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Abstract: A goal in engineering systems is to try to control them. Control theory offers mathematical tools for
steering engineered systems towards a desired state. Stabilizability and controllability can be studied under dif-
ferent points of view, in particular, we focus on measure of controllability in the sense of the minimum set of
controls that need for to steer the multiagent system toward any desired state. In this paper, we study the consensus
stabilizability and exact consensus controllability of multi-agent linear systems, in which all agents have a same
linear dynamic mode that can be in any order.
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1 Introduction
In the last years, the study of dynamic control multi-
agents systems have attracted considerable interest,
because they arise in a great number of engineering
situations as for example in distributed control and
coordination of networks consisting of multiple au-
tonomous agents. There are many publications as for
example ([5], [9], [13], [16], [18]). It is due to the
multi-agents appear in different fields as for exam-
ple in consensus problem of communication networks
([13]), or formation control of mobile robots ([3]).

The consensus problem has been studied under
different points of view, for example Jinhuan Wang,
Daizhan Cheng and Xiaoming Hu in [16], analyze the
case of multiagent systems in which all agents have an
identical stable linear dynamics system, M.I. Garcı́a-
Planas in [5], generalize this result to the case where
the dynamic of the agents are controllable.

For the stability analysis problem, the first ques-
tion is whether the multagent system is stable when
there is no restriction on the topology. We will call
this problem as consensus stability analysis.

Controllability is a fundamental topic in dynamic
systems and it is studied under different approaches
(see [1], [2], [4], [6], [8], for example). Given a lin-
ear system ẋ = Ax, there are many possible control
matrices B making the system ẋ = Ax + Bu con-
trollable. The goal is to find the set of all possible
matrices B, having the minimum number of columns
corresponding to the minimum number nD(A) of in-

dependent controllers required to control the whole
network. This minimum number is called exact con-
trollability, that in a more formal manner is defined as
follows.

Definition 1 Let A be a matrix. The exact controlla-
bility nD(A) is the minimum of the rank of all possible
matrices B making the system ẋ = Ax+Bu control-
lable.

nD(A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n |

(A,B) controllable}.
Z.Z. Yuan, C. Zhao, W.X.Wang, Z.R. Di,

Y.C. Lai, in [19] and [20] introduce the concept of
exact controllability for complex networks and give
a characterization of systems verifying this condition,
but they do not describe the possible matrices B mak-
ing the system controllable. Garcı́a-Planas in [10]
characterize all possible matrices B for linear dynam-
ical systems.

In this paper, we investigate the consensus stabi-
lizability and exact controllability of a class of multi-
agent systems consisting of k agents with dynamics

ẋ1 = Ax1 +Bu1

...
ẋk = Axk +Buk

where A ∈Mn(IC), and B an unknown matrix having
n rows and an indeterminate number 1 ≤ ` ≤ n of
columns.
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The paper is structured as follows: in Section 2,
we give the prelimnaries. In section 3, the consensus
problem is introduced. In section 4, the concept of
consensus stabilizable is introduced and a criterium
that lets we know whether a multagent system is not
consensus stabilizable. In section 5, exact Consensus
Controllability is analyzed. Finally a list of references
is presented.

2 Preliminaries

For this study, we need to introduce some basic con-
cepts on Graph theory and matritial algebra.

We consider a graph G = (V, E) of order k with
the set of vertices V = {1, . . . , k} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we consider a matrixG =
(gij) called (unweighted) adjacency matrix defined as
follows gii = 0, gij = 1 if (i, j) ∈ E , and gij = 0
otherwise.

In a more general case we can consider that a
weighted adjacency matrix is G = (gij) with gii = 0,
gij > 0 if (i, j) ∈ E , and gij = 0 otherwise).

The Laplacian matrix of the graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni
0 otherwise

Remark 2 i) If the graph is undirected then the
matrixL is symmetric, then there exist an orthog-
onal matrix P such that PLP t = D.

ii) If the graph is undirected then 0 is an eigen-
value of L and 1k = (1, . . . , 1)t is the associated
eigenvector.

iii) If the graph is undirected and connected the
eigenvalue 0 is simple.

For more details about graph theory see (D. West,
2007).

With respcet Kronecker product, remember that
A = (aij) ∈ Mn×m(IC) and B = (bij) ∈ Mp×q(IC)
the Kronecker product is defined as follows.

Definition 3 Let A = (aij) ∈ Mn×m(IC) and B ∈
Mp×q(IC) be two matrices, the Kronecker product of
A and B, write A⊗B, is the matrix

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
an1B an2B . . . anmB

 ∈Mnp×mq(IC)

Among the properties that verifies the product of Kro-
necker we will make use of the following

1) (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

2) A⊗ (B + C) = (A⊗B) + (A⊗ C)

3) (A⊗B)⊗ C = A⊗ (B ⊗ C)

4) If A ∈ Gl(n; IC) and B ∈ Gl(p; IC)), then A ⊗
B ∈ Gl(np; IC)) and (A⊗B)−1 = A−1 ⊗B−1

5) If the products AC and BD are possible, then
(A⊗B)(C ⊗D) = (AC)⊗ (BD)

See [12] for more information and properties.
Given a square matrix A ∈ Mn(IC), it can be re-

duced to a canonical reduced form (Jordan form):

J =

J(λ1) . . .
J(λr)

 , J(λi) =

J1(λi) . . .
Jni (λi)

 ,

Jj(λi) =


λi
1 λi

. . .
. . .

1 λi

 . (1)

See [7] for more information and properties.

3 Consensus

The consensus problem can be introduced as a collec-
tion of processes such that each process starts with an
initial value, where each one is supposed to output the
same value and there is a validity condition that relates
outputs to inputs. It is a canonical problem that ap-
pears in the coordination of multi-agent systems. The
objective is that Given initial values (scalar or vector)
of agents, establish conditions under which through
local interactions and computations, agents asymptot-
ically agree upon a common value, that is to say: to
reach a consensus.

The dynamic of each agent defining the system
considered, is given by the following manner.
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ẋ1 = Ax1 +Bu1

...
ẋk = Axk +Buk

(2)

xi ∈ IRn, ui ∈ IR`, 1 ≤ i ≤ k. Where matrices
A ∈Mn(IR) and B ∈Mn×`(IR), 1 ≤ ` ≤ n.

The communication topology among agents is de-
fined by means the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V} ⊂ V × V .

an in a more specific form, we have the following def-
inition.

Definition 4 Consider the multi-agent linear system
2. We say that the consensus is achieved using local
information if there exists a state feedback

ui = Ki

∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k

such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.

zi =
∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k.

Ẋ = (Ik ⊗A)X + (Ik ⊗B)U
Z = (L ⊗ I)X
U = (Ik ⊗K)Z

Then, and taking into account that

(Ik ⊗B)(Ik ⊗K)(L ⊗ In)X =
(L ⊗BK)X = (L ⊗B)(Ik ⊗K)X

The system is equivalent to

Ẋ = (Ik ⊗A)X + (L ⊗B)Ū
Ū = (Ik ⊗K)X (3)

4 Consensus Stabilizability

The system 2 is controllable if and only if the system

Ẋ = (Ik ⊗A)X + (L ⊗B)Ū (4)

is controllable.
The controllability character can be analyzed us-

ing the Hautus criteria:

Proposition 5 The system is controllable if and only
if

rank
(
sInk − (Ik ⊗A) L ⊗B

)
= kn

The system Ẋ = (Ik ⊗A)X , is stable (or asymp-
totically stable) if all real parts of the eigenvalues of
(Ik ⊗A) are negative.

The system 4 is stabilizable if and only if there
exist a feedback F such that the system

Ẋ = ((Ik ⊗A) + (L ⊗B)F )X (5)

is stable
Using Hautus criteria:

Proposition 6 The system 5 is stable if and only if

rank
(
sInk − (Ik ⊗A) L ⊗B

)
= kn,

∀s ∈ IC+ = {s ∈ IC | Re (s) ≥ 0}, sfinite

Definition 7 The system is called consensus stabiliz-
able if and only if the system 4 is stabilizable under
feedback in the form

F = (Ik ⊗K)

Suppose now, that the Laplacian matrix L is di-
agonalizable with λ1, . . . , λk as eigenvalues then, we
have the following proposition.

Proposition 8 A necessary and sufficient condition
for existence ofK in such a way the system 4 be stable
is that the matrices A+ λiBK are Hurwitz.

Proof.
Let P ∈ Gl(n; IC) such that L = P−1DP , with

D = diag (λ1, . . . , λk).

(Ik ⊗A) + (L ⊗B)(Ik ⊗K) =
(Ik ⊗A) + (P−1DP ⊗B)(Ik ⊗K) =
(P−1 ⊗ In)(Ik ⊗A) + (D ⊗B)(Ik ⊗K))(P ⊗ In).

Then, the eigenvalues of

(Ik ⊗A) + (L ⊗B)(Ik ⊗K)

are the same than

(Ik ⊗A) + (D ⊗B)(Ik ⊗K))

and

(Ik ⊗A) + (D ⊗B)(Ik ⊗K)) =
diag (A+ λ1BK, . . . , A+ λkBK),

ut
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Proposition 9 Suppose that the system ẋi = Axi +
Bui, i = 1, . . . , k is controllable and the eigenval-
ues of the Laplacian matrix L being positive λj > 0.
Then, there exists the matrix K making the system
consensus stable.

Proof. It suffices to consider the following result. ut

Lemma 10 ([16]) Let (A,B) be a controllable pair
of matrices and we consider the set of k-linear systems

ẋi = Axi + λiBu
i, 1 ≤ i ≤ k

with λi > 0. Then, there exist a feedback K which
simultaneously assigns the eigenvalues of the systems
as negative as possible.

More concretely, for any M > 0, there exist ui =
Kxi for 1 ≤ i ≤ k such that

Reσ(A+ λiBK) < −M, 1 ≤ i ≤ k.

(σ(A+λiBK) denotes de spectrum ofA+λiBK
for each 1 ≤ i ≤ k).

Example We consider 3 identical agents with the fol-
lowing dynamics of each agent

ẋ1 = Ax1 +Bu1

ẋ2 = Ax2 +Bu2

ẋ3 = Ax3 +Bu3
(6)

The communication topology is defined by the
undirected graph (V, E):
V = {1, 2, 3}
E = {(i, j) | i, j ∈ V} =

{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1)} ⊂ V × V
and the adjacency matrix:

G =

1 1 0
1 0 1
1 0 0


The neighbors of the parent nodes are N1 =

{1, 2}, N2 = {1, 3}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 0
−1 2 −1
−1 0 1


a) with A =

(
1 0
0 −1

)
and B =

(
1
0

)
.

Clearly, the system

Ẋ =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


X

is not stable.

rank


s− 1 0 0 0 0 0 2 −1 0
0 s+ 1 0 0 0 0 0 0 0
0 0 s− 1 0 0 0 −1 2 −1
0 0 0 s+ 1 0 0 0 0 0
0 0 0 0 s− 1 0 −1 0 1
0 0 0 0 0 s+ 1 0 0 0


6 for all s ∈ IC− {−1} then for all s ∈ IC+.

Then, the system is stabilizable.
The matrix (Ik ⊗ A) + (L ⊗ B)(Ik ⊗ K) with

K =
(
a b

)
is



1 + 2a 2b −a −b 0 0
0 −1 0 0 0 0
−a −b 1 + 2a 2b −a −b
0 0 0 −1 0 0
−a −b 0 0 1 + a b
0 0 0 0 0 −1


are and the eigenvalues are −1, −1, −1, a(3−

√
5)

2 + 1,
a(3+

√
5)

2 + 1, 2a+ 1.

It suffices to consider K =
(
a b

)
with a <

2.6178. So, the system is consensus stabilizable.

b) with A =

(
1 1
0 1

)
and B =

(
0
1

)
.

Clearly, the system

Ẋ =



1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1


X

is not stable.

rank


s− 1 −1 0 0 0 0 0 0 0
0 s− 1 0 0 0 0 2 −1 0
0 0 s− 1 −1 0 0 0 0 0
0 0 0 s− 1 0 0 −1 2 −1
0 0 0 0 s− 1 −1 0 0 0
0 0 0 0 0 s− 1 −1 0 1


6 for all s ∈ IC then for all s ∈ IC+.

Then, the system is stabilizable.
Taking F = (Ik⊗K) withK =

(
−10.1 −9.1

)
,

the matrix (Ik ⊗A) + (L ⊗B)F is


1.0000 1.0000 0 0 0 0
−6.2000 −5.2000 3.1000 3.1000 0 0

0 0 1.0000 1.0000 0 0
3.1000 3.1000 −6.2000 −5.2000 3.1000 3.1000

0 0 0 0 1.0000 1.0000
3.1000 3.1000 0 0 −3.1000 −3.1000


4
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and the eigenvalues are −21.0405, −17.2539,
−0.9654 + 0.3111i, −0.9654 − 0.3111i, −0.1490,
−0.1258, having all negative real part. Then the sys-
tem is consensus stabilizable.

5 Exact Consensus Controllability

We are interested in study the exact controllability of
the obtained system 3. In our particular setup

Definition 11 Let A be a matrix. The exact control-
lability nD(Ik ⊗ A) is the minimum of the rank of all
possible matricesB making the system 3 controllable.

nD(Ik ⊗A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n |

(Ik ⊗A,L ⊗B) controllable}.

The controllability condition depends directly on
the structure of the matrix L.

Proposition 12 Let J be the Jordan reduced of the
matrix L and P such that L = P−1JP . Then, the
system 3 is controllable if and only if

rank
(
sInk − (Ik ⊗A) J ⊗B

)
= kn

Proof. Suppose that there exist S such that P−1JP =
L and

rank
(
sIkn − (Ik ⊗A) L ⊗B

)
=

rank (P−1 ⊗ In) · (sIk ⊗ In)− (Ik ⊗A) J ⊗B)

·
(
P ⊗ In

P ⊗ In

)
=

rank
(
sIkn − (Ik ⊗A) J ⊗B

)
ut

Corollary 13 Suppose that the matrix L can be re-
duced to the Jordan form (1), with non-zero eigenval-
ues λ1, . . . , λr. Then, the system 3 is controllable if
and only if each agent is controllable.

Proof. Let λi 6= 0, i = 1, . . . r be the eigenvalues of
L.

rank
(
s(Ikij ⊗ In)− (Ikij ⊗A) Jj(λi)⊗B

)
=

rank


sIn −A λiB

sIn −A B λiB

. . .
. . .

. . .
sIn −A B λiB

=

rank


sIn −A B

sIn −A B

. . .
. . .

sIn −A B

 =

k · rank
(
sIn −A B

)

with k1 + . . .+ kr = k, ki1 + . . . kini
= ki.

ut

Corollary 14 A necessary condition for controllabil-
ity of the system 3 is that the matrix L has full rank.

Example We consider 3 identical agents with the fol-
lowing dynamics of each agent

ẋ1 = Ax1 +Bu1

ẋ2 = Ax2 +Bu2

ẋ3 = Ax3 +Bu3
(7)

with A =

(
0 1
0 0

)
and B ∈M2×`(IC), 1 ≤ 2.

The communication topology is defined by the
undirected graph (V, E):
V = {1, 2, 3}
E = {(i, j) | i, j ∈ V} = {(1, 2), (1, 3)} ⊂ V×V

and the adjacency matrix:

G =

 0 1 1
1 0 0
1 0 0


The neighbors of the parent nodes are N1 =

{2, 3}, N2 = {1}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


with eigenvalues λ1 = 0, λ2 = 1, λ3 = 3.

rank
(
sI6 − (I ⊗A) L ⊗B

)
=

rank


s −1 0 0 0 0 2a 2c −a −c −a −c
0 s 0 0 0 0 2b 2d −b −d −b −d
0 0 s −1 0 0 −a −c a c 0 0
0 0 0 s 0 0 −b −d b d 0 0
0 0 0 0 s −1 −a −c 0 0 a c
0 0 0 0 0 s −b −d 0 0 b d


=

{
6 for all s 6= 0
5 for s = 0

In fact, for all matrix B ∈M2×`(IC) for all ` ≥ 0

rank
(
sI6 − (I ⊗A) L ⊗B

)
={

6 for all s 6= 0
5 for s = 0

If the matrix L has full rank, then the number of
columns for exact controllability of matrix Ik⊗A de-
pends on the multiplicity of the eigenvalues of the ma-
trix A and we have the following result.
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Proposition 15 Let L be the Laplacian matrix of a
graph having full rank. Then, the exact controllability
nD(Ik⊗A) for the system Ẋ = (Ik⊗A)X+(L⊗B)Ū
coincides with the exact controllability nD(A) for the
system ẋ = Ax+Bu.

Example We consider 3 identical agents with the fol-
lowing dynamics of each agent

ẋ1 = Ax1 +Bu1

ẋ2 = Ax2 +Bu2

ẋ3 = Ax3 +Bu3
(8)

with A =

(
0 1
0 0

)
and B ∈M2×`(IC), 1 ≤ 2.

The communication topology is defined by the
undirected graph (V, E):
V = {1, 2, 3}
E = {(i, j) | i, j ∈ V} =

{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1)} ⊂ V × V
and the adjacency matrix:

G =

1 1 0
1 0 1
1 0 0


The neighbors of the parent nodes are N1 =

{1, 2}, N2 = {1, 3}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 0
−1 2 −1
−1 0 1


with eigenvalues λ1 = 0.3820, λ2 = 2, λ3 = 2.6180.

rank



s −1 0 0 0 0 2a −a 0
0 s 0 0 0 0 2b −b 0
0 0 s −1 0 0 −a 2a −a
0 0 0 s 0 0 −b 2b −b
0 0 0 0 s −1 −a 0 a
0 0 0 0 0 s −b 0 b


6 for all s and b 6= 0.

Obviously the system ẋ = Ax + Bu with B =(
a
b

)
and b 6= 0 is controllable.

6 Conclusions

In this paper, the consensus stabilizability and ex-
act consensus controllability for multi-agent systems
where all agents have an identical linear dynamic
mode, using linear algebra techniques, are analyzed.

The future work is focussed on description of pos-
sible controls making the system consensus control-
lable.
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