Automorphism group of split Cartan modular curves

Josep González *

Dedicated to the memory of Fumiyuki Momose

Abstract

We determine the automorphism group of the split Cartan modular curves $X_{\text {split }}(p)$ for all primes p.

1 Introduction

For a rational prime p, let $X_{\text {split }}(p)$ be the modular curve defined over \mathbb{Q} attached to the congruence subgroup of level p

$$
\Gamma_{\text {split }}(p)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): b \equiv c \equiv 0 \text { or } a \equiv d \equiv 0 \quad(\bmod p)\right\}
$$

It is well-known that $X_{\text {split }}(p)$ is isomorphic over \mathbb{Q} to the modular curve $X_{0}^{+}\left(p^{2}\right):=X_{0}\left(p^{2}\right) / w_{p^{2}}$, where $w_{p^{2}}$ stands for the Fricke involution. The genus of this curve is positive when $p \geq 11$ and, in this case, it is at least 2 .

The automorphism group of the modular curve $X_{0}(N)$ was determined, except for $N=$ 63, by Kenku and Momose in [KM88] and was completed by Elkies in [Elk90]. Later, the automorphism group of the modular curve $X_{0}^{+}(p)=X_{0}(p) / w_{p}$ was determined by Baker and Hasegawa in [BH03]. In this article, we focus our attention on the automorphism group of the split Cartan modular curves $X_{\text {split }}(p)$. Our main result is the following.
Theorem 1. Assume that the genus of $X_{\text {split }}(p)$ is positive. Then,

$$
\operatorname{Aut}\left(X_{\text {split }}(p)\right)=\operatorname{Aut}_{\mathbb{Q}}\left(X_{\text {split }}(p)\right) \simeq\left\{\begin{array}{cl}
\{1\} & \text { if } p>11 \\
(\mathbb{Z} / 2 \mathbb{Z})^{2} & \text { if } p=11
\end{array}\right.
$$

2 General facts

We recall that, for a normalized newform $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}\left(\Gamma_{1}(N)\right)^{\text {new }}$ and a Dirichlet character χ of conductor N^{\prime}, the function

$$
f_{\chi}:=\sum_{n \geq 1} \chi(n) a_{n} q^{n}
$$

is a cusp form in $S_{2}\left(\Gamma_{1}\left(\operatorname{lcm}\left(N, N^{\prime 2}\right)\right)\right.$ (cf. Proposition 3.1 of [AL78]). Here, as usual, $q=e^{2 \pi i z}$. Let $f \otimes \chi$ denote the unique normalized newform with q-expansion $\sum_{n \geq 1} b_{n} q^{n}$ that satisfies

[^0]$b_{\ell}=\chi(\ell) a_{\ell}$ for all primes $\ell \nmid N \cdot N^{\prime}$. If $f \otimes \chi$ is a newform of level M and f_{χ} has level M^{\prime}, then $M \mid M^{\prime}$. Moreover, if $M=M^{\prime}$, then $f_{\chi}=f \otimes \chi$.

We restrict ourselves to the cusp forms in $S_{2}\left(\Gamma_{0}(N)\right)$. Let New_{N} denote the set of normalized newforms in $S_{2}\left(\Gamma_{0}(N)\right)^{\text {new }}$. For $f \in \operatorname{New}_{N}, \varepsilon(f)$ denotes the eigenvalue of f under the action of the Fricke involution w_{N} and set $\operatorname{New}_{N}^{+}=\left\{f \in \operatorname{New}_{N}: \varepsilon(f)=1\right\}$. For a cusp form $f=\sum_{n} b_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)$ such that $\mathbb{Q}\left(\left\{b_{n}\right\}\right)$ is a number field, $S_{2}(f)$ denotes the \mathbb{C}-vector space of cusp forms spanned by f and its Galois conjugates. In the particular case that $f \in \operatorname{New}_{N}$, A_{f} stands for the abelian variety attached to f by Shimura. It is well-known that A_{f} is a quotient of $J_{0}(N):=\operatorname{Jac}\left(X_{0}(N)\right)$ defined over \mathbb{Q} and the pull-back of $\Omega_{A_{f} / \mathbb{Q}}^{1}$ is the \mathbb{Q}-vector subspace of elements in $S_{2}(f) d q / q$ with rational q-expansion, i.e. $S_{2}(f) d q / q \cap \mathbb{Q}[[q]]$. Moreover, the endomorphism algebra $\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right) \otimes \mathbb{Q}$ is a totally real number field.

From now on, we assume $p \geq 11$ and χ denotes the quadratic Dirichlet character of conductor p, i.e. the Dirichlet character attached to the quadratic number field $K=\mathbb{Q}\left(\sqrt{p^{*}}\right)$, where $p^{*}=(-1)^{(p-1) / 2} p$.

Lemma 1. The map $f \mapsto f \otimes \chi$ is a permutation of the set $\mathrm{New}_{p^{2}} \cup \mathrm{New}_{p}$. Under this bijection, there is a unique newform f, up to Galois conjugation, such that $f=f \otimes \chi$ when $p \equiv 3(\bmod 4)$.

Proof. Since $f_{\chi} \in S_{2}\left(\Gamma_{0}\left(p^{2}\right)\right)$ for $f \in \operatorname{New}_{p^{2}} \cup \mathrm{New}_{p}$ (cf. Proposition 3.1 of [AL78]), the level of $f \otimes \chi$ divides p^{2} and, thus, the map is well defined. The bijectivity follows from the fact that $(f \otimes \chi) \otimes \chi=f$. The condition $f=f \otimes \chi$ amounts to saying that f has complex multiplication (CM) by the imaginary quadratic field K attached to χ, i.e. $p \equiv 3(\bmod 4)$, and, moreover, f is obtained from a Hecke character ψ whose conductor is the ideal of K of norm p, which implies $f \in \mathrm{New}_{p^{2}}$. Since f has trivial Nebentypus, the Hecke character ψ is unique up to Galois conjugation.

Remark 1. The above map does not preserve the eigenvalue of the corresponding Fricke involution, i.e. it may be that $\varepsilon(f)$ and $\varepsilon(f \otimes \chi)$ are different.

Remark 2. Let $f \in \operatorname{New}_{p^{2}} \cup \operatorname{New}_{p}$ without CM. If f has an inner twist $\chi^{\prime} \neq 1$, i.e. $f \otimes \chi^{\prime}={ }^{\sigma} f$ for some $\sigma \in G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, then $\chi^{\prime}=\chi$ because χ^{\prime} must be a quadratic character of conductor dividing p^{2}. In such a case, $\operatorname{End}\left(A_{f}\right) \otimes \mathbb{Q}=\operatorname{End}_{K}\left(A_{f}\right) \otimes \mathbb{Q}$ is a non commutative algebra. Otherwise, $\operatorname{End}\left(A_{f}\right) \otimes \mathbb{Q}=\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right) \otimes \mathbb{Q}$ is a totally real number field.

Remark 3. If $f \in \mathrm{New}_{p^{2}}$ has $C M$, then the dimension of A_{f} is the class number of K, A_{f} has all its endomorphisms defined over the Hilbert class field of K and $\operatorname{End}_{K}\left(A_{f}\right) \otimes \mathbb{Q}$ is the $C M$ field $\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right) \otimes K$ which only contains the roots of the unity ± 1 (cf. Theorem 1.2 of of [GL11] and part (3) in Proposition 3.2 of [Yan04]). Moreover, $f \in \mathrm{New}_{p^{2}}^{+}$if, and only if, $p \equiv 3(\bmod 8)(c f$. Corollary 6.3 of [MY00]).

Remark 4. For two distinct $f_{1}, f_{2} \in\left(\mathrm{New}_{p^{2}} \cup \mathrm{New}_{p}\right) / G_{\mathbb{Q}}$, the abelian varieties $A_{f_{1}}$ and $A_{f_{2}}$ are nonisogenous over \mathbb{Q} and are isogenous if, and only if, $f_{1} \otimes \chi={ }^{\sigma} f_{2}$ for some $\sigma \in G_{\mathbb{Q}}$ (see Proposition 4.2 of [GJU12]) and, in this particular case, there is an isogeny defined over K.

The abelian variety $J_{0}^{+}\left(p^{2}\right):=\operatorname{Jac}\left(X_{0}^{+}\left(p^{2}\right)\right)$ splits over \mathbb{Q} as the product $\left(J_{0}\left(p^{2}\right)^{\text {new }}\right)^{\left\langle w_{p}{ }^{2}\right\rangle} \times$ $J_{0}(p)$. More precisely,

$$
\begin{equation*}
J_{0}^{+}\left(p^{2}\right) \stackrel{\mathbb{Q}}{\sim} \prod_{f \in\left(\mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}\right) / G_{Q}} A_{f} . \tag{2.1}
\end{equation*}
$$

Each $f \in \operatorname{New}_{p}$ provides a vector subspace of $S_{2}\left(\Gamma_{0}\left(p^{2}\right)\right)^{\text {old }}$ of dimension 2 generated by $f(q)$ and $f\left(q^{p}\right)$. The normalized cusp forms $f(q)+p \varepsilon(f) f\left(q^{p}\right)$ and $f(q)-p \varepsilon(f) f\left(q^{p}\right)$ are eigenforms
for all Hecke operators T_{m} with $p \nmid m$ and the Fricke involution $w_{p^{2}}$ with eigenvalues 1 and -1 respectively. The splitting of $J_{0}^{+}\left(p^{2}\right)$ over \mathbb{Q} provides the following decomposition for its vector space of regular differentials

$$
\begin{equation*}
\Omega_{J_{0}^{+}\left(p^{2}\right)}^{1}=\left(\bigoplus_{f \in \mathrm{New}_{p^{2}}^{+} / G_{Q}} S_{2}(f(q)) \frac{d q}{q}\right) \bigoplus\left(\bigoplus_{f \in \operatorname{New}_{p} / G_{Q}} S_{2}\left(f(q)+p \varepsilon(f) f\left(q^{p}\right)\right) \frac{d q}{q}\right) . \tag{2.2}
\end{equation*}
$$

Let g^{+}and g_{0} be the genus of the curves $X_{0}^{+}\left(p^{2}\right)$ and $X_{0}(p)$, respectively. From the genus formula for these curves, one obtains the following values

p	g^{+}	g_{0}
$p \equiv 1$	$(\bmod 12)$	$\frac{(p-1)(p-7)}{24}$
$p \equiv 5$	$(\bmod 12)$	$\frac{(p-3)(p-5)}{24}$
$p \equiv 7$	$(\bmod 12)$	$\frac{(p-1)(p-7)}{24}$
$p \equiv 11$	$(\bmod 12)$	$\frac{(p-3)(p-5)}{24}$

3 Hyperelliptic case for $X_{\text {split }}(p)$

Proposition 1. Assume $p \geq 11$. Then, $X_{\text {split }}(p)$ is hyperelliptic if, and only if, $p=11$. Moreover, one has

$$
\operatorname{Aut}\left(X_{\text {split }}(11)\right)=\operatorname{Aut}_{\mathbb{Q}}\left(X_{\text {split }}(11)\right) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

Proof. Assume $X_{0}^{+}\left(p^{2}\right)$ is hyperelliptic. By applying Lemma 3.25 of [BGGP05], we obtain $g^{+} \leq 10$, which implies $p \leq 19$. We have $g^{+}=2$ if, and only if, $p=11$ and, thus, the curve $X_{0}^{+}\left(11^{2}\right)$ is hyperelliptic. For $p>11$, one has $g^{+}>2$ and, moreover, $p>13$ because $X_{0}^{+}\left(13^{2}\right)$ is a smooth plane quartic (cf. [Bar10]). Lemma 2.5 of [BGGP05] states that there is a basis $f_{1}, \cdots, f_{g^{+}}$of $S_{2}\left(\Gamma_{0}\left(p^{2}\right)\right)^{\left\langle w_{p^{2}}\right\rangle}$ with rational q-expansions satisfying

$$
f_{i}(q)=\left\{\begin{array}{cr}
q^{i}+O\left(q^{i}\right) & \text { if the cusp } \infty \text { is not a Weierstrass point of } X_{0}^{+}\left(p^{2}\right) \tag{3.1}\\
q^{2 i-1}+O\left(q^{2 i-1}\right) & \text { otherwise. }
\end{array}\right.
$$

Moreover, for any such a basis, the functions on $X_{0}^{+}\left(p^{2}\right)$ defined by

$$
x=\frac{f_{g^{+}}}{f_{g^{+}-1}}, \quad y=\frac{q d x / d q}{f_{g^{+}-1}},
$$

satisfy $y^{2}=P(x)$ for a unique squarefree polynomial $P(X) \in \mathbb{Q}[X]$ which has degree $2 g^{+}+1$ or $2 g^{+}+2$ depending on whether ∞ is a Weierstrass point or not. The first part of the statement follows from the fact that, for $p=17$ and $p=19$, the vector space $S_{2}\left(\Gamma_{0}\left(p^{2}\right)\right)^{\left\langle w_{p^{2}}\right\rangle}$ does not have any bases as in (3.1).

Now, we consider $p=11$. In this case, $\left|\operatorname{New}_{11^{2}}^{+}\right|=\left|\operatorname{New}_{11}\right|=1$. Let $f_{1} \in \operatorname{New}_{11^{2}}^{+}$and let $f_{2} \in \operatorname{New}_{11}$. The newform f_{1} is the one attached to the elliptic curve E_{1} / \mathbb{Q} of conductor 11^{2} with CM by $\mathbb{Z}[(1+\sqrt{-11}) / 2]$, and f_{2} is the newform attached to an elliptic curve E_{2} / \mathbb{Q} of conductor 11 without CM. Since $\varepsilon\left(f_{2}\right)=-1$, the cusp forms $f_{1}(q)$ and $h(q)=f_{2}(q)-11 f_{2}\left(q^{11}\right)$ are a basis of $S_{2}\left(\Gamma_{0}\left(11^{2}\right)\right)^{\left\langle w_{11^{2}}\right\rangle}$. Take the following functions on $X_{0}^{+}\left(11^{2}\right)$
$x=\frac{h}{f_{1}}=1-2 q+2 q^{3}-2 q^{5}+O\left(q^{5}\right), \quad y=-2 \frac{q d x / q}{f_{1}}=4-8 q^{2}+8 q^{3}+24 q^{4}-32 q^{5}+O\left(q^{5}\right)$.

Using q-expansions, we get the following equation for $X_{0}^{+}\left(11^{2}\right)$:

$$
\begin{equation*}
y^{2}=x^{6}-7 x^{4}+11 x^{2}+11 . \tag{3.2}
\end{equation*}
$$

The maps $(x, y) \mapsto(\pm x, \pm y)$ provide a subgroup of $\operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{+}\left(11^{2}\right)\right)$ isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since $\operatorname{Aut}_{\overline{\mathbb{Q}}}\left(X_{0}^{+}\left(11^{2}\right)\right)$ is a finite subgroup of $\operatorname{End}\left(E_{1}\right) \times \operatorname{End}\left(E_{2}\right) \simeq \mathbb{Z}[(1+\sqrt{-11}) / 2] \times \mathbb{Z}$, we have that it must be a subgroup of $(\mathbb{Z} / 2 \mathbb{Z})^{2}$, which proves the second part of the statement.

4 Preliminary lemmas

For an abelian variety A defined over a number field, we say that a number field L is the splitting field of A if it is the smallest number field where A has all its endomorphisms defined. We recall that K is the quadratic field $\mathbb{Q}\left(\sqrt{p^{*}}\right)$, where $p^{*}=(-1)^{(p-1) / 2} p$, and χ is the quadratic Dirichlet character attached to K.

Lemma 2. Let L be the splitting field of $J_{0}^{+}\left(p^{2}\right)$. If $p \equiv 3(\bmod 8)$, then L is the Hilbert class field de K. For $p \not \equiv 3(\bmod 8), L=K$ if there exists $f \in \mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}$ such that $f \otimes \chi \in \mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}$, otherwise $L=\mathbb{Q}$.

Proof. On the one hand, for two distinct $f_{1}, f_{2} \in\left(\mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}\right) / G_{\mathbb{Q}}$ without CM, $A_{f_{1}}$ and $A_{f_{2}}$ are isogenous if, and only if, f_{2} is the Galois conjugate of $f_{1} \otimes \chi$ and, in this case, the isogeny is defined over K.

On the other hand, if $f \in \mathrm{New}_{p^{2}}^{+} \cup \operatorname{New}_{p}$ does not have CM, then f has at most χ as an inner twist. In this case, the splitting field of A_{f} is K or \mathbb{Q} depending on whether χ is an inner twist of f or not. If f has CM, then the splitting field of A_{f} is the Hilbert class field of K and A_{f} is the unique CM factor of $J_{0}^{+}\left(p^{2}\right)$.

Lemma 3. All automorphisms of $X_{0}^{+}\left(p^{2}\right)$ are defined over K.
Proof. By Lemma 2, we only have to consider the case $p \equiv 3(\bmod 8)$ and, by Proposition 1 , we can assume $p \geq 19$. Let g_{c} be the dimension of the abelian variety A_{f} with $f \in \operatorname{New}_{p^{2}}$ having CM. We know that g_{c} is the class number of K and, thus, $g_{c}=(2 V-(p-1) / 2) / 3$, where V is the number of quadratic residues modulo p in the interval $[1,(p-1) / 2]$ (see Théorème 4 in p. 388 of $[\mathrm{BC} 67])$. Hence, $g_{c} \leq(p-1) / 6$. Since $g^{+}>1+(p-1) / 3$ for $p \geq 17$, we obtain $g^{+}>1+2 g_{c}$. Now, the statement is obtained by applying the same argument used in the proof of Lemma 1.4 of [KM88]. Indeed, assume there is a nontrivial automorphism $u \in \operatorname{Aut}\left(X_{0}^{+}\left(p^{2}\right)\right)$ and put $v=u^{\sigma} \cdot u^{-1}$ for some nontrivial $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / K)$. Let g_{v} denote the genus of the curve $\left.X_{v}:=X_{0}^{+}\left(p^{2}\right)\right) /\langle v\rangle$. On the one hand,

$$
\begin{equation*}
g_{v} \geq g^{+}-g_{c} \tag{4.1}
\end{equation*}
$$

because v acts as the identity on the factors of $J_{0}^{+}\left(p^{2}\right)$ without CM . On the other hand, if v is not the identity, then its order is ≥ 2 and, applying the Riemann-Hurwitz formula to the natural projection $X_{0}^{+}\left(p^{2}\right) \rightarrow X_{v}$, we get

$$
\begin{equation*}
g^{+}-1 \geq 2\left(g_{v}-1\right) \tag{4.2}
\end{equation*}
$$

Combining (4.1) with (4.2), we obtain $g^{+} \leq 1+2 g_{c}$.
Lemma 4. The group $\operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{+}\left(p^{2}\right)\right)$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{s}$ for some integer $s \geq 0$.

Proof. Since $\operatorname{End}_{\mathbb{Q}}\left(J_{0}^{+}\left(p^{2}\right)\right) \otimes \mathbb{Q}$ is a product of totally real fields, any $u \in \operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{+}\left(p^{2}\right)\right)$ acts as the identity or the product by -1 on $S_{2}(f)$ for $f \in \mathrm{New}_{p^{2}}^{+}$and on $S_{2}\left(f(q)+p \varepsilon(f) f\left(q^{p}\right)\right)$ for $f \in \operatorname{New}_{p}$. Hence, $\operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{+}\left(p^{2}\right)\right)$ is isomorphic to a subgroup of $(\mathbb{Z} / 2 \mathbb{Z})^{r}$ for r equal to $\left|\operatorname{New}_{p^{2}}^{+} / G_{\mathbb{Q}}\right|+\left|\operatorname{New}_{p} / G_{\mathbb{Q}}\right|$.
Lemma 5. If u is a nontrivial automorphism of $X_{0}^{+}\left(p^{2}\right)$, then $u(\infty)$ is not a cusp.
Proof. The modular curve $X_{0}\left(p^{2}\right)$ has $p+1$ cusps. Only the cusps ∞ and 0 are defined over \mathbb{Q}. The remaining cusps $1 / p, \cdots,(p-1) / p$ are defined over the p-th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$. The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ acts transitively on this set, and the cusp $w_{p^{2}}(i / p)=(p-i) / p$ is the complex conjugate of the cusp i / p (cf. [Ogg74]). Hence, among the $(p+1) / 2$ cusps of $X_{0}^{+}\left(p^{2}\right)$ the cusp ∞ is the only one defined over the quadratic field K.

Let u be an automorphism of $X_{0}^{+}\left(p^{2}\right)$ such that $u(\infty)$ is a cusp. By Lemma 3, $u(\infty)$ is defined over K and, thus, $u(\infty)=\infty$. Let G_{∞} denote the subgroup of $\operatorname{Aut}\left(X_{0}^{+}\left(p^{2}\right)\right)$ consisting of the automorphisms which fix ∞ and let T_{∞} be the tangent space of $X_{0}^{+}\left(p^{2}\right)$ at ∞ over $\overline{\mathbb{Q}}$. Since the cusp ∞ is defined over \mathbb{Q}, the group monomorphism $\iota: G_{\infty} \hookrightarrow \operatorname{Aut}_{\overline{\mathbb{Q}}}\left(T_{\infty}\right) \simeq \overline{\mathbb{Q}}^{*}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-equivariant. Hence, if $\iota(u)$ is a primitive m-th root of unity ζ_{m}, then u is defined over $\mathbb{Q}\left(\zeta_{m}\right)$. Since the unique roots of unity in K are ± 1, it follows that u is defined over \mathbb{Q}.

Now, we will prove that, if $u \in \operatorname{Aut}_{\mathbb{Q}}\left(X_{0}^{+}\left(p^{2}\right)\right)$ is nontrivial, then $u(\infty) \neq \infty$. For the hyperelliptic case $p=11$, the cusp ∞ has $(1,4)$ as (x, y) coordinates in the equation given in (3.2). Hence, ∞ is not a fixed point for any of the three nontrivial involutions of $X_{0}^{+}\left(11^{2}\right)$. Let $p>11$. Since $X_{0}^{+}\left(p^{2}\right)$ is nonhyperelliptic and, by Lemma 5, u is an involution, we can exclude the case where all eigenvalues of u acting on $\Omega_{J_{0}^{+}\left(p^{2}\right)}^{1}$ are equal to -1 and, thus, u must have eigenvalues 1 and -1 acting on this vector space. The vector space of cusp forms $\Omega_{J_{0}^{+\left(p^{2}\right)}}^{1} q / d q$ has a basis of normalized eigenforms (see (2.2)). Since u is defined over \mathbb{Q}, u commutes with the Hecke operators and, thus, there are two normalized eigenforms such that their corresponding regular differentials $\omega_{1}=\left(1+\sum_{n>1} a_{n} q^{n}\right) d q$ and $\omega_{2}=\left(1+\sum_{n>1} b_{n} q^{n}\right) d q$ satisfy $u^{*}\left(\omega_{1}\right)=\omega_{1}$ and $u^{*}\left(\omega_{2}\right)=-\omega_{2}$. Hence, u sends $\omega_{1}+\omega_{2}$, which does not vanish at ∞, to $\omega_{1}-\omega_{2}$, which vanishes at ∞.

Let $\nu \in \operatorname{Gal}(K / \mathbb{Q})$ be the conjugation corresponding to the Frobenius element of the prime 2. The following lemma is an adapted version of Lemma 3.3 of [BH03] to our context, restricted to the prime 2 .

Lemma 6. Assume that $u \in \operatorname{Aut}\left(X_{0}^{+}\left(p^{2}\right)\right)$ is nontrivial. For any noncuspidal point $S \in$ $X_{0}^{+}\left(p^{2}\right)(\mathbb{C})$, the divisor

$$
D_{S}:=\left(u T_{2}-T_{2} u^{\nu}\right)(\infty-S),
$$

where T_{2} denotes the Hecke operator viewed as a correspondence of the curve $X_{0}^{+}\left(p^{2}\right)$, is nonzero but linearly equivalent to zero. In particular, the K-gonality of $X_{0}^{+}\left(p^{2}\right)$ is at most 6 and u has at most 12 fixed points.

Proof. Following the arguments used in Lemma 2.6 of [KM88], we claim that $u T_{2}=T_{2} u^{\nu}$. Indeed, by the Eichler Shimura congruence we know that T_{2} acting on $J_{0}^{+}\left(p^{2}\right) \otimes \mathbb{F}_{2}$ is equal to $\mathrm{Frob}_{2}+2 / \mathrm{Frob}_{2}$. On $X_{0}^{+}\left(p^{2}\right) \otimes \mathbb{F}_{2}$, one has $u^{\nu}=u^{\mathrm{Frob}_{2}}$. The claim is obtained from the equality $u \cdot \operatorname{Frob}_{2}=\operatorname{Frob}_{2} \cdot u^{\mathrm{Frob} 2}$ and the injection $\operatorname{End}\left(J_{0}^{+}\left(p^{2}\right)\right) \hookrightarrow \operatorname{End}\left(J_{0}^{+}\left(p^{2}\right) \otimes \mathbb{F}_{2}\right)$. Hence, D_{S} is a principal divisor.

Set $Q=u(\infty)$ and let $P \in X_{0}\left(p^{2}\right)(\overline{\mathbb{Q}})$ be such that $\pi^{+}(P)=Q$, where $\pi^{+}: X_{0}\left(p^{2}\right) \rightarrow X_{0}^{+}\left(p^{2}\right)$ is the natural projection. Since Q is not a cusp, there is an elliptic curve E defined over $\overline{\mathbb{Q}}$ and a p^{2}-cyclic subgroup C of $E(\overline{\mathbb{Q}})$ such that $P=(E, C)$. The other preimage of Q under π^{+}is the point $w_{p^{2}}(P)=\left(E / C, E\left[p^{2}\right] / C\right)$. Observe that if $P \notin X_{0}\left(p^{2}\right)(K)$, then P is defined
over a quadratic extension L of K and $w_{p^{2}}(P)=P^{\sigma}$ for the nontrivial Galois conjugation $\sigma \in \operatorname{Gal}(L / K)$ and, in particular, $E / C=E^{\sigma}$.

If D_{S} is a zero divisor, then $u T_{2}(\infty)$ must be equal to $T_{2} u^{\nu}(\infty)$ because $T_{2}(\infty)=3 \infty$ and ∞ is not in the support of $T_{2}(S)$. To prove that D_{S} is a nonzero divisor, we only need to prove that the condition $3(Q)=T_{2}\left(Q^{\nu}\right)$ cannot occur for a noncuspidal point $Q \in X_{0}^{+}\left(p^{2}\right)(K)$.

Let $C_{i}, 1 \leq i \leq 3$, be the three 2-cyclic subgroups of $E^{\nu}[2]$. Since

$$
T_{2}\left(Q^{\nu}\right)=\sum_{i=1}^{3} \pi^{+}\left(\left(E^{\nu} / C_{i},\left(C^{\nu}+C_{i}\right) / C_{i}\right)\right.
$$

the condition $3(Q)=T_{2}\left(Q^{\nu}\right)$ implies that each elliptic curve E^{ν} / C_{i} is isomorphic to E or E / C. So, at least two quotients E^{ν} / C_{i} are isomorphic. By using the modular polynomial $\Phi_{2}(X, Y)$, one can check that there are exactly five j-invariants of elliptic curves for which the polynomial $\Phi_{2}(j, Y)$ has at least a double root. More precisely, E^{ν} must be an elliptic curve with CM by the order \mathcal{O}, where \mathcal{O} is the ring of integers $\mathbb{Z}[\sqrt{-1}], \mathbb{Z}[(1+\sqrt{-3}) / 2]$, $\mathbb{Z}[(1+\sqrt{-7}) / 2]$ or $\mathbb{Z}[(1+\sqrt{-15}) / 2]$. For the first three cases, E^{ν} is defined over \mathbb{Q}. For the last case, there are two possible curves E^{ν} defined over $\mathbb{Q}(\sqrt{5})$ which are Galois conjugated. Since $K=\mathbb{Q}(\sqrt{p *}) \neq \mathbb{Q}(\sqrt{5})$, in all cases we have $E^{\nu}=E$.

First, assume that E is defined over \mathbb{Q}, i.e. $j(E) \in\left\{0,12^{3},-15^{3}\right\}$. Let E^{\prime} be the elliptic curve E / C_{i} isomorphic to another quotient E / C_{j}. In all cases, E^{\prime} has CM by the order $\mathbb{Z}+2 \mathcal{O}$. Since E^{\prime} is not isomorphic to E, it must be isomorphic to E / C. The composition of the cyclic isogenies $E^{\prime} \rightarrow E$ and $E \rightarrow E / C=E^{\prime}$ of degrees 2 and p^{2} respectively is a $2 p^{2}$-cyclic isogeny of E^{\prime} to itself. This fact is not possible due to the fact that the order $\mathbb{Z}+2 \mathcal{O}$ does not have any elements of norm $2 p^{2}$ because $2 p^{2} \equiv 2(\bmod 4)$.

Now, assume that E is defined over $\mathbb{Q}(\sqrt{5})$ and not over \mathbb{Q}. Let F be the elliptic curve which is the nontrivial Galois conjugated of E. Since P is not defined over $K, E / C$ must be F. In this case, it turns out that there are two 2-subgroups C_{1} and C_{2} of $E[2]$ such that E / C_{1} and E / C_{2} are isomorphic to F and none of the curves E and F are isomorphic to E / C_{3}. Hence, it is proved that D_{S} is a nonzero divisor.

By taking $S=u(\infty), D_{S}$ is defined over K and, thus, the K-gonality is at most 6 . Finally, since $u^{*}\left(D_{S}\right) \neq D_{S}$ for some noncuspidal point $S \in X_{0}^{+}\left(p^{2}\right)(\mathbb{C})$, any nontrivial automorphism of $X_{0}^{+}\left(p^{2}\right)$ has at most 12 fixed points (cf. Lemma 3.5 of [BH03]).

Lemma 7. If $X_{0}^{+}\left(p^{2}\right)$ has a nontrivial automorphism and $p>11$, then $p \in\{17,19,23,29,31\}$.
Proof. By applying Lemma 3.25 of [BGGP05] for the prime 2, we obtain that

$$
g^{+}<\left|X_{0}^{+}\left(p^{2}\right)\left(\mathbb{F}_{4}\right)\right|+1
$$

By Lemma 6, the \mathbb{F}_{4}-gonality of $X_{0}^{+}\left(p^{2}\right) \otimes \mathbb{F}_{4}$ is ≤ 6 and, thus, $\left|X_{0}^{+}\left(p^{2}\right)\left(\mathbb{F}_{4}\right)\right| \leq 30$. Hence, $g^{+} \leq 30$, which implies $p \leq 31$. The algebra $\operatorname{End}\left(J_{0}^{+}\left(13^{2}\right)\right) \otimes \mathbb{Q}$ is a totally real number field and, thus, it only contains the roots of unity ± 1. Since $X_{0}^{+}\left(13^{2}\right)$ is nonhyperelliptic, $\operatorname{Aut}\left(X_{0}^{+}\left(13^{2}\right)\right)$ is trivial and we can discard the case $p=13$.

Lemma 8. Every nontrivial automorphism of $X_{0}^{+}\left(p^{2}\right)$ has even order.
Proof. Assume that there is a nontrivial automorphism u of $X_{0}^{+}\left(p^{2}\right)$ whose order m is odd. Let X_{u} be the quotient curve $X_{0}^{+}\left(p^{2}\right) / u$ and denote by g_{u} its genus. Next, we find a positive lower bound t for g_{u}.

The endomorphism algebra $\operatorname{End}_{K}\left(J_{0}^{+}\left(p^{2}\right)\right) \otimes \mathbb{Q}$ is the product of some noncommutative algebras and some number fields $E_{f}=\operatorname{End}_{K}\left(A_{f}\right) \otimes \mathbb{Q}$ attached to the newforms f lying in a
certain subset \mathcal{S} of $\left(\mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}\right) / G_{\mathbb{Q}}$. The set \mathcal{S} is formed by newforms f without CM such that $f \otimes \chi \notin \operatorname{New}_{p^{2}}^{+} \cup \operatorname{New}_{p}\left(E_{f}=\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right)\right.$ is a totally real number field) and by a newform f with CM by K if $p \equiv 3(\bmod 8)\left(E_{f}=\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right) \otimes K\right.$ is a CM field). For $f \in \mathcal{S}$, the unique root of unities contained in E_{f} are ± 1. Since m is odd, the automorphism u must act on each E_{f} as the identity and, thus, we have

$$
t:=\sum_{f \in \mathcal{S}} \operatorname{dim} A_{f} \leq g_{u}
$$

An easy computation provides the following values for t :

p	17	19	23	29	31
g^{+}	7	9	15	26	30
t	5	5	7	15	12

Applying Riemann-Hurwitz formula,

$$
m \leq \frac{g^{+}-1}{g_{u}-1} \leq \frac{g^{+}-1}{t-1}<3
$$

which yields a contradiction.

5 Proof of Theorem 1

Assume that, for $p \in\{17,19,23,29,31\}$, there is a nontrivial automorphism $u \in \operatorname{Aut}_{K}\left(X_{0}^{+}\left(p^{2}\right)\right)$. By Lemma 8 , we can suppose that u is an involution. Let g_{u} be the genus of the quotient curve $X_{0}^{+}\left(p^{2}\right) / u$. We know that u has at most 12 fixed points. By Riemann-Hurwitz formula, we get that the number of fixed points by u must be even, say $2 r$, and, moreover,

$$
g_{u}=\frac{g^{+}+1-r}{2}, \quad 0 \leq r \leq 6
$$

If g^{+}is even, then u can have 2,6 or 10 ramification points, while for the case g^{+}odd, u can have $0,4,8$ or 12 such points.

For a prime $\ell \neq p$, the curve $X=X_{0}^{+}\left(p^{2}\right)$ has good reduction at ℓ. Let \widetilde{X} be the reduction of X modulo ℓ. We write

$$
N_{\ell}(n):=1+\ell^{n}-\sum_{i=1}^{2 g^{+}} \alpha_{i}^{n}
$$

where $\alpha_{1}, \cdots, \alpha_{2 g^{+}}$are the roots of polynomial

$$
\prod_{f \in \mathrm{New}_{p^{2}}^{+} \cup \mathrm{New}_{p}}\left(x^{2}-a_{\ell}(f) x+\ell\right)
$$

and $a_{\ell}(f)$ is the ℓ-th Fourier coefficient of f. By Eichler-Shimura congruence, $N_{\ell}(n)=\left|\widetilde{X}\left(\mathbb{F}_{\ell^{n}}\right)\right|$.
Let \mathfrak{l} be a prime of K over ℓ with residue degree s. The reduction of $X \otimes K$ modulo \mathfrak{l} is $\widetilde{X} \otimes \mathbb{F}_{\ell^{s}}$ which has an involution, say \widetilde{u}, with at most $2 r$ fixed points. The automorphism \widetilde{u} acts on the set $\widetilde{X}\left(\mathbb{F}_{\ell^{s n}}\right)$ as a permutation. If $Q \in \cup_{i=1}^{n} \widetilde{X}\left(\mathbb{F}_{\ell^{s i}}\right)$, then the set $\mathcal{S}_{Q}=\left\{\widetilde{u}^{i}(Q): 1 \leq i \leq 2\right\}$ is contained in $\cup_{i=1}^{n} \widetilde{X}\left(\mathbb{F}_{\ell^{s} i}\right)$ and its cardinality is equal to 1 or 2 according to Q is a fixed point of \widetilde{u} or not. Hence, almost all integers $R_{\ell}(n):=\left|\cup_{i=1}^{n} \widetilde{X}\left(\mathbb{F}_{\ell^{s}}\right)\right|, n \geq 1$, are equivalent to the
number of fixed points of $\widetilde{u} \bmod 2$ and, moreover, the sequence $\left\{R_{\ell}(n)\right\}_{n \geq 1}$ can only contain at most $2 r$ or $2 r-1$ changes of parity depending on whether $N_{\ell}(s)$ is even or odd. In other words, the sequence of integers $\left\{P_{\ell}(n)\right\}_{n \geq 1}$ defined by

$$
0 \leq P_{\ell}(n) \leq 1 \quad \text { and } \quad P_{\ell}(n)=R_{\ell}(n+1)-R_{\ell}(n) \quad(\bmod 2),
$$

can only contain at most $2 r$ or $2 r-1$ ones according to $N_{\ell s}$ being even or odd.
Note that the integer $R_{\ell}(n+1)-R_{\ell}(n)$ can be obtained from the sequence $\left\{N_{\ell}(s n)\right\}$ by using

$$
\widetilde{X}\left(\mathbb{F}_{\ell^{s} d_{1}}\right) \cap \widetilde{X}\left(\mathbb{F}_{\ell^{s} d_{2}}\right)=\widetilde{X}\left(\mathbb{F}_{\ell^{s} \operatorname{gcd}\left(d_{1}, d_{2}\right)}\right), \quad \text { and if } d_{1} \mid d_{2} \text { then } \widetilde{X}\left(\mathbb{F}_{\ell^{s} d_{1}}\right) \cup \widetilde{X}\left(\mathbb{F}_{\ell^{s} d_{2}}\right)=\widetilde{X}\left(\mathbb{F}_{\ell^{s} d_{2}}\right) .
$$

More precisely, if $\left\{p_{1}, \cdots, p_{k}\right\}$ is the set of primes dividing $n+1$ and we put $d_{i}=(n+1) / p_{i}$ for $1 \leq i \leq k$, then

$$
R_{\ell}(n+1)-R_{\ell}(n)=N_{\ell}(s(n+1))-\sum_{j=1}^{k}(-1)^{j+1} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq k} N_{\ell}\left(s \operatorname{gcd}\left(d_{i_{1}}, \cdots, d_{i_{j}}\right)\right)
$$

For the five possibilities for p, we have:
$p=31: g^{+}=30,2 r \leq 10$ and $\ell=2$ splits in $K=\mathbb{Q}(\sqrt{-31})$. One has

$$
N_{2}(1)=9, \quad \sum_{n \leq 36} P_{2}(n)=10 .
$$

$p=29: g^{+}=26,2 r \leq 10$ and $\ell=2$ is inert in $K=\mathbb{Q}(\sqrt{29})$. One has

$$
N_{2}(2)=42, \quad \sum_{n \leq 42} P_{2}(n)=11 .
$$

$p=23: g^{+}=15,2 r \leq 12$ and $\ell=2$ splits in $K=\mathbb{Q}(\sqrt{-23})$. One has

$$
N_{2}(1)=8, \quad \sum_{n \leq 38} P_{2}(n)=13 .
$$

$p=19: g^{+}=9,2 r \leq 12$ and $\ell=2$ is inert in $K=\mathbb{Q}(\sqrt{-19})$. One has

$$
N_{2}(2)=22, \quad \sum_{n \leq 46} P_{2}(n)=13 .
$$

$p=17: g^{+}=7,2 r \leq 12$ and $\ell=2$ splits in $K=\mathbb{Q}(\sqrt{17})$. One has

$$
N_{2}(1)=6, \quad \sum_{n \leq 46} P_{2}(n)=13 .
$$

So, we can discard the five cases considered and the statement is proved.

References

[AL78] A. O. L. Atkin and Wen Ch'ing Winnie Li. Twists of newforms and pseudoeigenvalues of W-operators. Invent. Math., 48(3):221-243, 1978.
[Bar10] B. Baran. Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem. J. Number Theory, 130(12):2753-2772, 2010.
[BC67] Z. I. Borevitch and I. R. Chafarevitch. Théorie des nombres. Traduit par Myriam et Jean-Luc Verley. Traduction faite d'après l'édition originale russe. Monographies Internationales de Mathématiques Modernes, No. 8. Gauthier-Villars, Paris, 1967.
[BGGP05] M. H. Baker, E. González-Jiménez, J. González, and B. Poonen. Finiteness results for modular curves of genus at least 2. Amer. J. Math., 127(6):1325-1387, 2005.
[BH03] M. Baker and Y. Hasegawa. Automorphisms of $X_{0}^{*}(p)$. J. Number Theory, 100(1):72-87, 2003.
[Elk90] N. D. Elkies. The automorphism group of the modular curve $X_{0}(63)$. Compositio Math., 74(2):203-208, 1990.
[GJU12] J. González and J. Jiménez-Urroz. The Sato-Tate distribution and the values of Fourier coefficients of modular newforms. Experiment. Math., 21(1):84-102, 2012.
[GL11] J. González and J.-C. Lario. Modular elliptic directions with complex multiplication (with an application to Gross's elliptic curves). Comment. Math. Helv., 86(2):317351, 2011.
[KM88] M. A. Kenku and F. Momose. Automorphism groups of the modular curves $X_{0}(N)$. Compositio Math., 65(1):51-80, 1988.
[MY00] S. D. Miller and T. Yang. Non-vanishing of the central derivative of canonical Hecke L-functions. Math. Res. Lett., 7(2-3):263-277, 2000.
[Ogg74] A. P. Ogg. Hyperelliptic modular curves. Bull. Soc. Math. France, 102:449-462, 1974.
[Yan04] T. Yang. On CM abelian varieties over imaginary quadratic fields. Math. Ann., 329(1):87-117, 2004.

Josep González
josepg.gonzalez@upc.edu
Departament de Matemàtiques
Universitat Politècnica de Catalunya
EPSEVG, Avinguda Víctor Balaguer 1
E-08800 Vilanova i la Geltrú, Catalonia

[^0]: *The author is partially supported by DGI grant MTM2012-34611. Keywords: Automorphisms of curves, Split Cartan modular curves. 2010 Mathematics Subject Classification: 14G35, 14H37.

