
Bridging the Gap Between Design and

Implementation of Component Libraries

Jordi Marco and Xavier Franch

Dept� Llenguatges i Sistemes Inform�atics� Universitat Polit�ecnica de Catalunya�
c� Jordi Girona ��� 	Campus Nord� C
� E��
��� Barcelona� 	Catalunya� Spain�

fjmarco�franchg�lsi�upc�es

Abstract� Object�oriented design is usually driven by three main reu�
sability principles� step�by�step design� design for reuse and design with
reuse� However� these principles are just partially applied to the subse�
quent object�oriented implementation� often due to e�ciency constra�
ints� yielding to a gap between design and implementation� In this paper
we provide a solution for bridging this gap for a concrete framework� the
one of designing and implementing container�like component libraries�
such as STL� Booch Components� etc� Our approach is based on a new
design pattern together with its corresponding implementation� The pro�
posal enhances the same principles that drive the design process� step�
by�step implementation 	adding just what is needed in every step�� im�
plementation with reuse 	component implementations are reused while
library implementation progresses and component hierarchies grow� and
implementation for reuse 	intermediate component implementations can
be reused in many di�erent points of the hierarchy�� We use our approach
in two di�erent manners� for building a brand�new container�like com�
ponent library� and for reengineering an existing one� Booch Components
in Ada���

� Motivation

Since McIlroy proposed in ���� the notion of software catalogue �McI���� compo�
nent	based software development 
CBSD� has become without any doubt one
of the most important software development paradigms� The key point behind
this paradigm is the process of reusing components from standard software cat�
alogues� Component reuse provides many advantages� remarkably software pro�
duction hastening� software quality improvement and software maintenance cost
decrease�

One of the most valuable contributions in CBSD is object	oriented 
OO�
technology� Basic concepts such as inheritance� polymorphismand dynamic bind�
ing� and others built on top of them� such as design patterns �GHJ
���� had a
strong impact on this paradigm� In fact� as Meyer remarks �Mey���� OO tech�
nology makes possible� for the �rst time� the idea of turning academic McIlroy�s
vision of software development into a component	based industry become real�



�

Unfortunately� despite of this ongoing success� we have not still reached the
ultimate McIlroy�s goal� making software components equivalent to other engi�
neering component types� as chips� bricks and valves� One of the reasons behind
this fact has to be with the di�culty of turning designs into implementations�
The OO design process is usually driven by three main reusability principles�
namely step	by	step design� design for reuse and design with reuse� However�
these principles are often just partially applied to the subsequent OO imple�
mentation� Therefore� a gap between design and implementation appears with
respect to these reusability principles� This fact holds even if advanced OO con�
cepts such as design patterns are used during development� it is not enough
to reuse design patterns� a good reuse policy must provide implementations of
them�

But we turn back to McIlroy�s software catalogues� more speci�cally to the
OO corresponding notion of class component library� Class component libraries
help to dismiss the gap mentioned above because classes implemented in the
library come to light naturally when identifying classes in the new design� Hence�
a good design and implementation of these library classes become crucial to
support the reusability of the components stored therein�

But design and implementation of reusable� general	purpose class libraries
is a hard work� because many criteria have to be taken into account�

� Adaptability� Design and implementation of general	purpose libraries have
to be �exible and extensible to allow the possibility to adapt them or to
extend them to a particular context�

� Reusability� General	purpose libraries should deal with as many di�erent
contexts as possible� Therefore it is utterly important to avoid assumptions
about 
and dependencies on� the context� which could limit the usability of
the library and hence its applicability and e�ectiveness�

� Functionality� The success of general	purpose libraries depends on its ability
to provide the most common functionalities in the domain in which they are
de�ned�

� E�ciency� Classes in the library should incorporate algorithms and features
to ful�ll usual e�ciency requirements�

Reconciling these criteria is a di�cult task� At the design level� it is possible
to de�ne a class hierarchy satisfying the �rst three criteria� But when building
its implementation� e�ciency requirements collide often with the others� mak�
ing design decisions di�cult to be kept� This makes the gap between design
and implementation to appear again� now in the development of the library it�
self� Thus� reusability can be damaged again� both when building the library

common functionalities are implemented more than once in di�erent classes�
and when using it 
because library adaptability� reusability or functionality may
have been partially sacri�ced��

The gap may take di�erent forms in di�erent types of libraries� In this paper
we focus on a concrete category of libraries� the one of container	like component
libraries 
CLC�library for short�� Containers are objects that store collections



�

of other objects� di�erent types of containers may o�er di�erent functionalities�
and their implementations 
usually� more than one� will satisfy di�erent e��
ciency requirements� Some representative CLC	libraries are the Standard Tem�
plate Library 
STL� �MS���� the Library of E�cient Data types and Algorithms

LEDA� �MN��� and Booch Components 
BC� �BV���BWW����

In these kind of libraries a well	established hierarchy of components can
be found at the design level� Sometimes� this hierarchy appears explicitly 
for
instance BC� and sometimes not 
for instance� STL and LEDA�� In any case�
the hierarchy has no subsequent implementation in these libraries� making thus
the gap appear again� Typically� three di�erent situations exist�

� The implementation of the intermediate levels of hierarchy only provides
interfaces� but not real implementations� In other words� the hierarchy im�
plementation just preserves the layout� Code reuse does not takes place� but
e�ciency is optimal� because methods can use the private attributes of class
implementation�

� The intermediate levels simply disappear� maybe because it can be argued
that non	implemented interfaces are useless from an implementation point
of view� Again� e�ciency is the main motivation behind this approach� Ex�
amples of these libraries are STL and LEDA�

� The hierarchy is partially preserved in the implementation� with those mod�
i�cations required to support code reuse� This solution usually dismisses the
level of adaptability and reusability of the library� The Ada�� version of the
BC is a representative library in this scenario�

The purpose of this work is bridging this gap between the design and the
implementation of CLC	libraries� Our approach is based in the de�nition of a
new design pattern� namely Shortcut� together with its corresponding imple�
mentation� This pattern describes and solves the problem of accessing objects
stored in a container� in an abstract and e�cient way� Most of the existing CLC	
libraries try to solve this problem by means of di�erent ad�hoc� implementation	
dependent proposals� Instead� we use an implementation	free approach based on
the use of shortcuts to implement a generic container in which the objects are
really stored� Our approach yields to the same reusability principles in the imple�
mentation process that we had in design� step	by	step implementation 
coding
just what has been introduced or rede�ned in every class�� implementation with
reuse 
class	implementations are reused while the implementation stage pro�
gresses and class	hierarchies grow� and implementation for reuse 
intermediate
class implementations can be reused in many di�erent points of the hierarchy��

Our proposal is twofold in the sense that it can be applied both for develop�
ing new CLC	libraries and for improving existing ones� because the core data
structures and algorithms can be reused� In the case of reengineering an existing
library� since the addition of shortcuts will not a�ect the former behaviour of
the library� those running software applications that use the previous version of
the library does not need to be modi�ed� We will show this point in a particular
case� the Ada�� BC library�



�

The rest of the paper is organized as follows� First� we make a comparative
analysis of the three CLC	libraries mentioned above highlighting their bene�ts
and drawbacks� Next� we propose a hierarchy and a design pattern aimed at
solving these drawbacks� Last� we apply the design pattern to a particular case
study� the Ada�� BC library�

� Some Representative Implementations for CLCL

In this section we analyse three of the most widely used CLC	libraries� the
Standard Template Library 
STL�� the Booch Components 
BC� and the Library
of E�cient Data types and Algorithms 
LEDA�� For each of them we focus only
on the containers subhierarchy 
together with their capabilities� e�g� iterators��

��� The Standard Template Library

STL is a component library adopted by ANSI as a standard for C

� This
library has been an important contribution to the programming methodology�
STL has not an explicit hierarchy� only the leaf classes exist� but there is an
implicit hierarchy that can be deduced from its organisation�

STL is organised in six kinds of components� containers� generic algorithms�
iterators� function objects� adaptors and allocators� We are going to analyse
containers� iterators and containers adaptors components�

Containers are divided into two categories� sequence containers and sorted
associative containers�

There are three di�erent sequence containers abstractions� vectors� deques
and lists with a single one implementation� Using the containers adaptors� stack�
queue� and priority queue together with the sequence containers can be obtained
three di�erent implementations for each one of these adaptors� Therefore� we can
say that STL has six di�erent sequence containers abstractions� vectors� deques�
lists� stacks� queues� and priority queues� with one implementation of the �rst
three ones and three di�erent implementations of the three last ones�

The associative containers category o�ers four di�erent containers abstrac�
tions� sets� multisets� maps and multimaps each of them with just one imple�
mentation�
All the containers provide�

� Iterators� Iterators are objects that allow to navigate through all the objects
stored in a container� Iterators are divided in �ve categories� input iterators�
ouput iterators� forward iterators� bidirectional iterators and random acces
iterators among which there is the hierarchical relationship shown in Fig� ��
Only vectors and deques provide random access iterators� the other con�
tainers provide just bidirectional ones� In STL� iterators mix two di�erent
capabilities� namely� the concept of iterator and the concept of location of
the objects stored in the container� This mixture of concerns provokes some
drawbacks that we mention further on the paper�



�

Input Output

Forward

Bidirec
tional

Random
access

==, !=, ++
* (lookup)

==, !=, ++
* (lookup,

modification)

--

+=, -=
+, -

<, >, <=, >=

Fig� �� Hierarchy of the STL iterators

� Insert operations� There are a variety of insert operations to insert one or
more objects� The common one is the basic insert operation which consists
in inserting one object� this operation returns an iterator that can be used
like a reference to the new object�

� Remove operations� All the remove operations use iterators to remove the
object bound to them� The common one removes one object using its iterator�

� Modify operations� In STL� the modi�cation of an object stored in a con�
tainer has to be made using iterators like pointers� The problem with this
scheme is that iterators are not persistent� in other words an iterator could
refer not to the original object but to other one 
typically when objects can
be reallocated inside the structure or when they are removed�� the prob�
lem is serious because STL does not provide any functionality to check this
situation�

� E�cient access operations� In STL� e�cient access to objects stored in a
container is made by using iterators like pointers� Therefore� the problem
mentioned above appears again�

This library have a lot of advantages� mainly�

� O�ers a large amount of robust� e�cient and well	designed components with
appropriate algorithms and data structures�






� The algorithms are structured independent� they work externally using the
iterator common facility�

� For many e�cient data structures access by position is important� STL uses
iterator concept to cast positions into an abstract form�

� It is a standard library supported by documentation and books�
� It is freeware�

The main drawbacks that present this library are�

� Lack of internal level of reusability� All the common capabilities have to be
implemented on each concrete class�

� Each container abstraction 
besides the abstractions obtained using adap�
tors� queue� stack and priority queue� has just a single implementation� The
implementation of List is a double linked list� the associative sorted con�
tainers are implemented using a red	black tree� etc� This makes di�cult the
possibility of adapting the library for concrete proposals 
e�g� if a hashing
map is needed to have even more e�cient access by key��

� It is di�cult to extend it� If we want to add a container component� it has
to o�er all the common capabilities but some of them restrict the possible
implementations 
e�g� we cannot add a new container whose objects change
their position in the internal structure when a new object is inserted� and
others di�cult to understand and implementing�

� Non persistency of iterators� In some containers classes all the iterators are
invalidated when we remove or insert an object� And in the others an iterator
could be invalid if the object that it referred has been removed�

� Lack of an operation to know if an iterator is still valid or not�

��� The Booch Components

The Booch Components was �rst created for Ada �� �Boo��� and reengineered
�rst for C

 �BV��� and later on for Ada �� �BWW���� We are going to analise
in detail the Ada �� version� which is later used in the paper to show the feasi�
bility of our approach�

This version of the Booch components is organised into three main super	
classes� Containers� Support and Graphs� which have a common parent	class
BC� The base class BC has no functionality at all� it only provides the de�nition
of the common exceptions� The Containers category of classes provides a wide
range of structural abstractions 
lists� bags� sets� collections� etc�� using many
widespread implementation techniques 
chaining� hashing� search trees and so
on�� Figure � shows the main hierarchy of these components� their code is avail�
able at �BWW����

The Containers class o�ers only the interface of the iterators� The structural
abstraction classes o�ers the interface of these abstractions and� in an intent
of reuse implementation� the implementation of the iterators� we can see later
that this intent provokes several drawbacks� Finally� in the leaf classes of the
hierarchy we can �nd the implementation of the concrete container� The unique
common operation of these containers is the add operation�
This library o�ers several advantages that make it very useful� mainly�



�

BC

GraphsContainers

Lists Sets Stacks Queues MapsCollectionsBags Trees Rings

Bounded Unbounded Dinamic

Support

Bounded Unbounded Dinamic Nodes

Fig� �� Hierarchy of the Booch component classes 	excerpt�

� A large amount of robust and well	designed components with appropriate
algorithms and data structures�

� It is a well	known library supported by documentation and books�

� It is freeware�
� It has several and complete testing packages for its components�

The container category of this libray presents some drawbacks that decrease
the potential of reusability of this component library� Most of the problems
arise because some parent	classes depend on the concrete implementation of
their children	classes� To make it clear� Fig� � shows a typical situation in this
library� in which the BC�Containers�Bags class depends on the concrete form of
its children classes Bounded� Unbounded and Dynamic� which are hashing tables�
Notice that the type de�nition of Bag Iterator forces all the Bags children to
be implemented by means of a hashing table� This restriction interferes with
the possibility of extending the class hierarchy or changing the concrete form of
one of its children� All these dependencies exist because iterators are strongly
dependent on the concrete container implementation� Similar dependencies can
be also found between the classes Maps� Sets� Queues� etc�� and their respective
children� Therefore� to solve the problems we clearly need to make iterators
independent of the speci�c container�

To sum up� the main problems in this library are�

� The hierarchy is not robust enough with respect to changes in some of their
components� changes in a component require the modi�cation of other com�
ponents� This is due to the implementation dependency mentioned above�
For instance� changing the current hashing implementation of the BC�Conta�
iners�Bags�Bounded by an implementation 
bounded� with a binary search
tree 
for instance� because elements must be obtained in some order�� re�
quires changing the implementation of the type Bag Iterator 
de�ned in the
BC�Containers�Bags class� and the implementation of its operations as well�






generic
package BC�Containers�Bags is
���
private

type Bag is abstract new Container with null record�
���
type Bag Iterator �B � access Bag�Class	
is new Actual Iterator �B	 with record
Bucket Index � Natural �
 ��
Index � Natural �
 ��

end record�
���
end BC�Containers�Bag�

Fig� �� Extract of the generic package BC�Containers�Bags

� Moreover� this hierarchy restricts to a single set of possible implementa�
tions for some of the di�erent structure abstractions� This is a serious draw�
back because some of the implementations provided therein can be inef�
�cient in some contexts 
we have already mentioned ordered traversal of
Bags�� For instance� it is not possible to have di�erent implementations of
the class BC�Containers�Bags�Bounded� because it is not implementation	
independent� and hence it forces a concrete implementation strategy 
hash�
ing�� This problem could be solved adding another level in the hierarchy�
making the class abstract and de�ning their concrete children� This is not
possible without changing other parts of the hierarchy� because of the im�
plementation dependency again�

� Low level of abstraction makes the usage of the implementation harder� This
happens when dealing with iterators� The iterator type and its operations
are strongly dependent on the concrete implementation of the underlying
structure� As a consequence� for every concrete implementation of a children	
class a new Actual Iterator type must be de�ned and its operations must
be overridden� This approach� which is di�erent from many other libraries�
prevents the easy usage of the iterator facility�

� It is not only the lack of multiple implementations for components that
damages e�ciency� but also some of the iterator operations have lineal cost in
the worst case with respect to a certain parameter 
although their amortised
cost is constant�� For instance� as shown in Fig��� the Reset operation could
have linear cost with respect to the Number of Buckets� A similar problem
occurs in the Next operation�

� In many contexts in which components often encapsulate data structures�
reusability can be damaged due to e�ciency requirements� even if a com�
ponent ful�ls a required functionality� the time complexity of its operations
may be inadequate given the context in which it should be integrated 
ei�
ther considering them individually or when combining them to build more
complex components�� The access by means of the operations o�ered by a



�

procedure Reset �It � in out Bag Iterator	 is
begin
It�Index �
 ��
if Cardinality �It�B�all	 
 � then
It�Bucket Index �
 ��

else
It�Bucket Index �
 ��
while It�Bucket Index 

 Number Of Buckets �It�B�all	 loop
if Length �It�B�all� It�Bucket Index	 � � then
It�Index �
 ��
exit�

end if�
It�Bucket Index �
 It�Bucket Index � ��

end loop�
end if�

end Reset�

Fig� �� Reset operation�s code of the generic package BC�Containers�Bags

component may be costly if the logical layout of the data structure is used�
if fast access is required� it becomes necessary to look up the item using
directly a reference to it�

��� The Library of E�cient Data types and Algorithms

The Library of E�cient Data types and Algorithms 
LEDA� is the result of a
project started in ����� The goal of this project was design a library of data types
and algorithms� mainly� for combinatorial computing area where it is necessary
the use of complex data types� The actual version of this library �MN��� o�ers
a large amount of data types and algorithms� From a container point of view
LEDA o�ers the next generic 
parameterised� data types� arrays with one and
two dimensions� stacks� queues� bounded stacks� bounded queues� linear lists�
single linked lists� sets� dictionaries� dictionaries with implementation parameter�
sorted sequences� sorted sequences with implementation parameter� dictionary
arrays� dictionary arrays with implementation parameter� hashing arrays and
others variations above containers�
All the containers	like data types of this library provide�

� Items� LEDA use an item concept that play the role of locations or positions
in data structures to achieve e�cient access to the objects therein�

� Iteration macros� This macros can be used similarly to the C

 for state�
ment to iterate over the items of a container� Iteration macros have the
restriction that the object corresponding to the item can not be modi�ed
inside the body of the loop�

� Insert operations� These operations return an item that can be used in other
operations which have then constant time�



��

� Delete operations� These operations take an item as a parameter to delete
the object it refers� The item has to be in the container�

� Modify operations� These operations take an item as a parameter to modify
the object it refers� The item has to be in the container�

� Fast access operations� These operations take an item as a parameter to
access to the object it refers� The item has to be in the container�

The main advantages that o�ers this library are�

� Provides a sizeable collection of data types and algorithms in a form that
allows them to be used by non	experts� In the current version� this collection
includes most of the data types and algorithms described in the text books
of the area�

� Gives a precise and readable speci�cation for each of the data types and
algorithms mentioned above�

� For many e�cient data structures access by position is important� LEDA
uses an item concept to cast positions into an abstract form�

� It is a well	known library supported by documentation and books�
� LEDA is not in the public domain� but can be used freely for academic
research and teaching�

The main drawbacks that present this library are�

� Lack of internal level of reusability� All the common capabilities have to be
implemented on each concrete class�

� It is di�cult to extend it� If we want to add a container component� it has
to o�er all the common capabilities but some of them restrict the possible
implementations 
e�g� we cannot add a new container whose objects change
their position in the internal structure when a new object is inserted� and
others di�cult to understand and implementing�

� Non persistency of items� An item could be invalid if the object that it
referred has been removed�

� Lack of an operation to know if an item is still in a container or not�

Figure � summarizes the most rellevant features of these libraries�

� A Class Hierarchy for Container�like Component
Libraries

The analysis carried out in the previous section has shown some problems that
appear in many representative CLC	libraries� We are speci�cally interested in
the strategy chosen for adding e�cient access to objects stored in containers�
which is an essential feature for obtaining a really useful solution in the CLC	
libraries domain� Usually CLC	libraries allow this kind of e�cient access by
having alternative paths to objects in the containers� but we have shown that
the concrete proposals 
e�g�� items in LEDA or iterators in STL� are really



��

Class Hi�
erarchy

Internal
reuse

Multiple
Implemen�

Extensibility Iterators Positions Variety
of com�
ponents

STL No Non ex�
isting

Mostly no�
Just for
adaptors

Di�cult Bidirec�
tional�
Non per�
sistent

Non per�
sistent

Not
much

LEDA No Non ex�
isting

Yes Di�cult Iteration
macros�
Non per�
sistent

Non per�
sistent

Large

BC Yes Low and
inappro�
priate

Yes but
limited

Di�cult Unidirec�
tional
iterators�
Non per�
sistent

Non pro�
vided

Medium

Fig� �� Summary of CLC�libraries characteristics

implementation	dependent� restricting somehow the quality of the library with
respect to reusability� adaptability or applicability�

In the rest of the paper we are going to present a more structured approach
for solving this problem� based on the use of a new design pattern� the Shortcut�
Before this� in order to make our approach as library	independent as possible� we
�rst de�ne a common class	hierarchy for the container family� this hierarchy has
been deduced from the concrete form that take the three CLC	libraries studied
in Sect� �� In fact� we are not interested in �xing all the details of the hierarchy

i�e�� which concrete containers� and which concrete operations in them� do exist��
but its general layout�

More speci�cally� the hierarchy includes 
see Fig� � for a concrete example of
the hierarchy��

� A hierachy of iterators� Based on the Iterator design pattern� The most
complete solution o�ers � input iterators� output iterators� forward iterators�
bidirectional iterators and random iterators�

� Shortcuts� A new design pattern that introduces the concept of shortcut as
the location or position of objects� together with some operations involving
shortcuts� We present this pattern thoroughly in Sect� ��

� A hierarchy of containers� We distinguish�
� A base class Container� This base class acts as a common parent class
for all kinds of containers� It provides the following functionalities�
� Iterators to iterate over the objects in a Container� The base class
does not �x any particular form of iterator� Although the best case
is having random iterators� they are di�cult to implement� thus�
concrete containers will commonly o�er bidirectional iterators�

� A new Insert operation for inserting objects in the container return�
ing a Shortcut to the object�



��

� New operations of access�modify and delete objects in the Container�
which take their shortcut as a parameter� These operations should
be implemented with O
�� time�

� Container Abstractions� Children classes of Container that are not leafs�
which represent di�erent types of containers 
list� map� etc��� Each of
them adds its speci�c functionalities to the ones inherited from the Con�
tainer class�

� Container Abstraction Implementations� Children classes of Container
Abstractions that are leafs� Every leaf class is an implementation of its
container parent� As such� they inherit all the functionalities of the con�
crete abstraction they implement� Unlike other possibilities 
e�g�� con�
sidering the implementation as a parameter�� this approach allows im�
plementations of abstractions can o�er new functionalities 
e�g�� random
iterators��

Container<Item>

Iterator Shortcut

Bidirectional_
iterator<Item>

Operations of
Bidirectional
iterators

Insert, remove, modify and retrieve
operations that use shortcuts

Container Abstraction 1

Specific operations for
Container Abstraction 1

Container Abstraction n

Implementation 1 of
Container Abstraction 1

Implementation of the
Container Abstraction 1

Implementation k of
Container Abstraction 1

Implementation of the
Container Abstraction 1

Specific operations for
Container Abstraction n…

…

Fig� �� Hierarchy of a common design for CLCL



��

� The Shortcut Design Pattern

We present next the Shortcut design pattern mentioned in the previous sections
using the format presented in �GHJ
����

Intent

De�ne an object that encapsulates the concept of location or position of an
object in a container� Provide an abstract� e�cient and reliable way to access to
the objects in a container without exposing its underlying implementation�

Also Known As

Location or position

Motivation

This pattern allows bridging the gap 
presented in previous sections of this pa�
per� between design and implementation in the domain of CLC	libraries� As
a consequence� it solves the problems which damage reusability� adaptability
and extensibility of CLC	libraries that are due to this gap� Moreover� this pat�
tern provides fast access to the objects stored in a container in those contexts
where e�ciency is crucial� And �nally� it allows to maintain robust references
to objects stored in a container in other objects� which is a common practice in
programming with CLC	libraries� We say that a location or position is robust
if�

� It is bound to one and only one object in the container�
� It does not change while the object which it is bound to is inside the con�
tainer� even if the underlying representation requires rearrangements�

� It is possible to know if it is bound to an object in the container or not�

Applicability

Use the Shortcut pattern to ful�ll the following requirements altogether�

� To access to the objects stored in a container in an abstract and e�cient
way�

� To maintain robust references to objects stored in a container in other ob�
jects�

� To o�er an uniform interface to perform e�cient operations in a container�
� To increase the reusability� adaptability and extensibility of a CLC	library�
� To increase the internal level of reusability of the CLC	library itself� Re�
markably� to implement iterators only in a container base class and reuse
them in its children classes�



��

Structure

Container<Item>

Iterator Shortcut

Bidirectional_
iterator<Item>

BindToContainer,
First, Last,
Next, Previous,
CurrentItem,
IsDone

ItemOf
Defined

Shortcut Add (Item)
void Delete (Shortcut)
void Modify (Shortcut, Item)
unsigned long Nitems()

Container Abstraction 1

Specific operations for
Container Abstraction 1
implemented using the
Template pattern method

CurrentShortcut

Container Abstraction n

Implementation 1 of
Container Abstraction 1

Implementation of the
deferred operations of
Container Abstraction 1

Implementation k of
Container Abstraction 1

Implementation of the
deferred operations of
Container Abstraction 1

Specific operations for
Container Abstraction n
implemented using the
Template pattern method

…

…

Participants

� Shortcut

� de�nes the Shortcut interface for fast access to the objects stored in a
container�

� implements the Shortcut interface�
� keeps track of a persistent and safe location or position of an object
stored in a container�

� Container

� de�nes the interface of those container operations that involve shortcuts�
i�e� the add� delete� modify and retrieve operations�

� implements in an e�cient manner the add operation in a way that re�
turns a shortcut to the new object�

� de�nes the interface of an operation to add an object after 
in the iterator
order� the object bound to a Shortcut� and implement it� This is required
when iterations in orderings other than the implicit add	ordering are
required�



��

� implements in an e�cient manner the delete� modify and retrieve oper�
ations by means of its shortcut�

� Iterator
� de�nes the interface of bidirectional iterators including a new operation
namelyCurrentShortcut which returns the shortcut bound to the current
item�

� implements the interface using shortcuts�
� Container Abstraction

� de�nes the interface of a container abstraction�
� de�nes the objects 
i�e�� shortcuts� to be stored in every shortcut	based
implementation of a container abstraction�

� implements its interface using the Template Method pattern��
� de�nes as protected the interface of the deferred operations 
that we
call concrete interface� and implement a 
in some cases non	e�cient�
version of them using the container interface and shortcuts� This concrete
interface consists in a concrete operation for each of the operations in
the container abstraction interface�

� Implementation of a Container Abstraction
� implements the concrete interface of a container abstraction without
any assumption� Neither fast access operations nor iteration have to be
explicitly added� they are inherited from the abstract class� Therefore
there is any external restriction over the data structure to be used to
implement the Container Abstraction�

Collaborations

� Shortcut keeps track if an object is still in the container and if it is the case
the Shortcut allows accessing it�

� Container is responsible of notifying deletion of objects to the corresponding
shortcuts�

Consequences

The Shortcut pattern o�ers several bene�ts�

�� Abstraction� The objects stored in a container can be accessed without know�
ing how they are stored therein and� therefore� without knowing the un�
derlying representation of the container 
with arrays� pointers� linked� in
tree	form� �����

�� E�ciency� The access to the objects in a container by means of a shortcut is
done in constant time 
see Implementation section below�� making it possible
to reuse containers even in those contexts with high e�ciency constraints�
Moreover� the e�ciency of the iterator operations is O
�� in the worst case��

� This pattern de�nes just the skeleton of an algorithm in an operation deferring some
steps to subclasses of the class where the Template Method is used�

� We would like to remark that this low cost cannot be assured with implementation�
dependent iterators� if these implementation is not well�suited for this purpose 	e�g��
a hashing implementation��



�


�� Security� The access to the objects by means of shortcuts is safe because
meaningless access to them is avoided� In particular� the following situations
are avoided� dangling shortcuts 
references without bound objects� or out	
of	date ones 
shortcuts bound to objects which are not the original ones��

�� Improving existing CLC�libraries� As the addition of shortcuts to a concrete
container does not modify its functional behaviour� preservation of behaviour
supports both the reengineering process of existing CLC	libraries and the
use of the new version in running applications without any modi�cation

and the old library can be thus discarded�� The preservation of behaviour is
assured by incorporating the concept of shortcut into the formal speci�cation
of the container 
see �FM��� for more details��

�� External reusability� The children classes of Container inherit its de�nition
of shortcuts and the corresponding operations� Therefore� the objects stored
in the Container specialisations can be accessed by using either the oper�
ations that characterise every particular type of container or the shortcut
operations�

�� Internal reusability� The CLC	library is developed following step	by	step
design and implementation� design and implementation for reuse� and design
and implementation with reuse�

�� Avoid commit iterations to a speci�c container implementation� Iterations
are made over the Container base class and as a consequence we can iterate
over a container without commiting to an speci�c implementation��

Implementation

The essential point consists in maintaining an e�cient mapping from shortcuts
to items in the Container base class� There are two basic di�erent possibilities
to implement this mapping depending on the underlying memory management
scheme�

�� Using dynamic storage� In this case the Shortcut pattern is implemented
with an smart pointer� �Ede��� to a tuple which contains the object and
a deleted �ag� On the other hand the Container base class is implemented
with a double linked list of these tuples��

�� Using an array� In this case the Shortcut pattern is implemented as an
index to the array position� Then the Container base class is implemented
as an array of tuples which contain the object� a deleted �ag� a reference
counter 
being every reference a shortcut� and two indexes to the next and
previous tuples in the iterator ordering� As released shortcuts 
the deleted
array positions� must be available somehow to allow further reassignment we
must link them too� Additional index members corresponding to the position
of the �rst object� the position of the last object and the �rst free position
have to be maintained in the Container base class�

� Polymorphic iterators solve this problem too� but they introduce other drawbacks�
� Being its main characteristic that the deletion of allocated objects does not take
place until there are no shortcuts bound to them�

� In order to have e�cient bidirectional iterators�



��

A particular issue has to be taken into consideration� In order to get all the ben�
e�ts that the Shortcut pattern o�ers we need some extra space� More precisely�
being N the number of objects in the container� the total amount of extra space
is�

� �N � space
pointer� 
 N � space
shortcut�


we are assuming a pointer	based implementation of shortcuts� which is the
worst case concerning space e�ciency�� The �rst operand comes from the double
linked list and the second one from the shortcut stored in the implementation of
a concrete abstraction� However� this waste of space will usually generate a later
saving� when shortcuts substitute identi�ers 
generally strings� which require
more space than shortcuts� in references from other objects� The relationship
between these two factors may be formally established�

Let N be the total number of objects in the container and R the total number
of references� Since generally�

space
identi�er� � space
pointer�

then �k � � s�t� space
identi�er� � k � space
pointer��

and since space
shortcut� � � � space
pointer� 
because we use two pointers for
assuring that a particular shortcut is bound to a particular container� space is
really saved when the relationship

R � space
identi�er� � � �N � space
pointer�

holds� which is satis�ed when the following relationship holds�

R � k � � �N �

Sample code

We show here a C

 implementation of three participants in the pattern� Short�
cut� Iterator and Container� together with the implementation of the Container
Abstraction Map and a Concrete Array based Implementation of it� We present
an example of use� too� The implementation of the pattern uses dynamic mem�
ory� The example of use illustrates how iterators are not bound to a concrete
implementation�

�� Implementation of the Shortcut class� This class is in the interface of Con�
tainer� This is the reason for which it is not presented as a template class�
The Node and pointer classes are not included�

class Shortcut

�

protected�

pointer
Node� ptr�

Container� ptrContainer�

friend class Container
Item��



�


friend class Iterator�

public�

Shortcut�	 �ptrContainer�NULL	 ��

Shortcut�const Shortcut� shortcut	 �ptr�shortcut�ptr	�

ptrContainer�shortcut�ptrContainer	 ��

const Item� ItemOf�	

�

if ��Defined�		 throw UndefinedShortcut�

return ptr�value�	�item�

�

bool Defined�	

�

if �ptr�IsNull�		 return false�

if�ptr�value�	�deleted�flag	

�

ptr�SetNull�	� return false�

�

return true�

�

void operator 
�const Shortcut �shortcut	

�

ptr 
 shortcut�ptr�

ptrContainer 
 shortcut�ptrContainer�

�

�Shortcut�	��

protected�

Shortcut �const Item� item	

�

ptr 
 pointer
Node��Node�		�

ptr�value�	�item 
 item�

�

��

The implementation of this class is straightforward� It stores the Container
along with a smart pointer ptr to the container node where is the item
bound to the shortcut� The Defined operation returns true if there is a non
deleted object bound to the shortcut and false otherwise� Notice� that the
operation ItemOf and Defined are not declared as const because if the
object associated to the shortcut is marked as deleted we set the pointer
as NULL to dismiss the number of references� We can observe that all the
operations are O
�� in the worst case�

�� Implementation of the Iterator class� This class is in the interface of Con�
tainer too� The iterator class is a subclass of a bidirectional iterator abstract
class�

class Iterator�public bidirectional�iterator
Item�

�

protected�

pointer
Node� ptr�

Container
Item�� ptrContainer�



��

public�

Iterator�	 �ptrContainer�NULL	 ��

Iterator�const Iterator� iterator	 �ptr�iterator�ptr	�

ptrContainer�iterator�ptrContainer	 ��

�Iterator�	��

virtual void BindToContainer�Container
Item�� C	

�

ptr 
 C���container�value�	�next�

ptrContainer 
 C�

�

virtual void First�	

�

if�ptrContainer �
 NULL	

ptr 
 ptrContainer���container�value�	�next�

�

virtual void Last�	

�

if�ptrContainer �
 NULL	

ptr 
 ptrContainer���container�value�	�previous�

�

virtual void Next�	

�

if��IsDone�		 ptr 
 ptr�value�	�next�

�

virtual void Previous�	

�

if��IsDone�		 ptr 
 ptr�value�	�previous�

�

virtual const Item� CurrentItem�	

�

if�IsDone�		

throw IteratorIsDone�

return ptr�value�	�item�

�

virtual bool IsDone�	

�

if�ptrContainer 

 NULL	 return true�

if�ptr�IsNull�		 return true�

if�ptr�value�	�deleted�flag	

�

ptr�SetNull�	� return true�

�

if�ptr 

 ptrContainer���container	 return true�

return false�

�

virtual void operator 
�const Iterator �iterator	

�

ptr 
 iterator�ptr�

ptrContainer 
 iterator�ptrContainer�

�



��

virtual Shortcut CurrentShortcut�	

�

Shortcut sh�

if�IsDone�		 throw IteratorIsDone�

sh�ptr 
 ptr�

sh�ptrContainer 
 ptrContainer�

return sh�

�

��

This class o�ers a new operation CurrentShortcut that returs the Shortcut
associated to the CurrentItem� As in the case of the class shortcut� all the
operations have constant cost in the worst case�

�� Implementation of the class Container� The classes Shortcut and Iterator
shown before are included in the public Container interface�

template
class Item�

class Container�

�� Definition of the class Node�

�� ���

class Iterator� �� It�s necessary because the class

�� Shortcut declares it as friend

public�

�� Definition of the class Shortcut

�� ���

�� Definition of the class Iterator

�� ���

protected�

friend class Iterator�

friend class Shortcut�

pointer
Node� �container�

unsigned long count�

public�

Container�	�

�Container�	�

virtual Shortcut Add�const Item �item	�

virtual void Delete�Shortcut �shortcut	�

virtual void Modify�Shortcut� shortcut� const Item� item	�

virtual unsigned long NItems�	�

��

Constructor and destructor operations�

template 
class Item�

Container
Item���Container�	 ��container�Node�		� count��	

�

�container�value�	�next 
 �container�

�container�value�	�previous 
 �container�

�

template 
class Item�



��

Container
Item����Container�	

�

pointer
Node� p�a�

a 
 �container�value�	�next�

while�a �
�container	

�

p 
 a�value�	�next�

a�value�	�deleted�flag 
 true�

a�value�	�next�SetNull�	�

a�value�	�previous�SetNull�	�

a 
 p�

�

�container�value�	�deleted�flag 
 true�

�container�value�	�next�SetNull�	�

�container�value�	�previous�SetNull�	�

�

Add adds the item in the container and return the shortcut that allows fast
access to it�

template 
class Item�

Container
Item���Shortcut Container
Item���Add�const Item �item	

�

Shortcut sh�item	�

�container�value�	�previous�value�	�next 
 sh�ptr�

sh�ptr�value�	�previous 
 �container�value�	�previous�

sh�ptr�value�	�next 
 �container�

�container�value�	�previous 
 sh�ptr�

count���

sh�ptrContainer 
 this�

return sh�

�

Delete implements the deletion in a double link list� It marks as deleted the
item associated to the shortcut� if any� set as NULL the shortcut members ptr
and ptrContainer� and the Node members pointers next and previous�

template 
class Item�

void Container
Item���Delete�Shortcut �shortcut	

�

if �shortcut�Defined�		

�

if�shortcut�ptrContainer �
 this	

throw ShortcutIsNotBoundToThisContainer�

shortcut�ptr�value�	�deleted�flag 
 true�

shortcut�ptr�value�	�previous�value�	�next 


shortcut�ptr�value�	�next�

shortcut�ptr�value�	�next�value�	�previous 


shortcut�ptr�value�	�previous�

shortcut�ptr�value�	�next�SetNull�	�

shortcut�ptr�value�	�previous�SetNull�	�



��

shortcut�ptr�SetNull�	�

count���

�

�

Modify changes the item associated to the shortcut� if any� by the new one�

template 
class Item�

void Container
Item���Modify�Shortcut� shortcut� const Item� item	

�

if�shortcut�Defined�		

�

if�shortcut�ptrContainer �
 this	

throw ShortcutIsNotBoundToThisContainer�

shortcut�ptr�value�	�item 
 item�

�

�

NItems is straightforward� It returns the value of the internal counter�

template 
class Item�

unsigned long Container
Item���NItems�	

�return count��

�� Map Container Abstraction� We show here the interface and implemention
of this class� This class de�nes the type of the objects to be stored in its
concrete subclasses 
in this case pairs of Shortcuts� and de�nes a new com�
pare class which allows to compare keys with shortcuts 
comparing the key
with the key associated to the shortcut�� The implementation of this class
uses the Template Method to implement its public interface� Therefore� its
children classes have to only implement the operations deferred in the imple�
mentation of this public interface 
concrete operations� which are de�ned in
the protected part� On the other hand� this class provides an implementation
of this protected interface that makes it a non	abstract class�

template 
class Key� class Value� class Less
less
Key� �

class Map�public Container
 KeyValue
Key�Value� �

�

protected�

class ConLess

�

protected�

Less �less�

public�

ConLess�Less l	��less�l	��

bool operator�	�const Key� key� Shortcut� sh	

�

return �less�key�sh�ItemOf�	�key	�

�

bool operator�	�Shortcut� sh� const Key� key	

�

return �less�sh�ItemOf�	�key�key	�



��

�

��

typedef Key ConKey�

typedef Shortcut ConValue�

typedef KeyValue
Shortcut�ConValue� ConItem�

Less less�

ConLess conless�

Iterator cache�

public�

typedef KeyValue
Key�Value� Item�

Map�	�conless�less	 �cache�BindToContainer�this	��

�Map�	��

Shortcut Add�const Item� item	�

void Delete�Shortcut� shortcut	�

void Modify�Shortcut� shortcut� const Item� item	�

Value Delete�const Key� key	�

const Value� Get�const Key� key	�

bool Exist�const Key� key	�

protected�

virtual void ConAdd�const ConItem� item	��

virtual ConValue ConDelete�const ConKey� key	�

virtual ConValue ConGet�const ConKey� key	�

virtual bool ConExist�const ConKey� key	�

��

Add operation of the class Map� This operation deferres the operations ConExist�
ConGet and ConAdd to the concrete implementation and adds or modi�es the
item in the container base object�

template 
class Key� class Value� class Less
less
Key� �

Container
 KeyValue
Key�Value� ���Shortcut Map
Key�Value�Less�

��Add�const Item� item	

�

Shortcut sh�

if�ConExist�item�key		

�

sh 
 ConGet�item�key	�

Container
Item���Modify�sh�item	�

�

else

�

sh 
 Container
Item���Add�item	�

ConItem itemcon�sh�sh	�

ConAdd�itemcon	�

�

return sh�

�

Delete 
by shortcut� operation of class Map� This operation deletes the item
associated to the shortcut using its key�

template 
class Key� class Value� class Less
less
Key� �



��

void Map
Key�Value�Less���Delete�Shortcut� shortcut	

�

if�shortcut�Defined�		

Delete�shortcut�ItemOf�	�key	�

�

Modify operation of class Map� In this Container Abstraction this operation
have to be overrided to allow only modi�ng the value and not the key�

template 
class Key� class Value� class Less
less
Key� �

void Map
Key�Value�Less�

��Modify�Shortcut� shortcut� const Item� item	

�

if�shortcut�Defined�		

if��conless�shortcut�item�key	 �� �conless�item�key�shortcut		

Container
Item���Modify�shortcut�item	�

�

Delete 
by key� operation of class Map� This operation deletes the pair of
shortcuts stored in the concrete implementation of the container abstraction
using the ConDelete operation and deletes the item from the Container base
object using the shortcut�

template 
class Key� class Value� class Less
less
Key� �

Value Map
Key�Value�Less���Delete�const Key� key	

�

Shortcut sh�

Value v�

sh 
 ConDelete�key	�

v 
 sh�ItemOf�	�value�

Container
Item���Delete�sh	�

return v�

�

Get operation of class Map� This operation uses the ConGet to get the short�
cut of the key and returns the value of the item associated to this shortcut�

template 
class Key� class Value� class Less
less
Key� �

const Value� Map
Key�Value�Less���Get�const Key� key	

�

Shortcut sh�

sh 
 ConGet�key	�

return sh�ItemOf�	�value�

�

Exist operation of class Map�

template 
class Key� class Value� class Less
less
Key� �

bool Map
Key�Value�Less���Exist�const Key� key	

�

return ConExist�key	�

�



��

Following we give a version of the concrete operations of class Map using the
the container interface and shortcuts�
ConDelete concrete delete operation of class Map�

template 
class Key� class Value� class Less
less
Key� �

Map
Key�Value�Less���ConValue Map
Key�Value�Less�

��ConDelete�const ConKey� key	

�

ConValue v�

if�ConExist�key		

�

v 
 cache�CurrentShortcut�	�

cache�Previous�	�

return v�

�

throw NotExistingKey�

return ConValue�	�

�

ConGet concrete get operation of class Map�

template 
class Key� class Value� class Less
less
Key� �

Map
Key�Value�Less���ConValue Map
Key�Value�Less�

��ConGet�const ConKey� key	

�

if�ConExist�key		

return cache�CurrentShortcut�	�

throw NotExistingKey�

return ConValue�	�

�

ConExist concrete exist operation of class Map�

template 
class Key� class Value� class Less
less
Key� �

bool Map
Key�Value�Less���ConExist�const ConKey� key	

�

Iterator it�

if��cache�IsDone�		

if��less�key�cache�CurrentItem�	�key	 ��

�less�cache�CurrentItem�	�key�key		

return true�

it�First�this	�

while��it�IsDone�		

�

if��less�it�CurrentItem�	�key�key	 ��

�less�key�it�CurrentItem�	�key		

�

cache 
 it� return true�

�

it�Next�	�

�

return false�

�



�


�� An Implementation of the Container Abstraction� Map� We show here an im�
plementation namely MapArray� that makes rearrangements of its elements
when there occurs a deletion� Note that� in spite of this� we can use short�
cuts because they are persistent� This class only must implement the con�
crete deferred operations ConAdd� ConDelete� ConExist and ConGet which
work with the concrete types� ConItem� ConValue and ConKey and with the
concrete comparison operation ConLess� o�ered by its parent class Map�

template 
class Key� class Value� class Less
less
Key� �

class MapArray�public Map
Key�Value�Less�

�

protected�

ConItem mapArray�������

int pos�

int cache�

public�

MapArray�	 �pos��	�cache���	 ��

protected�

virtual void ConAdd�const ConItem �it	�

virtual ConValue ConDelete�const ConKey� key	�

virtual bool ConExist�const ConKey� key	�

virtual ConValue ConGet�const ConKey� key	�

��

template 
class Key� class Value� class Less
less
Key� �

void MapArray
Key�Value�Less���ConAdd�const ConItem �it	

�

mapArray�pos� 
 it�

cache 
 pos�

pos���

�

template 
class Key� class Value� class Less
less
Key� �

MapArray
Key�Value�Less���ConValue MapArray
Key�Value�Less�

��ConDelete�const ConKey� key	

�

ConValue v�

int i�

if�ConExist�key		

�

v 
 mapArray�cache��value�

pos���

for�i
cache� i 
 pos� i��	

mapArray�i� 
 mapArray�i����

cache���

return v�

�

throw NotExistingKey�

return v�

�



��

template 
class Key� class Value� class Less
less
Key� �

bool MapArray
Key�Value�Less���ConExist�const ConKey� key	

�

int i�

if�cache �
 ��	

if��conless�key�mapArray�cache��key	 ��

�conless�mapArray�cache��key�key		

return true�

for�i
��i
pos�i��	

if��conless�key�mapArray�i��key	 ��

�conless�mapArray�i��key�key		

�

cache 
 i�

return true�

�

return false�

�

template 
class Key� class Value� class Less
less
Key� �

MapArray
Key�Value�Less���ConValue MapArray
Key�Value�Less�

��ConGet�const ConKey� key	

�

if�ConExist�key		

return mapArray�cache��value�

throw NotExistingKey�

return ConValue�	�

�

�� An example of using iterators without binding them to a concrete container�
We can de�ne a generic function to print the collection of objects of a con�
tainer that works for any kind of container�

template 
class Item�

void print�Container
Item� �C	

�

Container
Item���Iterator it�

cout 

�Printing the � 

 C��NItems�	 

� items in container� ��

it�BindToContainer�C	�

it�First�	�

while��it�IsDone�		

�

cout 

 it�CurrentItem�	 

 � ��

it�Next�	�

�

cout 

 ��Last�n��

�

The next piece of code show its use applied to a MapArray implementation
of the Map container�



�


MapArray
int�int� C�

�� code to insert elements

print��C	�

Known Uses

The Shortcut pattern is widely used to keep track of references to objects stored
in a container� in other objects� A typical example is to maintain in an object
that is in a container a reference to other object in the same container 
e�g�� a
parent	children relationship in a list of people��

Another commonuse is to combine diferent data structures in an e�cient manner
to obtain new e�cient ones� An example is the case of a symbol table in the
compilation �eld� Although a symbol table can be described and understood in
terms of classical containers 
stacks� list and map�� normally they are not really
reused� instead� the data structure is represented directly in terms of arrays and
pointers� We can �nd an example in �WM����

Related Patterns

Iterator� Shortcuts allow avoid make di�erents implementations of Iterators for
each of the di�erent Containers Abstractions�

Template Method� The implementation of the Container Abstractions use this
pattern�

� A Case Study� Reengineering the BC Library

In this section we summarize the main results of applying our approach to the
Ada �� version of the Booch Components presented in Sec� �� The technical
details can be found in �MF����

The unique di�erence with the pattern presented in this paper is that in order
to preserve the interface of the original version of the library� this interface has
been enlarged by a new operation namely Shortcut To The Last Item Added�
This operation returns the shortcut associated to the last item added to a con�
tainer� Then we have to use the next piece of code�

Containers�Add�C�I��

sh �� Containers�Shortcut	To	The	Last	Item	Added�C��

instead of

sh �� Containers�Add�C�I��

in order to obtain the corresponding shortcut 
because the original Add operation
is not a function��

The main results of applying the Shortcut approach to the Booch Compo�
nents library are summarized next�



��

� The Booch library have been improved from many points of view�

� Adaptability� The original library is not extensible enough� Its hierarchy
restricts to a single set of possible implementations for some of the dif�
ferent structure abstractions� Therefore� its adaptability is damaged� It
is not the case of the new version�

� Applicability� Not only the posibility of extending the new version but
also the e�ciency that shortcuts provide makes the library to be reusable
in more di�erent contexts�

� Functionality� In addition to the new functionalities of shortcuts� the
new iterators are bidirectional while the old ones were not�

� E�ciency� In the old version� not only the lack of multiple implementa�
tions for components damages e�ciency� but also some of the iterator
operations have lineal cost in the worst case with respect to a certain
parameter 
although their amortised cost is constant�� Our version solve
these problems and o�ers the e�cient operations that use shortcuts�

� Robustness� The original library is not robust enough with respect to
changes in some of their components� The new version avoids this prob�
lem�

� This improvement has been made in a very comfortable way� just a few
changes are needed� The core data structures and algorithms are the same
without any modi�cation at all�

� The reengineering process does not interfere with the previous behaviour of
the library 
both for functionality and for e�ciency� and� in consequence�
existing software that use this library does not need to be modi�ed� only
recompilation is needed�

� But existing software could be modi�ed in a methodical way 
basically�
changing the way of accessing to the structure� to take pro�t of the new
version of the library� New software� of course� will be built in general using
the new layout of the structure� making intensive use of shortcuts�

� The new library has been tested using the test packages provided by the
original Booch library without any modi�cation�

In our opinion� this reengineering case study has been a good example of how
our approach can be used not only to design and implement new CLC	libraries
but also to improve existing ones�

� Conclusions

In this paper� we have presented the Shortcut design pattern as a mean for bridg�
ing the gap between design and implementation in the container	like component
libraries domain� The design pattern enhances the quality of the internal struc�
ture of the library while supporting also e�cient access to the objects stored in
the containers�

We think that the most rellevant contributions of our work are the following�



��

� Separation of concerns� Independent de�nition of the functionality o�ered by
the containers� and the operations for the e�cient access to objects� make
libraries well	structured and supports their better understanding�

� Usability� As a result of this separation of concerns while keeping the con�
tainers e�cient� libraries can be used in a large number of contexts�

� Structural quality� Applying our approach has some interesting bene�ts
which are rarely o�ered altogether in the existing libraries� access by position
is implementation	independent� there are no restrictions on the number and
characteristics of container implementations� libraries can be customised 
by
means of specializations of existing containers� and enlarged 
creating new
types of containers or implementations of them��

� Standarisation� The proposal has been introduced using a widely accepted
design tool� a design pattern� As a result� it can be easily understood and
integrated with other similar concepts� as the one of iterator�

� Compatibility� As shown in section �� applying the shortcut design pattern
to existing libraries should not be di�cult at all� The quality of the reengi�
neered library is improved from many points of views and the new version
is compatible with the old one� avoiding then modi�cation of running pro�
grams that use the library and making unnecessary the existence of the two
versions at the same time�

References

�Ada��� S� Tucker Taft and R�A� Du� 	Eds��� Ada �� Reference Manual� Lecture
Notes in Computer Science ���
� Springer�Verlag� �����

�Boo
�� G� Booch� Software Components with Ada� The Benjamin�Cummings Pub�
lishing Company� �nd edition� ��
��

�BV��� G� Booch and M� Vilot� The Design of the C�� Booch Components�
In Proceedings of Conference on Object Oriented�Programming� Systems�
Languages and Applications �OOPSLA	� volume �� of SIGPLAN Notices�
pages ����� ACM� �����

�BWW��� G� Booch� D�G� Weller and S� Wright� The Booch Library for Ada �� 	ver�
sion ������ Available at http���www�pogner�demon�co�uk�components�bc�

�Ede��� D�R� Edelson� Smart pointrs� They�re smart� but they�re not pointers� In
Proceedings of the 
��� USENIX C�� Conference� pages ����� USENIX
Association� �����

�FM��� X� Franch and J� Marco� Adding Alternative Access Paths to Abstract Data
Types� In Challenges of Information Technology Management in the �
st
Century �IRMA
����	� pages �
���
�� Idea Group Publishing� �����

�GHJ��
� E� Gamma� R� Helm� R� Johnson and J� Vlissides� Design Patterns� Ele�
ments of Reusable Object�Oriented Software� Addison�Wesley� ���
�

�Mey��� B� Meyer� Object�Oriented Software Construction� Second Edition� Prentice
Hall� �����

�McI
�� M� McIlroy Mass Produced Software Engineering In Software Engineering
Concepts and Techniques� NATO Conference on System Sciences� ��
��

�MF��� J� Marco and X� Franch� Reengineering the Booch Component Library In
Reliable Software Technologies Ada�Europe ����� volume �
�� of Lecture
Notes in Computer Science� pages �
����� Springer�Verlag� �����



��

�MN��� K� Mehlhorn and S� N�aher� The LEDA Platform of Combinatorial and
Geometric Computing� Cambridge University Press� �����

�MS�
� D�R� Musser and A� Saini� STL Tutorial and Reference Guide� Addison�
Wesley� ���
�

�Str��� B� Stroustrup� The C�� Programming Language� Addison�Wesley� �nd

edition� �����
�WM��� R� Wilhem and D� Maurer� Compiler Design� Addison�Wesley� �����


