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1. Aim 

 

The overall goal of this work is to numerically determine the optimal location of 

sensors for predicting the vibrational behavior of a wing.  The methodology to achieve 

this goal will be to construct, using as starting point finite element simulations, a 

reduced-order model able to capture the essential vibrational characteristic of the wing. 
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2. Scope of the Project 

 

1. Literature review 

o Elastodynamic Finite Element theory. 

o Model-order reduction (MOR) 

 Review of the different MOR methods. 

 General review on projection-based MOR. 

o Study the application of the MOR methods to aircraft structures. 

o Tetrahedral element.  

o Optimized cubature algorithms. 

 

2. Study the geometry of a given isotropic wing configuration discretized using 

tetrahedral elements 

o Understand the joints among the different parts of the structure. 

o Understand the meshing. 

 

3. Use an in-house finite element code (MATLAB) to obtain the different vibrational 

modes of the wing (vibrational behavior).  

o Develop a program to extract mass matrices and stiffness matrices at all Gauss 

points of the structure needed to obtain the natural vibrational modes of the 

wing. 

   

4. Formulate the reduced-order model using modal analysis 

o Obtain the dominant vibrational modes of the wing. 

o Devise a strategy to treat boundary conditions. 

 

5. Choose optimal location of integration points for internal forces using an “optimized 

cubature” algorithm. These locations can be regarded as the optimal positions of 

sensors for monitoring the structural behavior of the wing. 
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o Code existing optimization algorithms for addressing the issue of how to select a 

set of m points among the M Gauss points of the underlying mesh (M >> m).  

 

6. Results validation 
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3. Requirements 

 

o The code used for both the full-order numerical simulation and the model-order 

reduction will be developed using MATLAB.  

 

o Projection-based model-order reduction method: the code must use as a Model-

Order Reduction (MOR) method the “Single Value Decomposition (SVD)”. 

 

3.1. Milestone specifications 

 

o Obtain the main vibrational modes of the wing.  

o Formulate the reduced-order model. 

o Choose optimal location of integration points (sensor location). 

o Validation. 
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4. Background 

 

The structure of planes is tightly bonded to a set of tensional states that vary 

continuously depending on multiple input variables, most of them non-controllable by 

the pilot. These variations of loads and vibrations that the structure suffers from are 

especially noticeable in the wing, due to its characteristic shape and slenderness.   

 

It is very useful to monitor all these different tensional states and vibrations to which 

the wing is submitted at all time during flight. Being aware it, allows to immediately 

determine whether the structure can be at any point on the verge to suffer any stress 

to which it has not been designed for and, consequently, perform the needed 

modifications in flight regime to avoid any type of material damage, which could lead to 

much bigger problems.   

 

Due to the fact that it is not optimal to monitor the structure point by point, sensors are 

placed in characteristic points. From the information collected and by using post-

processing algorithms, it is possible to obtain the tensional state and the vibration of the 

entire wing. The present project aims to study the optimal location of wing sensors using 

model-order reduction in a given wing geometry.  

 

This technique is based on the finite element theory (FEM). The FEM was first created 

to solve structural problems in the aerospace industry and, due to its ease when it comes 

to programming and adaptability, it has evolved not only to other aerospace-study 

environments such as fluid dynamics or heat transfer, but to other disciplines as far from 

the engineering world as the film industry as well. (Kim and James 2011) 

 

Even though nowadays computer technology is taking giant steps, the aerospace 

industry needs the obtained results to be very precise and trustworthy in order to 

improve designs. Acquiring these results requires using a highly-detailed discretization 

of the problem that leads to important calculating times.  
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In order to substantially decrease these calculating times compromising minimally the 

validity of the results, model-order reduction techniques come up (Lieu et al. 2006), for 

example the proper orthogonal decomposition (POD), or its discrete counterpart, the 

SVD that will be used during this project.  

 

All these immediate computations regarding the state of the aircraft are becoming 

increasingly interesting in an industry where a lot of effort is being put into unmanned 

vehicles (UAV) and in the so-called “self-aware aerospace vehicles”. These type of 

aircrafts can dynamically adapt the way they perform by gathering information about 

themselves and their surroundings and responding intelligently.  

 

In (Allaire et al. 2014), the concept of an aircraft that can autonomously sense its 

structural state and dynamically re-plan its mission according to its current structural 

health is presented. This type of project, or other similar ones, use the advantages the 

Reduced Order Models offer to obtain accurate-enough results immediately.  

 

In the present project, the Empirical Cubature Method (Hernández et al. 2016) is 

presented as a way of computing a Hyper-Reduced Order Model that could be perfectly 

used in the cutting-edge technology that are UAVs and self-aware aerospace vehicles. 

With this methodology, just by knowing the local properties of the structure at 

specifically chosen points, the overall structural behavior can be almost immediately 

approximated.  
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5. State of the art 

 

Aerospace engineering is characterized for being a cutting-edge and innovative industry 

that always tries to be at the forefront of technology. The main companies spend a large 

part of their budget to research and develop new aerospace vehicles, equipment or 

processes to achieve optimal results and more relevant products. 

 

The Incorporation of Finite Element studies was a breakthrough in the sector decades 

ago. Thanks to these studies, many of the configurations tested are discarded before 

having to build a prototype saving companies both time and money. 

 

The need to obtain very reliable simulations and the complexity and nonlinearity of the 

equations that must be solved when designing a spacecraft caused these initial finite 

element models become obsolete due to the long calculation times. 

 

Formerly, problems involving only one type of physical discipline were studied. That is, 

one could study the airflow and the forces that appear around a given geometry. Then 

use the results obtained in other studies (ran apart), where these forces previously 

calculated were taken as input parameters, and the behavior of the structure could be 

studied. 

 

Nowadays, it is becoming increasingly used the model called "Multiphysics", in which in 

the same finite-element study, different physical disciplines such as aerodynamics and 

structural aspects are involved. This way one can better understand how the geometry 

interacts with the flow and get better results that will build better aeronautical vehicles. 

However, such multiphysics processes require large computational power. For this 

reason, different model-order reduction techniques joined the industry to mitigate 

these computational loads.  
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Since then, the various ROM have been used in multiple projects and aeronautical 

studies. From modeling of a complete F-16 fighter configuration, in order to assess its 

potential for the solution of realistic aeroelastic problems (Lieu et al. 2006), to more 

recent items like Numerical Simulation and Reduced-Order Aerodynamic Modeling of a 

Lambda Wing Configuration (Ghoreyshi et al. 2016).  

 

In addition, the results obtained by these ROMs are accepted by the industry as accurate 

(Lieu et al. 2006): “it was recently shown that ROMs constructed by a variety of methods, 

including the popular proper orthogonal decomposition (POD) method, can produce 

numerical results that compare well with those generated by full-order nonlinear 

models.” 

 

This project wants to go one step further and uses the methodology presented in  

(Hernández et al. 2016) to create a hyper-reduced model able to obtain the vibration 

modes without committing any error in the approximation. In addition, the low number 

of integration points needed in the hyper-reduced model helps obtaining the results 

almost immediately.  
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6. Problem approach 

6.1. Introduction to dynamic modelling of structures 

 

Structural dynamics is an engineering branch that allows the study of the behavior of 

structures subject to any type of dynamic excitement, either continuous or transient 

(Arcos 2015).  

 

Except for the case of collisions, the dynamic forces are usually inferior than the static 

stresses. In the aeronautical field, the most common dynamic excitations that can affect 

the aircrafts are: 

o Aerodynamic excitation, studied using dynamic aeroelasticity.  

o Structural excitation. Coming mainly from the aircraft’s engines.  

 

The deformations generated by these dynamic excitations can usually be considered 

within the  small deformation theory. This means that the systems analyzed can be 

considered as lineal. 

 

Structural dynamics is a science and engineering discipline that was first initiated in 1877 

with the publication of the book The Theory of Sound by Lord Rayleigh. Since its creation, 

structural dynamics has studied how to foresee the dynamic behavior from structures 

such as aircrafts, vehicles, machinery, buildings… always with the objective of controlling 

the possible negative outcomes that high levels of vibration could generate: structural 

collapse, fatigue, system instabilities and efficiency loss among others. 

 

In order to predict this dynamic behavior previously introduced, structural dynamics has 

developed two big modelling methodologies: 

o Numerical methodology: used when the study is needed on a non-existent 

structure, real prototype or in-scale prototype. 
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o Experimental methodology: used when the study is needed on an existent 

structure, real prototype or in-scale prototype. This one also includes the 

numerical methodology in the process.  

 

In this project, the numerical methodology will be. The finite element method (FEM) is 

going to be used. The FEM formulation for classical linear elastodynamics will be 

explained in the next section.      

 

6.2. Finite element method formulation 

 

It will be assumed that the reader has a basic understanding of the Finite Element Theory 

formulation for linear elastostatic problems, since the formulation for the linear 

elastodynamic problem will be considered as an extension of the elastostatic one. The 

formulation is explained following the discussion in (Hughes 1987) and the class notes 

from professor Joaquín Hernández (Hernández 2015). 

 

6.2.1. Preliminaries 

 

In the elastodynamic formulation, accelerations, inertial forces and damping among 

other parameters have to be considered. The modifications with respect to the linear 

elastostatic formulation are the following: 

 

1) When formulating the Cauchy stress tensor 𝜎𝑖𝑗 (𝑖, 𝑗 = 1,…𝑛𝑠𝑑) at a given time, 

a dependency with the time derivative of the strain tensor 𝜀𝑖𝑗 must be added. 

      

 𝝈(𝑡) =  𝑪𝜺(𝑡) +  𝑫𝜺(𝑡)̇  (1) 

Where: 

o 𝑪 is the tensor of elastic coefficients. 

o 𝑫 is the tensor of viscoelasticity coefficients. It is typically assumed 

that 𝑫 = 𝛽𝑪. This means that the viscoelastic coefficients are 
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proportional to the elasticity coefficients. The damping coefficient β 

is usually taken uniform over the body (the same for all finite 

elements).  

 

Compared to the elastostatic problem, it can be seen that a term that is not 

proportional to the deformation per se is added. �̇�(𝑡) =
𝑑𝜺

𝑑𝑡
  depends on the 

speed of application. If the forces are applied very slowly, the strain speed tends 

to zero and the elastostatic Cauchy stress tensor is obtained.  

 

2) Regarding the body forces per unit of volume 𝒇𝒊, new terms such as an inertia 

term (proportional to acceleration) and a damping term (proportional to 

velocity) are added. 

 

 𝒇𝒊 → 𝒇𝒊 − 𝜌𝒖𝒊̈ − 𝜇𝒖𝒊̇  (2) 

 

Where: 

o −𝜌𝒖𝒊̈  corresponds to the inertial forces. 𝜌 is the density of the unit of 

volume and 𝒖𝒊̈  =
𝜕2𝒖𝑖

𝜕𝑡2  is the acceleration of deformation. 

o −𝜇𝒖𝒊̇  corresponds to the damping forces. 𝜇 is the damping parameter. It 

is usually defined as 𝜇 =  𝛼𝜌, where 𝛼 is another damping coefficient 

such as 𝛽 before, also normally considered constant. 𝒖𝒊̇ =
𝜕𝑢𝑖

𝜕𝑡
 is the 

velocity of deformation.   

 

Then again, if the external forces to the structure are applied very slowly, 𝒖𝒊̇ →

0 and 𝒖𝒊̈ → 0. Then the elastostatic body-force expression is obtained.  

 

These are the modifications with respect to linear elastostatics that have to be 

considered when formulating the elastodynamic FE problem.  
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6.2.2. Boundary conditions  

 

It is crucial to correctly determine the boundary conditions. To do so, it will be assumed 

that the boundary Γ can be decomposed into two different boundaries.  

 

 Γ =  𝛤𝑢
𝑖 ∪ 𝛤𝜎

𝑖 (3) 

Where  

 𝛤𝑢
𝑖 ∩ 𝛤𝜎

𝑖 = ∅ (4) 

 

The index 𝑖 goes from 1 to the number of spatial dimensions 𝑛𝑠𝑑. In a 3D case, as the 

one in this project, 𝑛𝑠𝑑 = 3.  

 

Another consideration concerning the boundary is that this decomposition previously 

made does not change over time. This means that all the nodes that were initially in one 

of the two boundaries will remain in that boundary during all of the study.  

 

This boundary decomposition will be used to select the nodes in which the different 

boundary conditions of the problem are placed. The nodes with prescribed 

displacement (Dirichlet boundary conditions) will be the ones in 𝛤𝑢
𝑖, while tractions are 

prescribed on boundaries 𝛤𝜎
𝑖 (Neumann boundary conditions). The set of restricted 

degrees of freedom (global degrees of freedom along which displacement is known) will 

be denoted as the set 𝒓, while the set of unconstrained degrees of freedom (global 

degrees of freedom along which the displacement is unknown) will be denoted as 𝒍.  

 

Note that even though these boundaries do not change over time, both the value of the 

displacements on the restricted nodes and the value of the tractions on the Neumann 

boundaries may. This means that the boundary conditions (displacements or tensions) 

at all time steps and at all nodes must be provided in order to define the problem.  
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To complete the description of the problem, the initial conditions must be given. Unlike 

in elastostatic problems, in elastodynamics it is necessary to determine the initial 

conditions for both the displacement 𝑢i(𝒙, 0) and velocities �̇�i(𝒙, 0).  

 

 𝑢i(𝒙, 0) =  𝑢𝑖
0(𝒙) (5) 

 �̇�i(𝒙, 0) =  �̇�𝑖
0(𝒙) (6) 

  

6.2.3. Finite element formulations (global point of view) 

 

The formulation of the set of ordinary differential equations to be reduced is presented 

below. Of course, it is the standard finite element, semi-discrete motion equation for 

elastodynamic problems in its Lagrangian form:  

 

 𝑴𝒍𝒍𝒅𝒍
̈ + 𝑫𝒍𝒍�̇�𝒍 + 𝑲𝒍𝒍𝒅𝒍 = 𝑭𝒍  −  (𝑴𝒍𝒓�̈� + 𝑫𝒍𝒓�̇� + 𝑲𝒍𝒓𝒖) (7) 

 𝒅𝒍(0) = 𝒅𝒍
𝟎 (8) 

 �̇�𝒍(0) = �̇�𝒍
𝟎 (9) 

 

For the sake of notational simplicity, the notation is redefined leaving the previously 

explained boundary notation aside. The super index ℎ is added to denote that the 

vectors and matrices belong to the full order model (FE analysis). When formulating the 

reduced order model, this super index will disappear.    

 

𝒅𝒍 → 𝒅ℎ        𝑴𝒍𝒍 → 𝑴ℎ        𝑫𝒍𝒍 → 𝑫ℎ        𝑲𝒍𝒍 → 𝑲ℎ 

𝑭𝒍 − (𝑴𝒍𝒓�̈� + 𝑫𝒍𝒓�̇� + 𝑲𝒍𝒓𝒖) → 𝑭𝑒𝑥𝑡
ℎ         𝒅𝒍

𝟎 → 𝒅𝟎ℎ
        �̇�𝒍

𝟎 → �̇�𝟎ℎ
 

 

Then, Equation (7) can be rewritten as: 

 

 𝑴ℎ𝒅ℎ̈ + 𝑫ℎ𝒅ℎ̇ + 𝑲ℎ𝒅ℎ = 𝑭𝑒𝑥𝑡
ℎ  (10) 
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Here, 𝒅ℎ ∈ ℝ𝑁 (𝑁 = number of FE nodes) denotes the vector of unknown nodal 

displacements. The superposed dots in 𝒅ℎ̇ and 𝒅ℎ̈ indicate material time derivative, i.e. 

unknown nodal velocity 𝒅ℎ̇ =
𝜕𝒅ℎ

𝜕𝑡
 and unknown nodal acceleration 𝒅ℎ̈ =

𝜕2𝒅ℎ

𝜕𝑡2 .  𝑴ℎ ∈

ℝ𝑁𝑥𝑁 , 𝑫ℎ ∈ ℝ𝑁𝑥𝑁 and 𝑲ℎ ∈ ℝ𝑁𝑥𝑁  denote the mass, damping and stiffness matrices 

respectively. Finally, 𝑭𝑒𝑥𝑡
ℎ  represents the vector of nodal external forces.  

 

Notice that the vector of nodal internal forces 𝑭ℎ can be calculated as 

 

6.2.3.1. Modal decomposition analysis: undamped free vibration problem 

 

In Section 6.2.3, the finite element formulation for the linear elastodynamic problem 

has been presented. However, to accomplish this project’s objective, only the normal 

modes of the structure need to be obtained.  

 

A normal mode of an oscillating system is a pattern of motion in which all parts of the 

system move sinusoidally with the same frequency and with a fixed phase relation. The 

free motion described by the normal modes takes place at fixed frequencies. These fixed 

frequencies of the normal modes of a system are known as its natural frequencies. A 

physical object, such as a building, bridge or molecule, has a set of normal modes and 

their natural frequencies that depend on its structure, materials and boundary 

conditions. 

 

A mode of vibration is characterized by a modal frequency and a mode shape (Arcos 

2015). In order to calculate these modal frequencies and mode shapes, the undamped 

free vibration problem must be solved (𝑫ℎ = 𝟎, 𝑭ℎ = 𝟎). This means that Equation (10) 

is reduced to: 

 

  𝑭ℎ = 𝑫ℎ𝒅ℎ̇ + 𝑲ℎ𝒅ℎ  (11) 

 𝑴ℎ𝒅ℎ̈ + 𝑲ℎ𝒅ℎ = 𝟎 (12) 
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Given the initial conditions 𝒅(0) = 𝒅𝟎 and �̇�(0) = 𝒅�̇�, 𝒅 at all time steps and elements 

must be calculated. Equation (12) can be rewritten in the frequency domain to ease its 

resolution.  

 

Where 𝚽 is the vibrational displacement vector for each mode and it is defined as 

 

The initial conditions also need to be converted to the frequency domain as 𝑞𝑖
0 = 𝚽𝒊

𝑻𝒅𝟎 

and 𝑞𝑖
0̇ = 𝚽𝒊

𝑻𝒅�̇� 

 

The non-trivial solution of Equation (13) is determined by the set of 𝑃 values 𝜆, known 

as eigenvalues, that fulfill the following expression: 

 

Where 𝜆 = 𝜔2. By substituting any of these eigenvalues 𝜆𝑖 𝑖 = (1, 2, … , 𝑃) to Equation 

(13), the expression is written as: 

 

Now 𝚽i is the eigenvector associated to the eigenvalue 𝜆𝑖 and, consequently, to the 

natural frequency 𝜔𝑖. This natural frequency along with the eigenvector 𝚽i define the 

normal mode 𝑖. The free movement of the system under study will be a superposition 

of all these 𝑃 normal modes, each one of them generating a movement inside the 

system (depending on its eigenvector), and vibrating at its corresponding associated 

natural frequency. The solution of the problem can be written as: 

 (−𝜔2 𝑴ℎ + 𝑲ℎ)𝚽 = 𝟎 (13) 

 𝚽 = {𝚽𝟏 𝚽𝟐 …  𝚽𝐍}T (14) 

 det( – 𝜆𝑴ℎ + 𝑲ℎ) = 𝟎  (15) 

 (−𝜆𝑖𝑴
ℎ + 𝑲ℎ)𝚽i  = 𝟎  (16) 
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𝚽𝑖 are assumed to be scaled so that 𝚽𝑖
𝑇𝑴ℎ𝚽𝑖 = 1. 

 

6.2.4. Element point of view 

 

As it can be seen in Equation (12), the full order mass and stiffness matrices need to be 

computed in order to solve the problem. In this section these two matrices are 

assembled.  

 

The procedure will follow the physical definition of the Finite Element method. The basic 

concept in the physical interpretation is the breakdown of a complex mechanical system 

into simpler, disjoint components called finite elements, or simply elements. 

 

The mechanical response of an element is characterized in terms of a finite number of 

degrees of freedom. These degrees of freedom are represented as the values of the 

unknown functions at a set of node points, in the case of this project, displacements.  

 

The response of the original system is considered to be approximated by that of the 

discrete model constructed by connecting or assembling the collection of all elements. 

 

 𝒅 = ∑𝚽𝑖  (𝑞𝑖
0 cos𝜔𝑖𝑡 +

𝑞𝑖
0̇

ωi
sin𝜔𝑖𝑡)  

𝑷

𝑖=1

 (17) 
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6.2.4.1. Assembly of the global stiffness matrix 

 

Following the physical definition of the FE method, the global stiffness matrix is 

calculated as the assembly of the contribution of each elemental stiffness matrix.  

Where 𝑛𝑒𝑙 is the number of elements, 𝑲𝑒 denotes each elemental stiffness matrix and 

𝑳𝑒 is the Boolean matrix of each element.  

 

The element stiffness matrix 𝑲𝑒 can be calculated by means of Equation (19) 

Here, 𝑩𝑒 is the symmetric gradient of shape functions (depends on the type of element) 

and 𝑪 is the elasticity matrix. This last one, for isotropic materials and in 3D, reads as 

follows.  

 

 

Where 𝜆 and 𝜇 stand for the Lame parameters, which are functions of the Young’s  

modulus (E) and the Poisson’s coefficient (𝜈) of the material. 

The integral in Equation (19) is calculated in the full order analysis via Gauss quadrature. 

 𝑲ℎ = ⋀𝑲𝑒

𝑛𝑒𝑙

𝑒=1

= ∑ 𝑳𝑒𝑇𝑲𝑒𝑳𝑒

𝑛𝑒𝑙 

𝑒=1

 (18) 

 𝑲𝑒 = ∫ 𝑩𝑒𝑇𝑪𝑩𝑒𝑑𝛺𝑒 
𝛺𝑒 

 (19) 

 𝐶 =

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆 0 0 0

𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇]

 
 
 
 
 

 (20) 

 
𝜆 =

𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
;           𝜇 =

𝐸

2(1 + 𝜈)
 

 

(21) 
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𝒙𝑔 ∈ 𝛺  denotes the position of the 𝑔-th integration point, 𝜔𝑔 the corresponding 

weights and 𝐽𝑒 the Jacobian of the finite element containing the integration point.  

 

6.2.4.2. Assembly of the global mass matrix 

 

The mass matrix is assembled the same way as the stiffness matrix, only that the 

elemental Mass matrix is defined differently. First, the global mass matrix can be 

calculated as the assembly of the contribution of each elemental mass matrix. 

Now, the elemental mass matrix 𝑴𝑒 is calculated as follows: 

Where 𝜌 is the density of each element and 𝑵𝑒 is the matrix of shape functions (depends 

on the type of element).  

 

Again, the integral in Equation (24) is calculated via Gauss quadrature 

 

 𝑲𝑒 = ∫ 𝑩𝑒𝑇𝑪𝑩𝑒𝑑𝛺𝑒

𝛺𝑒 

= ∑ 𝜔𝑔𝐽𝑒𝑩𝑒𝑇(𝒙𝑔)𝑪(𝒙𝑔)𝑩𝑒(𝒙𝑔)

𝑀

𝑔=1

 (22) 

 𝑴ℎ = ⋀𝑴𝑒

𝑛𝑒𝑙

𝑒=1

= ∑ 𝑳𝑒𝑇𝑴𝑒𝑳𝑒

𝑛𝑒𝑙 

𝑒=1

 (23) 

 𝑴𝑒 = ∫ 𝜌𝑵𝑒𝑇𝑵𝑒𝑑𝛺𝑒 
𝛺𝑒 

 (24) 

 𝑴𝑒 = ∫ 𝜌𝑵𝑒𝑇𝑵𝑒𝑑𝛺𝑒 
𝛺𝑒 

= ∑ 𝜔𝑔𝐽𝑒𝜌𝑵𝑒𝑇(𝒙𝑔)𝑵𝑒(𝒙𝑔)

𝑀

𝑔=1

 (25) 
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6.3. Model-order reduction methods (MOR) 

 

Model-order reduction methods are techniques designed to reduce the computational 

complexity of dynamical systems described by a set of ordinary or differential algebraic 

equations, i.e. to come up with a simpler model from a more complex one without 

compromising the accuracy of the results obtained. The simpler model is referred to as 

the “Reduced-order model (ROM)”, while the more complex model from which the ROM 

originates is the “full-order model”. In the case of this project, the full-order model is a 

Finite Element (FE) model.   

 

The necessity to formulate this reduced-order models arises from the fact that 

nowadays, even though the capabilities from computers are evolving exponentially, the 

discretization in space and time of the finite element models leads to a high-dimensional 

system very costly to solve timewise speaking. The goal of model order reduction is to 

find a low-dimensional but accurate approximation of the large-scale dynamic system. 

This way one can drastically reduce time required to calculate the model maintaining 

the validity of the results.  

 

One of the model order reduction techniques that is most commonly used in structural 

analysis and the one that this project will use is the Proper Orthogonal Decomposition 

(POD) or its discrete counterpart the Single Value Decomposition (SVD).  

 

6.3.1. Review and formulation of the POD and SVD 

 

The Proper Orthogonal Decomposition (POD) can be classified inside the projection-

based reduced-order models. This method has been used to produce a reduced-order 

model in different fields such as low-dimensional descriptions of turbulent fluid flows, 

damage detection or structural vibrations to name a few. Apart from scientific or 

engineering purposes, it has also been extensively used in signal analysis, data 

compression or image processing (Chatterjee 2000).  
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The POD is often used to extract basis functions or mode shapes that can approximate 

a function over some domain of interest. Suppose we want to approximate a function 

𝑧(𝑥, 𝑡) as a finite sum of variables: 

 

This approximation is not unique and could be done using an infinite number of different 

functions. For every 𝜙𝑘(𝑥) there could be an 𝑎𝑘(𝑡) able to correctly approximate the 

function.  

 

In the POD, the functions 𝜙𝑘(𝑥) are chosen to be orthogonal basis functions, that is  

 

∫ 𝜙𝑘1
(𝑥)𝜙𝑘2

(𝑥)dx = 
𝑿

{
1 𝑖𝑓 𝑘1 = 𝑘2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Then,  

It can be seen that the determination of 𝑎𝑘(𝑡) depends only on 𝜙𝑘(𝑥). The criteria to 

determine the sequence of orthonormal functions 𝜙𝑘(𝑥) is such that the first M of these 

functions give the best M-term approximation of the initial function of 𝑧(𝑥, 𝑡). 

 

Once the 𝜙𝑘(𝑥) and 𝑎𝑘(𝑡) functions are determined this way, the expression in 

Equation (26) is called the POD of 𝑧(𝑥, 𝑡). 

 

 𝑧(𝑥, 𝑡) ≈  ∑ 𝑎𝑘(𝑡)𝜙𝑘(𝑥)

𝑀

𝑘=1

 (26) 

 
𝑎𝑘(𝑡) =  ∫ 𝑧(𝑥, 𝑡)𝜙𝑘(𝑥)𝑑𝑥

𝑿

 

 

(27) 
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For the finite-dimensional case, i.e. cases in which the value of the function willing to be 

approximated is only known at discrete points in the domain (Finite Element problems) 

the Proper Orthogonal Decomposition is computed as the Single Value Decomposition.  

 

Imagine the different values of 𝑧(𝑥, 𝑡) arranged in a 𝑁 𝑥 𝑚 matrix 𝑨 such that the 

element 𝐴𝑖𝑗 corresponds to the value 𝑧(𝑥𝑖 , 𝑡𝑗). The Single Value Decomposition of the 

matrix 𝑨 consists in approximating 𝐴 as a multiplication of three matrices 𝑼,𝜮 and 𝑽. 

 

Where 𝑼 and 𝑽 are 𝑁𝑥𝑁 and 𝑚 𝑥 𝑚 orthogonal matrices respectively, the superscript 

T indicates matrix transpose, and 𝜮 is an 𝑁 𝑥 𝑚 diagonal matrix. The elements from the 

diagonal consist of 𝑟 = min (𝑁,𝑚) nonnegative numbers 𝜎𝑗 arranged in decreasing 

order. These values from the diagonal are called the Singular Values of 𝑨.   

 

This SVD technique will be later on used in the project for determining the orthogonal 

basis matrix 𝜦 from the matrix of zero-integral snapshots �̂�𝓕 , obtained from the 

reduced internal forces at all integration points and training configurations 𝑿𝓕. 

 

 𝑨 = 𝑼𝜮𝑽𝑻 (28) 
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6.4. Optimized cubature algorithms 

 

The finite element formulation in Section 6.2.3 lead us to the Equation (11) where 𝑭ℎ ∈

ℝ𝑁 denoted the vector of FE nodal internal forces. The FE integration rule employed to 

evaluate this vector is the Gauss quadrature, characterized by the gauss integration 

points and weights.  

 

Again, 𝒙𝑔 ∈ 𝛺  denotes the position of the 𝑔-th integration point, 𝜔𝑔 the corresponding 

weights and 𝐽𝑒 the Jacobian of the finite element containing the integration point. 𝑊𝑔 =

𝜔𝑔𝐽𝑒 . 

 

Now, let 𝑭 ∈ ℝ𝑛 represent the projection onto the reduced order space of 𝑭ℎ (𝑛 ≪ 𝑁). 

These two vectors can be related using the matrix of basis vectors 𝚽 ∈ ℝ𝑁𝑥𝑛 (𝑭 =

𝜱𝑻𝑭ℎ). This basis vectors 𝚽 will be computed as the vibrational modes matrices in the 

sensor location problem.  

 

In order to approximate 𝑭, an integral approach approximation is going to be followed. 

More specifically, a cubature method (An et al. 2008).  

 

In a finite element context, 𝑭 can be obtained not only by projecting the FE nodal 

internal forces into a reduced-order space (𝑭 = 𝚽𝑻𝑭ℎ), but also by integrating over the 

domain the corresponding reduced-order variable 𝒇 = 𝜱𝑇𝒇ℎ.  

 

This means that the reduction problem can be regarded as the approximation of an 

integral instead of the approximation of a vector. To approximate the integral, a similar 

 𝑭ℎ = ∫ 𝒇ℎ

𝛺

𝑑𝛺 ≈ ∑ 𝜔𝑔𝐽𝑒𝒇ℎ(𝒙𝑔)

𝑀

𝑔=1

= ∑ 𝑊𝑔𝒇ℎ(𝒙𝑔)

𝑀

𝑔=1

 (29) 

 𝑭 =  𝚽𝐓𝑭ℎ = 𝜱𝑇 ∫ 𝒇ℎ𝑑𝛺
𝛺

= ∫ 𝒇
𝛺

𝑑𝛺 (30) 
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method as the one used to compute the FE nodal internal forces itself will be followed. 

The integral is going to be approximated as a weighted sum of the integrand evaluated 

at optimal sampling points.  

 

This strategy consists in determining, among the integration points of the FE mesh, a 

reduced set of 𝑚 points and associated positive weights 𝜔 so that the integration error 

is minimized. The reason why the weights have to be positive is that, in a structural 

problem as the one in this project, if the FE stiffness matrix is symmetric and positive, 

so will be its reduced-order counterpart.  

 

6.5. Sensor location 

 

Via the 𝑚 integration points and their associated weights it will be possible to build a 

reduced-order model capable of computing accurately and almost immediately the 

vibrational modes and frequencies of the geometry under study.  

 

The main objective of the present study is to determine the optimal location of wing 

sensors using model-order reduction. The location of these wing sensors is going to be 

considered as the location in the geometry of the optimal integration points, due to their 

property of correctly reconstructing the vibrational state of the structure even though 

the information is only available at certain points (just as physical sensors do).  

 

 

 𝑭 ≈ ∑ 𝜔𝑔

𝑚

𝑔=1

𝒇(�̅�𝑔) (31) 
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7. Geometry description 

7.1. Geometry presentation 

 

The geometry that will be studied in this project can be seen in Figure  1. It is a simplified 

version of a typical rectangular wing, where all the structural elements such as spars and 

stingers have been represented as a pair of long beams crossing all foils. This wing is 3 

meters long and the airfoils have a chord of 150 cm. The airfoil used is NACA 4415. This 

geometry has been designed using the commercial software SolidWorks.  

 

 

Figure  1 Geometry under study 
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7.2. Meshing 

 

In order to perform a Finite Element analysis on this structure, the geometry needs to 

be meshed, i.e. discretized in a large number of small elements. By doing so, the final 

solution can be regarded as the assembly of each elemental contribution.  

 

The wing will hold two different meshes: the mesh related to all the elements that are 

in the interior of the wing’s geometry and the boundary mesh (mesh containing all the 

elements that are in the surface).  

 

The geometry can be meshed using different types of element (tetrahedral element, 

hexahedral element, shell element…). Since the geometry under study is mainly formed 

by an assembly of thin plates, the ideal finite element to make the mesh with is the shell 

element.  

 

However, the development of a finite element code capable of computing stresses and 

strains, as well as vibrational modes using the shell element can be regarded as a 

complete project itself.  

 

Instead, an academic finite element code will be used as starting point for the project. 

The downside of using this finite element code is that the geometry cannot be meshed 

with the shell element. In its place, elements with only three degrees of freedom can be 

used. This means that each element holds less unknowns (each degree of freedom is a 

potential unknown) but, since these type of elements are not able to rotate, to correctly 

determine the movement of the plates, a minimum of three elements have to be placed 

along its thickness. In summary, the computational power required to solve the same 

problem increases. This is the reason why the covering of the wing is not being 

considered, but just the interior structure instead. Bearing in mind the covering would 

increase by a lot the number of elements needed. Furthermore, the computational 

effort and solving time would be too high. However, it is important to emphasize that 
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the methodology followed during this project is applicable to any geometry and the 

resolution time will only depend on the number of elements in the mesh.  

 

Finally, the geometry is meshed using the tetrahedral element for the interior mesh and 

triangles for the boundary mesh, Figure  2 and Figure  3.  

 

 

Figure  2 Tetrahedral element. Source: 

http://bit.ly/1UDVIHs 

 

Figure  3 Triangular Element. Source: 

http://bit.ly/1YglyHp 

 

To make sure that a minimum of three elements are placed along the thickness of each 

plate, the geometry is imported to GiD and a mesh of almost 550.000 elements is 

generated using GiD’s meshing engine. Figure  4 to Figure  6 show the contour mesh for 

the geometry discretized using 200.000, 550.000 and 900.000 elements respectively. It 

is important to emphasize that with 200.000 elements there are areas where there are 

less than three elements along the thickness. This problem is solved in both of the other 

meshes.  
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Figure  4 200.000-element mesh 

 

Figure  5 550.000-element mesh 

 

Figure  6 900.000-element mesh 
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The final decision of how many elements are used in the mesh relies on the difference 

of natural frequencies obtained in the modal study. In Table 1 the different natural 

frequencies for the different modes using different numbers of elements in each 

discretization is shown. What is more, under each column appears the approximated 

computing time for each mesh. All the calculations were performed in a laptop running 

at 3.5 GHz with 16 GB of RAM and 4 Intel Core-i7 processors, in OS X.  

 

 Natural frequencies (rad/s) 

Elements 70.000 100.000 200.000 550.000 900.000 

Mode 1 74,52 73,87 73,48 73,01 72,64 

Mode 2 94,88 87,18 84,36 77,85 73,75 

Mode 3 153,69 141,30 136,76 127,56 121,41 

Mode 4 298,81 273,70 265,13 243,89 230,96 

Mode 5 437,11 425,61 420,39 409,90 402,16 

Mode 6 540,25 493,33 476,72 437,23 413,38 

      

Computing time 24" 44" 1' 17" 3' 32" 7' 50" 
Table 1. Natural frequencies for each mode obtained using an increasing number of elements per mesh 

If the reference is set in the results obtained with the mesh that uses 900.000 elements 

(because the more elements, the more precise the results are), the relative difference 

in each natural frequency is shown in Table 2. 

 

Relative difference (%) 

Elements  70.000     100.000     200.000     550.000    

Mode 1 2,6% 1,7% 1,2% 0,5% 

Mode 2 28,7% 18,2% 14,4% 5,6% 

Mode 3 26,6% 16,4% 12,6% 5,1% 

Mode 4 29,4% 18,5% 14,8% 5,6% 

Mode 5 8,7% 5,8% 4,5% 1,9% 

Mode 6 30,7% 19,3% 15,3% 5,8% 
Table 2 Relative difference in each natural frequency with respect to the values obtained with the 900.000-element 

mesh 



Study of the optimal location of wing sensors using model-order reduction 

 

 

- REPORT - 33 

It can be seen how the results obtained with the mesh of 550.000 elements vary a 

maximum of less than a 6% with respect to the reference mesh. Additionally, the 

computing time of the FE problem is halved.  

 

What is more, in later stages of the project it was seen how an average computer would 

struggle dealing with the huge matrices that arose during all the calculations of the full-

order model and ROM using the 550.000-element mesh. Hence, finer discretizations 

could not have been computed.   

 

For these reasons, the mesh with 550.000 elements is used for the project. Even though 

more accurate results would be obtained with the 900.000 element mesh, the results 

with the selected mesh are good enough for the depth of this project. Figure  7 shows a 

close up of the selected mesh.  

 

 

Figure  7 Close up of the 550.000-element mesh 

As said before, the element used to discretize the geometry is the tetrahedral element. 

This means that the boundary mesh is made of triangular elements.  
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8. Vibrational modes 

 

The first step towards the determination of the optimal integration points (that will be 

considered as the optimal sensor location for the wing) is obtaining the first 𝑃 vibrational 

modes. In the case of this project, the first 𝑃 = 6 vibrational modes will be calculated. 

 

To perform the analysis, it will be assumed that the wing can’t move from its leftmost 

end. Computationally it is as saying that the nodes located at the minimal “x” position 

have its movement in the three directions in space restricted and equal to zero. 

Moreover, to determine the natural frequencies the undamped free vibration problem 

has to be solved. This means that there are no external forces applied in the structure.   

 

In a first approach, the interior structure of the wing is set to be isotropic made of 

aluminum. Since the problem is considered elastic, the behavior of the materials under 

stress can be modeled by its Young’s modulus and Poisson’s ratio, both set to be 𝐸 =

70 𝑀𝑃𝑎 𝑎𝑛𝑑 𝜈 = 0.3 respectively. The density of the material is set to be 𝜌 =

2.700 𝑘𝑔/𝑚3.  

 

The exact number of elements in the mesh is 𝑁𝑒𝑙𝑒𝑚 = 545.290, and the number of 

nodes is 𝑁𝑛𝑜𝑑𝑒 = 120.281. To calculate the stiffness matrix and the internal forces 

vector, a 2x2 Gauss integration rule will be used giving a total number of Gauss points 

of 𝑀 = 4𝑁𝑒𝑙𝑒𝑚 = 2.181.160. 

 

As it has been explained in Section 6.2.3.1 Modal decomposition analysis: undamped 

free vibration problem, in order to obtain each of the six modes of vibration and its 

natural frequencies, the Equation (12) has to be solved. Then, using GID1’s 

                                                      
1 GiD is a pre and post processor for numerical simulations in science and engineering 
developed by the International Center for Numerical Methods in Engineering (CIMNE), 
linked to the Technical University of Catalonia (BarcelonaTech).  
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postprocessor, these natural modes can be plotted. Figure  8 to Figure  13 show these 

natural vibrational modes and its corresponding natural frequencies.  

 

 

 

Figure  8 Mode 1: 73,01 rad/s 

 

 

Figure  9 Mode 2: 77,85 rad/s 

 

Figure  10 Mode 3: 127,56 rad/s 

 

Figure  11 Mode 4: 243,89 rad/s 

 

 

Figure  12 Mode 5: 409,90 rad/s 
 

Figure  13 Mode 6: 437,23 rad/s 
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9. Empirical cubature method 

 

Now that the vibrational modes for the structure have been determined, it is possible 

to proceed and select which set 𝓩 of all the Gauss integration points are the optimal 

integration points for the approximation of the vector of nodal internal forces 𝑭. As it 

has been explained in Section 6.4, this vector of reduced internal forces can be 

calculated as: 

 
𝑭 ≈ ∑ 𝜔𝑔

𝑚

𝑔=1

𝒇(�̅�𝑔) (32) 

 

This set of 𝓩 optimal integration points are considered to be the optimal location for 

wing sensor placement.  

 

The approximation of the integral of reduced vector of internal forces will be done using 

the Empirical Cubature Method (ECM) (Hernández et al. 2016). This project will only deal 

with the discrete formulation of this method, since in a FE problem the integrand is only 

known at specific points (integration points) rather than having a continuous 

representation.  

 

Before explaining the discrete scheme, a brief presentation of the Empirical Cubature 

Method will be made. Let 𝑓𝐼
𝑗(𝒙) denote the 𝐼𝑡ℎ component (𝐼 = 1, 2, … 𝑛) of the 

integrand at point 𝒙 ∈ 𝛺 corresponding to the 𝑗𝑡ℎ vibrational mode (𝑗 = 1, 2, …𝑃). The 

idea is to approximate the following integral.  

 

 
𝐹𝐼

𝑗
= ∫ 𝑓𝐼

𝑗
𝑑𝛺

𝛺

≈ ∑ 𝜔𝑔𝑓𝐼
𝑗
(𝒙𝑔̅̅ ̅)

𝑚

𝑔=1

 (33) 
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The set of integration points 𝓩 = {�̅�𝑔}
𝑔=1

𝑚
  along with their associated positive weights 

𝝎 = [𝜔1, 𝜔2, … , 𝜔𝑚]𝑇 are selected such as the integration error falls to a minimum. The 

expression of the approximation error of the integral can be written as follows: 

 

 
𝑒𝐼

𝑗
= ∑ 𝜔𝑔𝑓𝐼

𝑗
(𝒙𝑔̅̅ ̅)

𝑚

𝑔=1

− ∫ 𝑓𝐼
𝑗
𝑑𝛺

𝛺

 (34) 

 

The minimization problem, i.e. the set of integration points and weights such as the 

integration error is minimum, can be written in matrix form as: 

 

 (𝝎,𝓩) = arg min
𝝎∈ℝ+

𝑚,   𝔃𝑔∈𝛺
‖𝑱𝔃𝝎 − 𝒃‖2 (35) 

Where: 

𝑱𝓩 =

[
 
 
 
𝒇1(𝒙1) 𝒇1(�̅�2) … 𝒇1(�̅�𝑚)

𝒇2(�̅�1) 𝒇2(�̅�2) … 𝒇2(�̅�𝑚)
⋮ ⋮ ⋱ ⋮

𝒇𝑃(�̅�1) 𝒇𝑃(�̅�2) … 𝒇𝑃(�̅�𝑚)]
 
 
 
 𝒃 =

[
 
 
 
 
 
 
 
 ∫ 𝒇1 𝑑𝛺

𝛺

∫ 𝒇2 𝑑𝛺
𝛺

⋮

∫ 𝒇𝑃 𝑑𝛺
𝛺 ]

 
 
 
 
 
 
 
 

 𝒇 =

[
 
 
 
 𝑓1

𝑗

𝑓2
𝑗

⋮

𝑓𝑛
𝑗
]
 
 
 
 

 

 

The optimization problem posed before can become computationally laborious if the 

number of training configurations (vibrational modes in this case) 𝑃 is very high. To solve 

this possible problem, the integrand 𝑓𝐼
𝑗
 will be subjected to a dimensional reduction 

process. Then, the error will be calculated in terms of the orthogonal basis functions 

arising from this reduction.  

 

Let us imagine that the integrand 𝑓𝐼
𝑗
 has already been approximated via a set of 𝑝 ≪ 𝑃 

basis functions obtained using some dimensionality reduction technique: 
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𝑓𝐼

𝑗(𝒙) ≈ ∑𝛬𝑖(𝒙) 𝑐𝑖𝐼
𝐽

𝑝

𝑖=1

 (𝑗 = 1,2, … , 𝑃; 𝐼 = 1,2, … , 𝑛) (36) 

 

As it was explained, in the SVD, 𝛬𝑖 is the 𝑖𝑡ℎ basis function and 𝑐𝑖𝐼
𝐽  is the corresponding 

coefficient for the approximation. Using Equation (36), the error expression can be 

written as: 

 

 

𝑒𝐼
𝑗
= (∑ 𝜔𝑔𝛬𝑖(𝒙𝑔̅̅ ̅)

𝑚

𝑔=1

− ∫ 𝛬𝑖 𝑑𝛺
𝛺

)𝑐𝑖𝐼
𝑗

 (37) 

 

The coefficients 𝑐𝑖𝐼
𝑗

 only depend on the function being approximated and not on their 

position. This means that they do not play a role in the error minimization. Therefore, 

minimizing the error produced when approximating the integrand 𝑓𝐼
𝑗
 is equal to 

minimizing the error produced in approximating the integral of the basis functions 𝛬𝑖. 

By using this consideration, the matrices 𝑱𝓩 and 𝒃 are redefined to: 

 

𝑱𝓩 = [

Λ1(�̅�𝟏) Λ1(�̅�𝟐) … Λ1(�̅�𝐦)
Λ2(�̅�𝟏) Λ2(�̅�𝟐) … Λ2(�̅�𝐦)

⋮ ⋮ ⋱ ⋮
Λp(�̅�𝟏) Λp(�̅�𝟐) … Λp(�̅�𝐦)

] 𝒃 =

[
 
 
 
 
 
 
 
 ∫ 𝛬1 𝑑𝛺

𝛺

∫ 𝛬2 𝑑𝛺
𝛺

⋮

∫ 𝛬𝑝 𝑑𝛺
𝛺 ]

 
 
 
 
 
 
 
 

 

 

It can be seen how by submitting the integrand to a dimensional reduction, the rows for 

both matrices 𝑱𝓩 and 𝒃 decrease from 𝑃 to 𝑝 (𝑝 ≪ 𝑃). The problem of the determination 

of the basis functions for approximating the integrand will be dealt with in Section 9.1.1 

Basis matrices. 
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9.1. Discrete formulation 

 

The Empirical Cubature Method can be used and formulated when the integrand willing 

to be approximated has a continuous description. However, in a FE problem, the value 

of the integrand is only known at the integration points. This means that only the 

discrete representation of the vector of nodal internal forces 𝑭 is available. In this 

section, the discrete formulation of the Empirical Cubature Method is presented.  

 

As it has been explained before, the optimal integration points inside the geometry will 

be considered as the optimal location for the sensors of the wing. This optimal 

integration points arise from the approximation of the vector of nodal internal forces 𝑭.  

 

Let us keep in mind that this project is using the vibrational modes as displacement basis 

matrices. When calculating this vibrational modes, nor the internal nor the external 

forces are needed. So, how can 𝑭ℎ be approximated to 𝑭 and then, the optimal 

integration points calculated if this vector is not used in the first place? Via the stress 

modes.  

 

Each vibrational mode implies a deformation in the geometry. Therefore, this 

deformation means that internal forces arise in the structure. Considering that the 

problem is kept under the elastic assumptions, these stress modes that come from the 

deformation can be easily calculated as: 

 

 𝑺 = 𝑪𝜺 (38) 

 

Where 𝑺 is the stacked stress vector 

 

𝑺 = [

𝝈(𝒙1)

𝝈(𝒙2)
…

𝝈(𝒙𝑀)

] (39) 
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There will be a different stress vector 𝑺 for each of the different vibrational modes. 

 

𝜺 is the strain vector  

 

𝜺 = [

𝜺(𝒙1)

𝜺(𝒙2)
…

𝜺(𝒙𝑀)

] (40) 

 

It can be calculated as: 

 

 𝜺 = 𝓑ℎ𝒅ℎ + 𝓑0
ℎ𝒅0

ℎ (41) 

 

𝓑ℎ and 𝓑𝟎
ℎ are the stacked B matrix of unrestricted and restricted degrees of freedom 

respectively. 𝒅ℎ and 𝒅0
ℎ are the vector of nodal displacements of the unrestricted and 

restricted degrees of freedom respectively. In modal analysis (free vibration) 𝒅0
ℎ = 0. 

Moreover, the nodal displacements of the unrestricted degrees of freedom 𝒅ℎ 

correspond to each one of the columns of the matrices of vibration modes. So Equation 

(41) can be written as: 

 𝜺 = 𝓑ℎ𝚽 (42) 

 

Finally, the 𝑪 in Equation (38) corresponds to the stacked elasticity matrix: 

 

 

𝑪 = [

𝑪(𝒙𝟏) 𝟎 𝟎 𝟎

𝟎 𝑪(𝒙𝟐) 𝟎 𝟎
𝟎 𝟎 ⋱ 𝟎
𝟎 𝟎 𝟎 𝑪(𝒙𝑴)

] (43) 

 

Now that the origin of the nodal internal forces vector has been explained, the idea is 

now to approximate the integral of any 𝑓𝐼  (𝐼 = 1, 2, … 𝑛) as the sum of positive, scalar 

weights multiplied by the function evaluated at the chosen points. (Recall that 𝑛 is the 

number of reduced-order-model degrees of freedom and 𝑀 is the number of FE 

integration points). 
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𝐹𝐼 ≈ ∑ 𝑊𝑔𝑓𝐼 (𝒙𝑔̅̅ ̅)

𝑀

𝑔=1

= ∑ √𝑊𝐺(√𝑊𝐺

𝑀

𝑔=1

𝑓𝐼(𝒙𝑔)) = √𝑾
𝑇
𝓕𝑰  (44) 

 

Where √𝑾 ∈ ℝ𝑀 is defined as the matrix of the square root of each finite element 

integration weight:  

 

 √𝑾 = [√𝑊1 √𝑊2 … √𝑊𝑀]
𝑇

 (45) 

 

And 𝓕𝑰 ∈ ℝ𝑀 can be calculated as: 

 

 

𝓕𝑰  =

[
 
 
 
 √𝑊1𝑓𝐼(𝒙1)

√𝑊2𝑓𝐼(𝒙2)

⋮

√𝑊𝑀𝑓𝐼(𝒙𝑀)]
 
 
 
 

 (46) 

 

The procedure to calculate 𝑓𝐼 is to store the components of the reduced internal forces 

at all integration points. To do so, the following equation is used. 

 

 𝑓𝐼(𝒙𝑔) = 𝜺𝐼
𝑇(𝒙𝑔)𝝈(𝒙𝑔) (47) 

 

All terms of the equation have already been calculated in the project. Specifically, 𝜺 is 

calculated using Equation (42) and 𝝈 using Equation (38). 

 

9.1.1. Basis matrices 

 

In Section 9 Empirical cubature method the integrand 𝑓𝐼
𝑗
 was approximated as 𝑓𝐼

𝑗(𝒙) ≈

∑ 𝛬𝑖(𝒙) 𝑐𝑖𝐼
𝐽𝑝

𝑖=1  to alleviate the computational power required for the optimization 

problem. Now, the discrete formulation of the problem is under study and, thus, the 

basis matrix needed to be determined are the ones for the nonlinear term 𝓕𝑰. To do so, 
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the procedure that will be followed is the “Expanded basis approach (EBA)” (Hernández 

et al. 2016; Hernández et al. 2014). From these references, it can be concluded that the 

basis matrix for 𝓕𝑰 is:  

 

 EBA = [𝚲𝟏 𝚲𝟐 … 𝚲𝐩 √𝑾] (48) 

 

To start computing 𝚲, the snapshot matrix of 𝓕𝑰
𝒋
 for all components 𝐼 = 1, 2, … 𝑛 and all 

training configurations (vibrational modes) 𝑗 = 1, 2, …𝑃 is needed.  

 

 𝓧ℱ = [𝓕1
1 … 𝓕𝑛

1 𝓕1
2 … 𝓕𝑛

2 … 𝓕1
𝑃 … 𝓕𝑛

𝑃] (49) 

 

Each of the rows from the 𝓧ℱ  matrix is calculated using the stress matrices in Equation 

(46), that aroused from each of the deformations modes as it was explained in Section 

9.1. The procedure is to store the components of the reduced internal forces at all 

integration points and all training configurations in a snapshot matrix. A column from 

this matrix would look like this: 

 

 

𝐒𝐍𝐀𝐏 = [

𝑓𝐼(𝒙1)
𝑓𝐼(𝒙2)

⋮
𝑓𝐼(𝒙𝑀)

] 

(50) 

 

Likewise, the FE integration weights (including the Jacobian) have to be stored in a 

vector 𝑾 ∈ ℝ𝑀. Then,  

 

 𝓕𝑰 = √𝑾 ο 𝐒𝐍𝐀𝐏 =

[
 
 
 
 √𝑊1

√𝑊2

⋮

√𝑊𝑀]
 
 
 
 

ο [

𝑓𝐼(𝒙1)
𝑓𝐼(𝒙2)

⋮
𝑓𝐼(𝒙𝑀)

] (51) 

 

Next step is to compute the matrix of zero-integral snapshots �̂�ℱ  
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 �̂�ℱ = [�̂�1
1 … �̂�𝑛

1 �̂�1
2 … �̂�𝑛

2 … �̂�1
𝑃 … �̂�𝑛

𝑃] (52) 

 

This matrix can be easily computed by applying the following formula to each column of 

𝓧ℱ . 

 �̂�𝐼
𝑗
= 𝓕𝐼

𝑗
−

√𝑾

‖√𝑾‖
(

√𝑾
𝑇

‖√𝑾‖
𝓕𝐼

𝑗
) (53) 

 

Finally, the matrix of orthogonal basis functions 𝚲 can be calculated applying a SVD  of 

rank 𝑝 to the matrix �̂�ℱ, i.e.: 

 

 �̂�ℱ ≈ 𝚲𝚺Λ𝑽𝛬
𝑇 (54) 

 

Where 𝚺Λ and 𝑽𝛬
𝑇 are the matrices of singular values and right singular vectors 

respectively, associated to the selected dominant left singular vectors 𝚲. 

 

9.1.2. Minimization problem 

 

Now that the matrix of singular vectors has been computed, next step is to determine 

the optimal location of integration points using the minimization error formula seen in 

Equation (35) but written for the discrete case. 

 

 (𝜶,𝓩) = arg min
𝜶≥𝟎,𝔃

‖𝑱𝔃𝝎 − 𝒃‖2   (55) 

 

Matrices 𝑱𝔃 ∈ ℝ𝑝+1𝑥𝑚 and 𝒃 ∈ ℝ𝑝+1 can be calculated as: 

 

 𝑱𝔃 = [𝜦𝒵 √𝑾𝓩]
𝑇
;                 𝒃 = [𝟎𝑇 𝑉]𝑇 (56) 

 

Where 𝑉 = ∫ 𝑑𝛺
𝛺

 is the volume of the domain. 
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Once the problem in Equation (55) is solved, the set of integration points 𝓩 is found 

among all the possible Gauss points of the mesh and their corresponding weights can 

be calculated as: 

 

 𝜔𝑔 = √𝑊𝑔𝛼𝑔,    𝑔 = 1, 2, … ,𝑚 (57) 

 

9.2. Obtaining the sensor location 

 

Once all the previous steps are followed, the set of 𝓩 integration points and their 

relative weights is obtained by the algorithm proposed in (Hernández, et al. 2016). 

Figure  14 shows the outline of the location of these elements selected.  

 

Figure  14 Location of the set of optimal integration points (in red) 

 

Because of the reasons explained in Section 6.5 Sensor location, these selected points 

can be considered as the optimal location for wing sensors.  
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9.2.1. Convergence to the absolute minimum 

 

Recall that the set of integration points 𝓩 were determined in a way such as the 

integration error fell to a minimum (absolute zero). To check if the previously selected 

points meet this requirement, Figure  15 is plotted. In this figure, the dimensionless 

residual ‖𝒓‖/‖𝒃‖ =  ‖𝒓‖/𝑉 versus the number of points 𝑚 is shown.  

 

 

Figure  15 Dimensionless residual ‖r‖/‖b‖= ‖r‖/V versus the number of points m 

 

It can be seen how, as the number of integration points 𝑚 increases, the integration 

error decreases until it falls to a negligible value (~ 10-15) when 𝑚 = 22. In (Hernández, 

Caicedo y Ferrer 2016) it is stated that the error using algorithm for the greedy selection 

method converges to zero when the number of selected points 𝑚 = 𝑝 + 1. In the case 

of this project, 𝑝 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑠 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑠 =

 6 𝑥 6 =  36. So 𝑚 should be at maximum 37. Nevertheless, less integration points 

could be required. 
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It turns out that integrating exactly 6 modes requires 21 points (+ 1 for the volume). 

Notice that this figure coincides with the number of independent components of the 

𝑛 ×  𝑛 reduced stiffness matrix (plus 1).  

 

The reduced stiffness matrix 𝑲 ∈ ℝ𝑛𝑥𝑛 can be calculated by pre-multiplying and post-

multiplying the FE stiffness matrix by the matrix of modes 𝚽 ∈ ℝ𝑁𝑥𝑛.  

 

 𝑲 = 𝚽𝑇𝑲ℎ𝚽 (58) 

 

In the case concerning this project, 𝑛 = 6. Hence, matrix 𝑲 has 6𝑥6 = 36 components. 

However, matrix 𝑲 is symmetrical, i.e. only 21 of these components are independent.  
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10. Results validation 

 

Now that the methodology for locating the optimal integration points inside the mesh 

has been determined, and thus the location of the sensors in order to detect the 

vibrational modes of the structure, it is time to check if the results obtained are correct. 

The test is simple: the vibrational modes and frequencies obtained have to be the same 

when calculating them using the full-order model (FE analysis) or the ROM.  

 

To do so, the construction of the Reduced-Order Model is needed.  

 

10.1. Reduced-order model reconstruction 

 

To obtain the vibrational modes and frequencies the same equation as in the FE analysis 

needs to be solved.  

 𝑴ℎ𝒅ℎ̈ + 𝑲ℎ𝒅ℎ = 𝟎 (59) 

 

However, the construction of the ROM will take advantage of the optimal integration 

points and weights obtained in the previous sections. This means that the previous 

equation changes all its terms to the reduced-order counterparts.  

 

 𝑴 𝒅 ̈ + 𝑲 𝒅 = 𝟎 (60) 

 

The two matrices needed to compute the natural frequencies and the vibrational modes 

are the reduced mass matrix 𝑴 and the reduced stiffness matrix 𝑲.  
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10.1.1. Reduced stiffness matrix 

 

The reduced stiffness matrix 𝑲 can be calculated following two different procedures: 

1. Pre-multiplying and post-multiplying the FE stiffness matrix by the modes 

matrices as seen in Equation (61). 

 

 𝑲 = 𝜱𝑇𝑲ℎ𝜱 (61) 

  

Remember that 𝑲 and 𝑲ℎ denote the reduced-order  and full-order stiffness 

matrix respectively. 𝚽 denotes the matrix of the different vibrational modes.  

 

2. Calculate the ROM stiffness matrix only at the optimal integration points. This is 

the procedure that will be followed since will show how the integration points 

selected are able to correctly reconstruct the vibrational modes calculated using 

the full-order model.   

 

10.1.1.1. ROM STIFFNESS MATRIX CALCULATION 

 

As it has been explained in Section 9 Empirical cubature method, the Empirical Cubature 

Method (ECM) obtains a set of integration points and weights such as the integration 

error is minimized. Using these points and weights, the reduced stiffness matrix 𝑲 ∈

ℝ𝑃𝑥𝑃 can be calculated as: 

 

 𝑲 = ∑ 𝑲(𝒵𝑔)𝜔𝑔

𝑚

𝑔=1

 (62) 

 

Where 𝒵 is the set of 𝑚 Gauss points selected using the ECM and 𝜔 are their respective 

weights. 𝑲(𝒵𝑔) is the elemental stiffness matrix of the Finite Element that contains the 

Gauss point evaluated in the Gauss point 𝒵𝑔 pre-multiplied by the entries of the vector 
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of modes that correspond to the degrees of freedom of that element, transposed, and 

post-multiplied by the same vector of modes. 

  

 𝑲(𝒵𝑔) = 𝚽𝑒𝑇𝑲𝒆𝚽𝑒 (63) 

 

As opposed to the calculation of 𝑲ℎ where polynomial basis element by element were 

used, in the calculation of its ROM counterpart, global basis are used and the Gauss 

integration method is no longer necessary. Now the integration is adapted to each 

problem vie the Empirical Cubature Method.  

 

10.1.2. Reduced mass matrix 

 

The procedure to calculate the reduced mass matrix is the same as the one followed for 

the stiffness matrix.  

 𝑴 = ∑ 𝑴(𝒵𝑔)𝜔𝑔

𝑚

𝑔=1

 (64) 

And 𝑴(𝒵𝑔) can be calculated as 

 

 𝑴(𝒵𝑔) = 𝚽𝑒𝑇𝑴𝒆𝚽𝑒 (65) 
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10.2. Comparison between FEM and ROM 

 

Once the reduced mass and stiffness matrices are calculated, the natural frequencies 

using the ROM can be computed. Table 3 shows the values of the frequencies obtained 

for both, the analysis using the FE method and the ROM as well as their approximated 

computing time. 

 

 Natural frequencies (rad/s) 

Method (Elements) Full-order (550.000) Reduced-order (22) 

Mode 1 73,01 73,01 

Mode 2 77,85 77,85 

Mode 3 127,56 127,56 

Mode 4 243,89 243,89 

Mode 5 409,90 409,90 

Mode 6 437,23 437,23 

   

Computing time 3' 32" 16” 

Table 3 FEM vs ROM natural frequencies comparison 

 

As it can be seen in Table 3, the results obtained using the ROM are exactly the same as 

the ones obtained by computing the full order model. A substantial reduction in the 

computing time can be appreciated between the two methods. More precisely, the 

ROM computing time is 13,25 times lower than its FEM counterpart.    
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11. Practical application 

 

Now that the methodology for locating the optimal integration points inside the mesh 

has been determined, and thus the location of the sensors in order to detect the 

vibrational modes of the structure, this second part of the project will show the real 

potential of the Empirical Cubature Method in computational problems.  

 

This section of the project will compute a ROM, using the same methodology employed 

in the previous section, capable of calculating, almost immediately, the natural 

frequencies and vibrational modes of the geometry under study when a part or parts of 

the structure have changed its elastic properties (Young’s modulus) due to, for example, 

a partial crack. Of course, the results obtained will be based in a reduced model. Hence 

they will be an approximation.  

 

11.1. Problem description 

 

Imagine that using some experimental methodology, it has been detected that the 

Young’s modulus of the structure at points 1, 2 and 3 shown in Figure  16 has decreased 

by a factor of ‘A’, ‘B’ and ‘C’ respectively.  

 

 

Figure  16 Damaged elements 
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In order to now compute the natural frequencies, a full FE analysis would be needed. 

Let’s assume that the mass matrix 𝑴ℎ remains constant and thus it only needs to be 

calculated once and then it can be used for every different configuration under study.  

 

Right now the stiffness matrix 𝑲ℎ has to be calculated (and is different for every 

configuration) by discretizing the geometry in 𝑁 different elements (in the case of this 

project 550.000) and calculate the elemental contribution 𝑲𝑒 of each element to the 

global matrix 𝑲ℎ by means of Gauss integration using a 4-Gauss-point rule. That means 

calculating 𝑀 = 4𝑁 Gauss points in total. This operation is very time and computing-

demanding. Moreover, if the results are expected almost immediately, the only way to 

meet this requirement, if solving the full-order FE problem, is to precompute 𝑲ℎ for all 

combinations of different factors A, B and C ranging between two plausible different 

values and store  them in memory so the stiffness matrix does not need to be assembled. 

This methodology is not feasible.  

 

11.2. Proposed solution 

 

As it has been explained before, since the mass matrix 𝑴ℎ remains constant it only 

needs to be calculated once. It is clear then, that the bottleneck that avoids the 

calculation of natural frequencies to be immediate is having to compute the stiffness 

matrix 𝑲ℎ. To solve this problem a reduced order model will be used, where the stiffness 

matrix is going to be calculated by means of the integration points and weights obtained 

via ECM.  

 

11.2.1. Basis matrix calculation 

 

The idea of model reduction relies on the premise that any vector or matrix in the 

problem statement can be projected onto the reduced order space using the matrix of 

basis vectors 𝚽 ∈ ℝ𝑁𝑥𝑛. There are various procedures for computing the basis matrix 
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𝚽. The most common one and the one that will be used in this project is to, first, solve 

the full-order problem (FE problem) for representative values of input parameters 𝝁. 

Then, collect the corresponding results obtained in a snapshot matrix.    

 𝑿𝑑 = [𝒅ℎ(𝝁1) 𝒅ℎ(𝝁2) … 𝒅ℎ(𝝁𝑃)] (66) 

In the case of this project, the input parameters are the different factors ‘A’, ‘B’ and ‘C’ 

that the Young’s modulus of the structure has decreased at the previously shown points. 

The different results obtained correspond to the 𝑃 vibrational modes calculated for each 

configuration 𝐾. So the snapshot matrix will look like this: 

 

 𝑿𝑑 = [𝒅ℎ(𝝁1)1 𝒅ℎ(𝝁1)2 … 𝒅ℎ(𝝁1)𝑃 𝒅ℎ(𝝁2)1 … 𝒅ℎ(𝝁𝐾)
𝑃
] (67) 

 

It has been considered that the Young’s modulus of the structure at these points will 

only vary between the values 𝐸𝑚𝑖𝑛 =
𝐸

100
 and 𝐸𝑚𝑎𝑥 = 𝐸. Three different samples of the 

interval have been used to calculate the snapshot matrix. This means that each point 

has three possible Young’s modulus (𝐸1 =
𝐸

100
, 𝐸2 =

𝐸

50
, 𝐸3 = 𝐸).  

 

These different calculations using the different parameters are called the training 

configurations. These configurations are what the ROM uses to approximate the 

solution. This means that the more configurations are trained into the model, the more 

precise the approximations will be. In this project, 5 different training configurations 

were used (𝐾 = 5). Each configuration has 𝑃 = 6 different displacement vectors or 

vibrational modes. This means matrix 𝑿𝑑 ∈ ℝ𝐾𝑃𝑥𝑁. In Table 4, the different 

configurations are schematized.  
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Training 

configuration 
𝑬𝟏 𝑬𝟐 𝑬𝟑 

1 𝐸 𝐸 𝐸 

2 
𝐸

50
 

𝐸

50
 

𝐸

50
 

3 
𝐸

100
 

𝐸

100
 

𝐸

100
 

4 
𝐸

100
 

𝐸

50
 𝐸 

5 
𝐸

50
 

𝐸

100
 𝐸 

Table 4 Training configurations 

 

As it can be seen, the dimensions of the matrix 𝑿𝑑 depend greatly on the number of 

elements 𝑁 in the mesh. In order to reduce the computational burden this supposes, 

and to be able to solve the problem with an average computer, a mesh of 𝑁 = 100.000 

elements is used (instead of the one of 550.000 elements used in the first section of the 

project). This means that the results obtained concerning the natural frequencies will 

not be as accurate as the ones obtained using the mesh with 550.000 elements. 

However, the methodology used can be extrapolated if a more powerful computer is 

available.   

 

The following table shows the comparison between the natural frequencies of the 

structure when the factors A, B and C are all 1 (the structure suffers from no damage) 

and when all these factors are 100 (most critical situation studied).  

 

  Natural frequencies (rad/s) 

  MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6 

Factors of 

reduction 

A, B, C  = 1 74,13 89,28 145,75 280,85 430,30 506,46 

A, B, C = 100 46,67 62,38 122,01 229,84 292,90 425,80 

Table 5 Natural frequency comparison between the normal configuration and the most damaged configuration 
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As it can be seen in Table 5, the natural frequencies vary substantially with the damaged 

elements. In a real-life scenario, it would be important to monitor the health of the 

structure in order to detect these changes and prevent the structure from resonating.  

 

Once the snapshot matrix of displacement is calculated, the same steps as the ones 

followed during the first part of the project have to be followed until the final 

determination of the new set of integration points and their respective weights.  

 

1. Calculate the stress modes. This step is specially tricky since the internal forces 

for each configuration are computed using as an input all the deformation modes 

in matrix 𝑿𝑑 .  Recall that now the elasticity matrix for each configuration 

changes, i.e. each set of stress modes need to be computed using their 

respective elasticity matrix.   

2. Store the components of the reduced internal forces at all integration points and 

all training configurations in the snapshot matrix 𝑿ℱ  

3. Compute the matrix of zero-integral snapshots �̂�ℱ 

4. Determine an orthogonal basis matrix 𝚲 

5. Construct the matrices 𝑱 𝑎𝑛𝑑 𝒃 as 𝑱 =  [𝚲 √𝑾]𝑇 and as 𝒃 =  [𝟎𝑇 𝑉]𝑇 

6. Determine the set of integration points 𝓩 ∈ ℕ𝑚 and their associated weights 

𝝎 ∈ ℝ+
𝑚 by means of the greedy selection method. In the case that is being dealt 

with, 1551 integration points are necessary (out of the approximately 400.000 

integration points). Figure  17 shows the location of these points in the mesh.  
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Figure  17 Location of the set of optimal integration points 

 

In Figure  18 it can be seen how the integration error falls to zero  when 𝑚 =

1551 integration points. 

 

 

Figure  18 Dimensionless residual ‖r‖/‖b‖= ‖r‖/V versus the number of points m 
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11.2.2. Reduced mass and stiffness matrices 

 

The objective of this second part of the project was to construct a ROM capable of 

calculating the natural frequencies and vibrational modes of the geometry under study 

almost immediately, when some part or parts of the structure have varied its elastic 

properties.  

 

Now that the optimal integration points and their associated weights for the different 

training configurations have been calculated, it is possible to build the reduced-order 

model. The two matrices needed to compute the natural frequencies and the vibrational 

modes are the reduced mass matrix 𝑴 and the reduced stiffness matrix 𝑲.  

 

11.2.2.1. Reduced mass matrix 
 

As stated in the problem description, the structure suffers from a change in the elastic 

properties. However, the mass distribution along the geometry is considered to remain 

constant. For this reason, the reduced mass matrix 𝑴 only needs to be calculated once 

and the calculations are quite straightforward. The full-order mass matrix 𝑴ℎ needs to 

be projected onto the reduced-order space by means of the matrices of vector modes.  

 𝑴 = 𝜱𝑇𝑴ℎ𝚽 (68) 

Since this matrix only needs to be calculated once, having to compute the full-order 

matrix to obtain its reduced counterpart is not troubling. The matrix 𝑴ℎ can be stored 

when the different training configurations are being calculated. Then, when the matrix 

of vector modes is completed, 𝑴 can be easily calculated and stored. Another procedure 

to compute 𝑴 would be to follow the explanations given in Section 10.1.2. 

 

11.2.2.2. Reduced stiffness matrix 
 
The assembly of the reduced stiffness matrix has already been explained in Section 

10.1.1. 
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11.3. First numerical validation 

 

Now that the reduced mass and stiffness matrices have been calculated, it is time to 

validate the results obtained. The first validation will compare the results obtained in 

the natural-frequencies calculation between the full-order model and ROM when the 

Young’s modulus reduction in the three points of the structure coincides with one of the 

training configurations.  

 

The configuration chosen for the first numerical validation corresponds to the following 

reductions in the Young’s modulus.  

 

𝐸1 =
𝐸

100
 ;   𝐸2 =

𝐸

50
 ;   𝐸3 = 𝐸 

 

The natural frequencies obtained using both the FE method and the ROM can be seen 

in Table 6. As well as the frequencies, the required computation time for each 

configuration is shown. 

 

 Full-order Hyper-reduced 

MODE 1 49,84 49,84 

MODE 2 73,06 73,06 

MODE 3 128,09 128,09 

MODE 4 246,66 246,66 

MODE 5 377,80 377,80 

MODE 6 461,52 461,52 

   

Computing time 50" 4" 

Table 6 Natural frequencies of a training configuration calculated using the full-order model and the ROM 
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It can be seen how the results obtained using both methods are exactly the same. It is 

important to highlight how the computing time is drastically decreased. This reduction 

in time would be even more striking if the 550.000-element mesh was used.  

 

Of course, the representation of the vibrational modes is also perfectly reconstructed. 

Figure  19  and Figure  20 show the deformation produced by the vibrational mode 

number 4 when calculated using the full-order FE analysis and the ROM respectively. It 

can be seen how the results obtained are exactly the same. 

 

 

This numerical validation could be performed for every training configuration and 

vibrational mode and the results obtained using the Hyper-reduced model would be the 

same as the ones in the full-order model. This means that the ROM can perfectly 

reproduce the configurations it has been trained for.   

 

                                                      
2 The color code that appears in the deformation modes is only used to designate areas 
with the same deformation. However, these deformations do not have a specific value 
(these are only deformation modes). For this reason, there is no color legend.  

 

 

 

 

Figure  19 Mode 4 calculated using full FE analysis2 

 

Figure  20 Mode 4 calculated using ROM 
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11.4. Second numerical validation 

 

With the first numerical validation it can be seen how the reduced-order model can 

perfectly reproduce the results for which it has been trained. However, this is not the 

real potential of this methodology. The objective was to accurately approximate the 

results when the geometry suffered from a variation of the elastic properties within the 

previously established interval. And thanks to this methodology this can be 

accomplished almost immediately.  

 

Now let’s assume that via some measuring device, the elastic properties of the material 

in the three points of study have been determined and the results are: 

 

𝐸1 =
𝐸

70
 ;  𝐸2 =

𝐸

40
 ;  𝐸3 =

𝐸

20
 

 

This configuration was not supposed in the training of the ROM. Nevertheless, the 

model can still be used and the results approximated using the integration points and 

weights previously calculated.  This same configuration has been studied using the full-

order model to check if the results obtained using the ROM were accurate enough. In 

Table 7, the results for both the ROM and full-order model are shown, as well as the 

computation time required and the relative error in the approximation of the ROM.  

 

 Full-order Hyper-reduced Error 

MODE 1 50,91 50,92 0,01% 

MODE 2 68,09 68,13 0,05% 

MODE 3 127,45 127,48 0,02% 

MODE 4 242,48 242,52 0,02% 

MODE 5 353,85 353,97 0,03% 

MODE 6 442,57 442,76 0,04% 

    

Computing time 47" 3,9"  
Table 7 Natural frequencies of a new configuration calculated using the full-order model and the ROM 
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Note how, even though the configuration was not trained when calculating the reduced-

order model, the results obtained are very accurate and the computation time has been 

reduced by a factor of 12.  

 

Figure  22 and Figure  23 show the second vibrational mode when calculating it using 

the full-order FE analysis and the ROM respectively. It can be seen how the error 

committed computing the ROM is too small to be visible in the vibrational modes. The 

same results would be obtained with the other vibrational modes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  21 Second mode calculated using full FE analysis Figure  22 Second mode calculated using the ROM 
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12. Organization, planning and scheduling  

12.1. Work breakdown structure 

 

This section includes the planning of this project. This was done before starting the 

project in order to develop it as efficiently as possible. First, the project was divided in 

different parts according to the different steps of the project. Then, some of this parts 

were subdivided into tasks.  

 

Once the tasks had been defined, the interdependencies among them were set. This 

step was important in order to see which tasks were independent and could be begun 

at any time of the project, and which of them were dependent from others and, thus, 

had to wait until the previous tasks had finished.  

 

This project turned out to be very linear and the three big blocks of tasks (FE analysis, 

optimal integration point selection and ROM formulation) came one right after the other 

and the following tasks could not have started until the previous ones were completed. 

Moreover, since the project was completed individually, parallelization of tasks was not 

possible.     

 

The organization and planning followed for the development of the project tried to 

respect the initial task description and calendar proposed in the Project Charter. 

However, as the project advanced, some of the tasks turned out to be more complicated 

than expected and several problems arouse.  

 

Yet, the initial organization devised finishing the project approximately two weeks 

before due date in order to be able to calmly deal with possible delays.  
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12.2. Future work 

 

In this section the future tasks that need to be done to improve the results of this study 

are described. The aim of this is not to give a detailed schedule of the following tasks 

but to give a brief description of the improvements that can be applied to the code.  

 

o Develop FE Code considering shell elements: as it was explained in Section 7.2 

the best finite element to discretize the domain due to being made of flat plates 

is the shell element. However, implementing a code contemplating this type of 

element can be considered a project itself. This would be a good follow-up work 

to this project. It would allow to compare the vibrational frequencies obtained. 

More importantly, it would be interesting to see in how many shell elements 

does the geometry need to be discretized in order to obtain the same (or 

approximately the same) results. Then, compare the computational time.  

  

o Improve geometry under study: since the main goal of this project was not to 

find exact results, but to present an innovative and impressive methodology to 

build a ROM capable of obtaining exact results almost immediately, the 

geometry under study was fairly simplified and differs quite a lot from a real 

wing. To obtain more accurate results on the vibrational modes of a wing, the 

geometry needs to be perfected.  

Moreover, the geometry has been considered isotropic. Nowadays most 

aeronautical structures are made out of composites. Introducing this fact to the 

study would change the values of the results obtained. However, the 

methodology followed to build the ROM would remain the same.   

 

o Improve discretization: during the present study, the 550.000-element 

discretization was considered accurate enough. The reasons for this assumption 

are the same stated in the previous point as well as for the fact that an average 

computer can barely handle the huge matrices that arise from the FE analysis of 
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a 550.000-element mesh. However, the mesh could be refined using a cluster. 

Then more accurate results would be obtained.  

 

o Improve efficiency of code: improving the efficiency of the code could reduce 

the computation time for both, the FE analysis and the ROM.  

 

o Build a prototype: the study of sensor location has been carried out 

theoretically. Building a prototype and placing the sensors in the calculated 

locations to try and obtain the vibrational modes and frequencies would 

corroborate if these theoretical locations can be used practically or are only 

eligible for building the ROM.   
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13. Conclusions and recommendations 

 

The objective of the present project was to determine the optimal location for wing 

sensors using model-order reduction for predicting the vibration behavior of a wing.  The 

methodology to achieve this goal was to construct, using as starting point finite element 

simulations, a reduced-order model able to capture the essential vibrational 

characteristic of the wing. The basic requirements were that the code had to be 

programmed using the commercial software Matlab and that the ROM would be 

constructed following the projection-based method “Proper Orthogonal Decomposition 

(POD)”.  

 

To face the huge challenge that this project supposed, the precise tasks that were going 

to be developed were identified, including a brief description.  

 

Not only was this project a challenge because of its magnitude, but also because, even 

though it is based in content explained during the degree, most of the concepts 

regarding model-order reduction were new to the author. For this reason, a lot of 

literature review on the subject was necessary as well as proposing a clear problem 

approach.  

 

Once the previously-unknown concepts began to be clear, it was time to sketch a wing 

structure to study it, using the commercial software “SolidWorks”. The final design is a 

simplified version of a typical rectangular wing, where all the structural elements such 

as spars and stingers have been represented as a pair of long beams crossing all foils.  

 

In order to perform the finite-element analysis and obtain the vibrational modes, the 

geometry had to be meshed. This step was done with the help of the preprocessing 

engine of the software GiD. The final mesh is made out of approximately 550.000 

tetrahedral elements. 
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Once the six first vibrational modes and their respective frequencies were calculated 

and plotted using the post processing engine at GiD, the Empirical Cubature Method 

was used to determine a set of 22 optimal integration points and weights. These points 

are particular because with only these 22 integration points it is possible to reconstruct, 

without falling into any integration error, the vibrational modes of the wing, when in the 

full-order FE analysis 2.200.000 integration points were needed (4 for each of the 

550.000 elements).  

 

For this reason, the location of wing sensors was considered as the location in the 

geometry of the optimal integration points, due to their property of correctly 

reconstructing the vibrational state of the structure even though the information is only 

available at certain points (just as in physical sensors). 

 

Finally, it is important to highlight the drastic reduction in both computing time and 

memory needed when calculating the reduced-order model compared to the full-order 

finite element analysis. The stiffness matrix and mass matrix see their dimensions 

reduced from a square sparse 360.843 by 360.843-element matrix to a 6 by 6 matrix. 

For this reason, the assembly of both matrices and the calculation of the vibrational 

modes can be computed much faster. Specifically, 13,25 times faster.  

 

Once the methodology regarding the selection of the optimal integration points was 

clear, a second section of the project begun, where a more practical approach was given 

to the hyper-reduced model.  

 

In this second section, it was supposed that it had been detected that the Young’s 

modulus of the structure at some selected points had decreased by a specific factor. 

Then, using a reduced order model created by computing different training 

configurations for the wing, the new vibration frequencies could be approximated 

committing almost zero error and making the process 12 times faster than with the full-

order finite element analysis.  
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This decrease of the necessary computing time while maintaining good quality results is 

what makes reduced-order models appealing and necessary for any technological 

industry wanting to improve their products. 

 

Historically, the finite-element method introduced multiple advances in aircraft design. 

Nowadays traditional numerical simulations are obsolete due to the complexity of the 

problems willing to be solved and reduced-order models are appearing to alleviate these 

computational burdens. There is still a long of path to cover, but it will definitely be 

worth keeping an eye on the advancements in this field that will help the aerospace 

industry, among others, simulate and design more efficient and innovative geometries 

and materials.   
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