
Rock Mechanics and Rock Engineering manuscript No.
(will be inserted by the editor)

Discrete/Finite Element Modelling of Rock Cutting with a
TBM Disc Cutter

Carlos Labra · Jerzy Rojek · Eugenio Oñate
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Abstract This paper presents advanced computer simulation of rock cutting process
typical for excavation works in civil engineering. Theoretical formulation of the hy-
brid discrete/finite element model has been presented. The discrete and finite element
methods have been used in different subdomains of a rock sample according to ex-
pected material behaviour, the part which is fractured and damaged during cutting is
discretized with the discrete elements while the other part is treated as a continuous
body and it is modelled using the finite element method. In this way, an optimum
model is created, enabling a proper representation of the physical phenomena during
cutting and efficient numerical computation. The model has been applied to simula-
tion of the laboratory test of rock cutting with a single TBM (tunnel boring machine)
disc cutter. The micromechanical parameters have been determined using the dimen-
sionless relationships between micro- and macroscopic parameters. A number of nu-
merical simulations of the LCM test in the unrelieved and relieved cutting modes
have been performed.

Numerical results have been compared with available data from in-situ measure-
ments in a real TBM as well as with the theoretical predictions. showing quite a good
agreement. The numerical model has provided a new insight into the cutting mech-
anism enabling us to investigate the stress and pressure distribution at the tool–rock
interaction. Sensitivity analysis of rock cutting performed for different parameters in-
cluding disc geometry, cutting velocity, disc penetration and spacing has shown that
the presented numerical model is a suitable tool for the design and optimization of
rock cutting process.
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Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain

Manuscript Click here to download Manuscript RMRE_rev1-v1.pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/rmre/download.aspx?id=111991&guid=db944fb0-4e8a-44cf-9c0e-27fb1923642a&scheme=1
http://www.editorialmanager.com/rmre/download.aspx?id=111991&guid=db944fb0-4e8a-44cf-9c0e-27fb1923642a&scheme=1


2 Carlos Labra et al.
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1 Introduction

Variety of rock cutting technologies is used in civil or mining engineering. Rock
cutting consists in fracturing and disintegration of a rock using different methods
and different machines. Tunnel boring machines (TBMs), shown in Fig. 1a, are used
to perform rock cutting in excavation of tunnels. In excavation with a TBM, a rock
is cut by means of cutter discs (Fig. 1b) installed on a rotating cutter head, which is
pressed against the tunnel face.

a)

b)
Fig. 1 Tunnel boring machine: a) general view of a TBM cutterhead, b) TBM disc cutters.

TBMs are widely used in various tunnelling projects in civil engineering (road
and railway tunnels), mining industry (tunnels for access to underground excavations,
conveyance of ore and waste, drainage, exploration, water supply and diversion, etc.)
and other geotechnical engineering applications. The use of TBMs is continuously
growing mainly due to their efficiency. Nevertheless, there is still a need of improve-
ment of TBM performance depending mainly on rock properties, operational param-
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Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter 3

eters (machine trust, penetration and rate of advance) and design of the cutter head
design, including design of the disc cutters (Roby et al, 2008) and design of their
layout (Huo et al, 2010).

Historically, design of rock cutting tools for the excavation machinery has been
based on a combination of the experience of engineers and real size laboratory tests,
resulting many times in an inefficient process, and involving high costs for the exca-
vation companies. Different empirical models have been developed for the estimation
of the principal parameters involved (Nilsen and Ozdemir, 1993; Rostami et al, 1996).
These models are useful in certain cases, nevertheless, their use is restricted by the
availability of historical data and range of rock material properties (Ramezanzadeh
et al, 2004).

Application of numerical analysis improves the design methodology and allows
to obtain more efficiently optimized designs of rock cutting tools and machines. Nu-
merical methods can be used to optimize the TBM cutter layout (Sun et al, 2015) or
simulate interaction between TBM components and rock mass (Zhao et al, 2014). The
present work is focused on simulation of rock cutting with a single TBM disc cutter.
Such an analysis can help the designer to understand better rock cutting mechanisms,
to detect the reasons of the cutting tool wear and failure, and finally to improve the
cutter design and determine optimum operational parameters. The aim of the analysis
is to substitute or at least reduce number of laboratory tests used in the design process
of rock cutting tools (Nilsen and Ozdemir, 1993; Rostami and Ozdemir, 1993), and
finally speed-up the design process and reduce its costs.

Simulation of excavation processes, in general, and of rock cutting process, in
particular, is not an easy task. Continuum-based simulation techniques, such as the
finite element method (FEM), encounter serious difficulties in modelling of fracture
and fragmentation of a rock material occurring in an excavation process (Jonak and
Podgórski, 2001; Yu and Khair, 2007; Shenghua, 2004; Loui and Karanam, 2012).
The discrete element method (DEM) employing a discrete material model offers a
more realistic way to simulate discontinuous phenomena. The DEM has been suc-
cessfully applied to simulation of different rock cutting processes by Stavropoulou
(2006); Rojek et al (2011); Su and Akcin (2011); Huang et al (2012); Labra et al
(2008a); van Wyk et al (2014).

The known disadvantage of the DEM is that it usually requires the use of a large
number of elements, which leads to long computation times. This paper put forwards
the idea allowing to reduce the computation cost of the DEM simulation of rock cut-
ting by coupling the DEM with the FEM and using them in different subdomains of
the cut material according to expected material behaviour. In rock cutting problems,
a sufficiently large specimen must be taken in order to avoid artificial boundary ef-
fects. In such specimens, a large part of the rock material is not damaged and can be
treated as a continuous material. A continuous material deformation is usually mod-
elled efficiently using the FEM. Therefore an optimum model of rock cutting can be
obtained combining the DEM with the FEM in such a way that discrete elements
are used only in a portion of the analysed domain where material fracture occurs,
while outside the DEM subdomain finite elements are used (Oñate and Rojek, 2004;
Labra et al, 2008a). The numerical method proposed in this paper is based on the
formulation presented by Rojek and Oñate (2007). Preliminary results for a 2D rock
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4 Carlos Labra et al.

cutting problems obtained with the DEM/FEM coupled method have been presented
by Labra et al (2008a). In the present paper, this algorithm is applied to 3D simula-
tion of the rock cutting problem. This work is original with respect to other research.
As far as we know, DEM/FEM coupling has not been used for rock cutting simula-
tions by other authors. Other studies of rock cutting, cf. Stavropoulou (2006); Rojek
et al (2011); Su and Akcin (2011); Huang et al (2012); van Wyk et al (2014), have
employed pure DEM models.

Numerical simulations presented here have been performed for the linear cutting
machine (LCM) test. The LCM test is one of the most representative testing proce-
dures for prediction of TBM disc cutters (Nilsen and Ozdemir, 1993; Rostami and
Ozdemir, 1993) and it is used extensively in the design of rock cutting tools. Both
unrelieved and relieved cutting modes have been studied. The simulation results have
been compared with available experimental data and the predictions of the empirical
model developed by Rostami (1997). The use of numerical models and simulation
has allowed us to study some aspects of rock cutting such as the stress field in rock
and disc or pressure in the contact zone which are difficult to study using experimen-
tal techniques. Direct measurements of the load distribution in the contact between
disc cutter and rock performed by Rostami (2013) have proved that the problem of
the load and stress concentration in the contact zone is far from being fully under-
stood and requires further studies. The numerical model presented in this work can
be a useful tool to verify theoretical models for rock cutting with disc cutters. Rock
fragmentation induced by TBM disc cutters has also been studied by other authors
using DEM models (Gong et al, 2006; Moon et al, 2006), but in those works the
authors employed 2D models so the simulations consisted in analysis of indentation
under plane stress conditions. The present work is the first one employing a full 3D
model reproducing real cutting conditions for a TBM disc cutter.

2 Linear cutting test

Performance of a TBM depends on on the rock breakage mechanism induced by disc
cutters (Yagiz et al, 2010). Rock failure mechanism during cutting with a disc cutter
is illustrated in Figure 2. A crushed zone develops beneath the cutter as it is forced
into the rock. As stresses continue to build up in the crushed zone, radial cracks begin
to form and propagate into the rock. When one or more of these cracks meet those
developed from adjacent cut, chips are released (Balci and Bilgin, 2007). The most
important factors influencing cutting efficiency are the disc geometry (diameter and
tip width), spacing between disc cutters, and penetration.

Tool–rock interaction is characterized by the reaction (cutting) forces. The resul-
tant cutting forces over a single disc cutter are decomposed into three components:
the normal force, rolling force and side force, as depicted in Figure 3. Cutting forces
have great influence on the efficiency of the cutting process. They are used to estimate
global forces (thrust force and torque) over the TBM (Ramezanzadeh et al, 2004; Far-
rokh et al, 2012). Cutting forces can be estimated experimentally or theoretically.

The linear cutting machine (LCM) test (Figure 4) is one of the most common
experimental procedures to predict performance of a single cutting tool (EMI, 2016;
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Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter 5

Fig. 2 Rock failure mechanism during cutting with a disc cutter (Cho et al, 2010).

Fig. 3 Forces acting on a disc cutter.

Nilsen and Ozdemir, 1993; Rostami and Ozdemir, 1993). It is a full-scale test which
was originally developed by the Colorado School of Mines (CSM), The LCM test
provides a direct measure of cutting forces and rock cuttability under pre-defined
process parameters such as the cutter spacing, cutter penetration, cutter thrust and
cutting speed.

The LCM test is a suitable test to validate a numerical model of rock cutting.
With the simulations of the LCM test for a single disc cutter is possible to perform
an analysis of the effect of different parameters such as velocity, penetration rate, or
tool geometry, on the resultant forces, as well as their influence on the rock fracture.

3 Theoretical predictions of rock cutting performance

3.1 Cutting forces prediction models

Cutting forces estimation is based on the correlation of different parameters, such
as the disc cutter geometry, spacing, penetration rate, disc rolling velocity and rock
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6 Carlos Labra et al.

Fig. 4 Linear cutting machine (Colorado School of Mines).

material properties. Early prediction models for single V-shape disc cutters were pro-
posed by Roxborough and Phillips (1975), Sanio (1985) and Sato et al (1991). Col-
orado School of Mines developed a model for the CCS-shape cutters (Rostami and
Ozdemir, 1993; Rostami, 1997). This model will be used here for the comparison
with the simulation results for the LCM test.

The first version of the Colorado School of Mines model was developed by
Ozdemir (1977), and later was updated by Rostami and Ozdemir (1993); Rostami
(1997). The CSM model estimates the cutting forces considering a given penetration,
rock mass properties, cutter geometry and cutting conditions. The model is based on
a large data base of full scale LCM tests, and does not consider rock mass conditions
such as fractures or joints.

The model proposes a pressure distribution P in the crushed zone as

P(θ) = Po

(
θ

φ

)ψ

(1)

where ψ is a constant for the pressure distribution function (typically varying between
0.2 for V-shape and very sharp cutters to -0.2 for wider tip cutters), φ – the angle of
contact between the rock and the cutter, defined as

φ = cos−1
(

R− p
R

)
(2)

and Po is the base pressure in the crushed zone, established from regression analysis
of several tests, and estimated from rock strength and cutting geometry:

Po =C 3

√
σ2

c σt s
φ
√

RT
(3)

where C is a dimensionless constant (usually C = 2.12), and s the spacing between
cutters.

The total resulting cutting force FT can be obtained by integrating the pressure
over the contact area (Figure 5), as
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Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter 7

FT =
∫

φ

0
T RP(θ)dθ =

T RPo φ

1+ψ
(4)

where T is the cutter tip width and R the cutter radius.

P(θ)

FT

β
θ

φ

p

R

Fig. 5 Scheme of forces acting on a disc cutter and incidence angles.

To recover the normal and rolling forces, the cutting coefficient CC (also called
rolling coefficient) is used, which is the ratio of both forces defined by the angle β as

CC =
Fr

Fn
= tanβ (5)

Assuming a uniform distribution of the pressure in the contact area, the model
proposes a geometrical definition of β as the middle point of the contact area, i.e.

β =
φ

2
(6)

so finally, the normal and rolling forces are estimated projecting the total force in
each direction as

Fn = FT cosβ =
T Rφ Po

1+ψ
cos

φ

2
(7)

Fr = FT sinβ =
T Rφ Po

1+ψ
sin

φ

2
(8)

This model have been used for the estimation of the TBM cutterhead performance
in many tunneling projects with a high degree of success (Rostami et al, 1996; Ros-
tami, 2008; Exadaktylos et al, 2008).
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8 Carlos Labra et al.

3.2 Specific energy

Rock cutting efficiency is commonly assessed using the specific energy as its cri-
terion. The specific energy SE is defined as the amount of energy required to excavate
a unit volume of rock. SE for a single disc cutter is defined as

SE =
Fr L
V

(9)

where Fr is the rolling force, L the cutting distance, and V the cutting volume. Assum-
ing optimum cutting performance the cutting volume V can be expressed in terms of
the penetration depth p and spacing between disc cutters s as V = pLs, which allows
us to rewrite Eq. (9) as follows

SE =
Fr L
pLs

=
Fr

ps
(10)

The ratio of the spacing and penetration (s/p) is a suitable variable to investigate
cutting efficiency with TBMs (Sato et al, 1991; Rostami, 1997, 2008).

The specific energy can be used to predict TBM performance. The procedure is
described by (Bilgin et al, 1999, 2014). Given the specific energy SE (in kWh/m3)
the net production rate NPR (in m3/h) of the excavating machine can be calculated
from the following equation:

NPR =
kP
SE

(11)

where k is the energy transfer ratio from the cutting head to the tunnel face, it is
usually taken as equal 0.8 for TBM, cf. Bilgin et al (2014), and P (in kW) is the
power used to excavate rock expressed in terms of the TBM torque T (in kNm) and
the rotational velocity of the cutterhead N (in revolutions/sec) as follows:

P = 2πNT (12)

4 Formulation of the model

4.1 Basic assumptions

A numerical model allowing us to simulate the LCM test has been be developed.
A system consisting of a tool and rock sample is considered in the model. The tool
is considered as a rigid body. The rock is modelled using a hybrid discrete-finite
element method approach in which a part of the rock near the tool is modelled using
the discrete element method (DEM) and the other part is considered using the finite
element method (FEM). The DEM and FEM subdomains are coupled using special
kinematic constraints. The tool-rock interaction is modelled assuming the Coulomb
friction model. Rock fracture during cutting is assumed to be localized in the DEM
subdomain and the FEM subdomain is assumed to be continuous and linearly elastic.
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Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter 9

4.2 Discrete element method formulation

The discrete element model assumes that material can be represented by an assem-
bly of distinct particles or bodies interacting among themselves. Generally, discrete
elements can have arbitrary shape. In this work the formulation employing spheri-
cal rigid particles is used. Basic formulation of the particle-based discrete element
method was first proposed by Cundall and Strack (1979). A similar formulation of
the DEM has been implemented in the explicit dynamic finite element method pro-
gram by Rojek and Oñate (2004); Oñate and Rojek (2004), starting the development
of the DEM/FEM code DEMpack (CIMNE, 2010).

The translational and rotational motion of the rigid spherical elements (particles)
is governed by the standard equations of rigid body dynamics. For the i-th element
we have

mi üi = Fi (13)
Ji ω̇ i = Ti (14)

where üi is the position vector of the element centroid in a fixed (inertial) coordinate
frame, ω i is the angular velocity, mi is the element mass, Ji is the element moment of
inertia, Fi is the vector of resultant forces, and Ti is the vector of resultant moments
about the element central axes. Equations of motion (13)-(14) are integrated in time
using the central difference scheme.

Vectors Fi and Ti are sums of all forces and moments applied to the i-th element
due to external load, Fext and Text, contact interactions with neighbouring spheres and
other obstacles Fcont and Tcont, as well as forces and moments resulting from external
damping in the system, Fdamp and Tdamp, respectively, which can be written as

Fi = Fext
i +

nc
i

∑
j=1

Fcont
i j +Fdamp

i (15)

Ti = Text
i +

nc
i

∑
j=1

rc
i j×Fcont

i j +Tdamp
i (16)

where rc
i j is the vector connecting the centre of mass of the i-th element with the

contact point with the j-th element.
Similarly as in Inc. (2006), the damping terms Fdamp

i and Tdamp
i in Eqs. (15) and

(16) in the present work are of non-viscous type and are given by:

Fdamp
i =−α

t‖Fext
i +

nc
i

∑
j=1

Fcont
i j ‖

u̇i

‖u̇i‖
(17)

Tdamp
i =−α

r‖Text
i +

nc
i

∑
j=1

rc
i j×Fcont

i j ‖
ω i

‖ω i‖
(18)

where α t and αr, are respective damping factors for translational and rotational mo-
tion. The damping provides a mechanism to dissipate contact oscillations and repre-
sent properly dissipation of the real material. Effect of damping has been investigated
by Rojek et al (2013).
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10 Carlos Labra et al.

4.3 Constitutive contact models

The overall behaviour of the system is determined by the contact laws assumed for
the particle interaction. Models of contact in the discrete element method can include
force and moment interaction between particles. In the present work, however, con-
tact moments are not considered.

Formulation of the constitutive model employs the decomposition of the contact
force between two elements Fcont (In the next part of this section indices denoting
the elements will be omitted) into normal and tangential components, Fn and Ft ,
respectively:

Fcont = Fn +Ft = Fnn+Ft (19)

where n is the unit vector along the line connecting the centroids of two contacting
particles. Modelling of rock or other cohesive materials requires contact models with
cohesion allowing tensile interaction force between particles (Potyondy and Cundall,
2004; Choi, 1992). In the present formulation, rock materials are modelled using the
elastic-perfectly brittle model of contact interaction, in which initial bonding between
neighbouring particles is assumed. These bonds can be broken under excessive load
which allows us to simulate initiation and propagation of material fracture. Contact
laws for the normal and tangential direction in the elastic-perfectly brittle model have
been investigated by Labra (2012).

When two particles are bonded the contact forces in both normal and tangential
directions are calculated from the linear constitutive relationships:

Fn = Kn un (20)

‖Ft‖= Kt ‖ut‖ (21)

where Kn is the interface stiffness in the normal direction, ks is the interface stiffness
in the tangential direction, un is the overlap (un ≤ 0) or gap (un > 0) at the contact
point, ut is the relative displacement at the contact point in tangential direction. Con-
sistently with the sign convention for un and Eq. (20), the normal force Fn is negative
in compression and positive in tension. The particle gap/penetration un is given in
terms of the distance between the particle centroids l (also called branch length) and
their radii ri and r j

un = l− (ri + r j) (22)

and the relative tangential displacement ut is updated incrementally

ut = uold
t +∆ut (23)

where uold
t is the vector of the relative tangential displacement from the previous time

step rotated to the present contact plane and ∆ut is the incremental relative tangential
displacement

∆ut = vt∆ t (24)

with vt being the relative tangential velocity at the contact point.
Cohesive bonds are broken instantaneously when the interface strength is ex-

ceeded in the normal or tangential direction

Fn ≥ Rn (25)
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Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter 11

‖Ft‖ ≥ Rt (26)

where Rn in the interface strength in the normal direction, and Rt the interface strength
in the tangential direction. After decohesion the contact is treated assuming a standard
contact model with Coulomb friction. The normal contact force can be compressive
only (Fn ≤ 0) and the tangential contact force is limited by µ|Fn|

‖Ft‖ ≤ µ|Fn| (27)

where µ is the Coulomb friction coefficient.
Two approaches to evaluation of contact model parameters, Kt , Kn, Rt and Rn,

can be distinguished. In the first approach, the stiffness and strength parameters of
the contact model are assumed to depend on the size of contacting particles and are
evaluated locally as certain functions of contacting pair radii (Potyondy and Cundall,
2004). In the second approach, uniform microscopic properties are assumed in the
whole discrete element assembly (Kruyt and Rothenburg, 2004). The latter approach
is adopted in the present work. Numerical studies performed by Rojek et al (2012)
have shown that uniform global parameters lead to a more brittle behaviour of discrete
element models than local size dependent parameters.

4.4 Discrete/finite element method coupling

It is assumed that the DEM and FEM can be applied in different subdomains of
the same body. The DEM and FEM subdomains can overlap each other. The com-
mon part of the subdomains is the part where both discretization types are used with
gradually varying contribution of each modelling method. This allows us to avoid or
minimize unrealistic wave reflections at the interface between the DEM and FEM
subdomains. The idea of such coupling follows that used by Xiao and Belytschko
(2004) for bridging molecular dynamics with a continuous model.

The FEM subdomain is modelled using the so-called explicit dynamic formula-
tion of the FEM is used. The explicit FEM is based on the solution of discretized
equations of motion written in the current configuration in the following form:

MF üF = Fext
F −Fint

F (28)

where MF is the mass matrix, üF is the vector of nodal displacements, Fext
F and Fint

F
are the vectors of external loads and internal forces, respectively. The form of the
FEM equations (28) is similar to the DEM equations (13), which allows us to use the
same solution scheme based on the central difference time integration scheme.

The coupling of DEM and FEM subdomains is provided by additional kinematic
constraints. The discrete elements in the transitory zone are constrained by the dis-
placement field of overlapping interface finite elements. Making use of the split of
the global vector of displacements of discrete elements, uD, into the unconstrained
part, uDU , and the constrained one, uDC, uD = {rDU ,rDC}T , additional kinematic
relationships can be written jointly in the matrix notation as follows:

χ = uDC−NuF = 0 (29)
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12 Carlos Labra et al.

where N is the matrix containing adequate shape functions. Additional kinematic con-
straints (29) can be imposed by the Lagrange multiplier or penalty method. The set
of equations of motion for the coupled DEM/FEM system with the penalty coupling
is as follows


M̄F 0 0 0

0 M̄DU 0 0
0 0 M̄DC 0
0 0 0 J̄D




üF
üDU
üDC
ω̇D

=


F̄ext

F − F̄int
F +NT kχ

F̄DU
F̄DC−kχ

T̄D

 (30)

where k is the diagonal matrix containing on its diagonal the values of the discrete
penalty function, and global matrices M̄F , M̄DU , M̄DC and J̄D, and global vectors
F̄ext

F , F̄int
F , F̄DU , F̄DC and T̄D are obtained by aggregation of adequate elemental ma-

trices and vectors taking into account appropriate contributions from the discrete and
finite element parts. Equation (30) is integrated in time using the standard central
difference scheme. A detailed description of the coupled DEM/FEM formulation is
given by Rojek and Oñate (2007).

4.5 Determination of DEM parameters

The discrete element model can be regarded as a micromechanical material model,
with the contact model parameters being micromechanical parameters. Assuming ad-
equate micromechanical parameters we obtain required macroscopic rock properties.
The most important macroscopic rock properties include the Young’s modulus E,
Poisson’s coefficient ν , compressive strength σc and tensile strength σt , which will
be used for the model calibration in this work. The contact stiffness moduli, Kn and
Kt , and bond strengths, Rn and Rt , as well as the Coulomb frition coefficient µ will
be taken as the most significant micromechanical parameters influencing the macro-
scopic elastic and strength properties.

The parameter identification in the DEM is a typical inverse problem and it is
often solved by a trial-and-error method (Wang and Tonon, 2010). Simulations with
assumed model parameters are repeated until specific macroscopic properties are re-
produced with sufficient accuracy. In the present work, the micromechanical parame-
ters have been determined using the methodology based on the dimensional analysis
proposed by Huang (1999) and used later in other works, cf. (Fakhimi and Villegas,
2007; Yang et al, 2006; Rojek et al, 2011; Labra, 2012). Results of numerical simula-
tions of the standard laboratory tests for rocks, the unconfined compressive strength
(UCS) test and the Brazilian tensile strength (BTS), will allow us to establish dimen-
sionless relationships between the contact parameters and the mechanical material
properties.
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E L
Kn

= ΨE

(
Kt

Kn
,Φ

)
(31)

ν = Ψν

(
Kt

Kn
,Φ

)
(32)

σc A
Rt

= Ψc

(
Rt

Rn
,

Kt

Kn
,µ,Φ

)
(33)

σt A
Rn

= Ψt

(
Rt

Rn
,

Kt

Kn
,µ,Φ

)
(34)

where Ψ represents the dimensionless scale functions, L and A are characteristic
lengths and areas of the particle system, and Φ is a function representing the assem-
bly characterization parameters influence, as the porosity of the particle assembly e,
or the average particle radius r̄.

Employing a micromechanical analysis, cf. Kruyt and Rothenburg (2002, 2004),
equations (31)–(34), can be redefined as follows (Labra, 2012):

E r̃
Kn nc (1− e)

= Ψ̂E

(
Kt

Kn

)
(35)

ν = Ψ̂ν

(
Kt

Kn

)
(36)

σc r̃2

Rn nc (1− e)
= Ψ̂c

(
Rt

Rn
,

Kt

Kn
,µ

)
(37)

σt r̃2

Rn nc (1− e)
= Ψ̂t

(
Rt

Rn
,

Kt

Kn
,µ

)
(38)

where the influence of the assembly is considered in the dimensionless numbers by
nc as average number of contacts per particle (coordination number) and the solid
fraction (1− e). The characteristic length r̃ and area r̃2 are defined based on the
size distribution of the particle assembly and the average branch length l over all the
bonded contacts of the assembly, as

r̃ =
4r3

l2
(39)

r̃2 =
2r3

l
(40)

In order to determine the dimensionless scaling functions, a large number of nu-
merical simulations of the UCS and BTS tests have been performed for different spec-
imens. The dimensionless scaling functions obtained from these simulations which
will be later used for the estimation of the DEM parameters are presented in Figures 6
and 7. The influence of the Coulomb friction coefficient in the relationships (37) and
(38) has been neglected assuming it affects mainly a post-critical behaviour (Huang
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14 Carlos Labra et al.

and Detournay, 2008; Potyondy and Cundall, 2004). The relationships plotted in Fig.
7 have been obtained taking µ = 0.5.
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Fig. 6 Dimensionless scale functions for elastic constants.
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5 Simulation of unrelieved rock cutting

5.1 Numerical model

Simulation of the LCM unrelieved test has been performed using the model shown in
Figure 8. The disc cutter of diameter 19′′ has been considered. The geometry of the
cutting tool has been taken according to the standard constant cross section (CCS)
disc profiles used in Herrenknecht AG TBMs. The cutter disc has been discretized
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Fig. 8 Unrelieved rock specimen discretized with the coupled DEM/FEM scheme.

with 8880 triangular elements, considering a refinement in the cutter tip in order to
reproduce its curvature. It has been treated as a rigid body with all the discretizing
nodes slaved to its centre. The disc has a prescribed translational motion and can
rotate about its axis of symmetry under the action of the rolling force. A real value of
the disc moment of inertia has been used. In this way, a real kinematics and dynamics
of the disc cutters during cutting have been reproduced.

The full-scale LCM tests are performed using 1.0 m × 0.7 m × 0.7 m block rock
samples. In order to obtain results at a reasonable computational cost a smaller sample
with dimensions 0.4 m × 0.15 m × 0.4 m has been taken in the numerical model.
Numerical tests have shown that it is sufficiently large to avoid boundary effects. The
unrelieved rock sample with the adopted boundary conditions is shown in Figure 8.
The displacement of the bottom surface of the sample has been completely restricted,
while lateral surfaces have had the out-of-surface displacements restricted.

The DEM discretization has been employed in the zone of interaction with the
disc cutter in the subdomain of size 0.15 m × 0.05 m × 0.4 m, as shown in Figure 8.
The rest of the sample has been discretized with finite elements taking the 0.01 m
thick overlap zone. 4752 tetrahedral elements have been used in the FE discretization
and the DEM subdomain have been discretized with 35604 spherical particles, with
the radius range 1.4–3.9 mm. The characteristic parameters of the particle assembly
are shown in Table 1.

Table 1 Characterization of the particle assembly for the LCM test.

Parameter Value

Number of particles, Np 35604
Characteristic radius, r̃ (mm) 2.7971
Coordination number, nc 11.449
Porosity, e (%) 24.912

Mechanical properties corresponding to granitic gneiss taken from laboratory
tests (Labra et al, 2008b) are given in Table 2. The elastic constants are used in the
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16 Carlos Labra et al.

Table 2 Mechanical rock properties.

Parameter Value

Uniaxial compressive strength, σc (MPa)147.3
Brazilian tensile strength, σt (MPa) 10.2
Young modulus, E (GPa) 40.0
Poisson’s ratio, ν 0.23
Density, ρ (kg/m3) 2650

FEM subdomain. The DEM model parameters, given in Table 3, have been estimated
employing the methodology presented in Section 4.5, using the properties from Table
2 and considering the particles assembly characterization. The density of the particles

Table 3 DEM model parameters for the LCM test.

Parameter Value

Normal stiffness, kn (MN/m) 160.79
Tangential stiffness, kt (MN/m) 16.325
Normal bond strength, Rn (kN) 0.8482
Tangential bond strength, Rt (kN) 4.1759
Density, ρ (kg/m3) 3085

is calculated considering the solid fraction of the assembly, in order to preserve the
equivalent mass.

The main cutting process parameters, the velocity and penetration rates, taken
from a real TBM drive (Labra et al, 2008b), are given in Table 4. The TBM advance
per cutterhead revolution has been taken as the penetration rate and the linear velocity
of one of outer disc cutters at considered working conditions has been taken as the
cutting velocity for our simulations of the LCM test. The amount of penetration per

Table 4 Cutting process parameters.

Parameter Value

Penetration rate, p (mm/rev) 3.9
Cutting velocity, v (m/s) 2.37

revolution has been taken as the penetration depth in the LCM model. The penetration
depth in all the simulations has been defined as the indentation depth of the cutter tip
below the free undamaged surface of the rock sample. It was kept constant under
the prescribed cutting tool trajectory. In the LCM test, one of the most important
parameters is the spacing between the disc cutters (Rostami and Ozdemir, 1993). This
parameter cannot be taken into account in the unrelieved cutting. It will be included
in simulation of the relieved cutting later on.
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5.2 Numerical results

Simulation of the unrelieved cutting is shown in Figure 9. Material failure induced by
the moving disc cutter is illustrated with the damage parameter defined as the ratio of
the number of broken bonds to the initial number of cohesive bonds for each particle.
The value of the damage parameter ranges from 0 to 1, it is equal 0 for the undam-
aged material and 1 for the completely damaged one. Force-displacement curves and

Fig. 9 Simulation of the unrelieved LCM test – material damage.

corresponding average forces are plotted in Figure 10. The forces have been taken in
the range from 0.1 to 0.25 m discarding the results affected by the boundary of the
specimen. The average forces obtained in the simulation have been given in Table
5 along with available experimental data for comparison. The experimental normal

Table 5 Summary of the results for the LCM test with unrelieved specimen.

Simulation Experiment

Fn (kN) 191.1 231.8
Fr (kN) 19.6 –
Fs (kN) 0.9 –
CC 0.102 –

force has been estimated from in-situ measurements of a real TBM thrust (Labra
et al, 2008b). The in situ value of the normal force for one disc has been calculated
by dividing the total thrust force by the total number of disc cutters. In principle, the
thrust force obtained from a TBM represents the relieved cutting mode because of
interaction between cutting grooves in a TBM excavation. However, in this case the
cutter spacing was quite large so the interaction between disc cutters was small and
the conditions were close to the unrelieved cutting mode.
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Fig. 10 Cutting forces in LCM test in the unrelieved mode.

The average normal force obtained in simulation, 191.08 kN, agrees quite well
with the estimated experimental value, 231.8 kN. No comparison with the force pre-
dicted by the CSM model has been done because this model considers a spacing
between disc cutters, which requires the use of the relieved rock sample.

Using the values of the average normal and rolling forces obtained in simulation
the cutting coefficient CC is evaluated. The value of the cutting coefficient given in
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Table 5, 0.102, is in the range of the CC values expected for a hard rock (Tarkoy,
1983). Obviously, correctness of prediction of the normal forces and cutting coeffi-
cients, verifies correctness of the predicted values of the rolling forces.

Numerical model allows us to analyze stress distribution in the rock under the
forces exerted by the cutting tool. A stress concentration in the rock under the disc
can be clearly seen in Fig. 11 showing the distribution of the minimum principal
stress (σ3) in the longitudinal cross-section of the specimen. The stresses in the dis-
crete element model have been evaluated by averaging procedure over representative
volume elements taken around each particle (Rojek and Oñate, 2007).

Fig. 11 Minimum principal stress distribution in the crushed zone for the LCM test with unrelieved mate-
rial.

The information on stress distribution and evolution during cutting cannot be ob-
tained directly in laboratory tests. Stress analysis is important for investigation of the
mechanism of rock cutting and verification of the assumptions made in theoretical
models of rock cutting.

The stress concentration under the cutting tool is strictly related to the distribution
of the contact pressure. The CSM model developed by Rostami and Ozdemir (1993);
Rostami (1997) assumes nearly uniform pressure distribution in the contact zone (see
Fig. 5). Stress concentration in a small area close to the attack point observed in Fig.
11 suggests that the contact pressure cannot be uniform in the contact area. This is
confirmed in Figs. 12 showing average contact force distribution over the disc cutter.
The corresponding pressure distribution is depicted in Figure 13. The non-uniform
distribution obtained in simulations is characterized by a relatively small value (in
comparison with a peak value) of the pressure at the attack point, where the disc
cutter enters in the contact with the rock and and a very small pressure at the rear
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part of the theoretical contact area. This is contradictory to the assumptions made in
the CSM model by Rostami and Ozdemir (1993); Rostami (1997), but it agrees quite
well with the results of experimental investigations of the pressure distribution over
the cutter discs published by Rostami (2013).

Fig. 12 Average distribution of normalized forces over disc cutters in LCM test with unrelieved material.

0 β φ

Fig. 13 Estimated pressure distribution over disc cutter.

The force distribution plotted in Fig. 13 allows us to estimate the angle β de-
termined by the direction of the resultant interaction force. The β angle and cutting
coefficient (CC) obtained in the simulation are compared with the respective values
predicted by the CSM model in Table 6. The theoretical values of the angle β ac-
cording the CSM model have been calculated as proposed by Gertsch et al (2007);
Rostami (2008) It can be noted that the values of the angle β and cutting coefficient
(CC) obtained in the simulation are very close to those estimated by the CSM model.

Table 6 Comparison of angle β and cutting coefficient (CC) in the unrelieved LCM test.

CSM model Simulation

β (deg) 5.158 5.859
CC 0.09027 0.10262
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5.3 Sensitivity analysis of unrelieved cutting

Influence of various parameters on the the performance of the rock cutting process
has been analyzed. Sensitivity of the results to changes of process and design param-
eters is very important for an optimization of the process. Two different categories
of the parameters involved in the rock cutting process can be distinguished. The first
category is related to the mechanical properties of the rock specimen. Most of the
studies reveal that the most relevant mechanical properties of the rock are the com-
pressive and tensile strengths. The elastic constants of the rock are not considered
important for the estimation of the cutting forces, and are not analyzed in this section.
The second category involves the geometric settings of the cutting process. Here, we
can include the profile of the disc cutter, the spacing between discs and penetration.
Sensitivity analysis of unrelieved cutting has been performed for the uniaxial com-
pressive strength, cutting velocity and penetration depth. The effect of disc spacing
will be analysed later for relieved cutting.

5.3.1 Effect of the uniaxial compressive strength

Compressive strength of the rock material is one of the most significant mechanical
parameters for the performance of the cutting process. Figure 14 shows the relation-
ship between the average normal and rolling forces and the uniaxial compressive
strength obtained in numerical simulations. The trend line shows a linear increase of

0

50

100

150

200

250

300

350

0 50 100 150 200

N
or

m
al

Fo
rc

e
[k

N
]

UCS [MPa]

0

5

10

15

20

25

30

35

0 50 100 150 200

R
ol

lin
g

Fo
rc

e
[k

N
]

UCS [MPa]

Fig. 14 Normal and rolling forces with different values of UCS in LCM test with unrelieved material.

the forces with the growth of the compressive strength. In the simulation, values of
the UCS are estimated using the dimensionless scale functions (Eqs. 37 and 38), as-
suming a constant ratio between the compressive and tensile strength ξ = σc/σt . The
linear force-strength relationship is also predicted by the CSM model. Introducing
the strength ratio ξ = σc/σt into Eq. (3) we obtain

Po =C σc 3

√
s

ξ φ
√

RT
(41)
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Keeping the ratio ξ and other parameters in Eq. (15) constant we have the linear
dependence of the pressure and resulting forces on the compressive strength.
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Fig. 15 Cutting coefficient for different values of UCS in LCM test, with unrelieved material.

Figure 15 shows the effect of the compressive strength on the value of the cutting
coefficient. In contradiction to the CSM and other theoretical models in the literature,
which relate the cutting coefficient with geometric parameters, such as the penetration
and disc cutter radius, Figure 15 shows a linear relationship between the compressive
strength and the cutting coefficient.

5.3.2 Effect of the penetration depth

The penetration depth, or penetration rate, is one of the most important geometric pa-
rameters, together with the disc spacing, that affect the performance of the TBM, as
it is directly related with the advance rate of the TBM cutterhead. All the theoretical
models employ this parameter in evaluation of cutting forces as well as in estima-
tion of the volume of rock material excavated and amount of energy required for the
excavation process.

The results plotted in Figure 16 show the influence of the penetration depth on
the normal and rolling forces for the disc cutter of diameter 19′′ in both materials.
When the penetration depth increases, the normal and rolling forces also increase.
The influence of the penetration depth can be clearly seen in the value of the rolling
force, that is directly related to the energy required in the cutting process.

Figure 17 shows the comparison of the cutting coefficient obtained in the simu-
lations and estimated by the CSM model as functions of the penetration depth. Es-
timation of the cutting coefficient in the CSM model is based on purely geometric
criteria (see Eq. (5)), while the numerical results indicate a certain influence of mate-
rial properties.
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Fig. 16 Normal and rolling forces for different penetration depths in unrelieved LCM test.
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Fig. 17 Comparison of simulated and theoretical cutting coefficient as functions of the penetration depth
in the unrelieved LCM test.

6 Simulation of relieved rock cutting

6.1 Numerical model

All the results presented until now have been obtained for unrelieved cutting con-
ditions. Rock cutting with disc cutters mounted in a TBM cutterhead is performed
mainly in relieved cutting conditions influenced by the previous passes of disc cut-
ters. Interaction of adjacent cutting paths affects directly the chip formation (Fig-
ure 18) and ensures an efficient cutting performance, therefore an optimum spacing
between disc cutters is one of the most important parameters in the design of TBMs
for hard rock conditions. The optimum spacing between adjacent cutting trajectories
for a given penetration of cutters can be determined by minimization of the energy
required for the chip formation.
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Chip formation

p

s

Crushed zone

Fig. 18 Influence of cutters spacing in fracture path.

The geometry used to analyze relieved cutting is shown in Figure 19. The size of
the specimen is similar to that of the unrelieved specimen shown in Figure 8. A larger
DEM subdomain has been used in order to reproduce the spacing up to 0.13 m. The

0.40
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p
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15
-p

l
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0.23

Fig. 19 Geometric description of the DEM and FEM subdomains in relieved rock specimens for the LCM
test (m).

parameter l in Figure 19 changes depending on the spacing between the disc cutter
and the previous pass in order to maintain a sufficient distance between the disc cutter
and the DEM/FEM coupling interface. Two different specimens, for penetration of 4
mm and 8 mm, have been generated. The DEM subdomains have been discretized
with 51668 and 50714 particles, respectively. The main parameters characterizing
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the particles assemblies are summarized in Table 7. The DEM parameters for the
new rock specimens are summarized in Table 8.

Table 7 Characterization of the particles assemblies for relieved rock specimens.

Penetration
Parameter 4 mm 8 mm

Np Number of particles 51668 50714
r̃ Characteristic radius (mm) 3.0039 2.9992
nc Coordination number 9.0635 9.1028
e Porosity (%) 22.647 22.821

Table 8 DEM model parameters for LCM test with relieved rock specimens.

Penetration
Parameter 4 mm 8 mm

Normal stiffness, kn (MN/m) 160.79 160.79
Tangential stiffness, kt (MN/m) 16.325 16.325
Normal bond strength, Rn (kN) 0.4642 0.4640
Tangential bond strength, Rt (kN) 4.1779 4.1761
Density, ρ (kg/m3) 3085 3085

6.2 Numerical results

Figure 20 shows normal and rolling forces for for penetration depth of 4 mm and
8 mm in the relieved LCM test as functions of spacing. Results of the numerical
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Fig. 20 Normal and rolling forces for different penetration in the relieved LCM test as functions of spac-
ing.
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simulations have been compared with the predictions of the CSM model. The normal
forces obtained in the simulation are slightly higher than those evaluated using the
CSM model for both cases of penetration. So are the numerical rolling forces higher
than the theoretical predictions although in this case the difference is smaller.

Numerical and theoretical values of the cutting coefficient are presented in Fig-
ure 21 as functions of disc spacing for penetration depth of 4 mm and 8 mm. Numer-
ical results confirm the cutting coefficient is independent of the spacing as it is pos-
tulated by the CSM model. The cutting coefficients estimated with the CSM model
are higher than those computed in the simulations. A higher difference between the
numerical and theoretical values can be seen for the lower penetration. Similarly, the
difference between the numerical and theoretical values of the β angle is higher for
the lower penetration. The theoretical and numerical values of the cutting coefficient
and angle β spacing of 80 mm are given in Table 9.
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Fig. 21 Cutting coefficient for different penetrations in the relieved LCM test as a function of spacing.

Table 9 Comparison of the angle β and cutting coefficient in the relieved LCM test for spacing of 80 mm.

CSM model Simulation
4 mm 8 mm 4 mm 8 mm

β (deg) 5.224 7.397 5.240 6.826
CC 0.0914 0.1298 0.0917 0.1197

The present model and the CSM models are different in nature, i.e. one is mi-
cromechanical and the other empirical, so the differences in their predictions have
different sources. Some differences between the CSM model and the simulations can
be explained by simplified assumption for the pressure distribution made in the CSM
model. Similarly as in case of the unrelieved rock cutting, the distribution of pres-
sure over the disc cutter obtained in numerical simulation differs from the uniform
pressure distribution assumed in the CSM model. Non-uniform distributions of the
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interaction forces over the disc cutters for both penetration cases are presented in
Figure 22, for the spacing of 80 mm.

(a) p = 4 mm

(b) p = 8 mm

Fig. 22 Average distribution of normalized forces over disc cutters in LCM test with relieved material and
spacing of 80 mm.

Having determined the rolling force Fr for the given penetration depth p and disc
cutters spacing s, the specific energy SE can be calculated from Eq. (10). The specific
energy as a function of the spacing/penetration ratio is plotted in Figure 23. The spe-
cific energy computed in simulation of relieved cutting is compared in this figure with
the specific energy estimated by the CSM model for different values of penetration
and spacing. A good correlation between the CSM model and the simulation results
has been obtained.

The specific energy estimated in simulations agrees quite well with field data
reported in literature. Bilgin et al (2014) report the field specific energy for the
Kadikoy–Kartal Metro where the mean compressive strength of excavated rocks was
50 MPa. The field specific energy varied in the range 7–18 kWh/m3 depending on the
penetration rate. These values are slightly below the values given in Figure 23, but
this is understandable since the compressive strength in our case was higher (147.3
MPa). The field specific energy reported also by Bilgin et al (2014) for the Beykoz
tunnel excavated in rocks with higher compressive strength (100 MPa) varies from 5
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Fig. 23 Specific energy vs. spacing/penetration ratio in the relieved LCM test.

to 27 kWh/m3. The field data show that the numerical simulations gives reasonable
predictions of the specific energy. This is an important result of our simulations since
confirms a good performance of the model and its potential utility in real applications.

7 Conclusions

Numerical tests have demonstrated a good performance of the coupled discrete/finite
element model of rock cutting. A good agreement of numerical results with exper-
imental measurements and theoretical predictions has been found. Main parameters
characterizing rock cutting with a TBM disc cutters such as cutting and rolling forces,
cutting coefficient and specific energy have been estimated correctly in numerical
simulations.

The numerical model is capable to represent properly complexity of rock cutting
with TBM disc cutters. The numerical simulation can provide valuable information
about the cutting phenomenon such as stress distribution in the rock and contact pres-
sure distribution at the tool-rock interaction area. Numerical results have confirmed a
nonuniform contact pressure distribution revealed in experimental investigations and
shown that a uniform pressure distribution in theoretical models is a simplified as-
sumption. The numerical model has provided a new insight into the cutting process
enabling us to understand better rock cutting mechanism.

Sensitivity analysis of rock cutting performed for different parameters including
disc geometry, cutting velocity, disc penetration and spacing has shown that the pre-
sented numerical model is a suitable tool for the design and optimization of rock
cutting process.
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