
Instance and Feature Weighted
k-Nearest-Neighbours Algorithm

Gabriel Prat and Llúıs A. Belanche

Computer Science Department - Universitat Politècnica de Catalunya
Omega Building, Jordi Girona 1-3, 08034, Barcelona - Spain

Abstract. We present a novel method that aims at providing a more
stable selection of feature subsets when variations in the training pro-
cess occur. This is accomplished by using an instance-weighting process
–assigning different importances to instances– as a preprocessing step to
a feature weighting method that is independent of the learner, and then
making good use of both sets of computed weigths in a standard Nearest-
Neighbours classifier. We report extensive experimentation in well-known
benchmarking datasets as well as some challenging microarray gene ex-
pression problems. Our results show increases in stability for most subset
sizes and most problems, without compromising prediction accuracy.

1 Introduction

The feature subset selection (FSS) problem has been studied for many years
by the statistical as well as the machine learning communities. However, the
stability of the FSS process has been relatively neglected in the literature until
very recently –see e.g. [1, 2]. Previous research aimed at quantifying stability,
rather than enhancing it, leading to the development of stability measures [3];
few works address the explicit improvement of such stability, notably [2].

In previous work, we studied methods aimed at providing a more stable se-
lection of feature subsets when variations in the training process occur [4], in a
way that is independent of the learner or the specific FSS algorithm. We argue
here that it is possible that the classification ability of different features varies
across the feature space: for some subset of the data we should use a certain set
of features, while for some other subset another set of features results in a bet-
ter classification accuracy; conversely, the instances may contribute differently
to the importance of features. Our objective is therefore to foster the study of
possible synergies between both tasks to ultimately develop workable learning
algorithms. In this paper we present a method that combines the weighting of in-
stances with the feature weighting process into a more effective doubly-weighted
Nearest-Neighbours classifier. We report performance in a series of experiments,
using well-known benchmarking datasets and some challenging microarray gene
expression problems. Our results show improvements in FSS stability for most
subset sizes and problems, without compromising prediction accuracy.

2 Preliminaries

LetD = {(x1, t1), . . . , (xN , tN)} be a training data set of length N , each instance
xn ∈ R

d with its corresponding class label tn. The margin of an instance with

605

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

respect to a hypothesis (a classification rule, in this case) measures the confidence
of the classifier when making its prediction [5]. In particular, the hypothesis
margin of x is the distance between the hypothesis and the closest hypothesis
that assigns an alternative label to x. For 1-Nearest-Neighbours, the hypothesis
margin of an instance x to a set of data points D is given by [6]:

θD(x) =
1

2

(

‖x−m(x)‖ − ‖x− h(x)‖
)

(1)

where m(x) and h(x) are the near hit and near miss of x: those instances
in D nearest to x with the same and with a different class label, respectively.
Relief is a filter algorithm that uses the hypothesis-margin concept in eq. (1)
to assess the importance of each feature in a dataset D as the accumulated
influence that each feature has in computing the margin of every instance in
D [7]. In particular, RelievedF is a deterministic feature ranking algorithm
that depends on a user-defined parameter l. The algorithm picks one instance
at a time and computes the hypothesis margin of each feature independently,
accumulating the feature-wise distances to the l nearest hits and l nearest misses.

Simba is a more recent feature weighing algorithm that assigns weights to
features based on their contributions to the hypothesis margins of the instances
[5]. Since better generalization is expected if instances have larger margins,
one should favour features that contribute more to these margins. Instances x
achieving highly positive θD(x) present good modeling behavior (being far from
misses and close to hits), while those with highly negative θD(x) become outlying
ones (surrounded by misses and far from hits). The presence or absence of these
latter instances in a training sub-sample is therefore a source of unstability.

In the Margin-based Instance Weighting (MBIW) method, an instance x ∈
R

d can be mapped to x′ according to x′j = |xj −m(x)j | − |xj − h(x)j | [8]. The
larger the value of x′j , the more feature j contributes to the margin of instance
x; thus x′ captures the local profile of feature relevance. To compute an overall
relevance for x, the average over all margin vectors is taken, very much asRelief
does; then the weight of an instance x is given by:

ω(x) =
1/dist(x′)

∑N
i=1 1/dist(x

′
i)
, where dist(x′) =

1

N − 1

N−1
∑

i=1,x′
i �=x′
‖x′ − x′

i‖ (2)

3 Combining Instance and Feature Weighting

An important problem with the hypothesis-margin concept defined in eq. (1) is
the presence of noise. By this we mean every aspect in the data that is specific
of the particular training sample (i.e., it is not a regularity of the problem). This
may affect both instances (outliers), or features (redundant or irrelevant), and
will certainly mislead the margin calculus of an instance. The proposed method
extends Simba to incorporate the instance weights obtained with the MBIW
method into the feature weights, to influence the way Simba behaves.

606

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

In this paper, the MBIW method is executed first and the weights are handed
over to Simba. However, our framework is quite flexible and one could also
consider the other way around. We tested two different versions:

Normal: unmodified Simba algorithm (all instances drawn randomly)

Sample: base instance selection on the probability distribution given by the
learned instance weights

Order: sort instances by decreasing weight, and base the iteration order directly
on the resulting order (no randomness)

We call the methods SimbaMBIW: Simba with Margin Based Instance
Weighting (pseudo-code is shown inAlgorithm 1). Note the use of theweighted

norm of a vector z as ‖z‖w =

√

d
∑

i=1

w2
i z

2
i . Using this combined strategy, fea-

tures can be ranked according to their importance (using the w weights), and
at the same time favouring stability due to the ω weights.

Algorithm 1: SimbaMBIW (D)

1 Compute instance weights ω using eq. (2)
2 w← (1, 1, . . . , 1) ; // Initialize feature weights

3 for n← 1 to N do
4 if strategy is order then
5 let x be the instance ranked in position n according to ω
6 else if strategy is sample then
7 draw an instance x from D, according to the distribution ω/ ‖ω‖1
8 else
9 let x be the nth instance of a random permutation of D

10 end
11 calculate m(x) and h(x) with respect to D \ {x} using ‖ · ‖w
12 for i← 1 to d do

13 Δi ← 1
2

(

(xi−(m(x))i)
2

‖x−m(x)‖w
− (xi−(h(x))i)

2

‖x−h(x)‖w

)

wi

14 end
15 w← w + ω(x)Δ

16 end

17 w← w2/
∥

∥w2
∥

∥

∞ where (w2)i := (wi)
2

4 Experimental Work

This section provides empirical evaluation of the proposed method. We test it to
verify its real applicability in three groups of problems: a selection of 15 datasets
from the UCI machine learning repository, the five problems used in the FSS

607

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

UCI datasets

problem d C N

Diabetes 8 2 768
Glass 10 6 214
Heart 13 2 20
Ionosphere 34 2 351
Landsat 36 6 6,435
LSVT Voice 309 2 126
Mammogram 65 2 86
Musk 168 2 6,598
Parkinsons 23 2 197
Pop Failures 18 2 540
SpectF 44 2 267
Sonar 60 2 208
Vehicle 18 4 946
Waveform 21 3 5,000
Wdbc 10 2 699

Microarray datasets

problem d C N

Breast cancer 24,481 2 97
Colon tumour 2,000 2 62
GCM 16,063 14 190
Leukemia 7,129 2 72
Lung cancer 12,533 2 181
Prostate cancer 12,600 2 136

NIPS Challenge datasets

problem d C N

Arcene 10,000 2 200
Dexter 20,000 2 600
Dorothea 100,000 2 1,150
Gisette 5,000 2 7,000
Madelon 500 2 2,600

Table 1: Dataset descriptions: d,C,N are the number of features, classes and
instances, respectively.

challenge organized during the NIPS’2003 conference and six widely-used cancer
microarray data –Table 1. The stability of an algorithm in selecting a subset
of k features out of the initial full feature size d over a batch of M runs can be
evaluated using the Kuncheva index (KI), defined as in [1]:

KI (E(k)) = 2

M(M − 1)

M−1
∑

i=1

M
∑

j=i+1

|Si(k) ∩ Sj(k)| − (k2/d)

k − (k2/d)

where Si(k) is the subset of selected features of length k in the i-th run, and
E = {S1, S2, ..., SM} is the set containing all the retrieved feature subsets. KI
values are bounded in [−1, 1], with 1 corresponding to the maximum stability.
The experimental setup consists of the two nested cross-validation loops: for ev-
ery fold and repetition of the outer cross-validation loop, two feature-weighting
processes are conducted with the same instances: one with the original Simba
algorithm and one with our modified version taking instance weights into ac-
count. The KI is computed for every subset length at every partition loop and
then averaged over the 10 times. Once the features have been obtained we test
the obtained feature weights using a modified k-NN classifier that accepts both
instance and feature weights, recording prediction accuracy on the leftout test
parts. We use these weights to perform an inner 5x2-fold cross-validation with
the purpose of estimating the prediction error of each classifier. This error is then
computed for each fold to compare the feature sets selected by SimbaMBIW.

608

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

The modified k-NN classifier –shown in Algorithm 2– uses the feature
weights to influence the distance calculation between two instances. Instead
of using a majority voting as the original k-NN does to compute the label of
the test instance, it uses the instance weights to give more relevant instances
more influence in the voting –line 9 in the algorithm. By using an algorithm
that accepts feature weights we overcome the need of finding a suitable feature
set given the resulting weights of the process, as we did in our previous paper
[4]. If we wanted to use the traditional version of k-NN at this point, we would
have to decide a size s for the selected feature set, order the features according
to their weights and keep the first s, or else use a classifier to perform a costly
search in wrapper mode.

Algorithm 2: Instance and Feature Weighted k-Nearest Neighbours

Input : Training set D = {x1, . . . ,xN}, constant k, instance weights ω,
feature weights w, new instance x∗ to be classified

Output: Class prediction for x∗

1 Initialize all ci ∈ C to 0 ; // C is the set of class labels

2 foreach xn ∈ D do
3 dn ← ‖xn − x∗‖w
4 end
5 Sort d in descending order
6 Dk ← nearest k instances according to d
7 foreach xn ∈ Dk do
8 let k be the class of xn

9 ck ← ck + ωn

10 end
11 return argmax

i
ci

In Fig. 1 we see the number of problems (including UCI, NIPS and microar-
ray) for which the modified versions of the FSS algorithm had better/equal/worse
stability results, and the number of problems which the classification error of the
resulting feature sets was better/equal/worse. We see that both modifications
lead to more (or equally) stable results most of the time. In fact, SimbaMIW is
only significantly less stable than standard Simba in one single case (the NIPS
Madelon dataset using the ’sample’ version). Very importantly, predictive errors
are similar to those of more unstable versions.

5 Conclusions

The present work has introduced SimbaMBIW, a new method for improving
the stability of feature subset selection algorithms, which draws upon previous
algorithmic work on feature weighting and hypothesis margins for instances. Our
strategy uses a double set of weights, one for the features and another one for the

609

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

(a) Stability (b) Classification error

Fig. 1: Number of problems where SimbaMiw was better/equal/worse than
standard Simba regarding stability and classification error.

instances. Its suitability has been assessed using data from three different envi-
ronments: microarray gene expression data, real-world and synthetic datasets.
The present work offers a number of interesting avenues for further research. We
are interested in quantifying and improving prediction stability: the ability of a
classifier in labelling each instance coherently (independently of its correctness);
there are also alternative ways to combine the weights: specifically, the instance
weights can be updated at each iteration, given that the feature weights are
re-computed, which would lead to a synergetic process.

References

[1] L I. Kuncheva. A stability index for feature selection. In IASTED International Confer-
ence on Artificial Intelligence and Applications, pp. 390–395, 2007.

[2] Y. Saeys, T. Abeel, Y. Peer. Robust feature selection using ensemble feature selection
techniques. In ECML-PKDD, pages 313–325. Springer-Verlag, 2008.

[3] P. Somol, J. Novovičová. Evaluating stability and comparing output of feature selectors
that optimize feature subset cardinality. IEEE Trans. on PAMI, 32(11):1921–39, 2010.

[4] G. Prat, and Ll. Belanche. Improved stability of feature selection by combining instance
and feature weighting. In M. Bramer and M. Petridis (eds), Research and Development
in Intelligent Systems XXXI, pp. 35–49. Springer, 2014.

[5] R.G. Bachrach, A, Navot, N. Tishby. Margin based feature selection - theory and algo-
rithms. In Intl. Conf. on Machine Learning (ICML), pages 43–50, 2004.

[6] K. Crammer, R.G. Bachrach, A. Navot, N. Tishby. Margin Analysis of the LVQ Algo-
rithm. In Advances in NIPS 2002, pages 462–469, 2002.

[7] K. Kira, L. Rendell. The feature selection problem: Traditional methods and a new
algorithm. pp. 129–134, Cambridge, USA, 1992

[8] Y. Han, L. Yu. A Variance Reduction Framework for Stable Feature Selection. In ICDM,
pp. 206–215, 2010

610

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

