, Philip C Murley, and Redmond R O’Brien. Collection of

charge from alpha-particle tracks in silicon devices. Electron Devices, IEEE

Transactions on, 30(6):686–693, 1983.

[147] Eric Dupont, Michael Nicolaidis, and Peter Rohr. Embedded robustness ips

for transient-error-free ics. IEEE Design & Test of Computers, 19(3):56–70,

2002.

[148] R. Silberberg, H. Tsao Chen, and J.R. Letaw. Neutron generated single-

event upsets in the atmosphere. IEEE Transactions on Nuclear Science, 31

(6):1183–1185, 1984. ISSN 0018-9499.

[149] H. Tsao Chen ans R. Silberberg and J.R. Letaw. A comparison of neutron

induced soft error rate in si and gaas devices. IEEE Transactions on Nuclear

Science, 35(6):1634–1637, 1988. ISSN 0018-9499.

[150] Henry HK Tang. Nuclear physics of cosmic ray interaction with semicon-

ductor materials: particle-induced soft errors from a physicist’s perspective.

IBM journal of research and development, 40(1):91–108, 1996.

[151] Xin Li, Kai Shen, Michael C Huang, and Lingkun Chu. A memory soft

error measurement on production systems. In USENIX Annual Technical

Conference, pages 275–280, 2007.

[152] Xin Li, Michael C Huang, Kai Shen, and Lingkun Chu. A realistic evaluation

of memory hardware errors and software system susceptibility. In USENIX

Annual Technical Conference, 2010.

[153] Vilas Sridharan and Dean Liberty. A study of dram failures in the field.

In High Performance Computing, Networking, Storage and Analysis (SC),

2012 International Conference for, pages 1–11. IEEE, 2012.

[154] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. Cosmic rays

don’t strike twice: understanding the nature of dram errors and the impli-

cations for system design. ACM SIGPLAN Notices, 47(4):111–122, 2012.

[155] Timothy J Dell. System ras implications of dram soft errors. IBM Journal

of Research and Development, 52(3):307–314, 2008.

Bibliography 242

[156] Peter Hazucha and Christer Svensson. Impact of cmos technology scaling on

the atmospheric neutron soft error rate. Nuclear Science, IEEE Transactions

on, 47(6):2586–2594, 2000.

[157] Peter Hazucha, Christer Svensson, and Stephen A Wender. Cosmic-ray soft

error rate characterization of a standard 0.6-/spl mu/m cmos process. Solid-

State Circuits, IEEE Journal of, 35(10):1422–1429, 2000.

[158] C Detcheverry, C Dachs, E Lorfevre, C Sudre, G Bruguier, JM Palau,

J Gasiot, and R Ecoffet. Seu critical charge and sensitive area in a sub-

micron cmos technology. 1997.

[159] Philip C Murley and GR Srinivasan. Soft-error monte carlo modeling pro-

gram, semm. IBM Journal of Research and Development, 40(1):109–118,

1996.

[160] ITRS. International technology roadmap for semiconductors. 2010.

[161] Vilas Sridharan and Dean Liberty. A field study of dram errors. studies, 3

(5):10, 2012.

[162] N. Seifert and N. Tam. Timing vulnerability factors of sequentials. IEEE

Transactions on Device and Materials Reliability, 4(3):516–522, 2004.

[163] Premkishore Shivakumar, Michael Kistler, Stephen W Keckler, Doug

Burger, and Lorenzo Alvisi. Modeling the effect of technology trends on

the soft error rate of combinational logic. In Proceedings of International

Conference on Dependable Systems and Networks (DSN), volume 00, page

389, Los Alamitos, CA, USA, 2002. IEEE Computer Society. ISBN 0-7695-

1597-5.

[164] Jordi Barrat i Esteve, Ben Goldsmith, and John Turner. International ex-

perience with e-voting. 2012.

[165] Belgian Goverment Report. Bevoting study

of electronic voting systems. online.

http://www.ibz.rrn.fgov.be/fileadmin/user upload/Elections2011/fr/presentation/bevoting-

1 gb.pdf.

[166] Ciscos Internet Business Solutions Group (IBSG). The internet of things.

online. http://share.cisco.com/internet-of-things.html.

Bibliography 243

[167] Larry D Edmonds. Electric currents through ion tracks in silicon devices.

Nuclear Science, IEEE Transactions on, 45(6):3153–3164, 1998.

[168] Larry D Edmonds. A time-dependent charge-collection efficiency for diffu-

sion. Nuclear Science, IEEE Transactions on, 48(5):1609–1622, 2001.

[169] Paul E Dodd. Device simulation of charge collection and single-event upset.

Nuclear Science, IEEE Transactions on, 43(2):561–575, 1996.

[170] PE Dodd and FW Sexton. Critical charge concepts for cmos srams. Nuclear

Science, IEEE Transactions on, 42(6):1764–1771, 1995.

[171] PE Dodd, FW Sexton, GL Hash, MR Shaneyfelt, BL Draper, AJ Farino,

and RS Flores. Impact of technology trends on seu in cmos srams. Nuclear

Science, IEEE Transactions on, 43(6):2797–2804, 1996.

[172] PE Dodd, MR Shaneyfelt, E Fuller, JC Pickel, FW Sexton, and PSWinokur.

Impact of substrate thickness on single-event effects in integrated circuits.

Nuclear Science, IEEE Transactions on, 48(6):1865–1871, 2001.

[173] Norbet Seifert, David Moyer, Norman Leland, and Ray Hokinson. Historical

trend in alpha-particle induced soft error rates of the alpha tm micropro-

cessor. In Reliability Physics Symposium, 2001. Proceedings. 39th Annual.

2001 IEEE International, pages 259–265. IEEE, 2001.

[174] Norbert Seifert, Xiaowei Zhu, D Moyer, R Mueller, R Hokinson, N Leland,

M Shade, and L Massengill. Frequency dependence of soft error rates for

sub-micron cmos technologies. In Electron Devices Meeting, 2001. IEDM’01.

Technical Digest. International, pages 14–4. IEEE, 2001.

[175] Matthew J Gadlage, Jonathan R Ahlbin, Vishwanath Ramachandran,

Pascale Gouker, Cody A Dinkins, Bharat L Bhuva, Balaji Narasimham,

Ronald D Schrimpf, Michael W McCurdy, Michael L Alles, et al. Tempera-

ture dependence of digital single-event transients in bulk and fully-depleted

soi technologies. Institute of Electrical and Electronics Engineers, 2009.

[176] S Jagannathan, Z Diggins, N Mahatme, TD Loveless, BL Bhuva, S-J Wen,

R Wong, and LW Massengill. Temperature dependence of soft error rate

in flip-flop designs. In Reliability Physics Symposium (IRPS), 2012 IEEE

International, pages SE–2. IEEE, 2012.

Bibliography 244

[177] Guillaume Hubert, Nadine Buard, Cécile Weulersse, Thierry Carrière,

Marie-Catherine Palau, Jean-Marie Palau, Damien Lambert, Jacques Bag-

gio, Frederic Wrobel, Frédéric Saigné, et al. A review of dasie code family:

Contribution to seu/mbu understanding. In IOLTS, pages 87–94, 2005.

[178] Yukiya Kawakami, Masami Hane, Hideyuki Nakamura, Takashi Yamada,

and Kouichi Kumagai. Investigation of soft error rate including multi-bit

upsets in advanced sram using neutron irradiation test and 3d mixed-mode

device simulation. In International Electron Devices Meeting, pages 945–948,

2004.

[179] Kenichi Osada, Ken Yamaguchi, Yoshikazu Saitoh, and Takayuki Kawahara.

Sram immunity to cosmic-ray-induced multierrors based on analysis of an

induced parasitic bipolar effect. Solid-State Circuits, IEEE Journal of, 39

(5):827–833, 2004.

[180] Ludger Borucki, Guenter Schindlbeck, and Charles Slayman. Comparison of

accelerated dram soft error rates measured at component and system level.

In Reliability Physics Symposium, 2008. IRPS 2008. IEEE International,

pages 482–487. IEEE, 2008.

[181] Charles Slayman. Soft error trends and mitigation techniques in mem-

ory devices. In Reliability and Maintainability Symposium (RAMS), 2011

Proceedings-Annual, pages 1–5. IEEE, 2011.

[182] S Satoh, Y Tosaka, and SA Wender. Geometric effect of multiple-bit soft

errors induced by cosmic ray neutrons on dram’s. Electron Device Letters,

IEEE, 21(6):310–312, 2000.

[183] Timothy J O’Gorman. The effect of cosmic rays on the soft error rate of

a dram at ground level. Electron Devices, IEEE Transactions on, 41(4):

553–557, 1994.

[184] Ethan H Cannon, Daniel D Reinhardt, Michael S Gordon, and Paul S

Makowenskyj. Sram ser in 90, 130 and 180 nm bulk and soi technologies. In

IEEE international reliability physics symposium, pages 300–304, 2004.

[185] P Oldiges, K Bernstein, D Heidel, B Klaasen, E Cannon, R Dennard,

H Tang, M Ieong, and H-SP Wong. Soft error rate scaling for emerging

soi technology options. In VLSI Technology, 2002. Digest of Technical Pa-

pers. 2002 Symposium on, pages 46–47. IEEE, 2002.

Bibliography 245

[186] Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Fatih Hamzaoglu, Uddalak

Bhattacharya, Kevin Zhang, Kaizad Mistry, and Mark Bohr. A 4.6 ghz

162mb sram design in 22nm tri-gate cmos technology with integrated active

v min-enhancing assist circuitry. In Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2012 IEEE International, pages 230–232. IEEE,

2012.

[187] ITRS. International technology roadmap for semiconductors. Online, 2006.

http://www.itrs.net/Links/2006Update/FinalToPost/04 PIDS2006Update.pdf.

[188] Jon Cartwright. Intel enters the third dimension. nature news, 2011.

[189] Matthew Murray. Intel’s new tri-gate ivy bridge transistors: 9 things you

need to know. Retrieved March, 13:2012, 2011.

[190] Y-P Fang and Anthony S Oates. Neutron-induced charge collection simula-

tion of bulk finfet srams compared with conventional planar srams. Device

and Materials Reliability, IEEE Transactions on, 11(4):551–554, 2011.

[191] F El-Mamouni, EX Zhang, ND Pate, N Hooten, RD Schrimpf, RA Reed,

KF Galloway, D McMorrow, J Warner, E Simoen, et al. Laser-and heavy

ion-induced charge collection in bulk finfets. Nuclear Science, IEEE Trans-

actions on, 58(6):2563–2569, 2011.

[192] Norbert Seifert, Balkaran Gill, Shah Jahinuzzaman, Joseph Basile, Vinod

Ambrose, Quan Shi, Randy Allmon, and Arkady Bramnik. Soft error sus-

ceptibilities of 22 nm tri-gate devices. Nuclear Science, IEEE Transactions

on, 59(6):2666–2673, 2012.

[193] Kinam Kim. Technology for sub-50nm dram and nand flash manufacturing.

In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE Interna-

tional, pages 323–326. IEEE, 2005.

[194] Tokyo Electron TEL. Emerging research devices. Special Focus, page 29.

[195] Nak Hee Seong, Sungkap Yeo, and Hsien-Hsin S Lee. Tri-level-cell phase

change memory: Toward an efficient and reliable memory system. In Pro-

ceedings of the 40th Annual International Symposium on Computer Archi-

tecture, pages 440–451. ACM, 2013.

Bibliography 246

[196] Sungkap Yeo, Nak Hee Seong, and Hsien-Hsin S Lee. Can multi-level cell pcm

be reliable and usable? analyzing the impact of resistance drift. In the 10th

Ann. Workshop on Duplicating, Deconstructing and Debunking (WDDD),

2012.

[197] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy

Ranganathan, Norman P Jouppi, and Mattan Erez. Free-p: Protecting non-

volatile memory against both hard and soft errors. In High Performance

Computer Architecture (HPCA), 2011 IEEE 17th International Symposium

on, pages 466–477. IEEE, 2011.

[198] Stuart Schechter, Gabriel H Loh, Karin Straus, and Doug Burger. Use ecp,

not ecc, for hard failures in resistive memories. In ACM SIGARCH Computer

Architecture News, volume 38, pages 141–152. ACM, 2010.

[199] N. Wang, A. Mahesri, and S.J. Patel. Examining ace analysis reliability

estimates using fault-injection. In Proceedings of International Symposium

on Computer Architecture (ISCA), 2007.

[200] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Rein-

hardt, and Todd Austin. A systematic methodology to compute the ar-

chitectural vulnerability factors for a high-performance microprocessor. In

Proceedings of the 36th annual IEEE/ACM International Symposium on Mi-

croarchitecture, page 29. IEEE Computer Society, 2003.

[201] K. Walcott, G. Humphreysand, and S. Gurumurthi. Dynamic prediction of

architectural vulnerability from microarchitectural state. In Proceedings of

34th International Symposium on Computer Architecture (ISCA), 2007.

[202] A. Biswas, N. Soundararajan, S. Mukherjee, and S. Gurumurthi. Quantized

avf: A means of capturing vulnerability variations over small windows of

time. In Proceedings of Workshop on Silicon Errors in Logic -System Effects

(SELSE), 2009.

[203] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S. Mukherjee, and R. Ran-

gan. Computing architectural vulnerability factors for address-based struc-

tures. In Proceedings of the 32nd International Symposium on Computer

Architecture (ISCA), 2005.

[204] L. Duan, B. Li, and L. Peng. Versatile prediction and fast estimation of

architectural vulnerability factor from processor performance metrics. In

Bibliography 247

Proceedings of International Symposium on High Performance Computer Ar-

chitecture (HPCA), 2009.

[205] X. Fu, J. Poe, T. Li, and J. Fortes. Characterizing microarchitecture soft er-

ror vulnerability phase behavior. In Proceedings of International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), 2006.

[206] Egas Henes Neto, Ivandro Ribeiro, Michele Vieira, Gilson Wirth, and Fer-

nanda Lima Kastensmidt. Using bulk built-in current sensors to detect soft

errors. Micro, IEEE, 26(5):10–18, 2006.

[207] Patrick Ndai, Amit Agarwal, Qikai Chen, and Kaushik Roy. A soft error

monitor using switching current detection. In Computer Design: VLSI in

Computers and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE In-

ternational Conference on, pages 185–190. IEEE, 2005.

[208] Gaurang Upasani, Xavier Vera, and Antonio González. Reducing due-fit of

caches by exploiting acoustic wave detectors for error recovery. In IOLTS,

pages 85–91, 2013.

[209] I Abt. Silicon detectors: Technology and applications. Max Planck Institut

for Physics, Munich.

[210] Nicolas Wyrsch, S Dunand, C Miazza, A Shah, G Anelli, M Despeisse,

A Garrigos, P Jarron, J Kaplon, D Moraes, et al. Thin-film silicon detectors

for particle detection. physica status solidi (c), 1(5):1284–1291, 2004.

[211] P S. Marrocchesi, O Adriani, C Avanzini, M G. Bagliesi, A Basti, K Batkov,

G Bigongiari, L Bonechi, R Cecchi, M Y. Kim, et al. A silicon array for

cosmic-ray composition measurements in calet. Journal of the Physical So-

ciety of Japan, 78(Suppl. A):181–183, 2009.

[212] Howard H Chen, John A Fifield, Louis L Hsu, and Henry HK Tang. Pro-

grammable heavy-ion sensing device for accelerated dram soft error detec-

tion, 2009. US Patent 7,499,308.

[213] B. C. Daly, T. B. Norris, J. Chen, and J. B. Khurgin. Picosecond acoustic

phonon pulse propagation in silicon. Phys. Rev. B, 70:214307, Dec 2004.

Bibliography 248

[214] M. Hammig. The design and construction of a mechanical radiation detector.

In Proceedings of IEEE Nuclear Science Symposium, pages 803–805, Dept.

of Nucl. Eng., Michigan Univ., Ann Arbor, MI, 1998. IEEE.

[215] M. Hammig. Nuclear radiation detection via the detection of pliable mi-

crostructures. In Proceedings of Nuclear Instruments and Methods in Physics

Research, pages 278–281, Los Alamitos, CA, USA, 1999. Elsevier Science.

[216] Robert W Keyes. Semiconductor surface acoustic wave device, November

1982. US Patent 4,358,745.

[217] Larry K. Baxter. Capacitive Sensors: Design and Applications. John Wiley

and Sons, 1996.

[218] Scott Whitney. Vibrations of cantilever beams: Deflection, frequency, and

research uses. Website: Apr, 23:10, 1999.

[219] M. William, O. Roger, and M. Daniel. Capacitance bar sensor. United States

Patent US4947131, August 1990.

[220] Intel Corporation. Intel’s Nehalem data sheet. Intel Corporation‘.

[221] Mark D Hammig, David K Wehe, and John A Nees. The measurement of

sub-brownian lever deflections. Nuclear Science, IEEE Transactions on, 52

(6):3005–3011, 2005.

[222] N Blanc, J Brugger, NF De Rooij, and U Durig. Scanning force microscopy

in the dynamic mode using microfabricated capacitive sensors. Journal of

Vacuum Science & Technology B: Microelectronics and Nanometer Struc-

tures, 14(2):901–905, 1996.

[223] Moussa Hoummady, Andrew Campitelli, and Wojtek Wlodarski. Acoustic

wave sensors: design, sensing mechanisms and applications. Smart materials

and structures, 6(6):647, 1997.

[224] Sandia National Laboratories. Microsensors

and sensor microsystems. Online, June 2013.

http://www.sandia.gov/mstc/MsensorSensorMsystems/technical-

information/SH-SAW-biosensors.html.

Bibliography 249

[225] Roberto Raiteri, Massimo Grattarola, Hans-Jürgen Butt, and Petr Skládal.

Micromechanical cantilever-based biosensors. Sensors and Actuators B:

Chemical, 79(2):115–126, 2001.

[226] Philip A. Bernstein. Sequoia: A fault-tolerant tightly coupled multiprocessor

for transaction processing. Computer, 21(2):37–45, 1988.

[227] Radu Teodorescu, Jun Nakano, and Josep Torrellas. Swich: A prototype for

efficient cache-level checkpointing and rollback. IEEE Micro, 26(5):28–40,

2006.

[228] Douglas B Hunt and Peter N Marinos. A general purpose cache-aided roll-

back error recovery (carer) technique. In Proceedings of the 17th Inter-

national Symposium on Fault-Tolerant Computing Systems, pages 170–175,

1987.

[229] Hisashige Ando, Yuuji Yoshida, Aiichiro Inoue, Itsumi Sugiyama, Takeo

Asakawa, Kuniki Morita, Toshiyuki Muta, Tsuyoshi Motokurumada, Seishi

Okada, Hideo Yamashita, et al. A 1.3-ghz fifth-generation sparc64 micro-

processor. Solid-State Circuits, IEEE Journal of, 38(11):1896–1905, 2003.

[230] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and David I

August. Encore: low-cost, fine-grained transient fault recovery. In Proceed-

ings of the 44th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 398–409. ACM, 2011.

[231] N.J. Wang and S.J. Patel. Restore: Symptom based soft error detection in

microprocessors. In Proceedings of International Conference on Dependable

Systems and Networks (DSN), 2005.

[232] Harish Naik, Rinku Gupta, and Pete Beckman. Analyzing checkpointing

trends for applications on the ibm blue gene/p system. In Parallel Processing

Workshops, 2009. ICPPW’09. International Conference on, pages 81–88.

IEEE, 2009.

[233] Jason Duell. The design and implementation of berkeley lab’s linux check-

point/restart. Lawrence Berkeley National Laboratory, 2005.

Bibliography 250

[234] Rana E Ahmed, Robert C Frazier, and Peter N Marinos. Cache-aided roll-

back error recovery (carer) algorithm for shared-memory multiprocessor sys-

tems. In Digest of Papers., 20th International Symposium Fault-Tolerant

Computing, 1990. FTCS-20., pages 82–88. IEEE, 1990.

[235] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P Jouppi. A

case study of incremental and background hybrid in-memory checkpointing.

In Proc. of the 2010 Exascale Evaluation and Research Techniques Workshop,

volume 115, pages 119–147, 2010.

[236] G. Shen, R. Zetik, and R.S. Thoma. Performance comparison of toa and

tdoa based location estimation algorithms in los environment. Proceedings of

Workshop on Positioning, Navigation and Communication(WPNC), pages

71–78, 2008. ISSN 1001-3454.

[237] W. Foy. Position-Location Solutions by Taylor-Series Estimation. IEEE

Transactions on Aerospace Electronic Systems, 12:187–194, March 1976.

[238] B. T. Fang. Simple solutions for hyperbolic and related position fixes. IEEE

Transactions on Aerospace Electronic Systems, 26:748–753, September 1990.

[239] YT Chan and KC Ho. A simple and efficient estimator for hyperbolic loca-

tion. Signal Processing, IEEE Transactions on, 42(8):1905–1915, 1994.

[240] KC Ho. Bias reduction for an explicit solution of source localization using

tdoa. Signal Processing, IEEE Transactions on, 60(5):2101–2114, 2012.

[241] Christopher C. Paige and Michael A. Saunders. Lsqr: An algorithm for

sparse linear equations and sparse least squares. ACM Trans. Math. Softw.,

8:43–71, March 1982. ISSN 0098-3500.

[242] C. McMillan and P. McMillan. Characterizing rifle performance using cir-

cular error probable measured via a flatbed scanner. Creative Commons

Attribution-Noncommercial-No Derivative Works, December 2008.

[243] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. Soft

error and energy consumption interactions: a data cache perspective. In

Proceedings of the International Symposium on Low Power Electronics and

Design (ISLPED), 2004.

Bibliography 251

[244] Hisashige Ando, Ken Seki, Satoru Sakashita, Masatosh Aihara, Ryuji Kan,

Kenji Imada, Masaru Itoh, Masamichi Nagai, Yoshiharu Tosaka, Keiji

Takahisa, et al. Accelerated testing of a 90nm sparc64 v microprocessor

for neutron ser. In The Third Workshop on System Effects on Logic Soft

Errors, 2007.

[245] COMPAQ. Alpha 21264 microprocessor hardware reference manual. July

1999.

[246] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara:

A 32-way multithreaded sparc processor. Micro, IEEE, 25(2):21–29, 2005.

[247] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Error control

schemes for on-chip communication links: the energy-reliability tradeoff.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, 24(6):818–831, 2005.

[248] Doe Hyun Yoon and Mattan Erez. Memory mapped ecc: low-cost error pro-

tection for last level caches. In Proceedings of the 36th annual international

symposium on Computer architecture(ISCA), 2009.

[249] Mehrtash Manoochehri, Murali Annavaram, and Michel Dubois. Cppc: cor-

rectable parity protected cache. In Proceedings of the 38th annual interna-

tional symposium on Computer architecture(ISCA), 2011.

[250] ARM ARM. Cortex-a15 mpcore processor technical reference manual, 2013.

[251] Paul Genua and Freescale Semiconductor. Error correction and error han-

dling on powerquicc iii processors. DOI= http://www. freescale. com/-

files/32bit/doc/app note/AN3532. pdf, 2004.

[252] Sakai S. Hung L D, Goshima M. Zigzag-hvp: A cost-effective technique

to mitigate soft errors in caches with word-based access. In IPSJ Digital

Courier, Washington, DC, USA, 2006. IEEE Computer Society.

[253] Mai K Kim J, Hardavellas N. Multi-bit error tolerant caches using two-

dimensional error coding. In Proceedings of International Symposium on

Microarchitecture (MICRO), Washington, DC, USA, 2007. IEEE Computer

Society.

Bibliography 252

[254] Calingaert P. Two-dimensional parity checking. In Proceedings of Interna-

tional Symposium on Microarchitecture (MICRO), Washington, DC, USA,

1961. IEEE Computer Society.

[255] Jack Huynh. The amd athlon xp processor with 512kb l2 cache. AMD White

Paper (Feb.), 2003.

[256] Stefan Rusu, Harry Muljono, and Brian Cherkauer. Itanium 2 processor 6m:

higher frequency and larger l3 cache. Micro, IEEE, 24(2):10–18, 2004.

[257] Harry Muljono, Stefan Rusu, Brian Cherkauer, and Jason Stinson. New

130nm itanium 2 processors for 2003. In Hot Chips, pages 1–22, 2003.

[258] Alaa R Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilker-

son, and Shih-Lien Lu. Energy-efficient cache design using variable-strength

error-correcting codes. In Computer Architecture (ISCA), 2011 38th Annual

International Symposium on, pages 461–471. IEEE, 2011.

[259] Sai-Wai Fu, Amr M Mohsen, and Tim C May. Alpha-particle-induced charge

collection measurements and the effectiveness of a novel p-well protection

barrier on vlsi memories. Electron Devices, IEEE Transactions on, 32(1):

49–54, 1985.

[260] D Lage Burnett and A C Bormann. Soft-error-rate improvement in ad-

vanced bicmos srams. Reliability Physics Symposium, 1993. 31st Annual

Proceedings., International, 1993.

[261] G-H Asadi, Vilas Sridharan, Mehdi Baradaran Tahoori, and David Kaeli.

Balancing performance and reliability in the memory hierarchy. In Perfor-

mance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE Inter-

national Symposium on, pages 269–279. IEEE, 2005.

[262] H-H.S. Lee, G.S. Tyson, and M.K. Farrens. Improving bandwidth utilization

using eager writeback. Journal of Instruction Level Parallelism, 3:1–22, 2001.

[263] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational

behavior to reduce cache leakage power. In Proceedings of 28th International

Symposium on Computer Architecture (ISCA), 2001.

[264] T Calin, M Nicolaidis, and R Velazco. Upset hardened memory design for

submicron cmos technology. IEEE Transactions on Nuclear Science, 43,

1996.

Bibliography 253

[265] Peter Hazucha, Tanay Karnik, Steven Walstra, Bradley A Bloechel,

James W Tschanz, Jose Maiz, Krishnamurthy Soumyanath, Gregory E Der-

mer, Siva Narendra, Vivek De, et al. Measurements and analysis of ser-

tolerant latch in a 90-nm dual-v t cmos process. Solid-State Circuits, IEEE

Journal of, 39(9):1536–1543, 2004.

[266] F Ootsuka, M Nakamura, T Miyake, S Iwahashi, Y Ohira, T Tamaru,

K Kikushima, and K Yamaguchi. A novel 0.20/spl mu/m full cmos sram cell

using stacked cross couple with enhanced soft error immunity. In Electron

Devices Meeting, 1998. IEDM’98. Technical Digest., International, pages

205–208. IEEE, 1998.

[267] Philippe Roche, Francois Jacquet, Christian Caillat, and J-P Schoellkopf.

An alpha immune and ultra low neutron ser high density sram. In Re-

liability Physics Symposium Proceedings, 2004. 42nd Annual. 2004 IEEE

International, pages 671–672. IEEE, 2004.

[268] Tanay Karnik, Sriram Vangal, V Veeramachaneni, Peter Hazucha, Vasantha

Erraguntla, and Shekhar Borkar. Selective node engineering for chip-level

soft error rate improvement [in cmos]. In VLSI Circuits Digest of Technical

Papers, 2002. Symposium on, pages 204–205. IEEE, 2002.

[269] Leonard R Rockett Jr. An seu-hardened cmos data latch design. IEEE

Transactions on Nuclear Science, 35:1682–1687, 1988.

[270] N Derhacobian, Valery A Vardanian, and Yervant Zorian. Embedded mem-

ory reliability: The ser challenge. In Memory Technology, Design and Test-

ing, 2004. Records of the 2004 International Workshop on, pages 104–110.

IEEE, 2004.

[271] Hossein Asadi, Vilas Sridharan, Mehdi B Tahoori, and David Kaeli. Reliabil-

ity tradeoffs in design of cache memories. In 1st Workshop on Architectural

Reliability (WAR-1), 2005.

[272] Bharadwaj S Amrutur and Mark A Horowitz. Speed and power scaling of

sram’s. Solid-State Circuits, IEEE Journal of, 35(2):175–185, 2000.

[273] Soontae Kim. Reducing area overhead for error-protecting large l2/l3 caches.

Computers, IEEE Transactions on, 58(3):300–310, 2009.

Bibliography 254

[274] Arun K. Somani Seongwoo Kim. Area efficient architectures for informa-

tion integrity in cache memories. International Symposium on Computer

Architecure, 1999.

[275] Koustav Bhattacharya, Nagarajan Ranganathan, and Soontae Kim. A

framework for correction of multi-bit soft errors in l2 caches based on redun-

dancy. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 17(2):194–206, 2009.

[276] Zeshan Chishti, Alaa R Alameldeen, Chris Wilkerson, Wei Wu, and Shih-

Lien Lu. Improving cache lifetime reliability at ultra-low voltages. In Pro-

ceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 89–99. ACM, 2009.

[277] Soontae Kim. Area-efficient error protection for caches. In Proceedings of

the conference on Design, automation and test in Europe: Proceedings, pages

1282–1287. European Design and Automation Association, 2006.

[278] Wei Zhang, Sudhanva Gurumurthi, Mahmut T Kandemir, and Anand Siva-

subramaniam. Icr: In-cache replication for enhancing data cache reliability.

In DSN, pages 291–300, 2003.

[279] Wei Zhang. Replication cache: a small fully associative cache to improve

data cache reliability. Computers, IEEE Transactions on, 54(12):1547–1555,

2005.

[280] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P Jouppi, and

James E Smith. Configurable isolation: building high availability systems

with commodity multi-core processors. ACM SIGARCH Computer Archi-

tecture News, 35(2):470–481, 2007.

[281] Christopher LaFrieda, Engin Ipek, Jose F Martinez, and Rajit Manohar.

Utilizing dynamically coupled cores to form a resilient chip multiprocessor.

In 37th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, 2007. DSN’07., pages 317–326. IEEE, 2007.

[282] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Error detec-

tion by duplicated instructions in super-scalar processors. Reliability, IEEE

Transactions on, 51(1):63–75, 2002.

Bibliography 255

[283] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and

David I August. Swift: Software implemented fault tolerance. In Proceed-

ings of the International Symposium on Code Generation and Optimization,

pages 243–254. IEEE Computer Society, 2005.

[284] George A Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S Mukher-

jee, R Rangan, and DI August. Design and evaluation of hybrid fault-

detection systems. In Proceedings of 32nd International Symposium on Com-

puter Architecture, 2005. ISCA’05., pages 148–159. IEEE, 2005.

[285] K Constantinides, S Shyam, S Phadke, V Bertacco, and T Austin. Ultra

low-cost defect protection for microprocessor pipelines. In Proc. of ASPLOS,

2006.

[286] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Valeria

Bertacco, Scott Mahlke, Todd Austin, and Michael Orshansky. Bulletproof:

A defect-tolerant cmp switch architecture. In The Twelfth International

Symposium on High-Performance Computer Architecture, 2006., pages 5–

16. IEEE, 2006.

[287] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V Adve,

Vikram S Adve, and Yuanyuan Zhou. Understanding the propagation of

hard errors to software and implications for resilient system design. ACM

Sigplan Notices, 43(3):265–276, 2008.

[288] Paul Racunas, Kypros Constantinides, Srilatha Manne, and Shubhendu S

Mukherjee. Perturbation-based fault screening. In IEEE 13th International

Symposium on High Performance Computer Architecture, 2007. HPCA

2007., pages 169–180. IEEE, 2007.

[289] Albert Meixner, Michael E Bauer, and Daniel J Sorin. Argus: Low-cost,

comprehensive error detection in simple cores. In 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007. MICRO 2007., pages

210–222. IEEE, 2007.

[290] Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and

Venkatanand Venkatachalapathy. Microarchitectural wire management for

performance and power in partitioned architectures. In 11th International

Symposium on High-Performance Computer Architecture, 2005. HPCA-11.,

pages 28–39. IEEE, 2005.

Bibliography 256

[291] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.

Architecting efficient interconnects for large caches with cacti 6.0. IEEE

Micro,, 28(1):69–79, 2008.

[292] José F Mart́ınez, Jose Renau, Michael C Huang, and Milos Prvulovic.

Cherry: Checkpointed early resource recycling in out-of-order microproces-

sors. In Proceedings. 35th Annual IEEE/ACM International Symposium on

Microarchitecture, 2002.(MICRO-35)., pages 3–14. IEEE, 2002.

[293] Oguz Ergin, Deniz Balkan, Dmitry Ponomarev, and Kanad Ghose. Early

register deallocation mechanisms using checkpointed register files. IEEE

Transactions on Computers,, 55(9):1153–1166, 2006.

[294] Edson Borin, Youfeng Wu, Mauricio Breternitz, and Cheng Wang. Lar-cc:

Large atomic regions with conditional commits. In Proceedings of the 2011

9th Annual IEEE/ACM International Symposium on Code Generation and

Optimization, pages 54–63. IEEE Computer Society, 2011.

[295] Meyrem Kyrman, Nevin Kyrman, and Jose F Martynez. Cherry-mp: Cor-

rectly integrating checkpointed early resource recycling in chip multiproces-

sors. In Proceedings of the 38th annual IEEE/ACM International Symposium

on Microarchitecture, pages 245–256. IEEE Computer Society, 2005.

[296] M Wasiur Rashid and Michael C Huang. Supporting highly-decoupled

thread-level redundancy for parallel programs. In IEEE 14th International

Symposium on High Performance Computer Architecture, 2008. HPCA

2008., pages 393–404. IEEE, 2008.

[297] Steven K Reinhardt, Shubhendu S Mukherjee, Joel S Emer, et al. Periodic

checkpointing in a redundantly multi-threaded architecture, December 11

2007. US Patent 7,308,607.

[298] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R

Marty, Min Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and

David A Wood. Multifacet’s general execution-driven multiprocessor simu-

lator (gems) toolset. ACM SIGARCH Computer Architecture News, 33(4):

92–99, 2005.

[299] J. Somers. Stratus ftServer - Intel Fault Tolerant Platform. Intel Corpora-

tion.

Bibliography 257

[300] C. Webb. z6 - The Next-generation Mainframe Microprocessor. Hot Chips.

[301] Ravi Nair and James E Smith. Method and apparatus for fault-tolerance

via dual thread crosschecking, March 21 2006. US Patent 7,017,073.

[302] Thomas D Bissett, Paul A Leveille, Erik Muench, and Glenn A Trem-

blay. Loosely-coupled, synchronized execution, April 20 1999. US Patent

5,896,523.

[303] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, and R.L. Stamm.

Exploiting choice: instruction fetch and issue on an implementable simul-

taneous multithreading processor. In Proceedings of the 23rd International

Symposium on Computer Architecture (ISCA), pages 191–202, New York,

NY, USA, 1996. ACM Press.

[304] Darrell Boggs, Aravindh Baktha, Jason Hawkins, Deborah T Marr, J Alan

Miller, Patrice Roussel, Ronak Singhal, Bret Toll, and KS Venkatraman.

The microarchitecture of the intel pentium 4 processor on 90nm technology.

Intel Technology Journal, 8(1), 2004.

[305] Jared C Smolens, Brian T Gold, Jangwoo Kim, Babak Falsafi, James C Hoe,

and Andreas G Nowatzyk. Fingerprinting: bounding soft-error detection

latency and bandwidth. In ACM SIGPLAN Notices, volume 39, pages 224–

234. ACM, 2004.

[306] Javier Carretero, Xavier Vera, Jaume Abella, Tanausu Ramirez, Matteo

Monchiero, and Antonio Gonzalez. Hardware/software-based diagnosis of

load-store queues using expandable activity logs. In High Performance Com-

puter Architecture (HPCA), 2011 IEEE 17th International Symposium on,

pages 321–331. IEEE, 2011.

[307] Vimal K Reddy, Eric Rotenberg, and Sailashri Parthasarathy. Understand-

ing prediction-based partial redundant threading for low-overhead, high-

coverage fault tolerance. In ACM SIGARCH Computer Architecture News,

volume 34, pages 83–94. ACM, 2006.

[308] James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts

in pipelined processors. Computers, IEEE Transactions on, 37(5):562–573,

1988.

Bibliography 258

[309] ARM. ARM11 Technical Reference Manual. ARM, . http:

//infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/

DDI0360E_arm11_mpcore_r1p0_trm.pdf.

[310] Doug Burger and Todd M Austin. The simplescalar tool set, version 2.0.

ACM SIGARCH Computer Architecture News, 25(3):13–25, 1997.

[311] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,

Trevor Mudge, and Richard B Brown. Mibench: A free, commercially repre-

sentative embedded benchmark suite. In Workload Characterization, 2001.

WWC-4. 2001 IEEE International Workshop on, pages 3–14. IEEE, 2001.

[312] S Dion Rodgers and Lawrence O Smith. Method and apparatus for pro-

cessing events in a multithreaded processor, February 15 2005. US Patent

6,857,064.

[313] ARM. ARM Cortex A5 Technical Reference Manual. ARM, .

http://infocenter.arm.com/help/topic/com.arm.doc.

ddi0433b/DDI0433B_cortex_a5_r0p1_trm.pdf.

[314] Seongwoo Kim and Arun K Somani. Soft error sensitivity characterization

for microprocessor dependability enhancement strategy. In Dependable Sys-

tems and Networks, 2002. DSN 2002. Proceedings. International Conference

on, pages 416–425. IEEE, 2002.

[315] Giacinto Paolo Saggese, Anoop Vetteth, Zbigniew Kalbarczyk, and Ravis-

hankar Iyer. Microprocessor sensitivity to failures: control vs. execution and

combinational vs. sequential logic. In Dependable Systems and Networks,

2005. DSN 2005. Proceedings. International Conference on, pages 760–769.

IEEE, 2005.

[316] Daya Shanker Khudia, Griffin Wright, and Scott Mahlke. Efficient soft error

protection for commodity embedded microprocessors using profile informa-

tion. In ACM SIGPLAN Notices, volume 47, pages 99–108. ACM, 2012.

[317] Tuo Li, Roshan Ragel, and Sri Parameswaran. Reli: Hardware/software

checkpoint and recovery scheme for embedded processors. In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), 2012, pages

875–880. IEEE, 2012.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0433b/DDI0433B_cortex_a5_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0433b/DDI0433B_cortex_a5_r0p1_trm.pdf

Bibliography 259

[318] E.S. Fetzer, D. Dahle, C. Little, and K. Safford. The parity protected,

multithreaded register files on the 90-nm Itanium microprocessors. IEEE

Journal of Solid-State Circuits, 41(1), January 2006.

[319] Ruchir Puri, Tanay Karnik, and Rajiv Joshi. Technology impacts on sub-

90nm cmos circuit design & design methodologies. In VLSI Design, 2006.

Held jointly with 5th International Conference on Embedded Systems and

Design., 19th International Conference on, pages 3–pp. IEEE, 2006.

[320] Kartik Mohanram and Nur A Touba. Cost-effective approach for reducing

soft error failure rate in logic circuits. In 2013 IEEE International Test

Conference (ITC), pages 893–893. IEEE Computer Society, 2003.

[321] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly configurable

cache architecture for embedded systems. In Computer Architecture, 2003.

Proceedings. 30th Annual International Symposium on, pages 136–146.

IEEE, 2003.

[322] Subhasish Mitra, Ming Zhang, Norbert Seifert, TM Mak, and Kee Sup Kim.

Built-in soft error resilience for robust system design. In Integrated Circuit

Design and Technology, 2007. ICICDT’07. IEEE International Conference

on, pages 1–6. IEEE, 2007.

[323] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen

Kalaiselvan, Kevin Lai, David M Bull, and David T Blaauw. Razorii: In situ

error detection and correction for pvt and ser tolerance. Solid-State Circuits,

IEEE Journal of, 44(1):32–48, 2009.

[324] Aamer Mahmood and Edward J McCluskey. Concurrent error detection

using watchdog processors-a survey. Computers, IEEE Transactions on, 37

(2):160–174, 1988.

[325] Seongwoo Kim and Arun K Somani. On-line integrity monitoring of micro-

processor control logic. Microelectronics journal, 32(12):999–1007, 2001.

[326] Vimal Reddy and Eric Rotenberg. Coverage of a microarchitecture-level

fault check regimen in a superscalar processor. In Dependable Systems and

Networks With FTCS and DCC, 2008. DSN 2008. IEEE International Con-

ference on, pages 1–10. IEEE, 2008.

Bibliography 260

[327] X Delord and Gabriele Saucier. Formalizing signature analysis for control

flow checking of pipelined risc microprocessors. In Test Conference, 1991,

Proceedings., International, page 936. IEEE, 1991.

[328] Nirmal R Saxena and Edward J McCluskey. Control-flow checking us-

ing watchdog assists and extended-precision checksums. Computers, IEEE

Transactions on, 39(4):554–559, 1990.

[329] Michael A. Schuette and John Paul Shen. Processor control flow monitoring

using signatured instruction streams. Computers, IEEE Transactions on,

100(3):264–276, 1987.

[330] Nancy J Warter and W-MW Hwu. A software based approach to achieving

optimal performance for signature control flow checking. In Fault-Tolerant

Computing, 1990. FTCS-20. Digest of Papers., 20th International Sympo-

sium, pages 442–449. IEEE, 1990.

[331] Kent Wilken and John Paul Shen. Continuous signature monitoring: low-

cost concurrent detection of processor control errors. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 9(6):629–641,

1990.

[332] Albert Meixner and Daniel J Sorin. Error detection using dynamic dataflow

verification. In Parallel Architecture and Compilation Techniques, 2007.

PACT 2007. 16th International Conference on, pages 104–118. IEEE, 2007.

[333] V.K. Reddy, A.S. Al-Zawawi, and E. Rotenberg. Assertion-based microarchi-

tecture design for improved fault tolerance. In Proceedings of International

Conference on Computer Design (ICCD), pages 362–369, 2007.

[334] Nithin Nakka, Zbigniew Kalbarczyk, Ravishankar K Iyer, and Jun Xu. An

architectural framework for providing reliability and security support. In

Dependable Systems and Networks, 2004 International Conference on, pages

585–594. IEEE, 2004.

[335] Karthik Pattabiraman, Giacinto Paolo Saggese, Daniel Chen, Zbigniew

Kalbarczyk, and Ravishankar K Iyer. Dynamic derivation of application-

specific error detectors and their implementation in hardware. In Depend-

able Computing Conference, 2006. EDCC’06. Sixth European, pages 97–108.

IEEE, 2006.

Bibliography 261

[336] Sam Gat-Shang Chu, Daniel R Knebel, and Stephen V Kosonocky. Register

file cell with soft error detection and circuits and methods using the cell,

July 14 2009. US Patent 7,562,273.

[337] Pablo Montesinos, Wei Liu, and Josep Torrellas. Using register lifetime

predictions to protect register files against soft errors. In Dependable Sys-

tems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International

Conference on, pages 286–296. IEEE, 2007.

[338] Pablo Montesinos, Wei Liu, and Josep Torrellas. Shield: Cost-effective soft-

error protection for register files. In Third IBM TJ Watson Conference on

Interaction between Architecture, Circuits and Compilers (PAC206), 2006.

[339] Sorin Iacobovici. Residue-based error detection for a shift operation, June 2

2009. US Patent 7,543,007.

[340] J-C Lo. Reliable floating-point arithmetic algorithms for error-coded

operands. Computers, IEEE Transactions on, 43(4):400–412, 1994.

[341] C Webb. z6-the next-generation mainframe micropro cessor. In Hot Chips,

pages 19–21, 2007.

[342] Michael Nicolaidis. Carry checking/parity prediction adders and alus. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(1):121–

128, 2003.

[343] Michael Nicolaidis. Efficient implementations of self-checking adders and

alus. In Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers., The

Twenty-Third International Symposium on, pages 586–595. IEEE, 1993.

[344] I Alzaher Noufal and Michael Nicolaidis. A cad framework for generating self-

checking multipliers based on residue codes. In Proceedings of the conference

on Design, automation and test in Europe, page 29. ACM, 1999.

[345] Michael Nicolaidis and Ricardo O Duarte. Fault-secure parity prediction

booth multipliers. IEEE design & test of computers, 16(3):90–101, 1999.

[346] Michael Nicolaidis, Ricardo O Duarte, Salvador Manich, and Joan Figueras.

Fault-secure parity prediction arithmetic operators. IEEE Design & Test of

computers, 14(2):60–71, 1997.

Bibliography 262

[347] C. Weaver, J. Emer, S.S. Mukherjee, and S.K. Reinhardt. Techniques to

reduce the soft error rate of a high-performance microprocessor. In Proceed-

ings of the 31st International Symposium on Computer Architecture (ISCA),

Washington, DC, USA, 2004. IEEE Computer Society.

[348] Javier Carretero, Pedro Chaparro, Xavier Vera, Jaume Abella, and Anto-

nio González. End-to-end register data-flow continuous self-test. In ACM

SIGARCH Computer Architecture News, volume 37, pages 105–115. ACM,

2009.

[349] Smitha Shyam, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and

Todd Austin. Ultra low-cost defect protection for microprocessor pipelines.

In ACM Sigplan Notices, volume 41, pages 73–82. ACM, 2006.

[350] W.Bartlett A.Wood, R.Jardine. Data integrity in hp nonstop servers. In In

the Proceedings of the IEEE workshop on Silicon Errors in Logic and System

Effects (SELSE), Los Alamitos, CA, USA, 2006.

[351] Jared C Smolens, Brian T Gold, Babak Falsafi, and James C Hoe. Reunion:

Complexity-effective multicore redundancy. In Proceedings of the 39th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages 223–

234. IEEE Computer Society, 2006.

[352] Janak H. Patel and Leona Y. Fung. Concurrent error detection in alu’s by

recomputing with shifted operands. Computers, IEEE Transactions on, 100

(7):589–595, 1982.

[353] John Von Neumann. Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components. Automata studies, 34:43–98, 1956.

[354] Antonin Svoboda. From mechanical linkages to electronic computers: Rec-

ollections from czechoslovakia. Metropolis, N., J. Howlett, and Gian-Carlo

Rota, A History of Computing in the Twentieth Century, Academic Press,

New York, pages 579–586, 1980.

[355] YC Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace

Applications Conference, 1996. Proceedings., 1996 IEEE, volume 1, pages

293–307. IEEE, 1996.

[356] Brian T Gold, Jared C Smolens, Babak Falsafi, and James C Hoe. The

granularity of soft-error containment in shared memory multiprocessors.

Bibliography 263

In Proceedings of The Workshop on Silicon Errors in Logic-System Effects

(SELSE), 2006.

[357] Michael J Mack, WM Sauer, Scott B Swaney, and Bruce G Mealey. Ibm

power6 reliability. IBM Journal of Research and Development, 51(6):763–

774, 2007.

[358] Joel S Emer, Shubhendu S Mukherjee, and Steven K Reinhardt. Incremental

checkpointing in a multi-threaded architecture, July 10 2007. US Patent

7,243,262.

[359] Haitham Akkary, Ravi Rajwar, and Srikanth T Srinivasan. Checkpoint

processing and recovery: Towards scalable large instruction window pro-

cessors. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, pages 423–434. IEEE, 2003.

[360] Chris Gniady and Babak Falsafi. Speculative sequential consistency with

little custom storage. In Parallel Architectures and Compilation Techniques,

2002. Proceedings. 2002 International Conference on, pages 179–188. IEEE,

2002.

[361] Avinash C Palaniswamy and Philip A Wilsey. An analytical comparison

of periodic checkpointing and incremental state saving. In ACM SIGSIM

Simulation Digest, volume 23, pages 127–134. ACM, 1993.

[362] Yoshio Masubuchi, Satoshi Hoshina, Tomofumi Shimada, B Hirayama,

and Nobuhiro Kato. Fault recovery mechanism for multiprocessor servers.

In Fault-Tolerant Computing, 1997. FTCS-27. Digest of Papers., Twenty-

Seventh Annual International Symposium on, pages 184–193. IEEE, 1997.

[363] Douglas C Bossen, Alongkorn Kitamorn, Kevin F Reick, and Michael S

Floyd. Fault-tolerant design of the ibm pseries 690 system using power4

processor technology. IBM Journal of Research and Development, 46(1):

77–86, 2002.

[364] Steven K Reinhardt and Shubhendu S Mukherjee. Transient fault detection

via simultaneous multithreading, volume 28. ACM, 2000.

[365] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.I. August, and S.S.

Mukherjee. Design and evaluation of hybrid fault-detection systems. In

Bibliography 264

Proceedings of the 32nd International Symposium on Computer Architecture

(ISCA), 2005.

[366] D.P. Siewiorek and R.S. Swarz. Reliable Computer Systems: Design and

Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998. ISBN 1-56881-092-

X.

[367] George A Reis, Jonathan Chang, and David I August. Automatic

instruction-level software-only recovery. IEEE micro, 27(1):36–47, 2007.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Publications
	Glossary
	Physical Constants
	1 Introduction
	1.1 Motivation
	1.1.1 Soft Error Trends
	1.1.2 Current Solutions and Challenges

	1.2 Problem Statement
	1.2.1 Soft Error Rate Limits the Core Count
	1.2.2 Soft Errors in the age of Dark Silicon
	1.2.3 Soft Errors in Large Memories
	1.2.4 Handling SDC & DUE
	1.2.5 Protecting all Computing Segments

	1.3 Thesis Scope and Contributions
	1.4 Organization

	2 Soft Errors: Background and Overview
	2.1 Soft Error Terminologies
	2.1.1 Faults, Errors and Failures
	2.1.2 Metrics
	2.1.3 SDC and DUE

	2.2 Realizing Reliable Solution
	2.3 Soft Error Sources
	2.3.1 Alpha particles
	2.3.2 Neutron particles
	2.3.3 Neutron induced boron fission

	2.4 Interaction of Particles with Silicon
	2.4.1 Generation of Light, Sound and Heat!

	2.5 Computing Soft Error Rate
	2.6 Soft Error Manifestation in Electronics
	2.6.1 Soft Errors in SRAM
	2.6.2 Soft Errors in DRAM
	2.6.3 Soft Errors in Logic
	2.6.4 Evidence of Soft Errors

	2.7 Parameters Affecting Soft Error Rate
	2.8 Soft Errors and Future Processors
	2.8.1 Impact of Technology Scaling
	2.8.1.1 SRAM
	2.8.1.2 DRAM
	2.8.1.3 Logic Components

	2.8.2 Impact of New Technologies
	2.8.2.1 Silicon on Insulator (SOI)
	2.8.2.2 Multigate-FET Devices
	2.8.2.3 Non-Volatile Memories

	2.9 Calculating SER to Make Architectural Decisions
	2.9.1 Fault Injection:
	2.9.2 Architecture Vulnerability Factor (AVF) Analysis:

	3 Error Detection using Acoustic Wave Detectors
	3.1 Particle Strike Detectors
	3.2 The Microelectromechanical Ears: Acoustic Wave Detectors
	3.2.1 Structure and Properties of Device
	3.2.2 Calibrating the Detector
	3.2.2.1 False Positives

	3.3 Soft Error Detection via Detecting Particle Strikes
	3.4 Location Estimation of a Particle Strike
	3.4.1 Example
	3.4.2 Obtaining TDOA
	3.4.3 Generating TDOA Equations
	3.4.4 Solving TDOA Equations

	3.5 Algorithms for TDOA Equations
	3.5.1 Deterministic Method
	3.5.2 Non-deterministic Method
	3.5.2.1 Non-iterative Algorithms
	3.5.2.2 Iterative Algorithm

	3.5.3 Metrics for Evaluating Algorithms
	3.5.3.1 Runtime
	3.5.3.2 Complexity
	3.5.3.3 Location Estimation Coverage
	3.5.3.4 Accuracy

	3.6 Assessing the Algorithms
	3.6.1 Placement of Detectors
	3.6.1.1 Accuracy
	3.6.1.2 Location Estimation Coverage

	3.6.2 Choosing Detectors for TDOA Equations
	3.6.2.1 Accuracy
	3.6.2.2 Location Estimation Coverage

	3.6.3 Effect of Solving More TDOA Equations
	3.6.3.1 Accuracy
	3.6.3.2 Runtime
	3.6.3.3 Complexity

	3.6.4 Effect of Sampling Frequency on Accuracy
	3.6.5 Detection Latency
	3.6.6 Summary of Chosen Configuration
	3.6.7 Summary of Results

	3.7 Related Work
	3.7.1 Current Glitch Detectors
	3.7.1.1 Built-In Current Sensors (BICS)
	3.7.1.2 Switching Current Detector

	3.7.2 Voltage Glitch Detectors
	3.7.3 Metastability Detectors
	3.7.4 Deposited Charge Detectors
	3.7.4.1 Thin film silicon detectors
	3.7.4.2 Heavy-ion Sensing

	3.7.5 Comparison of Detectors
	3.7.5.1 Hardware cost/Area overhead
	3.7.5.2 Power overhead and detection latency
	3.7.5.3 False alarms
	3.7.5.4 Detected particles/Fault types
	3.7.5.5 Intrusiveness of the design
	3.7.5.6 Fault coverage vs. Cost

	3.8 Chapter Summary

	4 Protecting Caches with Acoustic Wave Detectors
	4.1 Error Detection and Localization in Cache
	4.2 Providing Error Correction in Caches
	4.2.1 Reaction upon a Particle Strike
	4.2.2 Standalone Acoustic Wave Detectors
	4.2.2.1 Error Area Granularity: Cache Lines
	4.2.2.2 Error Area Granularity: Exact bit

	4.3 Acoustic Wave Detectors with Error Codes
	4.3.1 Error Area Granularity: Cache Lines
	4.3.2 Error Area Granularity: Exact bit
	4.3.2.1 Acoustic Wave Detectors + Parity per Block
	4.3.2.2 Acoustic Wave Detectors + Parity per Byte
	4.3.2.3 Acoustic Wave Detectors with Physical Interleaving

	4.4 Handling Multi-bit Upsets in Caches
	4.5 Cost of Protection
	4.6 Related Work
	4.6.1 Particle Strike Detection for Soft Errors
	4.6.2 Soft Error Detection
	4.6.2.1 Error Codes

	4.6.3 Soft Error Mitigation
	4.6.3.1 Physical Interleaving
	4.6.3.2 Cache Scrubbing
	4.6.3.3 Cache Flush
	4.6.3.4 Early Writeback

	4.6.4 Comparison of Techniques

	4.7 Chapter Summary

	5 Protecting Entire Core with Acoustic Wave Detectors
	5.1 "SDC & DUE 0" Architecture
	5.1.1 Effect of Detection Latency on SDC & DUE
	5.1.2 Achieving SDC-& DUE 0 per Core
	5.1.3 Divide and Conquer for SDC and DUE 0
	5.1.4 Containment in Core: Recap
	5.1.5 Proposed Architecture

	5.2 Implementation of Proposed Architecture: Unicore Processor
	5.2.1 Error Containment Mechanism
	5.2.1.1 Dealing with Verified Cache.
	5.2.1.2 Dealing with Not-Verified Cache.

	5.2.2 Creating Checkpoints
	5.2.2.1 Validating the Checkpoint.

	5.2.3 Recovering from Error
	5.2.4 Intrusiveness of Design

	5.3 Implementation of Proposed Architecture: Multicore Processor
	5.3.1 Shared Memory Architecture
	5.3.1.1 MOESI Protocol for Error Containment.
	5.3.1.2 MOESI Protocol for Checkpointing.
	5.3.1.3 Recovering from Error.

	5.4 Managing System Calls, Interrupts and Exceptions
	5.4.1 Handling Interrupts.
	5.4.2 Dealing with Exceptions.
	5.4.3 Context switching and Multi-programming.

	5.5 Performance Evaluation of "SDC- & DUE 0" Architecture
	5.5.1 Experimental Setup
	5.5.1.1 Single core system.
	5.5.1.2 Multicore system.

	5.5.2 Error Detection Latency vs Containment Area
	5.5.3 Checkpoint Length vs Checkpoint Area
	5.5.4 Uniprocessor Performance
	5.5.5 Performance of Multicore for Data Non-Sharing Applications
	5.5.6 Multicore Shared Memory Performance

	5.6 Related Work
	5.6.1 Error Detection and Recovery in Core
	5.6.1.1 Dual Modular Redundancy with Recovery
	5.6.1.2 Lockstepping with Recovery
	5.6.1.3 Redundant Multithreading (RMT) with Recovery
	5.6.1.4 Error Detection and Recovery using Checker Core

	5.7 Chapter Summary

	6 Protecting Embedded Core with Acoustic Wave Detectors
	6.1 Experimental Setup
	6.2 Handling SDC & DUE in Embedded Core
	6.2.1 Acoustic Wave Detectors and Error Detection Latency
	6.2.2 Error Containment Granularity
	6.2.2.1 Error Containment Granularity: Core
	6.2.2.2 Error Containment Granularity: Cache

	6.2.3 Putting everything together

	6.3 Selective Error Containment
	6.3.1 Protecting Individual Data Paths & Latency Guard Bands
	6.3.1.1 Traversal of Instructions in Pipeline
	6.3.1.2 Cost of Error Containment

	6.4 Error Containment Coverage vs. Vulnerability
	6.4.1 ACE Analysis
	6.4.2 Reducing AVF using Acoustic Wave Detectors

	6.5 Related Work
	6.5.1 Soft Error Sensitivity Analysis
	6.5.2 Soft Error Protection
	6.5.2.1 Hardware Only Approach
	6.5.2.2 Software Only Approach
	6.5.2.3 Hybrid Approach

	6.6 Chapter Summary

	7 Related Work
	7.1 Soft Error Protection Schemes
	7.1.1 Device Enhancements
	7.1.1.1 Triple-well technology
	7.1.1.2 Silicon-on-insulator
	7.1.1.3 Process techniques

	7.1.2 Circuit Enhancements
	7.1.2.1 Increasing nodal capacitance in the circuit
	7.1.2.2 Radiation hardened cells

	7.2 Soft Error Detection Schemes
	7.2.1 Spatial Redundancy
	7.2.1.1 Detectors for Error Detection
	7.2.1.2 Error Detection via Monitoring Invariants
	7.2.1.3 Error Detection via Dynamic Control/Data Flow Checks
	7.2.1.4 Error Detection via Hardware Assertion
	7.2.1.5 Error Detection via Symptom Checks
	7.2.1.6 Error Detection via Selective Protection

	7.2.2 Information Redundancy
	7.2.2.1 Error Codes for Combinational Logic
	7.2.2.2 Signature Based Approach

	7.2.3 Temporal Redundancy
	7.2.3.1 Various Flavors of RMT
	7.2.3.2 Error Detection via Detecting Anomalies
	7.2.3.3 Using shifting operations

	7.3 Error Recovery
	7.3.1 Forward Error Recovery
	7.3.1.1 Triple Modular Redundancy (TMR)

	7.3.2 Backward Error Recovery
	7.3.2.1 Checkpointing Techniques for Recovery

	7.3.3 Other Recovery Schemes

	7.4 Error Detection and Recovery using Software

	8 Conclusions
	8.1 Summary of Research
	8.1.1 Detecting Particle Strikes for Soft Error Detection
	8.1.2 Unified Error Detection for Logic & Memory
	8.1.3 Precisely Locating the Errors
	8.1.4 Reducing Reliability Cost for Caches and Memory
	8.1.5 Protecting Entire Processor
	8.1.6 One Solution for All Computing Segments

	8.2 Discussions
	8.2.1 Future Work

	Bibliography

