
Instruction Replication for Clustered Microarchitectures

Alex Aletà
1
, Josep M. Codina

1
, Antonio González

1,2
 and David Kaeli

3

1. Dep. of Computer Architecture, UPC, Barcelona, Spain
2. Intel Barcelona Research Center, Intel Labs, UPC, Barcelona, Spain

3. Northeastern University, Boston, MA, USA
E-mail: {aaleta, jmcodina, antonio}@ac.upc.es; kaeli@ece.neu.edu

Abstract

This work presents a new compilation technique that uses
instruction replication in order to reduce the number of
communications executed on a clustered
microarchitecture. For such architectures, the need to
communicate values between clusters can result in a
significant performance loss. Inter-cluster
communications can be reduced by selectively replicating
an appropriate set of instructions. However, instruction
replication must be done carefully since it may also
degrade performance due to the increased contention it
can place on processor resources. The proposed scheme
is built on top of a previously proposed state-of-the-art
modulo scheduling algorithm that effectively reduces
communications. Results show that the number of
communications can decrease using replication, which
results in significant speed-ups. IPC is increased by 25%
on average for a 4-cluster microarchitecture and by as
much as 70% for selected programs.

1. Introduction

Clustering is becoming a mainstream
microarchitectural technique due to its benefits in terms of

wire delays, power dissipation and complexity. Clustering

consists of splitting the processor resources into several

groups or clusters. The components of each cluster are

simpler, faster, and consume less power than a monolithic

implementation. The resources in a cluster can be laid out

close together, which reduces signal transmission delays

[13]. Long (and slow) wires are used to interconnect

clusters.

The use of clustering is especially noticeable in the

DSP market, including Texas Instruments’ TMS320C6x
[23], Analog Devices’TigerSHARC [10], BOPS’s Man

Array [19], HP/ST’s Lx [9] and Equator’s MAP1000 [11].

All of these processors use a statically-scheduled,

clustered, microarchitecture.

Compilers play a critical role for statically-scheduled

processors. An important step of compilation is code

scheduling. In this paper, we focus on instruction

scheduling techniques for clustered microprocessors. In

particular, we limit our focus to scheduling software-

pipelined loops [7] since a vast majority of the execution

time on this class of processors is spent in loop bodies.
One major constraint to be considered during

instruction scheduling for clustered microarchitectures is

inter-cluster communication. Even when we use an

instruction scheduler that reduces communication, inter-

cluster communications can degrade performance. In

Figure 1, we provide the percentage of time that the

Initiation Interval (II – the number of cycles between the

initiation of consecutive iterations) is increased beyond

the minimum initiation interval (MII – a lower bound of

the II computed taking into account the limited resources

in the architecture and the recurrences in the code).

Results have been obtained using a state-of-the-art
scheduler [2] on 678 loops taken from the SPECfp95

benchmark suite. This scheduler uses a graph partitioning

algorithm to properly assign instructions to clusters,

balancing the workload and minimizing the number of

communications. There are three reasons that cause us to

increase the II: excess communications, recurrences that

do not fit in the current II and excess register pressure.

In this paper, we will discuss different cluster

configurations that are labeled as wcxbylzr, where w is the

number of clusters, x is the number of inter-cluster buses,

y is the latency of these buses, and z is the number of
registers. As we can see, between 70-90% of the increases

in the II are due to communications. Only 2-4% of the

increases in the II were due to recurrences. This is due to

the fact that the MII already takes into account recurrence

constraints.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2c1b2l64r 4c1b2l64r 4c2b2l64r

Registers

Recurrences

Bus

Figure 1: Causes for increasing the II.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

When a value is needed in more than one cluster, one

alternative to generating a communication is to compute

the value in each place where it is needed. Applying this

technique comes at the expense of some code replication,

so it must be performed carefully since it will increase the

pressure placed on other processor resources and thus
may also incur in some performance degradation. In this

work we propose a technique to replicate selected

instructions in multiple clusters in order to reduce the

number of communications. The replication scheme is

implemented on top of a state-of-the-art scheduling

algorithm for clustered processors. The proposed

technique is evaluated for a clustered VLIW machine,

though it can be used for any statically-scheduled

architecture. We evaluate this approach using 678 loops

taken from the SPECfp95 benchmark suite. The execution

in the loop bodies represent approximately 95% of the

total execution time. The results for different
configurations show that replication can significantly

speed up the program execution.

The remainder of this paper is organized as follows.

Section 2 provides some background on modulo

scheduling and graph partitioning. Section 3 describes our

replication heuristics. Section 4 analyzes its performance.

Section 5 describes some alternatives to our replication

technique. Section 6 reviews related work and section 7

summarizes this work.

2. Background

2.1. Description of the Microarchitecture

In this work, a statically-scheduled clustered

microarchitecture is considered. Each cluster is composed

of multiple functional units and a register file. Clusters

communicate register values among them using special
copy instructions and a set of dedicated register buses.
The memory hierarchy is centralized and shared by all

clusters. In this work, we have assumed homogeneous

clusters, although the proposed algorithm can be easily

extended to deal with heterogeneous clusters.

VLIW instructions flow through all clusters in a

lockstep fashion (all clusters work on the same VLIW

instruction together). Each cluster fetches and executes

the operations contained in their corresponding part of

each VLIW instruction.

2.2. Instruction Scheduling Overview

Modulo scheduling is a well-known technique for

scheduling cyclic codes [8][20]. The most important
characteristics of a modulo scheduled loop are the

initiation interval (II), which represents the number of

cycles between successive iterations of the loop, and the

length of the schedule, which is the number of cycles

necessary to schedule all the instructions of a single

iteration of the loop. These two factors have a direct

impact on execution time as follows:

Texec= (N-1+SC)·II

SC= length/II
where N is the number of iterations of the loop, SC is the

stage count and length stands for the length of the

schedule. Therefore, reducing II and length are crucial to

obtain a good schedule.

2.3. Base Algorithm

The replication technique that we present in this paper is

implemented on top of a state-of-the-art modulo

scheduling scheme that has previously been shown to

effectively reduce communications [2]. Figure 2

represents the high-level structure of this framework. The

algorithm starts at II=MII. First, the data dependence
graph (DDG) is partitioned, that is, each node is allocated

to a cluster. This partition requires a fixed number of

communications that in turn induce an initiation interval

for the bus (IIpart). If IIpart � II, then the algorithm tries to

schedule the instructions according to the partition. If a

suitable schedule is found, the algorithm finishes. If

IIpart>II, or if a suitable schedule has not been found, then

the II is increased. Since this provides additional slots in
every cluster, a refinement heuristic is applied in order to

find a better partition.

In the next subsection we describe in detail the

portions of the partitioning scheme relevant to this work.

For more details on the scheduling algorithm, the

interested reader is referred to the original paper [2].

2.3.1. Graph Partitioning. The general idea of the graph
partitioning problem is to split the set of nodes of a graph

into a certain number of parts, meeting some constraints,

and trying to optimize some figure of merit. For the

purposes of this work, we will partition a DDG

representing the body of a loop. The final goal is to assign

each instruction of the DDG to a cluster so the number of

parts is the same as the number of clusters. The number of

instructions that can be assigned to each cluster is

constrained by the limited resources available and the II.
Finally, we would like to obtain a partition that can

generate a schedule that minimizes execution time.

Graph partitioning is an NP-complete problem and
many heuristic-based solutions have been proposed in the

Initial

Partition
Schedule

Done?

IIpart�II?

Refine Partition
no: II++

n
o
:

II
+

+

yes

yes

Initial

Partition
Schedule

Done?

IIpart�II?

Refine Partition
no: II++

n
o
:

II
+

+

yes

yes

Figure 2: The High level structure of the scheduler.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

literature. In this work we use a multilevel strategy.

Multilevel strategies have been shown to be very effective

[14] and are available in many software packages

[12][15]. They consist of two steps:

1. First, the graph is coarsened, that is, a new graph

with fewer nodes is built by grouping pairs of nodes of
the initial graph into new macro-nodes. To choose the

nodes that will be grouped in the new macro-node, we

first weight the edges of the graph according to the

impact that adding a bus latency to that edge would

have on execution time [1]. Next, a maximum weight

matching is identified. The nodes connected by edges

in the matching are grouped together in a new macro-

node. This process is repeated until we get a graph with

as many nodes as the number of sets desired. This

induces a preliminary partition of the original graph. It

also induces a partition in all the intermediate graphs

generated during the coarsening process.
2. The second phase uses two heuristics to refine the

preliminary partition. The general idea is to generate

different partitions by moving nodes from one cluster

to another. Then, the best partition is chosen using a

metric to compare different partitions. For this purpose,

a pseudo-schedule is used. A detailed description of

these heuristics and the pseudo-scheduler can be found

in [2].

2.3.2. Scheduler. At the beginning of the scheduling step,
the new instructions needed to carry out the

communications in the clustered architecture are added to

the DDG. Afterwards, the nodes of the DDG are sorted

according to [18]. Then, following this order, each node is

scheduled in the cluster where it is placed during the

partitioning step. Each node is scheduled as close as

possible to its predecessors and successors in order to

keep register pressure low. Since backtracking is not used,

if a suitable slot cannot be found for a node, the II is

increased, the partition is refined, and instructions are
scheduled again.

3. Replication Algorithm

In this section we describe the proposed algorithm that

selects the instructions that are replicated in other clusters.

Given a partition, there is some number of

communications among clusters that are implied by the

partition. Nevertheless, there may not be enough bus slots

to schedule all of them. In fact, this is a major cause of

increasing the II in clustered microarchitectures (as we

saw in Figure 1). We will refer to the number of excess
communications as extra_coms. Whenever we have more

communications to carry out than we have available bus

bandwidth, we can compute the number of extra

communications as follows:

extra_coms= nof_coms – bus_coms

 bus_coms= �II / bus_lat� · nof_buses

where nof_coms stands for the total number of

communications in the current partition and bus_coms is

the maximum number of communications that can be

scheduled through the bus, taking into account the limited

resources in the architecture. nof_buses stands for the

number of buses available and bus_lat represents their
latency.

The replication algorithm first computes the

replication subgraph for each communication in the

partition. This subgraph is the minimum set of nodes that

have to be replicated in order to remove the corresponding

communication. Then, the subgraphs to replicate are

selected according to a heuristic. This process is iterated

until extra communications are avoided. Thus, no over-

replication is possible. If extra communications cannot be

avoided, the II has to be increased and the partition

refined. In the next subsections we present the algorithm

in more detail.

3.1. Replication Subgraphs

The replication subgraph corresponding to an instruction

com that has to be communicated to other clusters is the

minimum set of nodes that have to be replicated in order

to remove that communication. We will denote this

subgraph as Scom.

A simple example of building replication subgraphs is

presented in Figure 3. The graph shown in the upper left

of the figure is the original graph. The scheduler partitions

it into four sets of nodes and each set is assigned to a

different cluster: {L,M,N} in cluster 1; {I,J,K} in cluster

2; {A,B,C,D,E} in cluster 3; and {F,G,H} in cluster 4. For

this resulting partition, there are three values that have to
be communicated: the values produced by instructions D,

Replication Subgraphs and weights:

SD={D,B,C,A};

SE={E,A} ;

SJ={J,I} ;

L

M

N

D

A

B C

E
I

J

K

F

G

H

Cluster 1 Cluster 2 Cluster 3 Cluster 4

L

M

N

D

A

B C

F

G

H

A

EI

J

K

A

E

Cluster 1 Cluster 2 Cluster 3 Cluster 4

E

16

31

8

4

16

5

8

5

8

5

8

5 =−+++

16

49

16

7

8

7

8

7

8

7 =+++

16

40

8

5

8

5

8

5

8

5 =+++

Replicate SE

Figure 3: Example of instruction replication to reduce

communications.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

E and J.

The replication subgraph corresponding to the

communication of the value produced by instruction D

has four nodes: SD={D,B,C,A}; the replication subgraph
for E is: SE={E,A}. Node D does not belong to SE because

it is not necessary to replicate D to remove

communication E, since the value produced by D has

already been communicated and is available in the other

clusters. Finally, the replication subgraph of instruction J

is: SJ={J,I}.

Note that to remove a particular communication, it is

not necessary to replicate its associated replication

subgraph in all clusters. Obviously, it is enough to

replicate the subgraph in the clusters where the value has

a consumer. For example, to remove the communication

associated with node E, SE should be replicated in clusters
2 and 4, whereas to remove the communication associated

with D, SD should be replicated only in cluster 4. Last,

note also that stores are never replicated since the cache

memory is centralized. Therefore, a load dependent on a

store can get the data written by this store regardless of

the cluster where the store has been executed.

The algorithm to compute a replication subgraph for a

given communication is presented in Figure 4. Initially,

there is only one node in the replication subgraph, which

is the node that produces the value that has to be

communicated. Then, this node’s parents are explored. If
a parent produces a value that has to be communicated,

that node is not included in the replication subgraph since

that value is already available in the other clusters.

Otherwise, the node is included in the subgraph and all of

its parents are explored too.

3.2. Removing Unnecessary Instructions

After removing a communication by replicating a

subgraph in other clusters, there may be some instructions

from the original graph that are no longer needed. A good

example can be found in Figure 3. The graph in the

bottom of the figure represents the resulting graph after

removing the communication of node E by replicating SE

in clusters 2 and 4. Then, the original instruction E in

cluster 3 is useless. The value that it produces is not used

by any other instruction. The two successors of E (J and
G), obtain their copy of E from the copy generated in their

respective clusters. Therefore, the original instruction E

can be removed from the schedule. Hence, more resources

become available in cluster 3.

Removable instructions can be anticipated before

replication. Thus, they can also be taken into account

when selecting which subgraph to replicate. Figure 5

describes the algorithm to find the instructions that can be

removed if a communication was removed by using

instruction replication. The algorithm starts by inspecting

the instruction that produced the value that has to be

communicated. If the instruction has no children in the
cluster where it is placed, then the instruction can be

removed. If the instruction is removed, then all of its

parents that belong to the same cluster are candidates for

removal (the parents may not have any other children in

that cluster). Parents that do not belong to the same

cluster cannot be removed. In fact, the nodes that need to

communicate values belong to a different replication

subgraph. They might be able to be removed when

replicating that subgraph.

3.3. Replication Heuristic

After computing the replication subgraphs and the

removable instructions for all of the values that need to be

communicated to other clusters, we must choose which
subgraphs will be replicated. The main goal here is to

reduce extra_coms communications so that the bus is no

longer overloaded and so the resulting partition with the

added replications can be scheduled using the current II.
Note that replicating any of the subgraphs has the same

impact on the II: it reduces exactly by one the number of

communications. Therefore, just extra_coms subgraphs

need to be replicated so that communications do not cause

find_replication_subgraph_of (com) {
list <node> candidates;

candidates+=parents_of(com);

subgraph+=com;

while (candidates not empty) {

 node v= candidates.pop();

 if (∃com (v) && v∉subgraph) {
 subgraph+=v;

 candidates+= parents_of(v);

 }

 }
return subgraph;

}

Figure 4: Algorithm to find the replication subgraph of

com.

find_removable_instructions (com) {
list<node> removable, candidates;

candidates+=com;

while (candidates not empty) {

 node v:= candidates.pop();

 if (∃y / y child of v && cluster(y)==cluster(v)

 &&y∉removable) {
 removable+=v;

 candidates+=parents of v in same cluster as com;

 }
 }

return removable;

}

Figure 5: Algorithm to identify removable instructions.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

an increase in the II. In some cases, the value for

extra_coms is high, so if we do not carefully select the

graphs to be replicated, there may not be sufficient

resources to replicate all the necessary instructions.

Therefore, it is important to reduce the number of extra

instructions that need to be added. Furthermore, reducing
the number of extra instructions is also beneficial for

other reasons such as register pressure, energy

consumption and code length. Hence, our metric is based

on extra instructions. Next, we describe the heuristics

used to arrive at a good set of replications.

Our heuristic for finding a good set of replications

works as follows: first, we assign a weight to each

subgraph. This weight is an estimate that reflects the

impact on resource usage that the replication of the

subgraph would have. Then, we look for the subgraph

with the lowest weight and replicate it. Next, the

subgraphs and the weights of the remaining
communications are updated as explained in section 3.4.

This process is repeated until extra_coms communications

are removed or until no further replication is possible due

to resource constraints.

To weight a subgraph, we first assign weights to the

nodes that have to be copied to other clusters to avoid the

communication and the nodes that can be removed after

the subgraph has been replicated. Then, the weight of the

subgraph is the sum of the weights of the nodes that have

to be replicated, minus the weight of the nodes that can be

removed.
To compute the weight of a single node v, we take

into account how constrained resources will be that are

used by the instruction if the subgraph is replicated:

IIcresavailable

subgraphcresopsextracresusage
cvweight

⋅
+=

),(

),,(_),(
),(

where usage(res,c) stands for the number of instructions

that use resource res that are assigned to cluster c for the

given partition; extra_ops(res,c,subgraph) represents the

number of instructions that use resource res that have to

be replicated in cluster c to replicate the subgraph and

finally, available(res,c) are the number of resources of

type res in cluster c.

If a node belongs to more than one subgraph, it can

be replicated and then used more times. To reflect this

fact, the previous formula is divided by the number of

subgraphs that can benefit from the copy of a node in a

cluster:

{ }CC SvS

IIcresavailable

subgraphcresopsextracresusage

cvweight
∈

⋅
+

=
/

),(

),,(_),(

),(

To illustrate the algorithm, we will show how the

weights of the replication subgraphs in Figure 3 are

computed. Assume that every FU can execute all types of

instructions and that each cluster has 4 of these FUs. If the
II=2, and there is only one 1-cycle latency bus, then

extra_coms=1.

In SD there are four instructions. To remove

communication D, all of them must be copied to cluster 4.

No instruction would be removable if SD was replicated.

Therefore the corresponding weight will be the sum of

four terms. Let res represent the FU. For all the

instructions in SD, usage(res,c4)=3 and
extra_ops(res,c4,SD)= 4; available(res,c4)=4 and II=2; so

[usage(v,c4) + extra_ops(res,c4,SD)] /
[available(res,c4)·II]= 7/8.

The only instruction that appears in other subgraphs

is instruction A. It appears only in one other subgraph so

its weight will be divided by 2. Therefore:

16

49

16

7

8

7

8

7

8

7
)(=+++=DSweight

Regarding SE, when copying A and E in cluster 2, the

load in that cluster will be 5/8. The same happens for

cluster 4. Moreover, the copy of A in cluster 4 is also

required by the replication of SD, so this weight is divided

by 2. Finally, instruction D in cluster 3 could be removed,

so the load of cluster 3 after replication is 4/8. Then we

have:

16

31

8

4

16

5

8

5

8

5

8

5
)(=−+++=ESweight

Finally, for SJ, in cluster 1 and 3 the usage of the

resources will be 5/8 so:

16

40

8

5

8

5

8

5

8

5
)(=+++=JSweight

3.4. Updating Subgraphs

When a communication is substituted by instruction

replication, the rest of the replication subgraphs and their

corresponding removable instructions have to be updated.

Therefore, the weights of the remaining subgraphs may

change and thus have to be recomputed.

In Figure 6, an example is presented. The graph
corresponds to the graph shown in Figure 3 after

replicating SE. The updates for replication subgraphs SD

and SJ are highlighted.

SD now only has three nodes {D,B,C}, because node

A has already been replicated. Moreover, at this point, the

subgraph should also be replicated in cluster 2 to remove

the communication of D, since now there exists a child of

node D: the copy of node E. Finally, nodes A, B, C and D

can be removed from cluster 3 if SD is replicated, because

they would be useless there.

Regarding SJ, there are now two new nodes in this
subgraph: (copies of instructions E and A), so

SJ={J,I,E,A}. However, if communication J is removed

through replication, nodes E and A should be replicated

only in cluster 1 since there are already copies of these

instructions in cluster 4.

So three tasks have to be performed to update the

remaining subgraphs after replicating one of them:

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

1. Some subgraphs may have to be replicated in

more clusters. Since there are new copies of

instructions, some nodes may have children in

clusters where they did not have them before. A good

example is SD, which also has to be replicated in

cluster 2 after replicating SE.
2. Some subgraphs may grow. After replicating a

subgraph, a communication is removed. The

instruction producing the value that is no longer

communicated, and some of its predecessors, may

now be included in another subgraph. This is the case

for SJ in the example. After replicating SE, nodes A

and E are included in SJ.

3. Some nodes may be removed from some

replication subgraphs. Since nodes can belong to

more than one replication subgraph, if one of these

subgraphs is replicated, some instructions do not need

to be replicated again. This is the case for instructions
E and A in SJ. They only need to be replicated in

cluster 1, but not in cluster 4. It is also the case for

instruction A in subgraph SD, which has already been

replicated in clusters 2 and 4, so A can be removed

from SD.

Furthermore, removable instructions may also

undergo some changes:

1. There can be instructions that previously were

not removable, that become removable after

replicating a subgraph and removing some original

instructions. This is the case for instructions D, B, C
and A from the example, which will be removable if

SD is replicated after having replicated SE.

2. On the other hand, instructions that were

removable may no longer be, due to new copies.

4. Experimental Evaluation

We have implemented our replication technique as a part

of a research compiler [4]. To drive our evaluation we

have used the SPECfp95 benchmarks. Statistics are

reported only for innermost loops that can be modulo

scheduled. Programs were run until completion using the

test input set. We have found that these loops represent

around 95% of the total execution time of these programs.

We have assumed a VLIW architecture with an issue
width of 12. In this architecture, we assume 4 fp FU’s, 4

integer FU’s and 4 memory ports. The different clustered

configurations are presented in Table 1. The first

configuration is a 2-cluster architecture that has 2 FUs of

each type and half of the number of registers per cluster,

whereas the 4-cluster architecture has only one functional

unit of each type per cluster and one fourth the number of

registers per cluster. The memory hierarchy is shared by

all the clusters and all cache accesses are considered hits.

Different configurations based on the number of registers,

number of buses, and latency of the buses are considered.

Each configuration is identified as a sequence of letters
and numbers (wcxbylzr), as described in the introduction.

We have used IPC as the main performance metric.

Hence, it is necessary to know the number of times each

loop is executed and the average number of iterations.

They have been obtained through profiling. Figure 7

shows the IPC for different configurations. The main

conclusion is that instruction replication increases

performance for all the benchmarks and for all the tested

architectures. It is important to highlight that the baseline

scheduler that does not perform replication, is a state-of-

the-art technique that has been shown to be very effective
at minimizing communications. Benefits would be even

higher for more basic schedulers. For example, for the

4c2b4l64r configuration, the average speedup provided by

replication is 25%. For some programs such as su2cor, the

benefits can be up to 70%, 65% for tomcatv and 50% for

swim. On the other hand, there are two programs for

which the benefit is rather low, namely, mgrid and applu.

For these two benchmarks we have performed a more

extensive study.

In Figure 8 we present the IPC of mgrid. The first bar

represents the IPC of a unified microarchitecture, that is, a
processor with the same resources but not split into

clusters. The IPC of the unified configuration can be used

as an upper bound for clustered architectures (obviously

clustered microarchitectures benefit from shorter intra- SD= {D,B,C} � In cluster 4 but now also in cluster 2

Removable={D,B,C,A} from cluster 3

Weight=1+1+1+1+1+1-4/8=44/8

SJ={J,I,E,A} � In cluster 1; In cluster 4 only {J,I}

Removable= Ø

Weight=

Cluster 1 Cluster 2 Cluster 3 Cluster 4

L

M

N

D

A

B C

F

G

H

A

EI

J

K

A

E

8

42

8

7

8

7

8

7

8

7

8

7

8

7 =+++++

Figure 6: Updating replication subgraphs and weights.

Resources
2-

cluster

4-

cluster
Latencies INT FP

INT/cluster 2 1 MEM 2 2

FP/cluster 2 1 ARITH 1 3
MEM/cluster 2 1 MUL/ABS 2 6

 DIV/SQRT 6 18

Table 1: Clustered VLIW configurations.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

cluster delays and thus may be clocked faster). The other

three bars are the IPC of the three configurations

assuming a 2-cycle latency bus. As we can see, the IPC

obtained for the clustered microarchitectures is very close

to the performance of the unified configuration. In other

words, even without replication, the inter-cluster

communications mildly impact performance and thus, the

potential benefits of replication are minimal. This

demonstrates that the scheduler we have developed
performs quite well and reduces communications.

In applu, we have observed that the loops that

consume most of the execution time are loops that are

executed many times, but they have a small number of

iterations (i.e., 4). Therefore, the impact of the II on the

IPC is not very large. The proposed replication technique

aims at reducing the II by removing communications. In

fact, it does a good job in this respect, as we can see in

 Figure 9. Replication reduces the II by around 10-20%,

depending on the configuration. For loops with small

iteration counts per visit, it may be more beneficial to

reduce the length of the schedule. This issue is further

investigated in section 5.1, where an extension of the

replication algorithm targeting this issue is presented.

Figure 10 shows the number of additional instructions

that are executed due to instruction replication for

different processor configurations. The additional number
of instructions is rather small for all configurations. For

most configurations, the additional instructions increase

by less than 5%. Integer instructions represent the most

common type of replicated instructions. This is due to the

structure of the loops. Usually, in the upper levels of the

DDG there are integer instructions. And instructions in

the upper levels appear in multiple subgraphs. Besides, in

terms of FU pressure, it is cost-effective to remove

communications in upper levels by replication.

2c1b2l64r

1

2

3

4

5

6

7

8

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

2c2b4l64r

1

2

3

4

5

6

7

8

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c1b2l64r

1

2

3

4

5

6

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c2b4l64r

1

2

3

4

5

6

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c2b2l64r

1

2

3

4

5

6

7

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

4c4b4l64r

1

2

3

4

5

6

7

TOMCATV

SW
IM

SU2C
OR

HYDRO2D

MGRID

APPLU

TURB3D
APSI

FPPPP

W
AVE5

HMEAN

Figure 7: Performance results.
Baseline

Replication

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

The proposed replication technique removes around

one third of the communications, depending on the

configuration. For instance, for the 4c1b2l64r, 36% of the

communications are removed and every communication

requires the replication of 2.1 instructions on average. In

general, the replicated subgraphs are quite small since

replication of large graphs is not beneficial in many cases
due to the increase in resource pressure. In addition to

configurations with 64 registers, we have also studied

clustered architectures with 32 and 128 registers. Similar

results have been obtained.

5. Alternative Replication Algorithms

Several other alternative replication algorithms have been

investigated in this work. Some of them provide benefits

just in a few cases and others provide almost no benefits

at all. In this section we present alternatives that provide

some interesting insight into the problem of replication,

even if in some cases the conclusion is that the
investigated alternative is not effective.

5.1. Replicate to Reduce the Schedule Length

The replication technique described in section 3 tries to

reduce the number of communications in order to

minimize the II. For loops with a high trip count, the

execution time is almost proportional to the II, so

reducing the II is crucial. However, when the number of

iterations is rather small, the time consumed by the prolog

and the epilog may be higher than the time consumed by

the kernel [21]. For such loops, reducing the schedule

length may be more important than reducing the II. This

happens in applu, as discussed in section 4.
Communications also impact the length of the

schedule because of the bus latency. In Figure 11 we can

see an example. In the left graph, the communication of

the value produced by instruction A introduces a one

cycle delay in the path A, D, E. Replication could be used

to remove this communication in the critical path and

thus, reduce the schedule length. Note that if we are not

interested in further reducing communication bus

utilization (i.e. it does not impact the II anymore) we may

choose to replicate the instruction only in the cluster

where it benefits the schedule length, instead of all the

clusters that use the value. For instance, in the right graph
of Figure 11, instruction A is replicated in cluster 1, but

not in cluster 3, so the communication has not

disappeared. However, the length of the schedule

decreases by one cycle.

The general idea for this extension to the replication

algorithm is to identify the communication edges located

on the critical path of the schedule of a single iteration

and then try to remove these communications by using

replication.

Let us first quantify the maximum benefit that could

be obtained from this extension to the replication
algorithm. For this purpose, we assume that the latency of

the bus is zero during the scheduling step. Thus, the

impact of communications on the II is considered, but

these operations do not affect the schedule length. The

resulting schedule is obviously wrong, but it can be used

as an upper bound on the benefit that can be obtained. In

Figure 12, we compare the harmonic mean of the IPC

obtained for this scheme and the IPC obtained for the

normal approach. As we can see, the potential benefits of

this extension to reduce the length of the schedule are

almost negligible. If we ignore the bus latency needed for

producing the schedule, the speed-up is around 1% for the
4-cluster configurations and almost zero for the 2-cluster

architecture (assuming a 2-cycle latency bus). We have

also evaluated a number of configurations with a 4-cycle

bus latency. Though the potential benefits are slightly

larger, the overall impact is still low.

However, the benefits of this extension are higher for

selected programs. For applu, the potential benefit,

assuming zero-cycle bus latency, is around 5% in some 4-

cluster configurations. Nevertheless, it seems difficult to

0

2

4

6

IP
C

unified

2c1b2l

4c1b2l

4c2b2l

Figure 8: IPC for mgrid.

0%

5%

10%

15%

20%

25%

2c1b2l64r 4c1b2l64r 4c2b2l64r

Figure 9: Reduction of the II for applu.

0%

2%

4%

6%

8%

10%

2c1b2l 4c1b2l 4c2b2l 2c2b4l 4c2b4l 4c4b4l

mem

int

fp

Figure 10: Percentage of instructions added due to

replication.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

obtain a significant speed-up by removing the

communications in the critical path using replication. In

fact, the performance of a unified architecture is much
higher than for a 4-cluster architecture, even assuming

zero-cycle latency buses. This suggests that the effects of

communication on the length of the schedule are not as

important as the effects of splitting the resources into

clusters. When clustering, there are fewer resources

available in each cluster, so conflicts increase. Since

replication increases resource pressure, we conclude that

replicating to reduce schedule has a minor impact on

performance (this was confirmed by further experiments).

Another reason why replication in general does not

significantly reduce the schedule length is due to the use
of the pseudo-schedules in the scheduling process [2].

They allow for a very accurate estimation of the length of

the schedule during the partition and in consequence,

there are not as many communications in the critical path,

since the partition tries to put communications in edges

that do not affect the length of the schedule.

5.2. Replicating for Multiple Communications

One approach we further explored was to replicate for

multiple communications simultaneously, and at the same

time, making the replication more aware of the

information discovered by the partitioning step. In theory,

this approach seems to have more potential than

replicating each communication individually. In a

nutshell, we tried to replicate macro-nodes at the different

levels of the partition. The results were not good, mainly

due to the fact that too many unnecessary instructions

were replicated when replicating macro-nodes. Besides,
due to resource conflicts, in the majority of the cases, only

replications that imply a few instructions are beneficial.

6. Related Work

There is limited prior work related to instruction

replication. Chaitin et al. [6], in the context of register

allocation based on graph-coloring, point out that some

values can be cheaply recomputed instead of spilled to

memory. Based on this observation, they proposed a

technique called rematerialization. This technique was

later extended by Briggs et al. [5].

The most closely related work to our proposal include
the work of Kuras et al. [17] where they describe a

technique called value cloning for Long Instruction Word

architectures with partitioned register banks. That work

targeted read-only values and induction variables.

Another approach to adress excess communications

in cluster architectures is loop unrolling. There are various

works adressing this topic such as [22]. Though unrolling

removes most of the communications and achieves high

performance it increases significantly code size. For

DSPs, where VLIW architectures are frequently used,

code size is a critical issue.
There are a number of modulo scheduling approaches

for clustered VLIW architectures that have been recently

proposed. In this work, we have shown the benefits of our

instruction replication scheme using a state-of-art modulo

scheduling algorithm [2].

There are many works related to acyclic code

scheduling for clustered VLIW architectures. To the best

of our knowledge none of them make use of instruction

replication. However, heuristics proposed in this paper to

reduce scheduling length can be also applied to acyclic

code.

Cluster microarchitectures are also popular for
dynamical scheduled processors. In this area, Aggarwal et

al. studied a technique to perform dynamic instruction

replication [3].

Task duplication [16] has been used in the

multiprocessors domain to alliviate the overhead

introduced when tasks executing on different processors

exchange data.

A

B

C

FD

E

A

B

C

F

A

D

E

Replicate A

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

E

FCD

B

A

FCE

BD

AA

Scheduling length: 4 cycles
Scheduling length: 3 cycles

Figure 11: Example of reducing the schedule length through

replication.

0

1

2

3

4

5

2c1b2l 4c1b2l 4c2b2l 2c2b4l 4c2b4l 4c4b4l

IP
C

Replication

Latency 0

Figure 12: Potential benefits for reducing the schedule

length.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

7. Conclusions

In this work we have presented a compiler technique to

replicate selected instructions in order to reduce inter-

cluster communications. The proposed technique is

shown to reduce the number of communications by

approximately one third, depending on the processor

configuration. Replication has been shown to produce

significant speedups for all configurations and all

programs. For instance, for a 4-cluster processor, the
average speedup is 25% and for some programs like

su2cor it can be as much as 70%.

Our replication scheme aims at removing the

communications that have the largest impact on the

execution time, and those with the same impact are

priotirized according to their cost in terms of the required

number of replicated instructions. As a consequence, the

performance benefits come at the expense of a very small

increase in the number of executed instructions (less than

5% for most processor configurations).

8. Acknowledgements

This project has been partially supported by the Ministry

of Science and Technology of Spain and the European

Union (FEDER funts) under contract TIC2001-0995-C02-

01, Direcció General de Recerca of the Generalitat de

Catalunya under grant 2001FI 00664 UPC APTIND and

Analog Devices.

9. References

[1] A. Aletà, J.M. Codina, J. Sánchez and A. González.
“Graph-Partitioning Based Instruction Scheduling for
Clustered Processors”, in Proc. of 34th Int. Symp. On
Microarchitecture, Dec 2001.

[2] A. Aletà, J.M. Codina, J. Sánchez, A. González and D.
Kaeli. “Exploiting Pseudo-schedules to Guide Data
Dependence Graph Partitioning”, in Proc. of the Int. Conf.

on Parallel Architectures and Compiler Techniques
(PACT’02), Sept 2002.

[3] A. Aggarwal, M. Franklin, “Instruction Replication:
Reducing Delays due to Inter-PE Communication
Latency”, to appear in Proc. of the Int. Conf. on Parallel
Architectures and Compiler Techniques (PACT’03), Sept
2003.

[4] E. Ayguadé, C. Barrado, A. González, J. Labarta, D.

López, S. Moreno, D. Papua, F. Reig, Q. Riera, and M.
Valero. “Ictineo: A Tool for Research on ILP”, in
Supercomputing 96, 1996.

[5] P. Briggs, K.D. Cooper and L. Torczon,
“Rematerialization”, in Proc. of the SIGPLAN '92
Conference on Programming Language Design and
Implementation, June 1992.

[6] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke,
M.E. Hopkins and P.W. Markstein, “Register Allocation
Via Coloring”, in Computer Languages, pages 47--57,
January 1981.

[7] A. Charlesworth, “An Approach to Scientific Array

Processing: the Architectural Design of the AP120B/FPS-
164 Family”, Computer, 14(9):18-27, 1981.

[8] J.M. Codina, J. Llosa and A. González. “A Compartive
Study of Modulo Scheduling Techniques”, in Proc. of the
Int. Conf. on Supercomputing (ICS’02), June 2002.

[9] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F.
Homewood, “Lx: A Technology Platform for
Customizable VLIW Embedded Processing”, in Procs. of

the 27th Int. Symp on Computer Architecture, June 2000.
[10] J. Fridman and Z. Greenfield, “The TigerSharc DSP

Architecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000.
[11] P.N. Glaskowsky, “MAP1000 unfolds at Equator”",

Microprocessor Report, 12(16), Dec. 1998.
[12] B. Hendrickson and R. Leland, “The Chaco User's Guide

version 2.0, Tech. ReportSAND95-2344”, Sandia
National Labs, Albuquerque, NM, 1995.

[13] R. Ho, K. Mai and M. Horowitz, “The Future of Wires”,
in Procs. of the IEEE, April 2001.

[14] G. Karpis and V. Kumar, “Analysis of Multilevel Graph
Partitioning”, in Proc. of 7th Supercomputing Conf., 1995.

[15] G. Karpis and V. Kumar, “Metis: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes
and Computing Fill-Reducing Orderings of Sparse
Matrices”. University of Minnesota, Sept. 1998.

[16] B. Kruatrachue and T. G. Lewis, “Grain Size
Determination for Parallel Processing”, IEEE Software,
Jan. 1988, pp. 23-32.

[17] D. Kuras, S. Carr, and P. Sweany. “Value Cloning For
Architectures with Partitioned Register Banks”. In
Workshop on Compiler and Architecture Support for
Embedded Systems, pages 1--5, Dec 1998.

[18] J. Llosa, E. Ayguadé, A. González and M. Valero.
“Swing Modulo Scheduling”, in Procs. of Int. Conf. on

Parallel Architectures and Compilation Techniques
(PACT’96), Oct 1996.

[19] G.G. Pechanek, and S. Vassiliadis, “The ManArray
Embedded Processor Architecture,” in Procs. of the 26th.
Euromicro Conference: "Informatics: inventing the
future", Maastricht, The Netherlands, Sept. 2000.

[20] B.R. Rau and C. Glaeser, “Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for

High Performance Schientific Computing”, in Procs. of
14th Annual Microprogramming Workshop, pp. 183-197,
October 1981.

[21] B.R. Rau, “Iterative Modulo Scheduling”, Hewlett-
Packard Company, 1995.

[22] J. Sánchez and A. González, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW
Architectures”, in Procs. of the 29th Int. Conf. on Parallel

Processing, Aug. 2000.
[23] Texas Instruments Inc., “TMS320C62x/67x CPU and

Instruction Set Reference Guide”, 1998.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36’03)
0-7695-2043-X/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

