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Abstract 

This work presents a new compilation technique that uses 
instruction replication in order to reduce the number of 
communications executed on a clustered 
microarchitecture. For such architectures, the need to 
communicate values between clusters can result in a 
significant performance loss. Inter-cluster 
communications can be reduced by selectively replicating 
an appropriate set of instructions. However, instruction 
replication must be done carefully since it may also 
degrade performance due to the increased contention it 
can place on processor resources. The proposed scheme 
is built on top of a previously proposed state-of-the-art 
modulo scheduling algorithm that effectively reduces 
communications. Results show that the number of 
communications can decrease using replication, which 
results in significant speed-ups. IPC is increased by 25% 
on average for a 4-cluster microarchitecture and by as 
much as 70% for selected programs. 

1. Introduction 

Clustering is becoming a mainstream 
microarchitectural technique due to its benefits in terms of 

wire delays, power dissipation and complexity. Clustering 

consists of splitting the processor resources into several 

groups or clusters. The components of each cluster are 

simpler, faster, and consume less power than a monolithic 

implementation. The resources in a cluster can be laid out 

close together, which reduces signal transmission delays 

[13]. Long (and slow) wires are used to interconnect 

clusters. 

The use of clustering is especially noticeable in the 

DSP market, including Texas Instruments’ TMS320C6x 
[23], Analog Devices’TigerSHARC [10], BOPS’s Man 

Array [19], HP/ST’s Lx [9] and Equator’s MAP1000 [11]. 

All of these processors use a statically-scheduled, 

clustered, microarchitecture. 

Compilers play a critical role for statically-scheduled 

processors. An important step of compilation is code 

scheduling. In this paper, we focus on instruction 

scheduling techniques for clustered microprocessors. In 

particular, we limit our focus to scheduling software-

pipelined loops [7] since a vast majority of the execution 

time on this class of processors is spent in loop bodies. 
One major constraint to be considered during 

instruction scheduling for clustered microarchitectures is 

inter-cluster communication. Even when we use an 

instruction scheduler that reduces communication, inter-

cluster communications can degrade performance. In 

Figure 1, we provide the percentage of time that the 

Initiation Interval (II – the number of cycles between the 

initiation of consecutive iterations) is increased beyond 

the minimum initiation interval (MII – a lower bound of 

the II computed taking into account the limited resources 

in the architecture and the recurrences in the code). 

Results have been obtained using a state-of-the-art 
scheduler [2] on 678 loops taken from the SPECfp95 

benchmark suite. This scheduler uses a graph partitioning 

algorithm to properly assign instructions to clusters, 

balancing the workload and minimizing the number of 

communications. There are three reasons that cause us to 

increase the II: excess communications, recurrences that 

do not fit in the current II and excess register pressure. 

In this paper, we will discuss different cluster 

configurations that are labeled as wcxbylzr, where w is the 

number of clusters, x is the number of inter-cluster buses, 

y is the latency of these buses, and z is the number of 
registers. As we can see, between 70-90% of the increases 

in the II are due to communications. Only 2-4% of the 

increases in the II were due to recurrences. This is due to 

the fact that the MII already takes into account recurrence 

constraints. 
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Figure 1: Causes for increasing the II. 
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When a value is needed in more than one cluster, one 

alternative to generating a communication is to compute 

the value in each place where it is needed. Applying this 

technique comes at the expense of some code replication, 

so it must be performed carefully since it will increase the 

pressure placed on other processor resources and thus 
may also incur in some performance degradation. In this 

work we propose a technique to replicate selected 

instructions in multiple clusters in order to reduce the 

number of communications. The replication scheme is 

implemented on top of a state-of-the-art scheduling 

algorithm for clustered processors. The proposed 

technique is evaluated for a clustered VLIW machine, 

though it can be used for any statically-scheduled 

architecture. We evaluate this approach using 678 loops 

taken from the SPECfp95 benchmark suite. The execution 

in the loop bodies represent approximately 95% of the 

total execution time. The results for different 
configurations show that replication can significantly 

speed up the program execution.  

The remainder of this paper is organized as follows. 

Section 2 provides some background on modulo 

scheduling and graph partitioning. Section 3 describes our 

replication heuristics. Section 4 analyzes its performance. 

Section 5 describes some alternatives to our replication 

technique. Section 6 reviews related work and section 7 

summarizes this work. 

2. Background 

2.1.  Description of the Microarchitecture 

In this work, a statically-scheduled clustered 

microarchitecture is considered. Each cluster is composed 

of multiple functional units and a register file. Clusters 

communicate register values among them using special 
copy instructions and a set of dedicated register buses.
The memory hierarchy is centralized and shared by all 

clusters. In this work, we have assumed homogeneous 

clusters, although the proposed algorithm can be easily 

extended to deal with heterogeneous clusters. 

VLIW instructions flow through all clusters in a 

lockstep fashion (all clusters work on the same VLIW 

instruction together). Each cluster fetches and executes 

the operations contained in their corresponding part of 

each VLIW instruction. 

2.2. Instruction Scheduling Overview 

Modulo scheduling is a well-known technique for 

scheduling cyclic codes [8][20]. The most important 
characteristics of a modulo scheduled loop are the 

initiation interval (II), which represents the number of 

cycles between successive iterations of the loop, and the 

length of the schedule, which is the number of cycles 

necessary to schedule all the instructions of a single 

iteration of the loop. These two factors have a direct 

impact on execution time as follows: 

Texec= (N-1+SC)·II 

SC= length/II
where N is the number of iterations of the loop, SC is the 

stage count and length stands for the length of the 

schedule. Therefore, reducing II and length are crucial to 

obtain a good schedule. 

2.3. Base Algorithm 

The replication technique that we present in this paper is 

implemented on top of a state-of-the-art modulo 

scheduling scheme that has previously been shown to 

effectively reduce communications [2]. Figure 2 

represents the high-level structure of this framework. The 

algorithm starts at II=MII. First, the data dependence 
graph (DDG) is partitioned, that is, each node is allocated 

to a cluster. This partition requires a fixed number of 

communications that in turn induce an initiation interval 

for the bus (IIpart). If IIpart � II, then the algorithm tries to 

schedule the instructions according to the partition. If a 

suitable schedule is found, the algorithm finishes. If 

IIpart>II, or if a suitable schedule has not been found, then 

the II is increased. Since this provides additional slots in 
every cluster, a refinement heuristic is applied in order to 

find a better partition. 

In the next subsection we describe in detail the 

portions of the partitioning scheme relevant to this work. 

For more details on the scheduling algorithm, the 

interested reader is referred to the original paper [2]. 

2.3.1. Graph Partitioning. The general idea of the graph 
partitioning problem is to split the set of nodes of a graph 

into a certain number of parts, meeting some constraints, 

and trying to optimize some figure of merit. For the 

purposes of this work, we will partition a DDG 

representing the body of a loop. The final goal is to assign 

each instruction of the DDG to a cluster so the number of 

parts is the same as the number of clusters. The number of 

instructions that can be assigned to each cluster is 

constrained by the limited resources available and the II.
Finally, we would like to obtain a partition that can 

generate a schedule that minimizes execution time.

Graph partitioning is an NP-complete problem and 
many heuristic-based solutions have been proposed in the 
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Figure 2: The High level structure of the scheduler. 
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literature. In this work we use a multilevel strategy. 

Multilevel strategies have been shown to be very effective 

[14] and are available in many software packages 

[12][15]. They consist of two steps: 

1. First, the graph is coarsened, that is, a new graph 

with fewer nodes is built by grouping pairs of nodes of 
the initial graph into new macro-nodes. To choose the 

nodes that will be grouped in the new macro-node, we 

first weight the edges of the graph according to the 

impact that adding a bus latency to that edge would 

have on execution time [1]. Next, a maximum weight 

matching is identified. The nodes connected by edges 

in the matching are grouped together in a new macro-

node. This process is repeated until we get a graph with 

as many nodes as the number of sets desired. This 

induces a preliminary partition of the original graph. It 

also induces a partition in all the intermediate graphs 

generated during the coarsening process.  
2. The second phase uses two heuristics to refine the 

preliminary partition. The general idea is to generate 

different partitions by moving nodes from one cluster 

to another. Then, the best partition is chosen using a 

metric to compare different partitions. For this purpose, 

a pseudo-schedule is used. A detailed description of 

these heuristics and the pseudo-scheduler can be found 

in [2]. 

2.3.2. Scheduler. At the beginning of the scheduling step, 
the new instructions needed to carry out the 

communications in the clustered architecture are added to 

the DDG. Afterwards, the nodes of the DDG are sorted 

according to [18]. Then, following this order, each node is 

scheduled in the cluster where it is placed during the 

partitioning step. Each node is scheduled as close as 

possible to its predecessors and successors in order to 

keep register pressure low. Since backtracking is not used, 

if a suitable slot cannot be found for a node, the II is 

increased, the partition is refined, and instructions are 
scheduled again.

3. Replication Algorithm 

In this section we describe the proposed algorithm that 

selects the instructions that are replicated in other clusters. 

Given a partition, there is some number of 

communications among clusters that are implied by the 

partition. Nevertheless, there may not be enough bus slots 

to schedule all of them. In fact, this is a major cause of 

increasing the II in clustered microarchitectures (as we 

saw in Figure 1). We will refer to the number of excess 
communications as extra_coms. Whenever we have more 

communications to carry out than we have available bus 

bandwidth, we can compute the number of extra 

communications as follows: 

extra_coms= nof_coms – bus_coms 

 bus_coms= �II / bus_lat� · nof_buses 

where nof_coms stands for the total number of 

communications in the current partition and bus_coms is 

the maximum number of communications that can be 

scheduled through the bus, taking into account the limited 

resources in the architecture. nof_buses stands for the 

number of buses available and bus_lat represents their 
latency. 

The replication algorithm first computes the 

replication subgraph for each communication in the 

partition. This subgraph is the minimum set of nodes that 

have to be replicated in order to remove the corresponding 

communication. Then, the subgraphs to replicate are 

selected according to a heuristic. This process is iterated 

until extra communications are avoided. Thus, no over-

replication is possible. If extra communications cannot be 

avoided, the II has to be increased and the partition 

refined.  In the next subsections we present the algorithm 

in more detail. 

3.1. Replication Subgraphs 

The replication subgraph corresponding to an instruction 

com that has to be communicated to other clusters is the 

minimum set of nodes that have to be replicated in order 

to remove that communication. We will denote this 

subgraph as Scom.

A simple example of building replication subgraphs is 

presented in Figure 3. The graph shown in the upper left 

of the figure is the original graph. The scheduler partitions 

it into four sets of nodes and each set is assigned to a 

different cluster: {L,M,N} in cluster 1; {I,J,K} in cluster 

2; {A,B,C,D,E} in cluster 3; and {F,G,H} in cluster 4. For 

this resulting partition, there are three values that have to 
be communicated: the values produced by instructions D, 

Replication Subgraphs and weights:
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E and J. 

The replication subgraph corresponding to the 

communication of the value produced by instruction D 

has four nodes: SD={D,B,C,A}; the replication subgraph 
for E is: SE={E,A}. Node D does not belong to SE because 

it is not necessary to replicate D to remove 

communication E, since the value produced by D has 

already been communicated and is available in the other 

clusters. Finally, the replication subgraph of instruction J 

is: SJ={J,I}.

Note that to remove a particular communication, it is 

not necessary to replicate its associated replication 

subgraph in all clusters. Obviously, it is enough to 

replicate the subgraph in the clusters where the value has 

a consumer. For example, to remove the communication 

associated with node E, SE should be replicated in clusters 
2 and 4, whereas to remove the communication associated 

with D, SD should be replicated only in cluster 4. Last, 

note also that stores are never replicated since the cache 

memory is centralized. Therefore, a load dependent on a 

store can get the data written by this store regardless of 

the cluster where the store has been executed. 

The algorithm to compute a replication subgraph for a 

given communication is presented in Figure 4. Initially, 

there is only one node in the replication subgraph, which 

is the node that produces the value that has to be 

communicated. Then, this node’s parents are explored. If 
a parent produces a value that has to be communicated, 

that node is not included in the replication subgraph since 

that value is already available in the other clusters. 

Otherwise, the node is included in the subgraph and all of 

its parents are explored too. 

3.2. Removing Unnecessary Instructions 

After removing a communication by replicating a 

subgraph in other clusters, there may be some instructions 

from the original graph that are no longer needed. A good 

example can be found in Figure 3. The graph in the 

bottom of the figure represents the resulting graph after 

removing the communication of node E by replicating SE

in clusters 2 and 4. Then, the original instruction E in 

cluster 3 is useless. The value that it produces is not used 

by any other instruction. The two successors of E (J and 
G), obtain their copy of E from the copy generated in their 

respective clusters. Therefore, the original instruction E 

can be removed from the schedule. Hence, more resources 

become available in cluster 3. 

Removable instructions can be anticipated before 

replication. Thus, they can also be taken into account 

when selecting which subgraph to replicate. Figure 5 

describes the algorithm to find the instructions that can be 

removed if a communication was removed by using 

instruction replication. The algorithm starts by inspecting 

the instruction that produced the value that has to be 

communicated. If the instruction has no children in the 
cluster where it is placed, then the instruction can be 

removed. If the instruction is removed, then all of its 

parents that belong to the same cluster are candidates for 

removal (the parents may not have any other children in 

that cluster). Parents that do not belong to the same 

cluster cannot be removed. In fact, the nodes that need to 

communicate values belong to a different replication 

subgraph. They might be able to be removed when 

replicating that subgraph. 

3.3. Replication Heuristic 

After computing the replication subgraphs and the 

removable instructions for all of the values that need to be 

communicated to other clusters, we must choose which 
subgraphs will be replicated. The main goal here is to 

reduce extra_coms communications so that the bus is no 

longer overloaded and so the resulting partition with the 

added replications can be scheduled using the current II.
Note that replicating any of the subgraphs has the same 

impact on the II: it reduces exactly by one the number of 

communications. Therefore, just extra_coms subgraphs 

need to be replicated so that communications do not cause 

find_replication_subgraph_of (com) { 
list <node> candidates;

candidates+=parents_of(com); 

subgraph+=com;  

while (candidates not empty) { 

    node v= candidates.pop(); 

    if ( ∃com (v) &&  v∉subgraph ) { 
        subgraph+=v; 

        candidates+= parents_of(v); 

        } 

    } 
return subgraph;

}

Figure 4: Algorithm to find the replication subgraph of 

com.

find_removable_instructions (com) { 
list<node> removable, candidates;

candidates+=com;

while (candidates not empty) { 

    node v:= candidates.pop(); 

    if (∃y / y child of v && cluster(y)==cluster(v) 

                                                     &&y∉removable) { 
        removable+=v; 

        candidates+=parents of v in same cluster  as com;

        } 
     } 

return removable; 

}

Figure 5: Algorithm to identify removable instructions. 
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an increase in the II. In some cases, the value for 

extra_coms is high, so if we do not carefully select the 

graphs to be replicated, there may not be sufficient 

resources to replicate all the necessary instructions. 

Therefore, it is important to reduce the number of extra 

instructions that need to be added. Furthermore, reducing 
the number of extra instructions is also beneficial for 

other reasons such as register pressure, energy 

consumption and code length. Hence, our metric is based 

on extra instructions. Next, we describe the heuristics 

used to arrive at a good set of replications. 

Our heuristic for finding a good set of replications 

works as follows: first, we assign a weight to each 

subgraph. This weight is an estimate that reflects the 

impact on resource usage that the replication of the 

subgraph would have. Then, we look for the subgraph 

with the lowest weight and replicate it. Next, the 

subgraphs and the weights of the remaining 
communications are updated as explained in section 3.4. 

This process is repeated until extra_coms communications 

are removed or until no further replication is possible due 

to resource constraints. 

To weight a subgraph, we first assign weights to the 

nodes that have to be copied to other clusters to avoid the 

communication and the nodes that can be removed after 

the subgraph has been replicated. Then, the weight of the 

subgraph is the sum of the weights of the nodes that have 

to be replicated, minus the weight of the nodes that can be 

removed. 
To compute the weight of a single node v, we take 

into account how constrained resources will be that are 

used by the instruction if the subgraph is replicated:

IIcresavailable

subgraphcresopsextracresusage
cvweight

⋅
+=

),(

),,(_),(
),(

where usage(res,c) stands for the number of instructions 

that use resource res that are assigned to cluster c for the 

given partition; extra_ops(res,c,subgraph) represents the 

number of instructions that use resource res that have to 

be replicated in cluster c to replicate the subgraph and 

finally, available(res,c) are the number of resources of 

type res in cluster c.

If a node belongs to more than one subgraph, it can 

be replicated and then used more times. To reflect this 

fact, the previous formula is divided by the number of 

subgraphs that can benefit from the copy of a node in a 

cluster: 

{ }CC SvS

IIcresavailable

subgraphcresopsextracresusage

cvweight
∈

⋅
+

=
/

),(

),,(_),(

),(

To illustrate the algorithm, we will show how the 

weights of the replication subgraphs in Figure 3 are 

computed. Assume that every FU can execute all types of 

instructions and that each cluster has 4 of these FUs. If the 
II=2, and there is only one 1-cycle latency bus, then 

extra_coms=1.

In SD there are four instructions. To remove 

communication D, all of them must be copied to cluster 4. 

No instruction would be removable if SD was replicated. 

Therefore the corresponding weight will be the sum of 

four terms. Let res represent the FU. For all the 

instructions in SD, usage(res,c4)=3 and 
extra_ops(res,c4,SD)= 4; available(res,c4)=4 and II=2; so 

[usage(v,c4) + extra_ops(res,c4,SD) ] / 
[available(res,c4)·II ]= 7/8.

The only instruction that appears in other subgraphs 

is instruction A. It appears only in one other subgraph so 

its weight will be divided by 2. Therefore:
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Regarding SE, when copying A and E in cluster 2, the 

load in that cluster will be 5/8. The same happens for 

cluster 4. Moreover, the copy of A in cluster 4 is also 

required by the replication of SD, so this weight is divided 

by 2. Finally, instruction D in cluster 3 could be removed, 

so the load of cluster 3 after replication is 4/8. Then we 

have:
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Finally, for SJ, in cluster 1 and 3 the usage of the 
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16

40

8

5

8

5

8

5

8

5
)( =+++=JSweight

3.4. Updating Subgraphs 

When a communication is substituted by instruction 

replication, the rest of the replication subgraphs and their 

corresponding removable instructions have to be updated. 

Therefore, the weights of the remaining subgraphs may 

change and thus have to be recomputed. 

In Figure 6, an example is presented. The graph 
corresponds to the graph shown in Figure 3 after 

replicating SE. The updates for replication subgraphs SD

and SJ are highlighted. 

SD now only has three nodes {D,B,C}, because node 

A has already been replicated. Moreover, at this point, the 

subgraph should also be replicated in cluster 2 to remove 

the communication of D, since now there exists a child of 

node D: the copy of node E. Finally, nodes A, B, C and D 

can be removed from cluster 3 if SD is replicated, because 

they would be useless there. 

Regarding SJ, there are now two new nodes in this 
subgraph: (copies of instructions E and A), so 

SJ={J,I,E,A}. However, if communication J is removed 

through replication, nodes E and A should be replicated 

only in cluster 1 since there are already copies of these 

instructions in cluster 4. 

So three tasks have to be performed to update the 

remaining subgraphs after replicating one of them: 
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1. Some subgraphs may have to be replicated in 

more clusters. Since there are new copies of 

instructions, some nodes may have children in 

clusters where they did not have them before. A good 

example is SD, which also has to be replicated in 

cluster 2 after replicating SE.
2. Some subgraphs may grow. After replicating a 

subgraph, a communication is removed. The 

instruction producing the value that is no longer 

communicated, and some of its predecessors, may 

now be included in another subgraph. This is the case 

for SJ in the example. After replicating SE, nodes A 

and E are included in SJ.

3. Some nodes may be removed from some 

replication subgraphs. Since nodes can belong to 

more than one replication subgraph, if one of these 

subgraphs is replicated, some instructions do not need 

to be replicated again. This is the case for instructions 
E and A in SJ.  They only need to be replicated in 

cluster 1, but not in cluster 4. It is also the case for 

instruction A in subgraph SD, which has already been 

replicated in clusters 2 and 4, so A can be removed 

from SD.

Furthermore, removable instructions may also 

undergo some changes: 

1. There can be instructions that previously were 

not removable, that become removable after 

replicating a subgraph and removing some original 

instructions. This is the case for instructions D, B, C 
and A from the example, which will be removable if 

SD is replicated after having replicated SE.

2. On the other hand, instructions that were 

removable may no longer be, due to new copies. 

4. Experimental Evaluation 

We have implemented our replication technique as a part 

of a research compiler [4]. To drive our evaluation we 

have used the SPECfp95 benchmarks. Statistics are 

reported only for innermost loops that can be modulo 

scheduled. Programs were run until completion using the 

test input set. We have found that these loops represent 

around 95% of the total execution time of these programs. 

We have assumed a VLIW architecture with an issue 
width of 12. In this architecture, we assume 4 fp FU’s, 4 

integer FU’s and 4 memory ports. The different clustered 

configurations are presented in Table 1. The first 

configuration is a 2-cluster architecture that has 2 FUs of 

each type and half of the number of registers per cluster, 

whereas the 4-cluster architecture has only one functional 

unit of each type per cluster and one fourth the number of 

registers per cluster. The memory hierarchy is shared by 

all the clusters and all cache accesses are considered hits. 

Different configurations based on the number of registers, 

number of buses, and latency of the buses are considered. 

Each configuration is identified as a sequence of letters 
and numbers (wcxbylzr), as described in the introduction. 

We have used IPC as the main performance metric. 

Hence, it is necessary to know the number of times each 

loop is executed and the average number of iterations. 

They have been obtained through profiling. Figure 7 

shows the IPC for different configurations. The main 

conclusion is that instruction replication increases 

performance for all the benchmarks and for all the tested 

architectures. It is important to highlight that the baseline 

scheduler that does not perform replication, is a state-of-

the-art technique that has been shown to be very effective 
at minimizing communications. Benefits would be even 

higher for more basic schedulers. For example, for the 

4c2b4l64r configuration, the average speedup provided by 

replication is 25%. For some programs such as su2cor, the 

benefits can be up to 70%,  65% for tomcatv and 50% for 

swim. On the other hand, there are two programs for 

which the benefit is rather low, namely, mgrid and applu. 

For these two benchmarks we have performed a more 

extensive study. 

In Figure 8 we present the IPC of mgrid. The first bar 

represents the IPC of a unified microarchitecture, that is, a 
processor with the same resources but not split into 

clusters. The IPC of the unified configuration can be used 

as an upper bound for clustered architectures (obviously 

clustered microarchitectures benefit from shorter intra- SD= {D,B,C} � In cluster 4 but now also in cluster 2

Removable={D,B,C,A} from cluster 3

Weight=1+1+1+1+1+1-4/8=44/8

SJ={J,I,E,A} � In cluster 1; In cluster 4 only {J,I}
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Figure 6: Updating replication subgraphs and weights. 

Resources 
2-

cluster 

4-

cluster 
Latencies INT FP

INT/cluster 2 1  MEM 2 2 

FP/cluster 2 1  ARITH 1 3 
MEM/cluster 2 1  MUL/ABS 2 6 

    DIV/SQRT 6 18 

Table 1: Clustered VLIW configurations. 
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cluster delays and thus may be clocked faster). The other 

three bars are the IPC of the three configurations 

assuming a 2-cycle latency bus. As we can see, the IPC 

obtained for the clustered microarchitectures is very close 

to the performance of the unified configuration. In other 

words, even without replication, the inter-cluster 

communications mildly impact performance and thus, the 

potential benefits of replication are minimal. This 

demonstrates that the scheduler we have developed 
performs quite well and reduces communications. 

In applu, we have observed that the loops that 

consume most of the execution time are loops that are 

executed many times, but they have a small number of 

iterations (i.e., 4). Therefore, the impact of the II on the 

IPC is not very large. The proposed replication  technique 

aims at reducing the II by removing communications. In 

fact, it does a good job in this respect, as we can see in 

 Figure 9. Replication reduces the II by around 10-20%, 

depending on the configuration. For loops with small 

iteration counts per visit, it may be more beneficial to 

reduce the length of the schedule. This issue is further 

investigated in section 5.1, where an extension of the 

replication algorithm targeting this issue is presented. 

Figure 10 shows the number of additional instructions 

that are executed due to instruction replication for 

different processor configurations. The additional number 
of instructions is rather small for all configurations. For 

most configurations, the additional instructions increase 

by less than 5%. Integer instructions represent the most 

common type of replicated instructions. This is due to the 

structure of the loops. Usually, in the upper levels of the 

DDG there are integer instructions. And instructions in 

the upper levels appear in multiple subgraphs. Besides, in 

terms of FU pressure, it is cost-effective to remove 

communications in upper levels by replication. 
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Figure 7: Performance results. 
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The proposed replication technique removes around 

one third of the communications, depending on the 

configuration. For instance, for the 4c1b2l64r, 36% of the 

communications are removed and every communication 

requires the replication of 2.1 instructions on average. In 

general, the replicated subgraphs are quite small since 

replication of large graphs is not beneficial in many cases 
due to the increase in resource pressure.  In addition to 

configurations with 64 registers, we have also studied 

clustered architectures with 32 and 128 registers. Similar 

results have been obtained. 

5. Alternative Replication Algorithms 

Several other alternative replication algorithms have been 

investigated in this work. Some of them provide benefits 

just in a few cases and others provide almost no benefits 

at all. In this section we present alternatives that provide 

some interesting insight into the problem of replication, 

even if in some cases the conclusion is that the 
investigated alternative is not effective. 

5.1. Replicate to Reduce the Schedule Length 

The replication technique described in section 3 tries to 

reduce the number of communications in order to 

minimize the II. For loops with a high trip count, the 

execution time is almost proportional to the II, so 

reducing the II is crucial. However, when the number of 

iterations is rather small, the time consumed by the prolog 

and the epilog may be higher than the time consumed by 

the kernel [21]. For such loops, reducing the schedule 

length may be more important than reducing the II. This 

happens in applu, as discussed in section 4.  
Communications also impact the length of the 

schedule because of the bus latency. In Figure 11 we can 

see an example. In the left graph, the communication of 

the value produced by instruction A introduces a one 

cycle delay in the path A, D, E. Replication could be used 

to remove this communication in the critical path and 

thus, reduce the schedule length. Note that if we are not 

interested in further reducing communication bus 

utilization (i.e. it does not impact the II anymore) we may 

choose to replicate the instruction only in the cluster 

where it benefits the schedule length, instead of all the 

clusters that use the value. For instance, in the right graph 
of Figure 11, instruction A is replicated in cluster 1, but 

not in cluster 3, so the communication has not 

disappeared. However, the length of the schedule 

decreases by one cycle. 

The general idea for this extension to the replication 

algorithm is to identify the communication edges located 

on the critical path of the schedule of a single iteration 

and then try to remove these communications by using 

replication. 

Let us first quantify the maximum benefit that could 

be obtained from this extension to the replication 
algorithm. For this purpose, we assume that the latency of 

the bus is zero during the scheduling step. Thus, the 

impact of communications on the II is considered, but 

these operations do not affect the schedule length. The 

resulting schedule is obviously wrong, but it can be used 

as an upper bound on the benefit that can be obtained. In 

Figure 12, we compare the harmonic mean of the IPC 

obtained for this scheme and the IPC obtained for the 

normal approach. As we can see, the potential benefits of 

this extension to reduce the length of the schedule are 

almost negligible. If we ignore the bus latency needed for 

producing the schedule, the speed-up is around 1% for the 
4-cluster configurations and almost zero for the 2-cluster 

architecture (assuming a 2-cycle latency bus). We have 

also evaluated a number of configurations with a 4-cycle 

bus latency. Though the potential benefits are slightly 

larger, the overall impact is still low. 

However, the benefits of this extension are higher for 

selected programs. For applu, the potential benefit, 

assuming zero-cycle bus latency, is around 5% in some 4-

cluster configurations. Nevertheless, it seems difficult to 
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obtain a significant speed-up by removing the 

communications in the critical path using replication. In 

fact, the performance of a unified architecture is much 
higher than for a 4-cluster architecture, even assuming 

zero-cycle latency buses. This suggests that the effects of 

communication on the length of the schedule are not as 

important as the effects of splitting the resources into 

clusters. When clustering, there are fewer resources 

available in each cluster, so conflicts increase. Since 

replication increases resource pressure, we conclude that 

replicating to reduce schedule has a minor impact on 

performance (this was confirmed by further experiments). 

Another reason why replication in general does not 

significantly reduce the schedule length is due to the use 
of the pseudo-schedules in the scheduling process [2]. 

They allow for a very accurate estimation of the length of 

the schedule during the partition and in consequence, 

there are not as many communications in the critical path, 

since the partition tries to put communications in edges 

that do not affect the length of the schedule.  

5.2. Replicating for Multiple Communications 

One approach we further explored was to replicate for 

multiple communications simultaneously, and at the same 

time, making the replication more aware of the 

information discovered by the partitioning step. In theory, 

this approach seems to have more potential than 

replicating each communication individually. In a 

nutshell, we tried to replicate macro-nodes at the different 

levels of the partition. The results were not good, mainly 

due to the fact that too many unnecessary instructions 

were replicated when replicating macro-nodes. Besides, 
due to resource conflicts, in the majority of the cases, only 

replications that imply a few instructions are beneficial. 

6. Related Work 

There is limited prior work related to instruction 

replication. Chaitin et al. [6], in the context of register 

allocation based on graph-coloring, point out that some 

values can be cheaply recomputed instead of spilled to 

memory. Based on this observation, they proposed a 

technique called rematerialization. This technique was 

later extended by Briggs et al. [5].  

The most closely related work to our proposal include 
the work of  Kuras et al. [17] where they describe a 

technique called value cloning for Long Instruction Word 

architectures with partitioned register banks. That work 

targeted read-only values and induction variables. 

Another approach to adress excess communications 

in cluster architectures is loop unrolling. There are various 

works adressing this topic such as [22]. Though unrolling 

removes most of the communications and achieves high 

performance it increases significantly code size. For 

DSPs, where VLIW architectures are frequently used, 

code size is a critical issue. 
There are a number of modulo scheduling approaches 

for clustered VLIW architectures that have been recently 

proposed. In this work, we have shown the benefits of our 

instruction replication scheme using a state-of-art modulo 

scheduling algorithm [2]. 

There are many works related to acyclic code 

scheduling for clustered VLIW architectures. To the best 

of our knowledge none of them make use of instruction 

replication. However, heuristics proposed in this paper to 

reduce scheduling length can be also applied to acyclic 

code. 

Cluster microarchitectures are also popular for 
dynamical scheduled processors. In this area, Aggarwal et 

al. studied a technique to perform dynamic instruction 

replication [3]. 

Task duplication [16] has been used in the 

multiprocessors domain to alliviate the overhead 

introduced when tasks executing on different processors 

exchange data. 
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7. Conclusions 

In this work we have presented a compiler technique to 

replicate selected instructions in order to reduce inter-

cluster communications. The proposed technique is 

shown to reduce the number of communications by 

approximately one third, depending on the processor 

configuration.  Replication has been shown to produce 

significant speedups for all configurations and all 

programs. For instance, for a 4-cluster processor, the 
average speedup is 25% and for some programs like 

su2cor it can be as much as 70%. 

Our replication scheme aims at removing the 

communications that have the largest impact on the 

execution time, and those with the same impact are 

priotirized according to their cost in terms of the required 

number of replicated instructions. As a consequence, the 

performance benefits come at the expense of a very small 

increase in the number of executed instructions (less than 

5% for most processor configurations). 
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