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2ABSTRACT

3This paper describes the capabilities of a novel technique to investigate crack formation and

4propagation in drying soils. The technique is a relatively simple, non-destructive indirect

5technique using a ground-penetrating-radar (GPR) system to detect cracks that form and

6propagate inside a soil specimen during desiccation. Although GPR devices have been used

7for multiple applications, their use in soils for the detection of small desiccation cracks has

8not been demonstrated yet. The experiment and the methodology used to test the accuracy

9of a small compact commercial GPR device for crack identification are described. The main

10objective was to identify what type of signals and what crack width and separation between

11them can be detected using the GPR device. The results indicate that cracks of 1 or 2 mm

12wide can be detected depending on its position and shape, whereas sub-millimeter cracks

13are undetectable with the currently existing devices in the market. Regardless of this

14limitation, the GPR method can be useful to find time-related bounds of when the cracks

15appear, to point at their location and sometimes at the separation between two of them.

16Detection of cracks with origin at the bottom or within the specimen was accomplished with

17this system. Distances of 5 cm or more between cracks can be detected and measured, as

18well, with accuracy.
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20 Introduction

21 Soils made of clay or silt tend to shrink and crack when sub-
22 jected to desiccation. The drying process is very complex in soils
23 and includes physical, chemical, hydraulic, and mechanical phe-
24 nomena. The crack patterns are unique and its development
25 depends on many factors. From the experimental point of view,
26 several authors have studied this process since the early twenti-
27 eth century (Haines 1923; Longwell 1928; Simpson 1936; Jahn
28 1950; Knechtel 1952; Skempton and Northey 1952; Lachen-
29 bruch 1961; White 1961; Willden and Mabey 1961) and many
30 significant contributions have been made in the last half century
31 (Corte and Higashi 1960; Lau 1987; Morris et al. 1992; Kodikara
32 et al. 2000, 2004; Chertkov 2002; Ávila 2004; Vogel et al. 2005;
33 Nahlawi and Kodikara 2006; Rodrı́guez et al. 2007; Hu et al.
34 2008; Lakshmikantha 2009; Lakshmikantha et al. 2009, 2012,
35 2013b; Péron et al. 2009; Tang et al. 2011). However, until the
36 development of unsaturated soil mechanics the problem has not
37 been analyzed considering the parameters that govern the
38 behavior of soil in the unsaturated state, primarily suction.
39 Tensile strength (suction dependent) and fracture toughness are
40 shown as the most relevant parameters (Ávila 2004; Lakshmi-
41 kantha et al. 2012), but a definite model explaining that process
42 is yet to be formulated.
43 In laboratory tests, many cracks appear on the top
44 boundary of soil specimens. However, there are others that are
45 not visible, and several experiments have shown that cracks
46 may start at any point within the specimen (Lakshmikantha
47 et al. 2009, 2013a, 2016; Levatti 2015). To detect the cracks that
48 start at the bottom boundary or within the sample one would
49 need sophisticated techniques such as X-ray, magnetic reso-
50 nance, or electrical resistivity tomography (Samouëlian et al.
51 2003; Otani and Obara 2004; Mukunoki et al. 2010; Hassan and
52 Toll 2013), usually very expensive and involving very compli-
53 cated setups. However, detection of those non-visible cracks is
54 important because cracking because of drying in soils is a very
55 complex three-dimensional process and the study cannot limit
56 itself to the outer visible cracks.
57 This paper presents a relatively simple, non-destructive,
58 indirect technique using a ground-penetrating radar (GPR)
59 device to detect cracks that form and propagate within the
60 specimen during desiccation (Prat et al. 2013; Cordero et al.
61 2014; Levatti 2015). Whereas continuous monitoring of surface
62 cracking allows following the evolution of the external cracking
63 pattern with time, the GPR technique may be helpful to detect
64 the cracks within the soil, giving a more complete picture of the
65 phenomenon with greater accuracy.
66 The main objective of this work is to identify what type of
67 signals, and what crack width and separation can be detected
68 using a small commercial GPR device. The ability to detect
69 cracks which initiate at the bottom or inside the soil mass and
70 appear later on the top of the specimen needed also to be

71demonstrated. The results indicate that cracks of one or two
72millimeters wide can be detected depending on its position and
73shape. Separations of 5 cm or more are easily detected and can
74be measured with accuracy. On the other hand, sub-millimeter
75cracks are undetectable with the currently existing devices in
76the market. The proposed method can also be useful to estimate
77when and where the cracks initiate with sufficient accuracy.

78BASIC PRINCIPLES OF A GROUND-PENETRATING

79RADAR SYSTEM

80The GPR is a non-destructive technique that uses electromag-
81netic pulses to detect reflecting surfaces inside the soil allowing
82imaging of buried objects, stratigraphy, and other soil features
83at shallow depths, providing continuous, real-time profiles, of
84the subsurface. The equipment consists of a computerized con-
85trol system connected to antennas that are moved slowly along
86a predefined path on the ground surface to produce a continu-
87ous subsurface profile. One antenna emits the electromagnetic
88pulses and a second one records the reflected signals from the
89objects, discontinuities, or other features inside the soil. The
90reflected wave originates from changes in the electromagnetic
91properties of the soil that may be caused by variations in water
92content, density changes because of the presence of stratigraphic
93surfaces, and discontinuities or voids existing in the path of the
94pulse. Therefore, the success of the technique relies, to a great
95extent, on a sufficient dielectric contrast at the crack location to
96produce a clear reflected signal. The penetration depth of the
97pulses, and data resolution, depend on the wavelength and the
98soil’s dielectric constant. These parameters are mainly con-
99trolled by the soil’s moisture content. The depth and resolution
100are inversely proportional magnitudes; increasing the antenna’s
101frequency, a better resolution is obtained but the depth is
102smaller.
103The theoretical background of the method is the theory of
104electromagnetic fields, described by Maxwell’s equations (1),
105and the constitutive equations (2):

rD ¼ qf ; rB ¼ 0; r� E ¼ � @B
@t
þM;

r�H ¼ � @D
@t
þ J

(1)

D ¼ eE; H ¼ B
l

; J ¼ rE (2)

106where:
107E¼ electric field,
108H¼magnetic field,
109D¼ electric displacement field,
110B¼magnetic induction,
111J ¼ free current density,
112M¼magnetization field, and
113qf ¼ free charge density.
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114 The parameters that appear in Eq 2 describe the electro-
115 magnetic properties of the medium and are e (dielectric permit-
116 tivity), l (magnetic permeability), and r (electric conductivity).
117 The principle of a GPR is based on the dielectric
118 permittivity,e in Eq 2, which represents the permittivity of an
119 electromagnetic pulse through the medium, compared to the
120 void permittivity. It is a constant that gives a measure of the
121 polarizing ability of a material in the presence of an electric
122 field. This parameter is defined as the ratio of the capacitance of
123 parallel plate electrodes containing dielectric material to the
124 capacitance in a vacuum. The value provides an indication of
125 the static response of the material when in the presence of an
126 external electric field, i.e., describes how an electric field affects
127 and is affected by the material. It is a non-dimensional parame-
128 ter that depends on the electric conductivity and the thickness
129 of the layer. For most of the components of the soil this
130 parameter has a value between 1 (for air) and 80 (for water).
131 The GPR produces results by detecting wave reflections

132produced while the wave crosses the boundary between two
133materials with different dielectric constant.
134The magnetic permeability, l in Eq 2 is associated with the
135magnetic induction of the magnetic field intensity. It measures
136the degree of magnetization that a material obtains in response
137to an applied magnetic field. The magnetic permeability of the
138soil’s constituents is close to 1 (provided they are not ferromag-
139netic materials), independent of the frequency of the magnetic
140field. Therefore, this magnitude usually has no great influence
141and is assumed to be constant.
142The electrical conductivity, r in Eq 2, provides a measure
143of the response of the free charges existing in the material
144when in the presence of an external electric field. It is a mate-
145rial property that expresses the proportionality between the
146electric field applied and the electric current because of the
147movement of the free charges, and provides a measure of
148the ability of a material to conduct an electric current, accord-
149ing to Ohm’s law in Eq 2.
150The majority of soils and rocks that form the Earth’s crust
151are composed of silicate minerals, which are electrical insulators
152(Morrison and Gasperikova 2015). Electrical currents in these
153materials can only be carried by ions within the fluids filling the
154pores between the minerals. In that case, the conductivity
155depends mainly on the water content and on the chemical com-
156position of the salts dissolved in the pore water. On the other
157hand, some materials such as metallic ore minerals or graphite
158are electrical conductors or semiconductors in which the elec-
159tric current is carried by electrons. Except in this latter case, for
160most rocks and soils where current is carried by ions in the
161pore fluid, the conductivity depends on the porosity, salt con-
162centration in the pore fluid, temperature, degree of saturation,
163pressure, and clay content. In general, the conductivity increases

TABLE 1 Electromagnetic parameters and wave propagation char-

acteristics in air and water.

Material er r mS=mð Þ lr v cm=nsð Þ C dB=mð Þ

Air 1 0 1.0003 30 0

Distilled water – 0.01 – – 0.002

Freshwater 80–81 0.1–10 1 3.3 0.1–0.18

Seawater 81–88 4000 – – 330–1000

Polar snow 1.4–3.0 – 1 19.4–25.2 –

Polar ice 3.00–3.15 0.02–0.003 – 16.8 0.01

Tempered ice 3.2 5.10�4–8.10�6 – 16.7 0.01

Pure ice 3.2 – – 16.7 0.01

Freshwater lake ice 4 – – 15 0.01

Sea ice 2.5–8.0 – – 7.8–15.7 –

Permafrost 1–8 1.0–0.1 1 10.6–30.0 –

TABLE 2 Electromagnetic properties of soil components: Dielectric

constant (k); electrical conductivity (r); propagation

velocity (v); and attenuation coefficient (a).

Material k r mS=mð Þ v m=nsð Þ a dB=mð Þ

Air 1 0 0.3 0

Distilled water 80 0.01 0.033 2000

Fresh water 80 0.5 0.033 0.1

Seawater 80 3000 0.01 103

Dry sand 3–5 0.01 0.15 0.01

Saturated sand 20–30 0.1–1.0 0.06 0.03–0.30

Siltstone 4–8 0.5–2.0 0.12 0.4–1.0

Shale 5–15 1–100 0.09 1–100

Silt 5–30 1–100 0.07 1–100

Clay 5–40 2–1000 0.06 1–300

Granite 4–8 0.01–1.00 0.13 0.01–1.00

Dry salt 5–6 0.01–1.00 0.13 0.01–1.00

Ice 3–4 0.01 0.16 0.01

FIG. 1 The GSSI StructureScan Mini device.
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164 with water content, concentration of salts, porosity, and clay
165 content.
166 Because electric currents (electromagnetic waves in general)
167 propagate through the pore water in soils, it is important to dis-
168 cuss the behavior of such electromagnetic waves in the water in
169 which they propagate at very low speed and with high attenua-
170 tion. Water has a high effective dielectric permittivity, and the
171 large contrast with the dielectric permittivity of the other soil
172 components significantly influences the average speed of propa-
173 gation of the electromagnetic waves. Studies have shown that
174 within normal frequencies in prospecting subsurface radar, the
175 relative dielectric permittivity and electric conductivity of the
176 medium increases with the degree of saturation (Knoll and
177 Knight 1994).
178 The presence of fine-grained material, such as clay in the
179 soils, plays an important role in increasing its electric conduc-
180 tivity and dielectric permittivity. Because of atomic substitution,
181 the clay particles are not electrically neuter, but have a net
182 negative charge, therefore attracting cations to its surface from
183 the surrounding fluid solution. The electrically charged particle
184 surface plus the surrounding zone of decreasing cation

185concentration (double layer) has a higher conductivity than the
186pore water, providing an additional path for electrical currents
187along the surface of the mineral particles which increases both
188conductivity and dielectric permittivity (Mitchell 1993; Brandes
1892005).
190The electromagnetic parameters of the soil are also strongly
191dependent on the porosity. For a dry soil, a higher percentage of
192pores reduces the value of both conductivity and dielectric per-
193mittivity. However, if the soil is wet the effect is not as clear,
194and if the soil is fully saturated then the effect is reversed.
195Soils are mixtures of different types of materials, each with
196its own electromagnetic properties. The overall electromagnetic
197properties of the soil depend on the properties of each constitu-
198ent and its percentage in the mixture. Several models in the
199literature (Pérez 2001) can be used to estimate the value of the
200electromagnetic properties of the soil as a function of its poros-
201ity, water content, and composition (mineral type and
202percentage). Using these models, it can be seen that for a single-
203component material and for a given porosity, the range of varia-
204tion of the electromagnetic properties depends greatly on the
205degree of saturation, and that the range increases with increas-
206ing porosity. All of this indicates that the porosity and the fluid
207contained in the pores greatly influences the fluctuations of the
208electromagnetic properties, in particular of the relative permit-
209tivity and the electrical conductivity of the material. The pore
210fluid, in particular, is the main component controlling the

TABLE 3 Technical specifications of the StructureScan Mini device.

Center Frequency 1600 MHz

Depth range <50 cm

Unit weight 1.6 kg

Dimensions 152� 178� 229 (mm)

FIG. 2 Block test: (a) mold with strips inserted; (b) after pouring slurry; (c)

surface cracks at 30 days; and (d) GPR profile shortly after the first

cracks were visible on the external surface.

FIG. 3 Specimen and PMMA plate with grid to guide the device.
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211 values of the overall electromagnetic properties of the material.
212 Because the ground is formed by three distinct phases (water,
213 gas, and solid) during the drying process, and the changes in
214 time of each phase modify the soil’s electromagnetic properties,
215 there is added difficulty to the interpretation of the results.
216 Table 1 shows the electromagnetic properties of air and
217 water under different states. Table 2 shows the electromagnetic
218 properties of some soil constituents. This table shows the high
219 variability of the dielectric constant and electrical conductivity,
220 which depends largely on the constituent characteristics.

221 EXPERIMENTAL PROGRAM

222 The soil used for the tests is a red clay that has been character-
223 ized and studied repeatedly in previous works (Barrera 2002;
224 Lakshmikantha et al. 2006; Lakshmikantha 2009) so its

225geological and mineralogical composition and its hydro-
226mechanical behavior are well known (Barrera 2002).
227To study cracking under drying conditions, it appears nec-
228essary to monitor the cracking events that occur within the soil
229mass, so that internal cracks can be detected before they appear
230on the surface and become visible. This problem is a purely
231three-dimensional process and it is very difficult to carry out
232tests that monitor those 3D cracks. For that, one could resort to
233techniques such as X-ray radiography, magnetic resonance
234imaging (MRI) or computed tomography (CT) scans. All these
235techniques involve very sophisticated equipment, which is very
236expensive and that requires tightly controlled installations and
237environments to avoid leakage of radiation and contamination
238to avoid posing a health hazard to equipment operators or
239visitors. This type of equipment is commonly found in health
240facilities and hospitals to where it would be complicated to take

FIG. 4

Evolution of the specimen surface during 36

days of desiccation.

J_ID: GTJ DOI: 10.1520/GTJ20160066 Date: 10-November-16 Stage: Page: 5 Total Pages: 25

ID: asme3b2server Time: 16:40 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASTM/GTJ#/Vol04002/160066/Comp/APPFile/AT-GTJ#160066

LEVATTI ET AL. ON 3D CRACKING IN DRYING SOILS 5



PROOF COPY [GTJ20160066]

241 specimens in a regular basis or for long periods of time. Buying
242 such equipment for the sole purpose of the tests object of this
243 paper would be, of course, out of the question because of the
244 cost.
245 The use of ground-penetrating radar proposed in this paper
246 has a much lower cost, therefore, making it possible to acquire
247 dedicated equipment for the tests. The technique has gained
248 acceptance in recent years for subsurface imaging in geotechni-
249 cal engineering and other civil engineering areas such as in
250 detecting reinforcement bars in concrete structures or non-
251 visible pipes in the ground or embedded in structures.

252The GPR system that has been used in this work consists of
253a compact device (GSSI StructureScan Mini, Fig. 1) that includes
254two antennas (emitting and receiving), data-logger, basic
255software for in situ post-processing and a control screen for
256setup and management. Three laser beams are located at the
257bottom of the device to allow following predetermined paths
258with sufficient precision (Fig. 1).
259Table 3 shows the main technical specification of the device.
260The objectives of the tests described in this paper were mainly
261two: to detect and characterize the 3D cracking pattern inside
262the soil mass, and to determine the system’s capabilities and

FIG. 5

Evolution of a sample profile at days 1, 8, 15,

22, and 29.

FIG. 6 GPR profile on path 1—day 21 of desiccation test. FIG. 7 GPR profile on path 1—day 22 of desiccation test.
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263 limitations regarding its ability to detect cracks, which develop
264 within the soil mass and that therefore are not visible. The first
265 objective can be achieved by a thorough post-processing of
266 the data collected by the device using suitable software with the
267 methodology developed by the authors (Prat et al. 2013). The
268 second objective requires comparing the results of the post-
269 processing with the external, visible cracks that will allow for
270 calibration of the device’s capabilities.
271 The experimental program consisted of three series of tests:
272 (a) some preliminary tests in which the purpose was to deter-
273 mine the minimum crack opening that the device can detect
274 and the influence of the orientation of the crack plane; (b) dry-
275 ing tests in which the specimen was dried at constant environ-
276 mental conditions with the purpose of detecting internal cracks
277 and checking the system capabilities and limitations; and (c)
278 cyclic tests in which the specimen was subjected to drying/
279 wetting cycles to investigate the effect of cycles in the crack
280 pattern and for which the GPR device was used at some points
281 during the test.

282 BLOCK SPECIMEN TESTS

283 The first type of tests was conducted on specimens made using
284 a rectangular planter pot, of the type commonly found in gar-
285 den stores. The specimen shape allowed the use of less amount
286 of soil for the required specimen depth. The purpose was to
287 determine the minimum crack opening that the GPR device can
288 detect. Several artificial cracks were induced in the specimen
289 using five strips of different thickness and material that were
290 inserted into the soil (Fig. 2a), three vertical (A, metal, 6mm; B,
291 metal, 4mm; and C, metal, 2mm) and two horizontal (D, metal,
292 2mm; and E, wood, 5mm). After the strips were inserted in the
293 mold the slurry was poured and left to dry in an open-air envi-
294 ronment (Fig. 2b). After 1 month of drying, some cracks had
295 appeared on the surface (Fig. 2c) and the consistency of the

296specimen was hard enough to perform the GPR scan. This was
297conducted, without removing the strips, in the direction parallel
298to the longest side of the specimen (from right to left in the
299figure).
300Fig. 2d shows the GPR profile obtained shortly after the sur-
301face cracks became visible and before the strips were removed.
302The figure has a rounded rectangular box on top showing two
303diffraction patterns shaped as hyperbolas that indicate the posi-
304tion of the two surface cracks. Below is a squared rectangular
305box showing the location of the vertical strips (A, B, C) with
306three consecutive hyperbolas located approximately at the same
307depth. In the same figure an ellipse indicates the position of
308strips D and E. It is not clear whether the corresponding hyper-
309bolas have been really detected by the GPR or they are actually
310an overlap effect of the tail of the hyperbolas corresponding to
311strips C, B, and A. The lower horizontal line delimits approxi-
312mately the depth of the specimen.
313The results of this test indicate that 1- to 2-mm-wide cracks
314can be detected depending on the position and shape and on
315the moisture content of the specimen. Higher moisture content
316and more superficial cracks result in easier detection and inter-
317pretation of the received signal. Cracks less than 5mm wide and
318at depths of 8 cm or more are difficult to distinguish from the
319signal’s background noise. Hairline or sub-millimeter cracks
320cannot be identified with the current GPR technology.

321DRYING TESTS

322Tests were carried out in the laboratory using the GPR on a dry-
323ing soil specimen contained within a cylindrical tray of 80 cm in
324diameter and 10 cm high. Clay, initially in a slurry state, was
325poured into the tray and left to dry in the laboratory-controlled
326environment (air relative humidity of approximately 60 % and
327temperature 24�C) during 36 days. The GPR device was used
328periodically to check for crack formation and propagation

FIG. 8 GPR profile on path 3—day 22 of desiccation test. FIG. 9 GPR profile on path 4—day 22 of desiccation test.
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FIG. 10 GPR profiles on day 20.

FIG. 11

(a) suspected cracks on day 20 from GPR

(D¼bottom to top, �¼ left to right), and

(c,d) visible cracks on days 22, 28, and 36,

respectively.AQ4
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329 within the soil mass, and to calibrate the soil’s electromagnetic
330 properties. The use of the device requires a smooth, even
331 surface on which it can slide. For that purpose, a 1-cm-thick
332 poly(methyl methacrylate), or PMMA, circular plate was placed
333 above the specimen.
334 A grid defining the line paths along which the device takes
335 readings was affixed on top of the plate (see Fig. 3). The grid
336 was shaped as a 30� 30 cm2 defining two sets of seven orthogo-
337 nal traverses with a separation of 5 cm. Therefore, the soil por-
338 tion of the specimen that was scanned by the GPR device was a
339 square prism of dimensions 30� 30� 10 cm3, located at the
340 center of the specimen. The nominal thickness of 10 cm, how-
341 ever, decreased during the drying process to 7 to 8 cm depend-
342 ing on the initial moisture content of the specimen. Fig. 3 shows
343 the initial stage of the soil inside the tray and the PMMA plate
344 with the grid.

345The GPR device allows for dielectric constant (k) values in
346the range of 4 to 12. The best results for the tests reported were
347obtained with a value of 12. The depth setting for scaling of the
348device is between 20 and 40 cm, the closest to the tests being
34920 cm. Because the depth of the specimen was 10 cm, the results
350show an additional portion of 10 cm corresponding to the
351bottom boundaries of the testing equipment.
352Fig. 4 shows the evolution of the specimen subjected to des-
353iccation during the 36 days that the test lasted. The figure
354shows that cracks developed sufficiently during the test to allow
355studying the capabilities of the device to detect cracks before
356they become visible.
357The GPR device comes with simple post-processing soft-
358ware (StructureScan Mini viewer) that allows managing 2D
359graphical soil profiles from the data recorded, i.e., the result of
360the emission and subsequent collection of electromagnetic

FIG. 12

GPR profiles on day 22 from the 3D analysis

using RADAN 6.6.

FIG. 13 Pseudo 3D obtained by RADAN 6.6. FIG. 14 Perpendicular profiles from RADAN 6.6 post-process.

J_ID: GTJ DOI: 10.1520/GTJ20160066 Date: 10-November-16 Stage: Page: 9 Total Pages: 25

ID: asme3b2server Time: 16:40 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASTM/GTJ#/Vol04002/160066/Comp/APPFile/AT-GTJ#160066

LEVATTI ET AL. ON 3D CRACKING IN DRYING SOILS 9



PROOF COPY [GTJ20160066]

361 waves reflections. Among other things, the program allows set-
362 ting different values of the dielectric constant to better adjust to
363 the medium and therefore match more accurately the actual
364 dimensions of the specimen. It is known that soils between the
365 dry and saturated states have a dielectric constant ranging from
366 20 to 30 (Alharti and Lange 1987; Bridge et al. 1996; Friedman
367 1997, 1998; Noborio 2001; Kim and Jeong 2004). Unfortunately,
368 because the device used was made for scanning concrete and
369 similar materials, it could only be set for dielectric constants
370 between 4 and 12, which distorted the dimensions of the speci-
371 men under study, enlarging its thickness during the initial post-
372 processing. This distortion is later adjusted with a more refined
373 post-processing.
374 The evolution of the specimen along path 1 is shown in
375 Fig. 5, with scans carried at days 1, 8, 15, 22, and 29 of the dry-
376 ing process. The sequence of images shows the expected gradual
377 shrinkage of the specimen because of drying. Also, the profiles
378 corresponding to days 22 and 29 contain a hyperbola that indi-
379 cates the existence of an internal crack.
380 The profile corresponding to the first day of the test shows
381 considerable heterogeneity. This was expected because speci-
382 mens are initially in a disordered state because of the energy
383 supplied during its fabrication and placement in the tray. Also,
384 at this initial time, there is greater signal attenuation because
385 the degree of saturation is at its maximum value. The handling
386 of the specimen during the preparation stage may also contrib-
387 ute to cause areas or points on the soil mass capable of produc-
388 ing cracks during drying. The profile analyzed shows that this
389 potential tends to disappear after the first few hours. After 24 h,

390a thin layer of free water forms at the surface following initial
391settlement and homogenization of the specimen, and after the
392second day the profiles are considerably more homogeneous.
393The profiles corresponding to days 8 and 15 are fairly homoge-
394neous suggesting that there are no internal cracks or significant
395heterogeneities in the area analyzed.
396An important issue for obtaining meaningful information
397from GPR scans is learning how to detect an internal crack.
398Fig. 6 shows the GPR profile along horizontal path 1 and the
399corresponding surface image obtained at day 21, where a visible
400surface crack intersecting path 1 can be associated to the hyper-
401bola on the upper right corner of the GPR profile. On the other
402hand, the smaller quasi-vertical crack reaching, but not cross-
403ing, path 1 is not detected because it lies outside the influence
404zone of the GPR electromagnetic waves.
405In contrast, Fig. 7 shows the profile along path 1 and surface
406image 1 day later (day 22). The smaller crack has now propa-
407gated toward the center of the specimen, fully crossing the GPR
408path and therefore being detected, showing a clear new hyper-
409bola on the upper left corner of the profile. Thus, it is clear that
410it is this diffraction pattern in the shape of a hyperbola that
411indicates the presence of a crack.
412Further, Fig. 8 shows the profile along path 3 and the
413surface image also at day 22 of the test. The intersection
414points of the two well-developed cracks with path 3 are closer
415than in path 1, resulting in two hyperbolas, which are also
416closer.
417By measuring the distance between the tips of these hyper-
418bolas the actual distance between the cracks can be known.
419Therefore, the analysis of the GPR profiles allows not only
420detecting the presence of cracks but also measuring the distance
421between them, with some limitations because of the precision of
422the device. This limitation is shown in Fig. 9, which shows the
423GPR profile along path 4 and surface image at day 22 of
424the test. Along this path, the cracks are separated 2.5 cm and the
425hyperbolas obtained with the GPR are nearly coincident in one
426large shape, as can be seen in the upper part of the profile,
427making the distinction between the two cracks impossible. The
428implication is that, with the current technology available, the
429precision does not allow discriminating between cracks that are
430closer than 5 cm. Another limitation is in the detection of very
431fine cracks. Cracks that are a few millimeters wide are easily
432detected but, in general, sub-millimeter cracks remain invisible
433to the GPR.
434The post-processing software can show the graphical results
435of the tests using a variety of color schemes, which can be useful
436for better interpretation of the scans. The choice of a particular
437color scheme is a personal decision of the operator, who must
438choose it according to his/her own abilities in identifying the
439main features of the profile from the visual data. This ability
440must be trained to identify the main items, including cracks,
441that can be detected from the graphic results.

FIG. 15 Intersections at which the pseudo-3D images are obtained.

J_ID: GTJ DOI: 10.1520/GTJ20160066 Date: 10-November-16 Stage: Page: 10 Total Pages: 25

ID: asme3b2server Time: 16:40 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASTM/GTJ#/Vol04002/160066/Comp/APPFile/AT-GTJ#160066

Geotechnical Testing Journal10



PROOF COPY [GTJ20160066]

FIG. 16

Pseudo-3D images at the intersections shown

in Fig. 15.
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442 The main objective of this technique is to detect the cracks
443 before they become visible. Therefore, it is necessary to check
444 the ability of the device to detect cracks that form at the bottom
445 or within the specimen before they appear on the surface. To
446 check for that, 14 profiles corresponding to day 20, before
447 cracks appeared on the surface of the specimen, were obtained
448 and analyzed. Of those, seven correspond to a horizontal
449 motion of the device (paths 1 to 7) and seven correspond to a
450 vertical motion (paths 8 to 14). Fig. 10 shows those profiles on
451 which marks have been made on suspected points where cracks
452 might be progressing within the specimen. Fig. 11a shows the
453 location of these suspected points in plain viewAQ3 on an image of
454 the specimen’s surface after 20 days of drying. The circles indi-
455 cate suspected points detected during the horizontal motion of
456 the device (paths 1 to 7), whereas the triangles indicate

457suspected points detected during the vertical motion (paths 8 to
45814). Only in three of the suspected points there is coincidence
459between the horizontal and vertical profiles and, interestingly, at
460two of those points a crack appears at the surface 2 days later,
461as seen in Fig. 11b, which shows the same surface on day 22 of
462the test, with three cracks having become visible. The suspected
463point located on paths 5/9 does not lead to a surface crack on
464that day; however, on day 28 (Fig. 11c), a crack does appear on
465the surface very close to this area, which then progresses to be
466of a significant size on day 36 as seen in Fig. 11d.
467A more detailed analysis of the results can be conducted
468with the dedicated software RADAN (GSSI 2009), with
469extended post-processing capabilities. As an example, Fig. 12

470shows the 14 profiles corresponding to day 22 of the test in a
471single view. The software allows the representation of two

FIG. 17

Final crack patterns at the end of the test.

FIG. 18

Instrumentation of the soil specimen for the

cyclic test: (a) tensiometers T1–T6, Decagon

sensors D1–D3; and (b) relative position of

tensiometers at the end of the test.
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TABLE 4 Specifications of temperature and relative humidity during the cyclic test.

Stage Duration (Days) Temperature (�C) Relative Humidity (%)

1. First drying 14 28 30

2. First wetting 5 24 80

3. Flooding 7 24 85

4. Second drying 12 24 30

5. Second wetting 17 22 75

FIG. 19

Sequence showing the first stage: first drying.
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472 vertical orthogonal profiles and simultaneously, after post-
473 processing, a horizontal slice at a chosen position to render a
474 pseudo-3D view (Fig. 13).
475 Fig. 14 shows two particular profiles corresponding to the
476 x- and y-directions, with a horizontal slice. This particular
477 construction can be used to analyze the cracking state at points
478 situated in the intersection of the two profiles, at different
479 depths. The quality and accuracy of the graphic results can be
480 optimized by conveniently modifying the power gain as well as
481 the input value of the dielectric constant.
482 As an example, focus is turned to the main crack that
483 develops during the test (from the upper left to the bottom right
484 corners). Fig. 15 shows the crack and the points of interest where
485 the pseudo-3D images will be generated. These images, at the
486 seven intersection points, are shown in Fig. 16. The sequence
487 shows that the crack path is detected easily from the pseudo-3D
488 images. Fig. 17 shows the final crack pattern at the end of the
489 test as seen from the top (airside, left) and the bottom (after dis-
490 mantling, right). The image of the bottom surface shows small
491 cracks that have not emerged to the upper surface and have
492 been invisible to the GPR because of their small width.

493 CYCLIC TEST

494 This test consisted of five stages: first drying, first wetting, flood-
495 ing, second drying, and second wetting, with a total duration of
496 55 days. It was carried out in an environmental chamber
497 (Lakshmikantha 2009) that allows for temperature and humid-
498 ity cycles (Levatti 2015). The specimen was a cylinder of 80 cm

499in diameter and 10 cm thick. It was fully instrumented (Fig. 18)
500with six tensiometers T5X (T1 to T6 in the figure) to record
501suction in the range 100 to �200 kPa, three sensors 5TE (D1 to
502D3 in the figure) to record soil temperature and volumetric
503water content, two Vaisala sensors (V1 and V2 in the figure) to
504record relative humidity and temperature of the soil, and three
505load cells to record weight changes because of changes in water
506content. Table 4 shows the specifications of the temperature and
507relative humidity that were imposed during each stage of the
508test.
509Images of the external surface were taken at regular inter-
510vals during the test. Fig. 19 (first drying), Fig. 20 (first wetting
511and flooding), Fig. 21 (second drying), and Fig. 22 (second wet-
512ting) show sequences of the evolution of the crack pattern on
513the surface of the specimen during the test. In addition to the
514instrument readings and the images of crack patterns, four GPR
515scans were made at 48, 167, 291, and 455 h during the first two
516stages of drying and wetting, to check for internal cracks before
517they were visible on the outer surface.
518Fig. 23 shows the evolution of the weight of the specimen
519(plus the container and instrumentation) with time during the
520five stages of the test. The spikes at days 3, 8, 13, and 20 corre-
521spond to the effect on the load cells of the GPR scans performed
522on those days, which are indicated in the figure.

523FIRST STAGE (FIRST DRYING, 14 DAYS)

524The analysis of the weight changes recorded by the load cells
525shows that during the first stage approximately 12 L of water

FIG. 20

Sequence showing the second and third

stages: first wetting and flooding.
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526 evaporated (Fig. 23). The same figure shows the times at which
527 the GPR scans were conducted, clearly marked by an increase
528 of weight detected by the load cells, and shows the temperature
529 changes in the environmental chamber.AQ5 During the first hours
530 of the test, the temperature fluctuated until it reached a steady
531 level of 28�C after about 2 days. From that time, the tempera-
532 ture inside the environmental chamber was kept at that level for
533 the remainder of the test. No data from the sensors seems to
534 point to the crack initiation or to their influence in the drying
535 process (Fig. 24).

536 SECOND STAGE (FIRSTWETTING, 5 DAYS)

537 During this stage, the relative humidity of the chamber’s
538 atmosphere was raised to 80 %, while keeping the temperature
539 constant at about 24�C. The reason for lowering the tempera-
540 ture from the previous level of 28�C was to check whether
541 changing the air temperature changed significantly the soil tem-
542 perature (Fig. 25).AQ6

543Fig. 26 shows an inflection point in the suction measure-
544ments from the tensiometers at the time when the chamber
545environment was changed. The slope, almost constant, is signif-
546icantly less than during the previous drying stage. This proves
547that the tensiometers are capable of detecting these changes and
548therefore allow detection of environmental changes while
549measuring the soil’s suction.
550The objective of this wetting stage was to investigate how
551changing the chamber’s air humidity affects suction. During the
552few days that this stage with high relative humidity lasted, no
553significant changes in the crack pattern were detected, regard-
554less of the fact that the suction increased. During this stage, the
555loss of water in the specimen was almost negligible, showing
556equilibrium of water content between the soil and the environ-
557ment; there seemed to be no interchange of water between the
558environment and the specimen. However, suction continued
559increasing, probably because of internal migration of water
560within the soil mass, or perhaps because of the slow response of
561the tensiometers.

FIG. 21

Sequence showing the fourth stage: second

drying.
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562 During the stage, the recorded soil temperature shows a
563 decrease that corresponds to the chamber’s air temperature
564 decrease (see Figs. 24 and 25), which indicates that the soil
565 reaches thermal equilibrium with the air in a relatively short
566 time of a few hours only.

567 THIRD STAGE (FLOODING, 7 DAYS)

568 The purpose of this stage was to simulate the impact of sudden
569 intense precipitation on a cracked soil. To this effect, 9 L of
570 water were added to the partially dry specimen. This was the
571 volume of water the cracks and container capacity permitted
572 and was 3 L short of the 12 L that were lost during the drying
573 stage. This difference can be explained because of the extremely
574 long time it would take to reintroduce the full 12 L of water into
575 the soil pores. Fig. 20 shows the flooded specimen at day 20.
576 During this stage, new cracks appeared, especially near the
577 borders of cracks already present. This can be explained by the
578 fact that, when flooding, the degree of saturation increases

579rapidly and the suction decreases accordingly, thus reducing the
580tensile strength and favoring the appearance of new cracks.
581The flooding conditions of humidity and temperature were
582maintained until no further changes of the crack pattern took
583place. The air relative humidity during this stage was kept at a
584constant 75 % (see Fig. 24).

585FOURTH STAGE (SECOND DRYING, 12 DAYS)

586The second drying stage was imposed with an air temperature
587of 24�C and relative humidity of 30 %. A comparison between
588the first and second drying stages shows that to reach a suction
589of 30 kPa 15 days were needed in the first stage, whereas only 10
590days were needed in the second stage (see Fig. 26) even with a
591chamber temperature that was 4�C lower. Also, the rate of suc-
592tion increase at the end of this second stage was constant and
593considerably higher.
594The first part of these drying stages, in which the suction
595remains constant near 0 kPa, is shorter in the first of the drying

FIG. 22

Sequence showing the fifth stage: second

wetting.
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596 stages (7 days) than in the second (9 days). However, it must be
597 noted that in the first drying stage, the drying temperature and
598 humidity were imposed from the beginning, whereas in the
599 second drying stage there was a transition period with higher
600 air relative humidity. Another essential difference comes from
601 the fact that during the first drying, the specimen was fully

602saturated from the beginning (all pores full of water), but in the
603second stage, not all pores were full of water. Also, the specimen
604at the start of the first drying stage did not have cracks, which is
605not the case for this second stage.
606An interesting fact is that because of flooding the specimen
607experiences considerable degradation, with new cracks

FIG. 23 Evolution of weight recorded with the load cells.

FIG. 24 Evolution of air temperature and RH in the environmental chamber.

J_ID: GTJ DOI: 10.1520/GTJ20160066 Date: 10-November-16 Stage: Page: 17 Total Pages: 25

ID: asme3b2server Time: 16:40 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASTM/GTJ#/Vol04002/160066/Comp/APPFile/AT-GTJ#160066

LEVATTI ET AL. ON 3D CRACKING IN DRYING SOILS 17



PROOF COPY [GTJ20160066]

608 developing close to the previous ones. This shows that cracking
609 is irreversible at least for short time periods.

610 FIFTH STAGE (SECONDWETTING, 17 DAYS)

611 Once the specimen reached a dry condition more intense than
612 in the first stage, the chamber relative humidity was raised again

613to 75 %, and the temperature was set to 22�C. These values
614were kept until the end of the 55 days. The readings of the tensi-
615ometers (Fig. 26) show how suction slowly decreases because
616of the new environmental conditions. Fig. 25 shows how the
617specimen reaches thermal equilibrium, with decreasing soil
618temperature that approaches the air temperature.

FIG. 25 Evolution of soil temperature and volumetric water content recorded with sensors 5TE (D2 and D3 in Fig. 18).

FIG. 26 Evolution of suction recorded with tensiometers T5X (T1–T6 in Fig. 18).

J_ID: GTJ DOI: 10.1520/GTJ20160066 Date: 10-November-16 Stage: Page: 18 Total Pages: 25

ID: asme3b2server Time: 16:40 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/ASTM/GTJ#/Vol04002/160066/Comp/APPFile/AT-GTJ#160066

Geotechnical Testing Journal18



PROOF COPY [GTJ20160066]

619 GPR SCANS (DAYS 3, 8, 13, AND 20)

620 The GPR technique described in previous sections has been
621 used to analyze the possible development of internal cracking
622 during this test. The device has been able to detect the presence
623 of the sensors at their respective position as well as other possi-
624 ble crack-initiating elements during the test.
625 Fig. 27 shows the grid used during the days 3, 8, 13, and 20
626 to obtain the readings. The first visible crack on the top was
627 produced on day 9 (Fig. 19); in consequence, the only informa-
628 tion about internal cracks before day 9 comes from the GPR
629 readings. The grid on days 13, 20, and at the final stage of the
630 cyclic test (Fig. 27) permits establishing the relation within crack
631 development and GPR profiles. Four cracks (crack 1, crack 2,
632 crack 3, and crack 4), which appeared in chronological order
633 during the drying stages, are identified to analyze the GPR read-
634 ings. Fig. 28 (paths 1 to 6) and Fig. 29 (paths 7 to 14) show the
635 GPR profiles obtained on days 3, 9, 13, and 20. Path 1 of day 3
636 shows, marked with a circle, what can be interpreted as a crack.
637 However, this signal disappears in later profiles on days 8, 13,
638 and 20. This was probably only a momentary discontinuity in

639the specimen’s mass or a momentary heterogeneous distribu-
640tion of water. Paths 2 and 3 show no cracks during the 4 days of
641auscultation. However, it is clear that the distribution of water
642is not totally homogeneous and the specimen’s vertical shrink-
643age is detected as in the drying test (see previous section).
644Path 4 shows clearly the central tensiometer T3 on the 4
645days and a signal that can be interpreted as a crack at the begin-
646ning of the path, from day 3 onward. This crack can be the ori-
647gin of crack 3 in Fig. 27 that is visible on the external surface of
648the specimen on day 16 (Fig. 20). Paths 5 and 6 show no cracks
649for each of the four GPR scans.
650Path 7 (Fig. 29) shows a crack that evolves from the middle
651height of the specimen (day 3) close to the end of the path,
652propagating toward the surface (on day 20) that seems to be the
653origin of crack 2 in Fig. 27. Path 8 on day 20 shows crack 1,
654which on that day is already visible on the external surface of
655the specimen. Path 9 shows an internal crack that was not visi-
656ble yet on the external surface. This crack evolved only partially
657from the bottom of the specimen and did not reach the external
658surface. Paths 10, 13, and 14 show no cracks for each of the four

FIG. 27

Subsurface imaging of the specimen with

GPR during the cyclic test.
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659 GPR scans but the profiles show heterogeneity probable pro-
660 duced by the three tensiometers T3, T4, and T6, which were
661 aligned with these paths. Path 11 shows the central tensiometer
662 T3 and path 12 shows tensiometers T4 and T3 in the four GPR
663 profiles, more clearly on day 3.
664 It is clear that the GPR is capable to detect the presence of
665 the sensors. However, the presence of the sensors interferes
666 with the main purpose of the GPR, which is to detect cracks.
667 Therefore, it is recommended, if possible, to avoid placing sen-
668 sors in the area where GPR scans will take place during testing.

669 Conclusions

670 The ground-penetrating radar system described in this paper is
671 a promising tool for non-destructive indirect detection of
672 crack formation and propagation within a drying soil mass by
673 allowing a more comprehensive monitoring of the internal
674 cracks. The interpretation of the results is complex and requires
675 acquired skill of the analyst, because the GPR use in soil crack-
676 ing has to be adapted from its original, non-geotechnical,

677purpose to the soil’s particular characteristics, in particular to
678the fact that its electromagnetic properties do not remain con-
679stant over time because of the changes of its constituents. The
680ability of the analyst in identifying the main features of the
681cracking process from visual observation of the profiles is fun-
682damental and requires considerable training involving not only
683visual ability, but also knowledge of the technical workings of
684the device and the software, so that adjustments can be made in
685all stages of the test: specimen design, definition of the scanner
686paths grid, and post-processing.
687Regardless of some limitations, the GPR system is sensitive
688to changes in water content that occurs in the soil during desic-
689cation. Cracks with crack width larger than 1 to 2mm are easily
690detected, whereas thinner cracks are not identified with the cur-
691rently available devices. The separation between cracks when
692the distance is more than about 5 cm can also be obtained from
693the GRP profiles. However, cracks that are closer than 5 cm cre-
694ate interferences in the profile, thus preventing the correct inter-
695pretation of the data. Given the continuous technical evolution
696of GRP devices, it is envisioned that with higher wave

FIG. 28 Evolution of GPR profiles on paths 1–6 from day 3 to day 20.
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697 frequencies the resolution will improve significantly, thus allow-
698 ing detection of thinner cracks and identification of the separa-
699 tion between them. For this to occur, of course, the industry
700 must develop these higher-frequency devices, as the need for
701 them increases and makes their development profitable.
702 A key advantage of the GPR technique is its low cost when
703 compared to other systems such as X-rays, CT, scans or MRIs.
704 The GPR device is much less expensive and fully portable. Its
705 ease of use and continuous evolution makes it a good choice to
706 work both in the field and in the laboratory and, when

707combined with currently available systems to study cracking in
708soils, can greatly improve the prediction and understanding of
709how shrinking of soils induce cracks, and how those cracks later
710propagate.
711The cyclic test presented shows that cycles of wetting and
712flooding in addition to drying have a strong influence on the
713variables that govern the cracking phenomenon. Flooding pro-
714duces additional cracks on the specimen, after drying and wet-
715ting, showing the irreversibility of cracking for the duration of
716the test.

FIG. 29 Evolution of GPR profiles on paths 7–14 from day 3 to day 20.
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846 P., Eds., Wiley, New York, pp. 213–219.
847 Nahlawi, H. and Kodikara, J., 2006, “Laboratory Experiments
848 on Desiccation Cracking of Thin Soil Layers,” Geotech. Geol.
849 Eng., Vol. 24, No. 6, pp. 1641–1664.
850 Noborio, K., 2001, “Measurement of Soil Water Content and
851 Electrical Conductivity by Time Domain Reflectometry: A
852 Review,” Comput. Electr. Agric., Vol. 31, No. 3, pp. 213–237.
853 Otani, J. and Obara, Y., 2004, X-Ray CT for Geomaterials: Soils,
854 Concrete, Rocks, Swets & Zeitlinger, Lisse, The Netherlands.
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