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Abstract. In the present work large eddy simulations of the flow past a rough cylinder are
performed at a Reynolds number of Re = 4.2 × 105 and an equivalent sand-grain surface
roughness height ks = 0.02, in order to determine the effects of the surface roughness on the
boundary layer transition and as a consequence on the wake topology. For comparison, results
are compared to that of the smooth cylinder. It is shown that surface roughness triggers an
earlier transition in the boundary layer, thus leading to an earlier separation caused by the
increased drag and momentum deficit. As a consequence, the drag coefficient increases from
about CD ≈ 0.3 to CD ≈ 1.122. The wake topology at this Reynolds number also changes
and resembles more the subcritical wake observed for the smooth cylinder at lower Reynolds
numbers.

1. Introduction
The flow over smooth cylinders has been extensively studied; it is associated with various
instabilities that involve the boundary layer, the separated shear layers and the wake. A
comprehensive description of the flow phenomena at different Reynolds numbers (Re) can be
found in [1]. It is well known that when Reynolds numbers is about 2×105 major changes occur
in the flow configuration as the drag coefficient rapidly decreases (see Fig. 1). This phenomenon
is known as the ’drag crisis’. In addition to the steep drop in the drag, the appearance of a
small laminar bubble separation (LSB) on the cylinder surface is also a characteristic of the
flow pattern at critical and super-critical Reynolds numbers. The combination of a decrease
in the pressure minimum and an increase in the back pressure results in an adverse pressure
gradient leading to the detachment of the boundary layer; transition to turbulence occurs just
after separation. As a result, the shear-stresses, which cause the transport of the momentum in
the separated boundary layer, cause the flow reattachment, and a LSB is formed. At the onset
of the critical transition, the LSB on the top side of the cylinder is responsible for asymmetries
in the forces acting on the cylinder and in the near wake flow. With the increase in the Reynolds
number, as the flow enters the super-critical regime, a second LSB forms on the opposite side
stabilizing the forces and the wake [2]. Considerable experimental work has been carried out
measuring the forces acting on the cylinder at these Reynolds numbers, some examples are
[3, 4, 5, 6, 7, 8].



Figure 1. Critical and super-critical drag coefficient as found in the literature. Results obtained
by the authors are represented by red dots and can be found in [2] and [9].

The effect of roughness, especially in turbulent boundary layers, has been focus of many
research studies. A review of the literature can be found in [10, 11, 12]. Most of the investigations
in this area, however, have been performed on fully developed turbulent pipes and channels, and
in zero-pressure-gradient turbulent boundary layers. Roughness effects on boundary layers on
curved surfaces and in particular on bluff bodies is quite limited (e.g., [?, ?]). Roughness is
known to give rise to an earlier transition in a turbulent boundary layer [13, 14, 15]. For the
surfaces considered by [14], for instance, roughness appears to increase the friction drag, without
any beneficial effect on the separation characteristics: the onset of the critical transition (Figure
1) is shifted to lower Reynolds numbers [16], but the minimum drag coefficient is larger than that
on a smooth cylinder, due to the transition to turbulence occurring at lower Reynolds numbers,
and to an earlier separation due to the increased drag (and momentum deficit) caused by the
roughness [13, 14, 17, 18].

In the present work an issue to be addressed is how the changes in the boundary layer affect
the transition to turbulence and, as a consequence, the flow conditions behind the cylinder. To
do this, the flow past a cylinder at a Reynolds number of Re = 4.2 × 105 with a rough surface
with an equivalent sand-grain surface roughness heigth of ks = 0.02 is being studied by means
of large-eddy simulations (LES). For the smooth cylinder at this Reynolds number the flow is in
the critical regime, i.e. the boundary layer has transitioned to turbulence just after separation
causing the reattachment of the flow and a further turbulent separation in the rear side of the
cylinder, with a consequent decrease in the drag up to CD ≈ 0.3 [2, 9]. Thus, changes in the flow
parameters, boundary layer and flow topology are analysed by means of the direct comparison
with results for the smooth cylinder.

2. Mathematical and numerical models
The spatially filtered incompressible Navier-Stokes equations [19] can be written as

∂ui
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where xi are the spatial coordinates (x, y and z) in the stream-wise, cross-stream and span-wise
directions. ui and p stand for the filtered velocity and pressure. ν is the kinematic viscosity and
ρ the density of the fluid. Fi is a body force used to impose the no-slip boundary condition on
the rough cylinder surface; it is non-zero in cells with roughness elements [20]. In equation (2)
Tij is the subgrid scale (SGS) stress tensor, which must be modeled. Its deviatoric part is given
by

Tij −
1

3
Tkkδij = −2νsgsSij (3)

where Sij = 1
2 (gij + gji) is the large-scale rate-of-strain tensor, and gij = ∂ui/∂xj . δij is the

Kronecker delta. The formulation is closed by an appropriate expression for the subgrid-scale
viscosity, νsgs. In this project the wall-adapting local-eddy viscosity model (WALE) [21], which
yielded good results in the previous simulations of the drag crisis (see [2, 9]), will be used.

The governing equations are discretized on a collocated unstructured grid arrangement using
second-order spectrum-consistent schemes. Such schemes are conservative, i.e., they preserve
the symmetry properties of the continuous differential operators, and ensure both stability and
conservation of the kinetic-energy even at high Reynolds numbers and with coarse grids [22, 23].
For the temporal discretization of the momentum equation a self-adaptive two-step linear explicit
scheme on a fractional-step method is used for the convective and diffusive terms [24], while for
the pressure gradient an implicit first-order scheme is implemented. For more details about the
numerical method, the user is referred to [25, 22, 23].

The Poisson system derived from the incompressibility constraint is solved using a memory-
aware auto-tuned Poisson solver for problems with one Fourier diagonalizable direction. This
diagonalization decomposes the original 3D system into a set of independent 2D subsystems. The
algorithm focuses on optimizing the memory allocations and transactions by taking into account
redundancies on such 2D subsystems. Moreover, it takes advantage of the grid uniformity in
the periodic direction for its vectorization. This approach automatically optimizes the choice of
the preconditioner used for the solution of each frequency subsystem and dynamically balances
its parallel distribution, constituting a highly efficient and robust HPC Poisson solver. This
strategy allows to involve larger number of parallel processes in a single task, with less RAM
memory per parallel process [26]. The parallelization strategy will be described in more detail
in the next Section.

In the present computations the boundary conditions consist of uniform velocity (u, v, w) =
(1, 0, 0) at the inflow, symmetry conditions at the top and bottom boundaries of the domain,
while at the outlet a pressure-based condition is used. In the span-wise direction periodic
boundary conditions are imposed. An immersed boundary method (IBM) is used to recover a
smooth no-slip boundary condition on the rough cylinder surface. It is based on the volume-
of-fluid approach, i.e. the volume fraction occupied by the fluid of each cell is evaluated in a
pre-processing stage and then used in the fractional-step framework to correct the predicted
velocity and enforce the no-slip condition on the rough surface [27, 20, 28].

3. Definition of the case
The flow past a rough circular cylinder at critical Reynolds numbers of Re = 4.2 × 105 with
an equivalent sand-grain surface roughness height of ks/D = 0.02 is considered. Here, the
Reynolds number Re = Uref D/ν is defined in terms of the cylinder diameter D and the free-
stream velocity Uref . The main interest in this case is that for this specific surface roughness
the flow has already entered in the transcritical regime and thus, the boundary layer should



(a) (b)

Figure 2. (a) Visualization of the sand-grain surface coloured by ks/r; (b) Detail of the mesh
in near the wall.

be turbulent before separation [14] in contrast with the smooth cylinder which the flow should
correspond with the critical regime [2].

The case is solved in a computational domain of dimensions x ≡ [−10D : 20D]; y ≡ [−10D :
10D] in the stream-wise and cross-stream directions and two different span-wise lengths of 0.96
and 1.92, with a circular cylinder of diameter D at (0,0,0). The domain dimensions have been
selected based on the experience of the research group with cylinder flows, and is expected to
be large enough to contain the largest scales of the flow.

The boundary conditions at the inflow consist of a uniform velocity (u,v,w)=(1,0,0). Constant
velocity (u,v,w)=(1,0,0) is also prescribed at the other external boundaries except for the
downstream one (outlet) where a pressure-based condition is used. At the cylinder surface, a
virtual sandgrain model [27, 20] will be used to impose the roughness. The roughness is modeled
by closely spaced, randomly rotated ellipsoids with semi-axes ks/D, 1.4ks/D and 2ks/D. A
detail of the resulting sand-grain roughness surface is depicted in figure 2(a). Previous work
by [20] has determined the maximum grid spacing required to represent this surface accurately,
and the computational mesh will be designed to satisfy these requirements. A prism layer will
be constructed around the cylinder surface, extending up to the edge of the roughness sublayer
∼ 3ks/D. Beyond that distance from the wall an unstructured grid will be used. Each roughness
element will be resolved by nθ×nz cells (see Table 1) of the superficial mesh with 30−50 points
below the roughness crest in the radial direction.

The use of an unstructured mesh in the outer region will allow to cluster more control volumes
close to the cylinder and in the near wake, whereas away from the region of interest, the mesh
requirements can progressively be relaxed (see figure 2(b)). An approximate estimate of the
mesh required is given in Table 1. Note that the main constraint is the grid spacing imposed
by the roughness element size, rather than by the turbulence structure; thus the grids for cases
1-3 will be nearly the same, whereas a finer grid will be necessary for the two higher Reynolds
numbers.

For this particular case, two different grids have been solved; the grid characteristics are given
in table 1.

The cases are simulated for a sufficiently long period of time to guarantee converged statistics.
An initial transient of roughly 60 times units (TU = tUref/D=60) is a priori estimated. After
the initial transient, statistics are collected for about TU = 120 (about 25 shedding cycles),
which are sufficient to ensure converged statistics.



Table 1. Meshes studied. NCVtotal is the total number of control volumes; NCVplane is the
total number of control volumes in the plane; Nplanes is the total number of planes in the span-
wise direction; Nθ, Nz are the total number of sandgrain elements in the radial and span-wise
directions; nθ, nz are the average mesh resolution for each roughness element; Lz is the span-
wise size of the domain; n3ksy is the number of grid points in the wall normal direction within a
3ks/D distance.

case NCVtotal
×10−6

NCVplane Nplanes Nθ ×Nz nθ × nz Lz n3ksy

M0 41.77 217594 192 78.5× 24 8× 8 0.96 30
M1 219.38 285658 768 78.5× 48 16× 16 1.92 50

Table 2. Flow parameters. Comparison with literature available numerical and experimental
results. CD drag coefficient, CD,rms fluctuating drag, CL,rms fluctuating lift, St non-dimensional
vortex shedding frequency. †LES for a smooth cylinder [2, 9], ∗Experimental results for
roughened cylinders with ks = 4.5× 10−3 − 3× 10−2 [13, 14, 7, 29]

Re CD CD,rms CL,rms St
4.2× 105 (M0) 1.141 0.094 0.523 0.211
4.2× 105 (M1) 1.122 0.080 0.445 0.204

5.3× 105 (smooth)† 0.296 0.011 0.071 0.368
(exp)∗ 0.9-1.3 - - 0.21-0.24

(a) (b)

Figure 3. Instantaneous spanwise vortical structures. ωz = ±15. (a) Re = 4.2 × 105; (b)
Re = 5.3× 105 (smooth cylinder)

4. Results
4.1. Time-average aerodynamic coefficients
4.2. Overview of the instantaneous flow
4.3. Flow parameters and wake topology
A direct comparison of the wake statistics between the rough cylinder and the smooth cylinder is
plotted in figures 6 and 7. In the figure, the data of the rough cylinder at Re = 4.2× 105, which
is supossed to be in the transcritical regime [14] is compared to those of the smooth cylinder
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Figure 4. Instantaneous variation of the flif and drag coefficients (a) Re = 4.2 × 105; (b)
Re = 5.3× 105 (smooth cylinder)

.

Figure 5. Energy spectrum of the cross-streamwise velocity fluctuations of a numerical probe
located in the wake at x/D = 2; y/D = 0.5

.

at a comparable Reynolds numbers of Re = 5.3 × 105, which is in the critical regime [2] and
the smooth cylinder in the subcritical regime at Re = 3900 [30]. As depending on the Reynolds
numbers, the length of the recirculation region behind the cylinder changes (the distance from
the cylinder center to the streamwise location in the wake centreline where the streamwise
velocity is zero), to make comparable the flow statistics in the near wake they are plotted at
streamwise locations normalized by the length of the recirculation zone. In figures 6 and 7 the
statistics are plotted at x/Lr = 0.5 and x/Lr = 1. The length of the recirculation region is of
Lr/D = 1.395 at Re = 4.3 × 105, Lr/D = 1.225 at Re = 5.3 × 105 [9] and Lr/D = 1.86 at
Re = 3900 [30].



(a) (b)

(c) (d)

(e) (f)

Figure 6. First order statistics in the wake of the cylinder. (a,c,e) Streamwise velocity at
X/Lr = 0.5, X/Lr = 1 and X/Lr = 2; (b,d,f) Cross-stream wise velocity at X/Lr = 0.5,
X/Lr = 1 and X/Lr = 2

4.4. Concluding remarks
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