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Abstract—The correlation of performance bottlenecks and
their associated source code has become a cornerstone of per-
formance analysis. It allows understanding why the efficiency
of an application falls behind the computer’s peak performance
and enabling optimizations on the code ultimately. To this end,
performance analysis tools collect the processor call-stack and
then combine this information with measurements to allow the
analyst comprehend the application behavior.

Some tools modify the call-stack during run-time to diminish
the collection expense but at the cost of resulting in non-portable
solutions. In this paper, we present a novel portable approach to
associate performance issues with their source code counterpart.
To address it, we capture a reduced segment of the call-stack (up
to three levels) and then process the segments using an algorithm
inspired by multi-sequence alignment techniques. The results of
our approach are easily mapped to detailed performance views,
enabling the analyst to unveil the application behavior and its
corresponding region of code. To demonstrate the usefulness of
our approach, we have applied the algorithm to several first-
time seen in-production applications to describe them finely, and
optimize them by using tiny modifications based on the analyses.

Index Terms—performance analysis, multi-sequence align-
ment, call-stack analysis, sampling, instrumentation

I. INTRODUCTION

It is widely accepted that the applications’ performance only
reach a fraction of the supercomputers’ peak performance.
Should anybody recognize the performance flaws and their
causes in a piece of software, they will realize that correlating
performance and source code is essential. The correlation is
not only necessary to understand the application behavior,
but also to reduce its execution time. This fact is becoming
more relevant as systems and applications grow in complexity.
Also, because the scenario in which analysts know little about
the applications and have to report on how to improve the
applications’ performance is becoming frequent.

Performance analysis tools such as TAU [19]], Scalasca [25]],
Vampir [14]], HPCToolkit [22] and Paraver [17], help find
out application performance flaws and their responsible code
counterpart. These tools rely on either instrumentation or
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sampling techniques to monitor the application as it pro-
gresses from one routine to the next. Instrumenting every
routine may lead to exaggerated overheads when monitoring
fine grain routines [8], [3], and so it is often required an
additional execution to blacklist from the collection the tiny
but frequently executed routines. Many tools have switched to
sampling mechanisms to reduce the overhead while capturing
information regarding the representative routines of an appli-
cation. However, reporting routines without providing their
calling context may lead to imprecise analyses [3[], [23], and
thus several performance tools gather the processor call-stack
to provide calling contexts. Capturing the complete call-stack
may be costly, and some tools have adopted ways to reduce the
monitoring overhead by modifying the call-stack at run-time
but at the cost of creating specific non-portable solutions.

We propose a novel offline mechanism that estimates the
duration of the representative routines on optimized parallel
binaries that include symbolic debug information. Our ap-
proach only grabs a small, fixed segment of the top of the call-
stack during the application execution ensuring an easy and
portable implementation. Then an algorithm inspired by Mul-
tiple Sequence Alignment (MSA) algorithms [15] processes
the collected samples to estimate the duration of the routines
and their chronological order of execution. These algorithms
infer biological sequence homology to conduct phylogenetic
analyses and study shared lineages from specimens with
common ancestors, but in this research they serve as an
inspiration to deduce the line of common call-path ancestors.
The output of this mechanism is combined afterwards with the
framework developed by Servat et al. in [L8]]. This framework
takes advantage of the repetitive nature observed in many
HPC applications to report instantaneous performance along
computing regions, but it lacks correlating the performance
with the application code.

The contributions of this paper include:

¢ a portable technique to reconstruct the call-stack from

small segments using an MSA inspired algorithm,
o a procedure to automatically estimate the most represen-
tative routines based on the call-stack reconstruction, and
o an extended framework that shows the chronological or-
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der of execution of the application source code (including
source code lines) and its node-level performance.

The remaining of this paper is organized as follows: Sec-
tion [l contextualizes our method concerning previous existing
tools. Then Section describes the MSA inspired algo-
rithm and the integration of its results into the framework
that finely describes the performance evolution of computing
regions. Section [IV|serves to validate our combined approach
by comparing the results obtained with other state-of-the-art
performance tools. We demonstrate the usability of our work
on several in-production applications in Section Finally,
Section[VI]draws the conclusions and discusses possible future
research topics.

II. RELATED WORK

Call-path profiling is a technique that is crucial to correlate
performance and its corresponding code region within the
application and consequently this topic has received much at-
tention. Here we describe the related research that collects this
information focusing on those approaches that use sampling
techniques.

gprof [10] is the de facto profiling tool, and it combines
compiler-assisted instrumentation capabilities to provide func-
tion call count and sampling to estimate the function average
duration. As a consequence of relying on instrumentation, this
tool shows significant overheads (>90%) when instrumenting
every routine in the application [8]. Although gprof provides
a call-graph representation, the time attributed to a function
is independent of the calling context. perf [4] captures the
time, the performance counters and the call-stack at sample
points so as to put the blame on application routines for the
performance bottlenecks.

Since call-stack inspection imposes certain overhead, some
tools have focused on modifying the call-stack for a more
efficient call-stack traversal. Whaley extends the execution
environment so that the frames contain a bit indicating whether
they have been unwound to save time when exploring the call-
stack [24]. The introduction of the trampolines improves the
technique by modifying the call-stack return address to call the
measurement system while employing a shadow stack to query
the call-path prefix [2]]. Tools such as Scalasca and HPCToolkit
have adopted this mechanism. For instance, Szebeny and
others use trampolines to combine sampling mechanism with
MPI activity-driven tracing in the Scalasca tool-suite [21].
With this method, they are not only able to identify previously
explored stack frames and establish their prefix, but they also
benefit from the Scalasca’s ability to configure which MPI
routines should unwind the call-stack.

The main drawback of the trampolines is that their im-
plementation is system-dependent, resulting in non-portable
solutions. Other researchers have explored alternatives that do
not modify the call-stack. For instance, ICPP [13] proposes a
technique that evaluates the top of the call-stack along with
the call-stack size. The mechanism matches the top of the call-
stack on a previously generated call-graph created in earlier
preparation runs. Perks et al. present a heuristic to predict

the overlap between consecutively collected call-stacks [16].
With such a heuristic, they estimate the similarity between
successive call-stacks, removing the need for collecting the
full call-stack.

The latter technique is somewhat similar to the work we
propose in which we approximate the duration of the relevant
routines within a parallel application by capturing a small,
fixed portion of the call-stack through statistical sampling.
Then the data is integrated into a framework that detects
repetitive code regions using minimal instrumentation (e.g.
PMPI [6]) and it later smartly combines coarse-grain sampled
with instrumented metrics to provide a detailed progression
of the performance metrics within these regions. As a result,
our approach exposes chronological execution of the routines
(a topic typically omitted in profile-based tools) and correlates
with the nature of the performance bottlenecks when collecting
few levels of the call-stack.

III. DESCRIPTION

This section describes the mechanism we have developed to
estimate the duration of the relevant routines. The mechanism
consists of two steps. The first step comprises the call-
stack collection mechanism that samples the top-most stack
frames periodically during the application run. The second step
approximates the duration of the routines from the collected
data from the collected call-stack data. Finally, we discuss
the benefits of integrating this mechanism into a previously
existing framework that reports performance metrics at every
instant during delimited computing regions.

A. Call-stack monitoring

The call-stack is a data structure maintained by the proces-
sor and updated every time the application enters (or leaves)
a subroutine by creating (or destroying) stack frames. These
frames contain information such as the arguments received,
the return address back to the routine’s caller and space for
local variables. Call-stack unwinding refers to the process of
inspecting and accessing this data structure, and allows tools to
emit relationships between callers and callees. The libunwind
library [1] is considered a standard mechanism for call-stack
traversals, due to its portability and accessible nature. Then,
this call-stack information is converted into human-readable
information that includes the routine name, its container file-
name and the source code line through the compiler debugging
information and the binutils package [7].

This step collects a fixed portion of the top of the call-
stack using sampling mechanisms to generate a sequence of
time-stamped call-stack segments. There are three reasons
for a top-down collection (as depicted in Figure [I). First,
the collected frames point to functions that are closer to
where the activity occurs, helping the tool to point out what
routines were executing during the monitoring. Second, it is
trivial to implement this collection mechanism when using the
libunwind infrastructure, which ensures the portability of this
mechanism. Finally, the collection expense becomes reduced
and constant irrespective to the call-stack depth.
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Fig. 1: Top-down selection (Ib) from a given call-stack tree
(Ta) when routine e is active.

B. Estimate the routine duration

This step is divided into two phases. The first phase searches
for common call-stack frames in the sample time-series by
aligning the frames using a process similar to MSA and
generates a matrix that represents the active routines during
the execution. The second phase filters out those routines that
are very short because they may not be meaningful for the
analysis and also because presenting many small routines may
overwhelm the tool user.

1) Call-stack alignment: Despite the benefits from collect-
ing the top of the call-stack, this approach presents difficulties
when identifying routines in the call-stack because it evolves
in conjunction with the routine entries and exits; therefore
the depth for a particular routine varies along the application
activity. Figure exemplifies this problem showing a time-
line of the captured top call-stacks related to the application
with the call-tree depicted in Figure [Ta] In Figure [2a] the first
sample (s;) has been interrupted while executing routine fy
that was invoked by f., and at the same time, f. was called by
fy. Since the depth for a particular routine (e.g. f,) varies over
samples (and time), and it might not even appear sometimes,
the call-stack analysis must be aware of this issue.

The first phase consists of reconstructing the call-stack
based from the reduced captured frames contained in the
samples by aligning the shared frames on a common symbol.
To implement it, we have developed an algorithm inspired
by MSA methods. Sequence alignment is a mechanism to
arrange sequences of biological molecules (i.e., DNA, RNA
or proteins) and identify regions of similarity between the
sequences. The simplest alignment involves a pair-wise se-
quence comparison [20], but this idea is extended to multiple
sequences, in which the mechanism searches for the best
matching on any number of sequences. The naive alignment
of n sequences of length m implies applying a pair-wise
alignment of sequences and it results in a nxm-dimensional
matrix where each row represents a sequence. Our approach
is similar to MSA but in our case the sampled call-stacks
substitute the sequences. Honoring this metaphor, Figure [2a]
represents the starting point of an alignment of six call-stack
samples. Thus, the mechanism arranges time-stamped routines

pointed by frames of the call-stack.

There is a fundamental difference comparing the two ap-
proaches when applying the pair-wise alignment: the pres-
ence of mutations. In the biology field, mutations are either
point mutations (i.e. molecules have been replaced by other
molecules) or indels (insertions or deletions of molecules
in a sequence). Our approach considers neither point nor
deletion-derived mutations because the call-stack frames are
not subject to modifications and because the instrumentation
package captures a consecutive fragment of the call-stack.
However, the approach considers inserting mutations to extend
the portion below the common call-stack between two samples
if they have a common call-stack portion. Consider samples
s1 and so from Figure in which fy and f. are common
and intuitively one can extend s, to include f;, at the bottom.
These insertions (henceforth gaps) are denoted as o(X') where
X refers to the frame to the routine X. A two-step process
implements this approach. Algorithm [I]describes the first step.
The Algorithm searches for a common routine (named pivot
hereafter) among the samples and then applies a pair-wise
alignment to consecutive samples that contain the pivot. The
second step applies a similar algorithm (not shown) to the
remaining samples not containing the pivot but at least share
one symbol with those samples containing the pivot and thus
increasing the number of used samples in the process. This
step could be repeated until no more samples are added, but
in our implementation we only execute it once.

Algorithm 1 Pseudocode for the call-stack alignment.

1: procedure CALLSTACKALIGNMENT(VS)
Require: vs: vector(Samples) sorted by timestamp
2: pivot < vs.searchMost Frequent Routine()

3: vtmps + vs.contain(pivot)
4: for i < vimps.size() do
5: c_c + vs(i).getCallstack() > Current call-stack
6: if 7+ > 1 then
7: > Previous call-stack
8: p_c < vs(i — 1).getCallstack()
9: h_cc < c_c.height(pivot)
10: h_pc < p_c.height(pivot)
11: if h_cc < h_pc then
12: gaps < {p_c.subset(h_pc — h_cc)}
13: c_c.InjectGaps(gaps)
14: mat(i) < c_c
15: else if h_cc > h_pc then
16: gaps < {c_c.subset(h_cc — h_pc)}
17: for j < i do
18: mat(j).InjectGaps(gaps)
19: end for
20: end if
21: else
22: mat(i) < c_c
23: end if
24: end for
25: return mat

26: end procedure

Figure [2] illustrates how the algorithm generates the align-
ment matrix. First, the pivot in the example is f, because
it is the most frequent routine and it serves as a reference
for the alignment. Next, the process selects the samples that
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Fig. 2: Example of alignment of a set of samples.

contain the pivot within their call-stacks (si, s, s3, S5 and
s6), and then aligns these samples. The process applies a pair-
wise align to consecutive samples and injects as many gaps
as needed to line the pivot up. Consider the alignment of
samples s; and s from Figure@ In this case, both samples
contain the pivot routine at a different depth. The pivot in
sy is above when compared to sg, so the algorithm adds a
gap at the bottom of the call-stack of sy according to the
condition in line 11 of the Algorithm (and as illustrated in
Figure 2b). When aligning s, and s3 the algorithm behaves
differently because the pivot in sg is below compared to s3. In
this case (controlled by the conditional statement in line 15),
the gaps are back-propagated to those samples that occurred
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in Figure 2¢|

h=6| - fo - - fr fe

h=5] fa fa - - fa fa

= £ £, . - £, f,

h=3

h=2

h=1| fmain  fmain  fmain  fmain ~ fmain~ fmain
S1 So S3 sy S5 S6

(b) Selection of routines of interest with a

threshold>2 samples.

Fig. 3: Post-processing the alignment samples to choose the
routines of interest.

before s3 as depicted in Figure to propagate the common
call-path. Due to space restrictions, the consecutive alignment
for samples s3 and s5, and s5 and sg is depicted in Figure@
The second step aligns the samples that do not contain the
pivot but share a symbol of the call-stack with the previously
treated samples. In the example, sample s, in Figure [2¢] has
been ignored because it does not contain the pivot, but since
its call-stack has routines in common with other processed
samples (f, and fy) it is aligned in this second step. In this
case, the call-stack data from s, shows that its bottom frame
points to the routine main, so the alignment injects a gap into
the rest of the samples.

2) Selecting representative routines: After generating the
alignment matrix, the second phase explores the matrix to
identify the representative routines. In this direction, we con-
sider the representative routines those that are closer to the
top frames that span at least for a user-given duration (either
in time or number of consecutive samples). This selection
ensures that the mechanism focuses on identifying a small
set of routines that does not overwhelm the analyst providing
lots of tiny routines that may be invoked lots of times. This
search processes the aligned call-stacks as if they were stored
in a matrix where columns refer to samples ordered by their
collection time and rows point to the depth of the call-stack
frame. The algorithm looks for the number of consecutive
frames at the lower level (h=1) that point to the same routine.
If the number of consecutive samples surpasses the given
threshold, then the process is applied recursively to the upper
level (h=h+1) within the range defined by samples that
contain the frames pointing to the same routine. For instance,
consider the matrix shown in Figure Ba which shows the results
from Figure [2¢| and apply the selection with a threshold of
two consecutive samples. The matrix analysis starts at level



h=1 and since all the samples point to the same routine in
the interval s; — s¢ and the number of samples is higher
than the threshold, the next level (h=2) explores the same
interval. Similarly, the process explores levels h=2 and h=3.
When processing the frames at h=4, the mechanism splits
the recursive analysis into two parts (one involving samples
s1-s3 and the other involving s5-s¢). The analysis finishes at
h=6, where routines f. and f; are ignored because they only
last one sample. In the end, the selected portion of the matrix
represents the active call-stacks with a particular granularity,
as well as, the top of the selection denotes the active routines.
Figure |3b| illustrates the result using a solid color and a black
line to show the selected routines and their heights.

C. Correlating source code and performance metrics

We have enhanced the framework described in [18]] with
the bio-inspired algorithm to associate the source code in-
formation to its performance. The resulting framework gen-
erates views that detail the performance progression along
computing regions, yet the framework also generates trace-
files. The computing regions can be manually delimited using
instrumentation, or automatically detected by the framework.
In the latter case, a computing region is defined as the user
code in between successive parallel programming calls (such
as MPI or OpenMP) and a clustering algorithm groups these
regions according to their performance metrics (typically the
number of instructions and the instruction rate) [9]. Then, the
framework applies a mechanism named folding that combines
coarse grain sampled and instrumented information to provide
detailed node-level performance within a computing region.
In the context of the folding process, the samples are gath-
ered into a synthetic region by preserving their relative time
within their original region so that the sampled information
determines how the performance evolves within the region.
Consequently, the folded samples represent the progression in
shorter periods of time no matter the sampling frequency.

The combination benefits both parts creating synergies
between them. First, the selection of the pivot directly in-
fluences the results because it determines which samples are
aligned and which are ignored. This fact becomes critical in
applications that progress through many routines and share a
few calling routines in the captured samples. In this sense, it
is advantageous to apply the alignment to code regions with
similar performance characteristics because they are likely to
refer to the same code and help to identify the call-stacks.
Second, the monitoring period also affects the results because
the lower sampling rate, the lesser call-stack activity captured
and the call-stacks captured may differ substantially. In this
direction, the folding mechanism ensures that the aligned
samples refer to adjacent code references and consequently
adding the minimum gaps. Finally, the framework gains the
ability to depict the instantaneous progression of the source
code in conjunction with the node-level performance. This
progression does not only cover the temporal progression of
different routines, but also the source code line progression
within them.
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Fig. 4: Source code references and performance metrics col-
located for the MPI version of the NAS bt.A benchmark
executed with one process.

1) Practical example: We use the parallel MPI NAS bt.A
benchmark to exemplify the usage of the framework. The
application has been executed in an Intel Xeon E5-2670
processor and sampled three levels of the call-stack and
performance counters at 20 Hz. Despite the benchmark is
parallel, and the clustering tool can identify computing regions
in between MPI calls, we opt to instrument manually the main
loop (the adi routine) for clarification purposes so that the
folding results represents the whole iteration.

Figure [4] shows the results for the complete framework. The
plot contains two subplots representing the progression along
the instrumented region for the routines and a profile of source
code lines (at the top), and the node-level performance metrics
(at the bottom). That is, the X-axis refers to the time since
the start of the delimited region (adi) until the region ends.
Both plots share a distinctive background color according to
the active routine. Due to plot rendering limitations, the short
routines (as in the transition from s3 to s4 in Figure are
depicted with a white background, yet they can be analyzed
using the trace-file. Similarly for size rendering limitations,
the plot at the top displays the name of the active routines
and up to two calling ancestors (in the form of X >Y >Z
[n], where Z is the active routine, X and Y refer to the
ancestors and n is the most observed code line within the
active routine), yet an expanded calling context could be
retrieved. For instance, the second phase (shown in green)
represents the routine x_solve_cell, which is called by
x_solve and invests most of its time on line 723. This plot
also shows pink points representing a time-based profile of
the code lines within the active routine (where the top refers
to the upper of the file that contains the routine). The solvers
(x_solve_cell) present almost a random line progression
limited to the half bottom of the plot, which indicates the
presence of a loop that covers the lower half of the file and
that spans for the whole execution of the routine. We observe
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Fig. 5: Comparison of the code attribution with other perfor-
mance tools and using different levels of call-stack unwind
when applied to different applications.

that x_solve_cell lasts less than the rest and that most
of the samples point to one line at the bottom of the source
file while other solvers have mainly sampled two lines at the
bottom of the file. Finally, routines *_backsubstitute
(depicted in white and manually labeled as A, B and C) invest
most of their time in one line, which observing the source
code corresponds to a single statement within the five-nested
loop that comprises the routines. Concerning the performance,
the black line refers to the MIPS rate and it is shown on
the right Y-axis while the remaining lines depict the ratio of
cache misses per instruction at different levels of the cache
hierarchy and are displayed on the left Y-axis. The MIPS rate
of the solvers is uniform, being higher on x_solve due to
less cache miss ratios in L.2D and Last-Level Cache (LLC).
This behavior is the opposite on the x_backsubstitute
routines, where x_backsubstitute (A in the plot) runs
slower due to an increase in the L2D and LLC miss ratios.

IV. VALIDATION

We have evaluated whether the results provided are similar
to those obtained with other performance tools that rely on
different measurement techniques (Score-P [12] using direct
instrumentation, and gprof using compiler-based instrumen-
tation and time-based sampling running at 100 Hz). The
validation aims at detecting how the depth of the call-stack

|1hsabinit| |binvcrhs| )ZP

y-solve_cell

adi

mpbt

Fig. 6: Summarized call-graph for the NAS MPI bt benchmark.

unwound influences the results. We use the NAS MPI bt.B
benchmark and the BigDFT application and some additional
experiments indicate that their call-stacks are 6-7 and 15-20
levels deep, respectively, in most of the situations. The NAS
benchmark has been executed on a cluster based on Intel
Xeon E5-2670 processors using one process to avoid network
noise while BigDFT has been executed using 1,024 MPI
ranks in a Blue Gene/Q system. The comparison determines
the most representative routines (concerning percentage of
time) using gprof and Score-P instrumentation. Despite Score-
P supports automatic instrumentation on the Blue Gene/Q
installation, the installation in the Intel cluster lacks such
feature. Thus in the latter system, we manually instrument
the routines identified by gprof using the Score-P’s API. The
values reported by these monitoring systems are compared to
the results of our approach when monitoring the application
using MPI instrumentation and sampling it with a coarse
frequency (25 Hz) and collected different segment lengths.
Figure [5] shows the results of the comparison on plots
that show applications routines on the X-axis and the time
attributed to each routine in the Y-axis. Notice that the call-
stack depth is expressed as X +1, meaning that the sampling
handler has unwound X frames of the call-stack and also has
emitted the interrupted PC address provided by the sampling
handler. In general, the reader may observe that the results
from our approach using depth=2+1 are similar to those
obtained by Score-P and gprof. Using a smaller value for
depth does not attribute time to some of the routines, yet
provide good approximations for many cases. For instance,
we notice in Figure 54 that our approach only provides mea-
surements for y_solve_cell and y_backsubstitute
when depth=1+1. This issue occurs because the routine
y_solve_cell becomes the pivot in the algorithm and
because of the structure of the application (depicted in Fig-
ure[6). Since our approach applies to those call-stacks contain-
ing the pivot, when depth=141 the mechanism only finds
samples containing invocations from y_solve. Then, the
second part of the algorithm (that looks for common frames)
adds y_backsubstitute to the common frames. However,
it ignores adi because the collecting mechanism has not
captured samples at y_solve (invoked from adi); thus the
mechanism does not explore the call-stacks that contain this



TABLE I: Applications analyzed

Arts_CF Nemo v3.4
# Processes 512 128
Processor type Intel®Xeon™E5-2670 at 2.60 GHz (3.30 GHz with TurboBoost)
Ay e s 338 Klines 221 Klines

564 files 484 files
Compiler Intel Compiler v14.0.2 Intel Compiler v13.0.1
Compiler flags -03 -xAVX -g -03 -g

Sampling frequency

20 Hz

routine. Similarly occurs in BigDFT when depth=1+1 which
only discloses five from the seven most representative routines.
It is also worth mentioning that BigDFT experiences sig-
nificant overheads instrumenting every routine through gprof
and Score-P because of the huge amount of visits to certain
routines, so we have used the Score-P filtering capabilities
to reduce the expense. Nonetheless, the duration reported for
the most time-consuming routines are similar comparing all
approaches. The exception is gprof when reporting the dura-
tion of convolut_kinetic_slab_sdc, which is slightly
shorter than the rest most probably due to the higher overhead
imposed during the application run.

V. EXPERIMENTAL ANALYSIS

We have evaluated the performance of two first-time seen
in-production applications to demonstrate the usefulness of
our solution. We have used the framework to analyze these
applications, including the automatic detection of the most
time-consuming computing regions delimited by consecutive
MPI calls, applying the folding mechanism, and executing the
discussed alignment algorithm. Using the enhanced framework
we are not only able to identify the nature of the performance
bottlenecks using the performance counters but also correlate
these bottlenecks with the associated code. The first appli-
cation is Arts_CF [5], which implements a variable density,
conservative and arbitrarily high order finite difference method
to simulate flows in complex geometries with cylindrical
or cartesian non-uniform meshes. The second application is
Nemo [11]; an ocean model that includes several compo-
nents besides the ocean circulation, including sea-ice and bio-
geochemistry. Table [[] contains some application characteris-
tics, their compilation flags, the execution characteristics, and
the sampling frequencies. We outline that both Arts_CF and
Nemo are large in terms of lines of code containing more
than 100K lines. They have been compiled using aggressive
compiler flags and contain debugging information so that
the binaries allow translating call-stack frame addresses into
full source code references. Concerning the monitoring, we
have captured performance measurements at MPI points and
sampled the performance counters and three frames of the
call-stack at 20 Hz (5z smaller than the gprof sampling rate,
100 Hz). Despite the monitoring captures many performance
counters using multiplexing techniques, we only report those
that are meaningful for the analysis. The metrics include, at
least: the instruction rate (depicted in black and referenced
on the right Y-axis), and the L1D, L2D, LLC miss ratios per
instruction (on different colors and shown on the left Y-axis).
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Fig. 7: Source code and performance correlated for one of the
most dominant computing regions in Arts_CF. Both time-lines
are at the same time-scale to ease the comparison.

A. Arts_CF

We focused our analysis on one of the most dominant com-
puting regions of the application according to the clustering
tool, which represented up to 17.6% of the application execu-



tion time. Figure [7a] depicts the combination of the call-stack
and performance counter results for this region. The Figure
indicates that the computing region comprises three phases
during its execution. The code line profile indicates that a small
number of lines are responsible for the performance behavior
observed. The first phase, colored in red, is mainly devoted to
line 667 within the routine scalar_weno5_ coeff, lasted
approximately 30 ms and ran at 2,600 MIPS (less than 20% of
the peak performance). The second phase, depicted in green,
ran for 26 ms at 7,300 MIPS and correlated with line 722 in
the routine scalar_weno5_residual, mostly. The last
phase, colored in yellow, executed for 3 ms while running at
4,800 MIPS, and correlated with the routine update_div.

The analysis of the performance metrics in the first phase
indicates that neither the cache hierarchy nor the branch
predictor is limiting the performance because less than 2%
of the instructions miss at L1D cache and less than 1% of
the instructions fail on the branch predictor. However, the
results point out that most of the instructions are floating-
point instructions. The analysis of the stalled cycles and their
categories (not shown due to space restrictions) indicates that
75% of the cycles stalled, and 40% of the stalled cycles are due
to lack of re-order buffer entries. As we did not have access
to the sources, we asked the developer to search for this code
region. The exploration of the code showed that line 667 was
the innermost sentence within a four-nested loop that included
a floating-point division in which the divisor was invariant.
It is well-known that floating-point divisions take longer to
complete than multiplications, so we suggested to calculate
the reciprocal of the divisor before this loop and multiply by
the reciprocal within the loop.

A similar performance analysis (not shown) was applied to
another computing region that represented an additional 18.3%
of the computation time. Approximately 80% of this comput-
ing region ran uniformly at 2,600 MIPS, and the source code
pointed to the innermost statement of the loops in lines 539,
545, 600 and 606 within the routine scalar_weno_coeff.
Since the performance symptoms were similar to those de-
tailed in the first phase of the previous region, we proposed
the same code changes to the loops pointed in this region.

We re-applied the analysis to the modified binary and the
results are depicted in Figure The duration of the first
region decreased by 17.4% because the instruction rate in
the first phase increased to 4,200 MIPS approximately. A
similar increase in the instruction rate occurred in the second
computing region explored, leading to a 28.3% of reduction
on its duration. In overall, the application execution time was
reduced by 9.0%.

B. Nemo

This analysis focuses on the most time-consuming region of
Nemo, which took approximately 14% of the total execution
time. Figure [8a] shows the combined performance and source
code reference results generated by the mechanism for this
region. The results indicate that most of the time was invested
in tra_l1df_iso and tra_zdf_imp routines (colored in
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Fig. 8: Source code and performance correlated for the most
dominant computing region in Nemo. Both time-lines are at
the same time-scale to ease the comparison.

green and blue) in lines 212 and 204, respectively. The
code line profile displays a pattern of two iterations on both
routines. With respect to tra_1df_iso, it mostly executed
a loop within lines 173-313. This loop contained a nested loop
(in lines 207-253) in which 7% of the instructions missed at
L1D cache due to the access to one 4D matrix, eleven 3D
matrices, and several 2D matrices. Regarding t ra_zdf_imp,
the source code line profile indicated that most of the computa-
tion time was invested in the loop delimited by lines 161-280.
Within this loop, there was a nested loop in lines 271-277
that achieved the worst performance (less than 1,000 MIPS)
because of the high L1D cache miss ratio (8%). The code
within this nested loop updated a 4D matrix where each
element accessed to four matrices, and one these matrices is
accessed twice in two different planes.



After analyzing the application code in
traldf_iso.f90, we found that the loops in lines
245-251 and 303-311 did a similar job: they calculated
the divergence of fluxes. These calculations accessed to
the same data structures, performed similar operations and
updated the same 4D matrix. Since these structures remained
untouched from one loop to the next, we fused them with
the aim to reduce the number of instructions executed and
improve the temporal locality of the data. The loop in lines
207-253 calculated two 2D matrices (zdkt and zdklt)
before entering into the nested loops but the loop bodies
only accessed to the elements (i,7), (i+1,7) and (4,j+1).
Therefore, we changed the code to calculate these three
elements and stored the results into scalar variables to reduce
the pressure on the cache. When exploring the results for
this modified version, shown in Figure @ we found out that
the region took 7.2% less time to execute and increased its
average instruction rate from 1,950 to 2,200 MIPS. The last
plot also unveils that the code structure in tra_ldf_iso
was different from the original version as a result from
the modifications and the ran was faster in terms of MIPS
because of the lesser L2D misses.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a mechanism that estimates the duration
of the representative routines, shows their chronological order
and displays the evolution within the source code. The mecha-
nism is inspired by MSA algorithms to align reduced segments
call-stack segments captured by a portable process that impacts
with a uniform, reduced cost during the measurement. This
mechanism has been integrated into an existing framework
allowing analysts to correlate the code and the nature of
the performance bottlenecks easily without requiring them
to know the application a priori. We have evaluated the
accuracy of the mechanism using a set of benchmarks and have
observed that collecting segments containing three call-stack
frames suffice to attribute the time spent on the most time-
consuming routines. We have also demonstrated the usefulness
of the extension by finely characterizing the performance of
the most dominant regions of two first-time seen in-production
optimized applications. While these applications are hundreds
of thousands of lines long, the characterization has pointed
us to a tiny number of lines of code and to the bottlenecks
they experience. Despite the applications had already been
compiled with aggressive optimization flags, the analyses and
simple code transformation derived from the framework results
resulted in gains up to 9.0%.

We believe that there are further research opportunities
using this framework. For instance, it could be worth to
explore the results of this extended framework to identify the
loops within the time-based profile automatically. Also, the
framework could be extended by adding expert systems that
guide non-expert users by providing insights on which code
transformations may improve the application performance.
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