
Improving Performance Guarantees in
Wormhole Mesh NoC Designs

Miloš Panić∗,†, Carles Hernandez†, Jaume Abella†, Antoni Roca Perez∗, Eduardo Quiñones†, Francisco J. Cazorla†,‡

∗Universitat Politècnica de Catalunya †Barcelona Supercomputing Center ‡Spanish National Research Council (IIIA-CSIC)

Abstract—Wormhole-based mesh Networks-on-Chip (wNoC) are
deployed in high-performance many-core processors due to their
physical scalability and low-cost. Delivering tight and time com-
posable Worst-Case Execution Time (WCET) estimates for appli-
cations as needed in safety-critical real-time embedded systems
is challenged by wNoCs due to their distributed nature. We
propose a bandwidth control mechanism for wNoCs that enables
the computation of tight time-composable WCET estimates with
low average performance degradation and high scalability. Our
evaluation with the EEMBC automotive suite and an industrial
real-time parallel avionics application confirms so.

I. INTRODUCTION

Critical Real Time Embedded Systems (CRTES) industry is
gradually shifting towards multi- and many-core processors to
satisfy the guaranteed performance needs of complex safety-
related functions. This transitions challenges the derivation of
time-composable Worst-Case Execution Time (WCET) esti-
mates, i.e. bounds to the execution times of tasks that are
independent of the load that co-running tasks put on shared
resources. Time-composable WCET estimates simplify incre-
mental certification [9] by allowing each system component
to be subject to formal timing certification in isolation and
independently from other components.

From an end-user perspective, the deployment of manycores
in CRTES requires following properties:
– UserReq1: Manycores should facilitate deriving tight WCETs
so that high guaranteed performance is provided;
– UserReq2: Manycores must facilitate deriving time compos-
able WCETs to enable incremental certification;
– UserReq3: Manycores should also provide high average
performance for some applications;
– UserReq4: Manycores for real-time should use technology
as close as possible to COTS (high-performance) technology
to ease their adoption. The low manycore demand of safety-
critical real-time systems, w.r.t. the mainstream market, calls
for reducing the need for customized real-time technology.

Network-on-Chip (NoC) is one of the manycore shared
resources with the highest impact on average performance and
WCET. Hence, the four user requirements on manycore designs
are to be captured and fulfilled by NoC designs. We consider
wormhole mesh NoC (wNoC) as a candidate NoC solution as
it is widely accepted in the high-performance market due to its
physical scalability and low cost [28][23].

The high-performance requirements imposed by some appli-
cations (UserReq3) require wNoCs to provide high throughput.

The research leading to these results is funded by the European Union Sev-
enth Framework Programme under grant agreement no. 287519 (parMERASA)
and by the Ministry of Science and Technology of Spain under contract
TIN2012-34557. Miloš Panić is funded by the Spanish Ministry of Education
under the FPU grant FPU12/05966. Carles Hernández is jointly funded by the
Spanish Ministry of Economy and Competitiveness and FEDER funds through
grant TIN2014-60404-JIN. Jaume Abella is partially supported by the Ministry
of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717.

This requirement is fulfilled since wNoCs are designed for
high-performance systems. Meanwhile, UserReq2 for real-time
applications requires time-composable worst-case traversal time
(WCTT), i.e. WCTT not affected by the load contender tasks put
on the wNoC. wNoCs can meet this by using time-analyzable
arbitration policies [17][10] and applying the model in [21].

Contribution. We show that current wNoCs fail to achieve
tight WCTT (UserReq1), which negates their benefits. In partic-
ular we show that (i) WCTT values derived for current wNoCs
poorly scale with network size – even for small networks; and
(ii) the WCTT derived for a task depends on the maximum
allowed packet size and poorly scales with it. Further, current
wNoCs do not necessarily impose a limit on the packet size and
leave that to the protocol on top of the network (e.g. AMBA [1]).

We propose a new time-composable wNoC design relying
on concepts developed for high-performance wNoCs, hence
achieving UserReq4. Our design focuses on controlling the
network bandwidth (the main factor affecting WCTT) to provide
a fair guaranteed bandwidth distribution across the different
communication flows. Bandwidth control is exercised at two
levels. At local level, we ensure fairness by providing a WCTT-
aware Packetization (WaP) that makes real-time guarantees
independent of contenders packet size. At global level, we
provide fairness across contenders by performing a WCTT-
aware Weighted (WaW) round-robin arbitration.

We evaluate WaW + WaP on a 64-core manycore ar-
chitecture with cores accessing memory controllers through a
wNoC. We use EEMBC [20] autobench and an avionics real-
time parallel application provided by Honeywell [16]. We show
that our design significantly decreases WCET estimates for the
parallel application by a factor of 4.8× to 9.5× depending on
the number of flits per packet. For single-threaded applications
WCET decreases by 230× on average across all cores and by
1.4× for the 25% best set of cores for the baseline NoC.

II. WORMHOLE-BASED MESH NOCS

Deriving WCET estimates in manycores relies on bounding
access times to shared hardware resources [19][6]. In the case
of NoCs this translates into i) bounded WCTT such that every
request sent to the NoC has a service time, i.e. traversal time,
boundable at analysis; and ii) time-composable WCTT such that
the bound to the traversal time derived for the request of a task
does not depend on the load put by other co-running tasks on
the NoC. Low WCTT translates into tighter WCET estimates,
which allows increasing the guaranteed performance that the
manycore chip can provide.

A. Assumptions
We assume a canonical 2D-mesh [5] with wormhole switch-

ing and XY routing policies (Figure 1(a)). The need for time-
composable WCTT prevents making assumptions about the
number and load of crossing flows. Time-composable WCET
estimates provide a drastic reduction of development costs as

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(a) (b)
Fig. 1. (a) Router coordinates in a 4x4-Mesh. (b) Unfair bandwidth allocation
in wormhole.

each subsystem can be independently developed and certified
and incrementally integrated. These benefits pay off the increase
in WCET caused to achieve time composability. Instead, we
assume the worst-case of the wNoC state and load:
– (1) Every node in the network is able to send and receive
packets to/from any other node in the network.
– (2) Every time we inject a packet in the NoC, any possible
contending flow is also sending packets creating a worst possible
contention scenario, i.e. for a packet of a given flow at every hop
all possible contenders (i.e. all possible flows partially sharing
the path) are also requesting the same output port.
– (3) Packets contending for an output port are arbitrated using
a time-analyzable policy – round-robin in our case [10], which
is already used in some existing mesh wNoCs [28][23].
– (4) Maximum allowed packet size in the network is known.
We assume that packets of contending requests have maximum
size when deriving WCTT bounds.
– (5) Finally, it is also required assuming that the network is
congested by the time packets are injected in the network.

B. Factors impacting WCTT estimates

There are two main aspects affecting real-time guarantees that
we address with our design:

Message size impact on arbitration slot duration. In
wNoCs only the header flit of a packet is arbitrated. This
implies that the time that requests in a given router wait to
be arbitrated depends on the size of the particular requests
contending for the same output port. Hence, deriving time-
composable WCTT values requires considering that all possible
requests (i.e. the number of router ports minus one) can contend
for the same output port and the size of all requests is the
maximum allowed size. However, some wNoCs do not impose
any limit on packet size, enabling undefined-length requests [1].
Even with the maximum packet size limited, different lengths of
packets penalize real-time guarantees, since we have to consider
that contending requests have the maximum size.

Unfair bandwidth allocation. In a network where all flows
may contend for the same resource, WCTT mainly depends
on the flow’s allocated bandwidth. The latency in a congested
system can be approximated as 1/(bandwidth) [5]. Despite
round-robin arbitration ensures a fair distribution of resources
when it is used in a centralized way, round-robin fails to
fairly share the bandwidth in distributed networks. For example,
when round-robin is used in an on-chip bus, it distributes the
bandwidth amongst the cores accessing the bus fairly. However,
when a request passes through several chained routers to reach
a given node, the bandwidth allocated to this request is not the
same as the one allocated to a closer or farther request. In the
evaluation section we show how the unfair bandwidth allocation
translates into bad (high) WCTT values.

III. FLIT-HOMOGENEOUS GUARANTEES IN MESHES

We present a new wNoC design that performs a flit-level
fair distribution of guaranteed bandwidth to achieve time-
composable and tight WCTT. Our proposal requires minimum
modifications to regular mesh designs in the packet generation
(local fairness) and in the packet arbitration (global fairness).

WaP. Packet length has high impact on the maximum con-
tention a request can suffer. If the wNoC is not carefully
designed this could lead to an unbounded WCTT. For wNoCs
the arbitration slot duration is equal to the packet size, the
larger the packet is, the longer the time slot is. To avoid having
arbitration slots of different duration we use WaP that forces
all packets to have the size of the smallest packet in the system.
This is achieved by slicing a request into one or more minimum
size packets at the network interface (NIC).

When a request (Reqi) arrives at the NIC a regular packe-
tization scheme creates a single packet that is injected in the
network. With WaP the request payload is sliced in minimum
sized packets and header info is replicated. WaP improves NoC
WCTT as the size of contending packets is bounded to the
minimum size packet. For instance, with a regular packetization
scheme, the worst-case latency for a S-flit packet for reaching
an output port to which 4 different input ports are contending is
3∗L+S where L is the maximum allowed size of packets in the
network. Instead, with WaP , for a minimum packet size of m,
the worst-case latency is 3∗m+m. Note that maximum allowed
packet size in the network (L) is much larger than minimum
size packets (m) that commonly consist of one-flit.
WaP penalizes the effective bandwidth due to the overhead

of the required routing and control information (that can be
significant in a manycore). In Section IV we evaluate WaP in
terms of both average and worst-case performance.

WaW. WaW relies on a weighted round-robin arbitration
scheme [18] to enable a globally fair link bandwidth distribution
that balances the WCTT off all nodes in the NoC. Weighted
round-robin uses weights to assign the rotating priorities to
contending input ports. WaW uses arbitration weights per
router input port that balance WCTT in all nodes of the router.
It set weights by accounting for the number of contending flows
coming through a given input port and the total number of
flows traversing the requested output port. These numbers are
determined by the routing algorithm [5].

Let Idiri(i, j) be the number of communication flows travers-
ing the diri input port of router R(i, j) – diri can be any of
the possible mesh router port directions X+,X−, Y+, Y−, or
PME. Let Odiro(i, j) be the number of flows traversing the
diro output port of R(i, j). WaW per-input/output port pair
arbitration weights W (Idiri , Odiro) can be computed for any of
the possible input/output port combinations at R(i, j) using the
following equations:

IX+ = x

IX− = N − x

IY + = N ∗ y

IY − = N ∗ (M − y − 1)

IPME = 1

OX+ = x+ 1

OX− = N − x+ 1

OY + = N ∗ (y + 1)

OY − = N ∗ (M − y)

OPME = N ∗M − 1

N and M are the horizontal and vertical dimensions of the
network, respectively, while x and y stand for the horizontal
and vertical coordinates of the node under analysis. For the X+
input port the number of flows coming through it corresponds
to the x coordinate i.e. the number of nodes that precede the
actual node in the same row. Note that with XY routing, packets
in the Y direction cannot be forwarded to the X direction.

TABLE I
ARBITRATION WEIGHTS FOR A 2X2-MESH ROUTER R(1,1) IN A

REGULAR MESH AND WITH WaW
Regular Mesh Weighted Mesh

W (PME,X-) 1 1
W (PME,Y-) 0.5 0.5
W (X-,PME) 0.5 0.33
W (X-,Y-) 0.5 0.5

W (Y-,PME) 0.5 0.66

Therefore, the flows accessing an X port are only the ones
in the same row. On the contrary, flows crossing Y -direction
ports may be originated at any of the preceding nodes in any
row. Per direction router weights are derived using Equation 1.

W (Idiri , Odiro) = Idiri/Odiro (1)

Let us illustrate how WaW works with the example from
Figure 1(b). Let us consider all flows with destination node
4. At R(1, 1) only X+ and Y+ input ports can access the
PME output port. OPME = 3 as the flows originated at the
3 remaining nodes access node 4 using OPME . For the input
ports we have IX+ = 1 and IY+ = 2. We consider that in
this example N = 2 and M = 2 so IY+ = |2 ∗ (1)| = 2
and IX+ = x = 1. Table I shows R(1, 1) weights required
to perform the weighted arbitration in the 2x2 mesh NoC and
compares them with the default weights of the round-robin
arbitration. The weight values range from 0 to 1 and represent
the bandwidth that is allocated to a given input/output pair. For
example, for the input ports requesting the PME output port the
weighted arbitration assigns 1/3 of the bandwidth to the flows
coming from X- and 2/3 of the bandwidth to the flows from Y-.
Note that X- only serves one flow from node 3 to node 4 while
Y- serves 2 flows (from nodes 1 and 2 to node 4). Instead, round-
robin arbitration assigns always the same bandwidth (0.5) to any
of the 2 input ports requesting a given output port, regardless
of the number of potential flows using these input ports.

WaW implementation. XY routing allows precomputing the
weights and assigning them to input ports statically, as needed
for WCET estimation. In our implementation, input port weight
is measured as the number of flits it can transmit to an output
port. When several input ports contend for an output port, the
input port with the largest flit count wins, and decrements its
flit count by one. If more than one contender has the largest
flit count, a conventional round robin policy is used to arbitrate
amongst them. Instead, when no input ports demand an output
port, each input port flit count is incremented (if it is not larger
than its weight). When an input port is the unique candidate to
access an output port, its flit count is unaltered.

Hardware modifications. In order to increase compliance
with COTS wNoC designs, WaW and WaP incur minimum
local changes. Those changes can be implemented in regular
wNoCs which could provide a feature to enable/disable them
depending on the average and guaranteed requirements of the
wNoC. This departs from other designs that might require
changes in buffering, switches architecture, synchronization,
etc., that would decrease the chance of adoption of our proposal.

NICs are already equipped with the logic to perform packeti-
zation of processor requests. Hence, WaP only requires the size
of packets to be parametrizable from the software. Meanwhile
WaW requires per-input port counters (no more complex than
the ones required for regular round-robin arbitration) and an
additional arbitration policy. Our results – obtained from the
NoC area decomposition given in [24] – show that the area
increase incurred in the NoC is below 5%.

TABLE II
WCTT VALUES FOR DIFFERENT MESH SIZES FOR 1-FLIT PACKETS.

Regular Mesh WaW + WaP
NxM max mean min max mean min

2x2 14 10 6 11 9 8
3x3 123 39.16 9 32 24 17
4x4 1071 145.68 9 64 45 31
5x5 8895 568.14 9 108 72 49
6x6 72447 2375.85 9 163 105 71
7x7 584703 10632.53 9 230 144 97
8x8 4698111 50516.79 9 310 189 127

IV. EVALUATION

We use a cycle-accurate simulator based on SoCLib [3]
with gNoCSim [2] integrated. We model a 64-core mesh-
based processor (routers range from R(0, 0) to R(7, 7)). In our
manycore, load (and write-miss) requests comprise a one-flit
message from the core to memory. Given that cache line size
is 64-bytes and we need 16-bits for control data (512+16 bits),
memory answers with 4-flit messages over 132-bit wide links.
Evicted line requests require a 4-flit message and a one-flit
answer. Waw +WaP adds control data to each flit, therefore
requiring an extra flit, so 5 instead of 4 (512+5*16 bits over a
132-bit wide channel), leading to 25% overhead.

WCTT. Table II shows average, max, and min WCTT values
for the regular wNoC and WaW+WaP across several network
sizes. While regular mesh designs obtain always the lowest
WCTT values (for the nodes that are directly attached to desti-
nation) our proposal achieves significantly better WCTT values
for the majority of the network flows (as shown by the average
WCTT results). For instance, for the 64-node NoC the minimum
WCTT with regular meshes is 9 and with WaW+WaP is
127 cycles, while the maximum value decreases from above
4 million cycles to 310 (a decrease of 4 orders of magnitude).
On average the WCTT for the original NoC is above 50,000
cycles (largely above our design, 189).

WCET estimates for EEMBC. Our simulation architecture
supports the WCET computation mode [17], in which at analysis
time, requests accessing the NoC are artificially delayed by an
upper bound delay (UBD). During operation, WCET compu-
tation mode is disabled and NoC requests suffer only actual
delays, which are safely upper-bounded by UBD.

In Table III each cell represents a node of a 8x8 wNoC.
All nodes communicate to the memory connected to the top-
left node R(0, 0). Each cell shows the WCET of WaW+WaP
normalized w.r.t. a regular wNoC. In particular we show the
average reduction across all (single-threaded) EEMBC Auto-
motive benchmarks. Values above 1 show that WaW+WaP
provides higher WCET estimates than a regular wNoC and vice
versa. We observe that WCET values for nodes close to R(0, 0)
are slightly higher than for the regular wNoC. In particular 11
nodes present WCET values worse than the ones provided by
a regular wNoC with a maximum slowdown of up to 1.5×
for the best situated node. However, on the other 53 nodes,
average WCET estimates are significantly higher (worse) with
the regular wNoC than with WaW+WaP . In some cases, as
shown in Table III, the difference is 3-4 orders of magnitude,
i.e. the WCET obtained with WaW+WaP is only 0.002 of
that with the regular wNoC.

WCET estimates for Parallel Applications. We also evalu-
ate WaW+WaP using 3D path planning (3DPP), an industrial
avionics parallel application provided by Honeywell [16]. 3DPP
uses 16 cores to guide an aircraft through the obstacle map
represented as a 3D matrix. In the 8x8 wNoC we run 3DPP
under four different placements (see Figure 2(b)).

With focus on P0, Figure 2(a) shows the WCET estimates

TABLE III
NORMALIZED WCET PER CORE OF EEMBC WITH WaW +WaP

0 1 2 3 4 5 6 7

0 1.4841 1.4841 1.4920 1.4387 1.3046 1.0850 0.8131 0.7292

1 1.3609 1.3806 1.2843 1.0899 0.8262 0.5575 0.3427 0.3260

2 1.2454 1.0856 0.8441 0.5777 0.3553 0.2027 0.1112 0.1226

3 0.9855 0.6078 0.3739 0.2123 0.1150 0.0609 0.0321 0.0428

4 0.6024 0.2304 0.1219 0.0634 0.0328 0.0169 0.0088 0.0145

5 0.2779 0.0692 0.0345 0.0174 0.0089 0.0046 0.0024 0.0049

6 0.1063 0.0189 0.0093 0.0046 0.0024 0.0012 0.0004 0.0016

7 0.0528 0.0067 0.0033 0.0016 0.0008 0.0004 0.0002 0.0008

Y
-a

xi
s

po
si

ti
o

n

X-axis position

for the regular and WaW +WaP wNoC considering that the
maximum packet size in the network is 1, 4 and 8 flits (labeled
L1, L4 and L8 respectively). We observe the significant impact
of WaW + WaP . Overall, it outperforms the regular wNoC
for all packet sizes considered, with improvements ranging from
1.4X for L1 to 3.9x for L8.

For the L1 setup Figure 2(b) shows the impact of placement
of the application. WaW + WaP benefits are two-fold. It
achieves lower WCET estimates (from 1.4x to 7x) than the
regular wNoC and leads to smaller variability across placements
(around 20% in our setup compared to over 6x with the regular
NoC). This is of paramount importance in real-time systems to
control the impact of placement, which has been shown as a
first-order factor in the WCET [14].

Average performance. We have as well evaluated WaW +
WaP and regular wNoC in terms of average performance.
Results show that WaW + WaP incurs negligible average
performance degradation (less than 1%) for both single-threaded
and parallel applications. The origin of the degradation resides
in the overhead introduced by packetization that is minimized
as it only affects those packets having more than one flit.

V. RELATED WORK

Customized NoCs for real-time such as TDMA-based or
time-triggered ones will find difficulties in being adopted by the
real-time industry [27] since their implementation incurs high
non-recurrent costs. This is the case for [25], [7], [15], [13].

In best-effort wNoCs the use of virtual channel prioritization
has been proposed as an effective way to provide tight latency
bounds [26] and [22]. The same logic applies to [11], where
authors provide bandwidth guarantees for GS connections per
port. However provided guarantees require a detailed knowledge
of the applications/tasks that will run in the final system and
thus, fail to satisfy incremental certification requirements.

In [12], [21] authors provide realistic bounds for wNoCs
without using flit-level virtual channel preemption. The model
in [21] requires knowing all communication flows integrated
in the system to derive safe upper-bounds, making those
bounds not time-composable. Interference-free NoC designs
using wormhole-based NoC designs have been recently pro-
posed in [4] and [8]. While [4] shows lower best-effort traffic
degradation than [8] by smartly multiplexing virtual channels,
the degradation of best-effort traffic performance is significant.

We follow a different approach to fulfill hard-real time
requirements by deriving time-composable WCTT bounds in
wNoCs without sacrificing average performance. Further, we
address the scalability problems of latency bounds in wNoCs
by proposing a mesh design that significantly improves default
mesh WCTT values with low hardware complexity.

VI. CONCLUSIONS

The use of wormhole-based NoCs in the context of CRTES
applications complicates the timing analysis of applications,

0

20

40

60

80

L1 L4 L8

W
C

ET
 e

st
im

at
e

 (
m

s)
 regular wNoC

WaW+WaP

0

20

40

60

80

P0 P1 P2 P3

W
C

ET
 e

st
im

at
e

 (
m

s)
 regular wNoC

WaW+WaP

(a) Regular wNoC vs. WaW+WaP (b) Impact of Allocation
Fig. 2. WCET estimates for the 16-core parallel avionics application

making the WCET estimates of those applications rapidly
increase with the network size. The latency bounds achieved
by our design are scalable. Our proposal enables a fair sharing
of the available bandwidth across the different flows in the
network. This makes time-composable WCET estimates less
affected by the core count in the manycore. Our results with
benchmarks and a real application confirm that the proposed
mesh achieves tight and uniform scalable WCET values with
negligible average performance degradation. Furthermore, hard-
ware modifications required for the proposed design w.r.t.
regular mesh designs are few, easing its adoption.

REFERENCES

[1] ARM AMBA 3 AXI Specification (available at
http://www.arm.com/products/solutions/axi spec.html).

[2] NanoC: NaNoC design platform. http://www.nanoc-project.eu.
[3] Soclib, http://www.soclib.fr/trac/dev, 2012.
[4] A.Psarras, et al. Phase-noc: Tdm scheduling at the virtual-channel level

for efficient network traffic isolation. DATE 2015.
[5] J. Duato, et al. Interconnection Networks: An Engineering Approach.

Morgan Kaufmann, 2002.
[6] GENESYS. http://www.genesys-platform.eu.
[7] K. Goossens, et al. Aethereal network on chip: concepts, architectures,

and implementations. Design Test of Computers, IEEE, 2005.
[8] H. M. G. Wassel, et al. Surfnoc: A low latency and provably non-

interfering approach to secure networks-on-chip. SIGARCH Comput.
Archit. News, 41(3):583–594, June 2013.

[9] R. Inc. RTCA DO-297 integrated modular avionics (IMA) development
guidance and certification considerations. 2005.

[10] J. Jalle, et al. Deconstructing bus access control policies for real-time
multicores. In SIES, June 2013.

[11] T. Kranich and M. Berekovic. Noc switch with credit based guaranteed
service support qualified for GALS systems. In DSD, 2010.

[12] S. Lee. Real-time wormhole channels. Journal Of Parallel And Distributed
Computing, 63:299–311, 2003.

[13] M. Millberg, et al. The nostrum backbone-a communication protocol stack
for networks on chip. In IEEE VLSI Design, 2004.

[14] J. Mische and T. Ungerer. Guaranteed service independent of the task
placement in nocs with torus topology. In RTNS, 2014.

[15] R. Obermaisser, et al. The time-triggered system-on-a-chip architecture.
In ISIE, 2008.

[16] M. Panic, et al. Parallel many-core avionics systems. EMSOFT, 2014.
[17] M. Paolieri, et al. Hardware support for WCET analysis of Hard Real-

Time Multicore Systems. In ISCA, 2009.
[18] H. Park and K. Choi. Position-based weighted round-robin arbitration for

equality of service in many-core network-on-chips. NoCArc, 2012.
[19] parMERASA. EU-FP7 Project:http://www.parmerasa.eu/.
[20] J. Poovey. Characterization of the EEMBC Benchmark Suite. North

Carolina State University, 2007.
[21] D. Rahmati, et al. Computing accurate performance bounds for best effort

networks-on-chip. IEEE Transactions on Computers, 62(3), 2013.
[22] E. A. Rambo and R. Ernst. Worst-case communication time analysis of

networks-on-chip with shared virtual channels. DATE, 2015.
[23] J. Rattner. Single-chip Cloud Computer: An experimental many-core

processor from Intel Labs.
[24] A. Roca. Floorplan-Aware High Performance NoC Design. PhD thesis,

Universitat Politecnica de Valencia, 2012.
[25] M. Schoeberl, et al. A statically scheduled time-division-multiplexed

network-on-chip for real-time systems. In NoCS, 2012.
[26] Z. Shi and A. Burns. Real-time communication analysis for on-chip

networks with wormhole switching. In NoCS, 2008.
[27] J. Sparsoe. Design of networks-on-chip for real-time multi-processor

systems-on-chip. In Application of Concurrency to System Design (ACSD),
2012 12th International Conference on, pages 1–5, 2012.

[28] Tilera. TILE-Gx Family http://www.tilera.com/products/TILE-Gx.php.

