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ABSTRACT 
 
This paper presents part of the work done within the 
project ‘Advanced Numerical Simulation and 
Performance Evaluation of WAM-V ® in Spray 
Generating Conditions’ developed by the 
International Center for Numerical Methods in 
Engineering (CIMNE) under Navy Grant N62909-12-
1-7101 issued by the Office of Naval Research 
Global. 

One of the primary goals of that project was 
the development of a computational model for 
simulation of the Wave Adaptive Modular Vessel 
(WAM-V®) under spray generating conditions.  

For this purpose, a Semi-Lagrangian Particle 
Finite Element Method (SL-PFEM) has been applied. 
This is the latest development within the framework 
of the so-called Particle Finite Element Method 
(PFEM), using the X-IVAS (eXplicit Integration 
along the Velocity and Acceleration Streamlines) 
scheme.  

In this paper we demonstrate the 
applicability of the SL-PFEM using the X-IVAS 
scheme for the simulation of the Wave Adaptive 
Modular Vehicle under spray generating conditions. 
 
INTRODUCTION  

A Wave Adaptive Modular Vessel (WAM-
V®) is a new class of ship that uses inflatable flexible 
hulls to conform to the surface of the water. It is 
similar in design to a catamaran, in that it has a twin 
hull design and no keel. However, the superstructure 
is not rigidly attached to the hulls; it uses shock 
absorbers and ball joints to articulate the vessel, 
which allows WAM-V to conform to the surface of 
the water while mitigating the stresses transmitted to 
the structure. Moreover, the inflatable hulls help to 
absorb the high frequency wave-loads. These features 
allow WAM-V to travel efficiently with low wave 
resistance in rough seas, by surfing on top of the 
waves rather than cut through them. 

 

The objective of the WAM-V is to be a 
lightweight watercraft capable of moving fast and 
efficiently on the surface of the sea. WAM-Vs are 
designed to allow for a variety of applications for 
either manned or unmanned operations and can be 
built in different lengths to match specific services. 

 
This paper presents part of the work done in 

the project ‘Advanced Numerical Simulation and 
Performance Evaluation of WAM-V ® in Spray 
Generating Conditions’ developed by the 
International Center for Numerical Methods in 
Engineering (CIMNE) under Navy Grant N62909-12-
1-7101 issued by the Office of Naval Research 
Global. The scope of that project included the 
performance analysis of the WAM-V in waves, 
taking into account the flexibility of the ship hulls, 
using fluid-structure interaction computational 
models (see Figure 1). However, the focus of this 
paper is one of the primary concerns of that project; 
the development of a computational model for 
simulation of the WAM-V under spray generating 
conditions. In this regards, the final goal was to 
develop and demonstrate a computational engineering 
solver that could be used to design strategies to 
reduce the spray generation of the vessel. 
 
 

  
Figure 1. Snapshot of a fluid-structure interaction analysis 

of the WAM-V in irregular sea (colormap shows free 
surface elevation). 



 

When the rest of the components of drag are 
significantly reduced, the viscous components and 
any other source of energy dissipation induced by the 
movement of the vessel, become increasingly 
important. Because of the inflatable nature of the 
hulls of the WAM-V, there is little room for 
hydrodynamic shape optimization. Furthermore, as a 
consequence of the shape of the hulls, it is likely that 
they will generate spray when touching the sea 
surface. Therefore, spray might become an important 
source of energy dissipation in these little optimized 
hull shapes. In addition, excessive spray generation 
can increase the difficulties associated with operating 
the ship in certain cases (e.g. the possibility of the 
spray reaching the deck of the craft is a design issue 
depending on the particular operations the vessel is 
set to perform). 
 

Therefore it becomes obvious the need to 
characterize and reduce the spray generation, in order 
to increase the range of operation of this class of 
vessels. Furthermore, there is a need to understand 
the dynamics of the vessel and the hulls in different 
sea states and the generation of spray when sailing in 
a seaway. 
 

The Particle Finite Element Method (PFEM, 
Idelsohn et al., 2004) is a versatile framework for the 
analysis of fluid-structure interaction problems. The 
PFEM combines Lagrangian particle-based 
techniques with the advantage of the integral 
formulation of the Finite Element Method (FEM). 
It has been shown (Idelsohn et al., 2004; Becker, 
2015) to successfully simulate a wide variety of 
complex engineering problems, e.g. free-
surface/multi-fluid flows with violent interface 
motions, multi-fluid mixing and buoyancy-driven 
segregation problems etc.  

The latest development within the 
framework of the PFEM is the X-IVAS (eXplicit 
Integration along the Velocity and Acceleration 
Streamlines) scheme (Idelsohn et al., 2012). It is a 
semi-implicit scheme built over a Semi-Lagrangian 
(SL) formulation of the PFEM.  
 
 In this paper we present the application of the 
SL-PFEM using the X-IVAS scheme for the 
simulation of the Wave Adaptive Modular Vehicle 
under spray generating conditions. 
 
SEMI-LAGRANGIAN PARTICLE FINITE 
ELEMENT METHOD  
Notation: Vectors are written using bold italic font 
and matrices are written using bold upright font. 
 

The independent variables in Lagrangian 
kinematics are {ߣ,  represents a label to ߣ where ,{ݐ
identify particles and ݐ represents the time elapsed 
after labeling. 
 The primary dependent variable is the fluid 
particle trajectory denoted as ߣ)ࢄ,  The .(ݐ
independent variables in Eulerian kinematics are (࢞,  where ࢞ denotes the spatial coordinates. The ,(ݐ
primary dependent variable is the fluid velocity ࢛(࢞,  .(ݐ

Consider the Eulerian description of the 
incompressible Navier-Stokes equations. 
 
 
߲௧࢛ + (࢛ ∙ ࢛(ߘ − ࢛∆ߥ + (ߩ/݌)ߘ =f (1) 
∇ ∙ ࢛ = 0 (2) 
 
 
where ߥ is the kinematic viscosity and ݌(࢞, ,࢞)ࢌ ,(ݐ  (ݐ
are the pressure and the external acceleration fields, 
respectively.  

The effective acceleration field ࢇ(࢞,  in the (ݐ
fluid domain is obtained from the momentum balance 
equation of the flow. 
 
 
ࢇ = ߲௧࢛ + (࢛ ∙ ࢛(ߘ = ࢛∆ߥ − ߘ ቀ௣

ఘቁ +f (3) 
 
 

Note that the functional dependence on the 
independent variables is suppressed in equations (1), 
(2) and (3) for brevity. 

The fundamental principle of kinematics 
relates the Eulerian description of the flow with the 
Lagrangian description as follows. 
 
 
,ߣ)ࢁ :(ݐ = ,ߣ)ࢄ݀ (ݐ

ݐ݀ = ,ߣ)ࢄ)࢛ ,(ݐ  (4) (ݐ
,ߣ)ࢁ݀ (ݐ

ݐ݀ = ݀ଶߣ)ࢄ, (ݐ
ଶݐ݀ = ,ߣ)ࢄ)ࢇ ,(ݐ  (5) (ݐ

 
 

The basic idea of the X-IVAS scheme is to 
update the fluid particle position and velocity within a 
time-step ݐ௡  ≤ ≥ ݐ  ௡ାଵ usingݐ 
 
 
,ߣ)௛ࢄ݀ (ݐ

ݐ݀ = ࢛௛൫ߣ)ࢎࢄ, ,(ݐ ௡൯ݐ = ,ߣ)௛ࢄ ۯ (ݐ +  (6) ࢈
,ߣ)௛ࢁ݀ (ݐ

ݐ݀ = ,ߣ)௛ࢄ)௛ࢇ ,(ݐ (௡ݐ = ,ߣ)௛ࢄ ۱ (ݐ +  (7) ࢊ
 
 



 

where ࢛௛(࢞, ,࢞)௛ࢇ and (ݐ  denote spatially (ݐ
continuous piecewise linear approximations of the 
velocity and acceleration defined on a background 
simplicial mesh. The matrices ۱ ,ۯ and the vectors ࢊ ,࢈ are spatially piecewise constant and depend on the 
time ݐ௡. The particle trajectory and its velocity 
computed in this manner are denoted as ߣ)ࢎࢄ,  and (ݐ
,ߣ)ࢎࢁ  .respectively ,(ݐ
 

Nielson and Jung (1999) presented formulas 
in 2D and 3D to compute the closed-form analytical 
solution of tangent curves for piecewise linear vector 
fields defined over simplicial meshes. 
Thus, the Nielson--Jung formulas can be used to 
compute the analytical solution of (6). Idelsohn et al. 
(2012) presented a procedure to compute the 
analytical solution of (6) and (7) in 2D. However the 
Nielson--Jung formulas and the calculation procedure 
described by Idelsohn et al. to compute the analytical 
solution are not numerically stable; loss of 
significance occurs due to subtractive cancellations 
near removable singularities. Recently, Nadukandi 
(2015) presented numerically stable formulas in 2D 
and 3D for the closed-form analytical solution of (6) 
and (7). 

In the following, we briefly describe the 
algorithm to implement the SL-PFEM using the X-
IVAS scheme. 

First the Lagrangian advection of the 
particles: ߣ)ࢎࢄ, (௡ݐ ,ߣ)ࢎࢄ →   ,ߣ)ࢎࢁ ௡ାଵ) andݐ   (௡ݐ
→ ,ߣ)ࢎࢁ   ௡ାଵ) are done solving the followingݐ
equations 
 
 
,ߣ)௛ࢄ (௡ାଵݐ =

= ,ߣ)௛ࢄ (௡ݐ + න ࢛௛(ࢄ௛(ߣ, ߬), ߬݀(௡ݐ
௧೙శభ

௧೙
 

 
(8) 

 
෡ࢁ ௛(ߣ, (௡ାଵݐ = ,ߣ)௛ࢁ  (௡ݐ

ߛ− න ߘ ቆࢄ)݌௛(ߣ, ߬), (௡ݐ
ߩ ቇ ݀߬

௧೙శభ

௧೙

+ ߠ න ൫ߥ∆࢛௛(ࢄ௛(ߣ, ߬), (௡ݐ
௧೙శభ

௧೙
+ ,ߣ)௛ࢄ)௛ࢌ ߬),  ௡)൯݀߬ݐ

(9) 

 
 
where ࢁ෡௛(ߣ,  ௡ାଵ) is an estimate of the velocity ofݐ
the particle, and  ߛ, ∋ ߠ  ሾ0,1ሿ  depend on the 
integration scheme to be used.  

Then the data advected with particles is 
projected onto a background finite element (FE) 

mesh. These data include the particle velocities and 
identities (in multi-fluid flows) among other problem 
dependent information. Then, the interface between 
multiple fluids is reconstructed (Becker, 2015) on the 
FE mesh using the advected particle identities. 
Appropriate enrichments are determined (Becker, 
2015) for the pressure FE shape functions about the 
interface. The procedure to project the information 
stored in the particles uses the standard piecewise 
linear FEM shape-function,  ௫ܰ, of a simplicial mesh. 
Using the shape functions and an integer ߤ usually 
chosen from the set  {1,2,4}, the implicit 
approximation ݂௛(ݔ) of the projected variables is 
constructed from samples of the given function ݂(ݔ) 
at the data point {ܦ௜} as follows. 
 
 
,ݔ)ܹ (௜ܦ ≔ ሾ ௫ܰ(ܦ௜)ሿఓ

∑ ሾ ௫ܰ(ܦ௜)ሿఓ௜
    

݂௛(ݔ) = ෍ ,ݔ)ܹ (௜ܦ)݂(௜ܦ
௜

 (10) 

 
 

Using the particle velocities projected onto 
the FE mesh as the solution at the start of the time 
interval ݐ௡  ≤ ≥ ݐ  ௡ାଵ, the Stokes problem on theݐ 
background FE mesh is solved. Using the backward 
Euler time integration, and a fractional step method 
(García-Espinosa and Oñate, 2003), the semi-discrete 
Stokes system to be solved is 
 
 
ෝ࢛௛(࢞, (௡ାଵݐ = ℘௛ ቀࢁ෡ ௛(ߣ,  ௡ାଵ)ቁ (11)ݐ
 
Δ݌௛(࢞, (௡ାଵݐ = ߩ ߘ · ෝ࢛௛(࢞, (௡ାଵݐ

Δݐ  
ߘߩ+ ∙ ൫ߥ∆࢛௛(࢞, (௡ାଵݐ + ,࢞)௛ࢌ   ௡ାଵ)൯ݐ

,࢞)௛݌Δߛ−  (௡ݐ
ߘߩߠ− ∙ ൫ߥ∆࢛௛(࢞, (௡ݐ + ,࢞)௛ࢌ  ௡)൯ݐ

 
 

(12) 

 
࢛௛(࢞, (௡ାଵݐ − ෝ࢛௛(࢞, (௡ାଵݐ

Δݐ
= ߘ− ቆ݌௛(࢞, (௡ାଵݐ

ߩ ቇ
+ ൫ߥ∆࢛௛(࢞, (௡ାଵݐ + ,࢞)௛ࢌ ௡ାଵ)൯ݐ
− ߘߛ ቆ݌௛(࢞, (௡ݐ

ߩ ቇ
− ,࢞)௛࢛∆ߥ൫ߠ (௡ݐ + ,࢞)௛ࢌ  ௡)൯ݐ

 
 
 
 

(13) 

 
 
where ℘௛ is a projection operator from the particles 
to the FE mesh, as defined in eq. (10). 



 

We refer to earlier papers (Idelsohn, 2013, 
2012, 2015) on the SL-PFEM for several alternate 
time integration strategies for the Stokes system to be 
solved on the background mesh. 

Finally the particle velocities are updated by 
the increment ܝ୦(ܠ, t୬ାଵ) − ,ܠ)ෝ୦ܝ t୬ାଵ) evaluated at 
the particle positions. 
 
 
,ߣ)௛ࢁ (௡ାଵݐ

= ,ߣ)෡௛ࢁ (௡ݐ + ࢛௛(ࢄ௛(ߣ, ,(௡ାଵݐ (௡ାଵݐ
− ෝ࢛௛(ࢄ௛(ߣ, ,(௡ାଵݐ  (௡ାଵݐ

(14) 
 
 
MODELING OF SPRAY GENERATION  
Two main reasons justify the relevance of the spray 
generation phenomenon for the WAM-V craft. First, 
spray might become a relevant source of energy 
dissipation in the little optimized hull shapes of the 
craft. Second, excessive spray generation can increase 
the difficulties associated with operating the ship in 
certain cases. 
 

As can be seen in Figure 2, spray generation 
in the current 33 feet WAM-V design is massive in 
certain conditions. Furthermore, the tubular shape of 
the hulls does not help to deflect the spray that can 
easily reach the deck, and therefore deflectors have to 
be installed. 
 
 

  
Figure 2. Spray generated by the WAM-V hull at 21 knots 

(Peterson, 2014)  
 

As presented above, in the developed model, 
the fluid data at any given time is available as discrete 
samples at the spatial locations occupied by the 
particles. At any particular instant of time, all 
elements of the auxiliary background mesh are 
labeled as water-element, air-element or interface-
element. Each particle has an identity which is either 
air (label: +1) or water (label: −1). Within each 
element and for a given time-step, the particles 

transfer their identities to the element nodes using 
equations (10). After the assembly of the identities, 
each node has a value between −1 and +1. Then, a 
continuous piecewise linear approximation of the 
otherwise discrete identity data is obtained on the 
background mesh. The water-air interface is defined 
as the piecewise planar surface where the aforesaid 
approximate identity takes a value 0. 
 

In due course, situations may arise where we 
will find water particles on the air-side of the 
interface. These particles compose the spray 
generated in the simulations (see Figure 3). Should 
the pockets of water particles be large enough then it 
creates a situation where there are one or more water-
elements surrounded by air-elements. These islands 
of water-elements are seen as water splash in the 
simulations which represent violent separation and/or 
merger of the interface. Naturally, such representation 
of water spray and its intensity depends on the 
number of particles chosen in the simulation. 
Nevertheless, the number of particles that compose 
the spray is not a representation of the mass of water 
in the spray. Recall that particles represent material 
points that carry with them only the intrinsic 
properties of the flow. So a smaller number of 
particles just mean that the spray representation is 
sampled at a coarser level of detail.  
 
 

  
Figure 3. Particles that compose the spray in an air-

element. The water particles are shown as blue circles; the 
air particles are seen as white circles.  

 
It is important to emphasize that other 

possible physical conditions which may generate 
spray are not considered in our model. For instance, 
the viscous action of air motion may separate water 
particles from the interface or decompose existing 
water splash into water spray. Additionally, this 



 

phenomenon can happen at multiple scales wherein 
entities which can be classified as water spray at a 
coarse scale may be classified as water splash at a 
fine scale (which in turn can be decomposed into 
spray). This cascade will continue
tension forces comes to prominence and protect the 
integrity of the water droplets. Reproducing such 
physical conditions is out of the scope of
 
ANALYSIS OF THE WAM-V USING THE SL
PFEM  
As stated above, one of the primary concern
project is the simulation of the WAM
generating conditions. This section presents 
application example of the SL
including the modelling of the spray generation
WAM-V craft, following the procedure presented in 
the previous sections. In order to reduce the 
computational effort required, only a symmetric 
configuration (with forward monochromatic seas) has 
been studied. Therefore, we just simulate the action of 
only one hull of the craft, neglecting the possible 
interaction of the deck. Anyhow, these simulations 
will allow us to obtain a qualitative 
the physical conditions leading to spray generation.
 
 

 Figure 4. The domain dimensions, location of the hull and 
the waterline  

 
The problem domain is a 3D box with 

straight walls (see Figure 4). The domain dimensions 
are: 9m along the x-axis, 3m along the y
along the z-axis. The coordinates 
(9.0,3.0,1.0) represent two diagonally opposite 
corners of the domain. The face with coordinates
(0.0,0.0,-1.0), (9.0,0.0,-1.0), (9.0,0.0,1.0) and 
(0.0,0.0,1.0) represents the plane of symmetry of the 
WAM-V. The CAD geometry of the problem domain 
is obtained by subtracting the volume occupied by the 
catamaran-type hull of the WAM-V from the volume 
of the containing 3D box. The geometry of the hull 
used in the simulations corresponds to 

phenomenon can happen at multiple scales wherein 
entities which can be classified as water spray at a 
coarse scale may be classified as water splash at a 
fine scale (which in turn can be decomposed into 
spray). This cascade will continue until surface 
tension forces comes to prominence and protect the 
integrity of the water droplets. Reproducing such 
physical conditions is out of the scope of this work. 

V USING THE SL-

primary concerns of this 
project is the simulation of the WAM-V under spray 

This section presents an 
of the SL-PFEM solver, 

including the modelling of the spray generation of the 
following the procedure presented in 

the previous sections. In order to reduce the 
computational effort required, only a symmetric 
configuration (with forward monochromatic seas) has 
been studied. Therefore, we just simulate the action of 

the craft, neglecting the possible 
interaction of the deck. Anyhow, these simulations 

a qualitative understanding of 
the physical conditions leading to spray generation. 

 
The domain dimensions, location of the hull and 

The problem domain is a 3D box with 
). The domain dimensions 
m along the y-axis and 2m 

 (0.0,0.0,-1.0) and 
represent two diagonally opposite 

corners of the domain. The face with coordinates 
1.0), (9.0,0.0,1.0) and 

represents the plane of symmetry of the 
V. The CAD geometry of the problem domain 

btained by subtracting the volume occupied by the 
V from the volume 

of the containing 3D box. The geometry of the hull 
in the simulations corresponds to the 14 feet 

(4.27 meters) USV configuration of the 
draft of the hull, i.e. the displacement below the 
steady waterline is taken as

 
The domain is discretized by a mesh of 3,080,211 three-node tetrahedral elements. On an 

average twenty particles (material points that 
transport intrinsic properties of the fluid) per element 
were used in the CFD simulations
approximately 60 million particles
 

The auxiliary background mesh is deformed 
every time step such that its internal boundary always 
conforms to that of the WAM
deformation scheme used is based on a Laplacian 
solver which is commonly used in the implementation 
of the Arbitrary Lagrangian
(Oñate et al., 2004). This enables us to impose the no
slip velocity boundary conditions at the interna
boundary in a straight-forward manner.
 

Since the interest of this study is focused on 
the near field, the solution scheme used in this case 
assumes a flat incident free surface 
the water wave motion is generated by imposing the 
solution of a first-order Stokes wave in a narrow strip 
of water at the inlet and on the walls of the outlet. The 
analytical solution of the first
here is given by 
 
 
ܽ = 0.05 m, ݇ = ߨ4

3 ,  
݃ = 9.8 m/sଶ, ߱ = ඥ
,ݔ)ݑ ,ݕ (ݐ == ܽ exp(݇ݖ) cos(݇(ݔ)ݒݔ, ,ݕ (ݐ = ܽ exp(݇ݖ) sin(
 
 
where ܽ is the amplitude of the wave, 
wavenumber, ݃ is the acceleration due to gravity and ߱ is the angular frequency. Further 
with which the WAM-V moves relative to water and ݔ)ݑ, ,ݕ ,(ݐ ,ݔ)ݒ ,ݕ  represent the spatial velocity (ݐ
components of the water in an inertial reference frame 
that moves with the WAM
inlet where the wave velocity is imposed has a 
of 0.2m. This periodic velocity condition causes a 
disturbance which is propagated in the rest of the 
domain and whose motion is governed by the Navier
Stokes equations. In this case, only the near field of 
the problem is analyzed, and therefore the 
formulation of the fluid dynamics solver 
diffraction-radiation splitting formulation) has been 
used.  
 

configuration of the WAM-V. The 
draft of the hull, i.e. the displacement below the 
steady waterline is taken as 4 inches. 

The domain is discretized by a mesh of 
node tetrahedral elements. On an 

average twenty particles (material points that 
rties of the fluid) per element 

were used in the CFD simulations, resulting in 
approximately 60 million particles.  

The auxiliary background mesh is deformed 
every time step such that its internal boundary always 
conforms to that of the WAM-V hull. The mesh 
deformation scheme used is based on a Laplacian 
solver which is commonly used in the implementation 
of the Arbitrary Lagrangian–Eulerian formulations 

. This enables us to impose the no-
slip velocity boundary conditions at the internal 

forward manner. 
Since the interest of this study is focused on 

the near field, the solution scheme used in this case 
assumes a flat incident free surface field. Therefore, 

ater wave motion is generated by imposing the 
order Stokes wave in a narrow strip 

of water at the inlet and on the walls of the outlet. The 
analytical solution of the first-order Stokes wave used 

  
ඥ݃݇ 

( ݔ) − (ݐܷ − (ݐ߱ + ݔ)݇) ܷ − (ݐܷ −  (ݐ߱

(15) 

is the amplitude of the wave, ݇ is the angular 
is the acceleration due to gravity and 

the angular frequency. Further U is the velocity 
V moves relative to water and 

represent the spatial velocity 
components of the water in an inertial reference frame 
that moves with the WAM-V. The narrow strip at the 
inlet where the wave velocity is imposed has a width 

m. This periodic velocity condition causes a 
disturbance which is propagated in the rest of the 
domain and whose motion is governed by the Navier-

In this case, only the near field of 
the problem is analyzed, and therefore the standard 

on of the fluid dynamics solver (i.e. not the 
radiation splitting formulation) has been 



 

 a. Time = 3.47s  b. Time = 3.52s 

 c. Time = 3.57s  d. Time = 3.62s 

 e. Time = 3.67s  f. Time = 3.72s 

 g. Time = 3.77s  h. Time = 3.82s 
 Figure 5. Simulation of the spray generated by the 14 ft WAM-V hull at 25 knots using the PFEM/X-IVAS method.   



 

 

 Figure 6. Details of the spray generated by the 14 ft WAM-V hull at 15 knots; YZ plane; Time = 3.66s.  

 Figure 7. Details of the spray generated by the 14 ft WAM-V hull at 20 knots; YZ plane; Time = 3.59s  

 Figure 8. Details of the spray generated by the 14 ft WAM-V hull at 25 knots; YZ plane; Time = 3.52s  



 

The total physical time of simulation was 
chosen as 4s. The time evolution was computed 
using 800 time steps of 0.005s each. 
 

The results of three representative cases are 
here presented. These correspond to three different 
speeds of the WAM-V, viz. U=15 knots, U=20 knots 
and U=25 knots, respectively.  

 
As discussed in the previous section, the 

blue isosurface drawn in the pictures corresponds to 
the piecewise planar surface where the projected 
identity of the particles on the nodes takes a value 0. 
It has to be emphasized that this projection process 
implies a relevant loss of resolution; the flow is 
actually solved with twenty particles per element (on 
average) but the blue surface is constructed only with 
the weighted values on the nodes of the linear 
elements. In the zones where the developed flow 
involves a complex mixture of air and water, the free 
surface cannot be identified. In that case, the 
calculated isosurface should be understood only as a 
reference; below that isosurface we will find water 
with a relatively small proportion of air bubbles, and 
above it, we will find an increasing presence of air. In 
particular, the isosurface shows big bulges below the 
hull that should not be understood as air pockets, but 
as volumes where the air-water mixing phenomenon 
is quite complex. 

 
 

 Figure 9. XY plane view of the spray generated by the 14 ft 
WAM-V hull at 25 knots and time = 3:57 s.  

 
All the run cases took nearly 24 hours each 

to perform the computations using a workstation with 
an Intel®CoreTMi7 - 3820 CPU and 32 GB RAM. The 
computations were performed using the four 
(available) cores thanks to the parallelization 
capabilities of the implemented solver. The memory 
requirements of these simulations were nearly 17 GB 
of RAM. 
 
CONCLUSIONS  
In the different simulations of the WAM-V, we have 
seen that the semi-Lagrangian Particle Finite Element 

method can a suitable tool for the analysis of 
incompressible flows subjected to challenging 
physical conditions, e.g. violent interface motions, 
spray generating conditions, etc. 

Due to the Lagrangian treatment of the 
advective processes and the Lagrangian data storage 
strategy in the SL-PFEM, the interfaces are accurately 
tracked. 

Further, the computational task associated to 
advective transport is mutually exclusive and hence 
scalable on parallel computers. 

The paper has presented a proposal to 
represent the generation of water spray based on the 
discrepancies between the intrinsic information stored 
in the particles (which is either air or water) and the 
projected information into the mesh nodes. 
Nevertheless, the number of particles that compose 
the spray in the calculation is not a representation of 
the mass of water in the spray. However, this result 
can be an indicator of the intensity of the generated 
spray, which could be used to design and evaluate 
strategies to reduce the spray generation of the vessel. 
Reproducing the complex physics of the different 
phenomena involved in the spray generation was out 
of the scope of this work.  
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