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Abstract. This paper represents numerical simulation of fluid-structure interaction (FSI)
system involving an incompressible viscous fluid and a lightweight elastic structure. We follow
a semi-implicit approach in which we implicitly couple the added-mass term (pressure stress)
of the fluid to the structure, while other terms are coupled explicitly. This significantly reduces
the computational cost of the simulations while showing adequate stability. Several coupling
schemes are tested including fixed-point method with different static and dynamic relaxation,
as well as Newton-Krylov method with approximated Jacobian. Numerical tests are conducted
in the context of a biomechanical problem. Results indicate that the Newton-Krylov solver
outperforms fixed point ones while introducing more complexity to the problem due to the
evaluation of the Jacobian. Fixed-point solver with Aitken’s relaxation method also proved to
be a simple, yet efficient method for FSI simulations.

1. Introduction

Fluid-structure interaction (FSI) refers to problems that deal with mutual interaction between
fluid flow and a moving or deforming structure. Two different approaches could be taken
to solve FSI problems, namely monolithic and partitioned approaches. Monolithic methods
use a single solver to solve fluid and structural governing equations simultaneously. As the
equations are solved together, the interaction between the domains is inherently taken into
account. Partitioned methods, on the other hand, use separate solvers for fluid and structural
equations and adopt a coupling scheme to account for the interaction of the domains. The
coupling scheme determines the order and frequency in which the fluid and structural equations
should be solved. It also determines the manner of communication and information exchange
between the two solvers which is essentially restricted to the fluid-structure interface. The main
advantage of the partitioned approach over monolithic one is using the most adapted numerical
methods for each sub-problem domain which greatly increases the efficiency of the numerical
solvers and the accuracy and reliability of the results [1].

Partitioned methods are further divided into loosely coupled (or explicit) and strongly coupled
(or implicit) schemes. In loosely coupled schemes, the fluid and structural equations are solved in
sequence and only once at every time step. Explicit methods work particularly well for aeroelastic
problems or problems involving compressible viscous flow [2,3]. Solving the fluid and structural
equations only once at each time step, however, does not precisely satisfy the coupling condition
at the fluid-structure interface. This makes the loosely coupled schemes unstable for a range of
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problems especially ones with incompressible flow and high fluid/structure density ratios. It has
been shown that instability is caused by the so called added-mass effect [4, 5].

Implicit schemes, in contrast, enforce the exact coupling condition by means of iterations
between fluid and structural solvers at each time step. Jacobi and Gauss-Seidel iterations are
the most basic implicit schemes that can be combined with different relaxation methods [1, 6].
Newton and quasi-Newton methods are also widely used to carry out the coupling iterations [7—
9]. However, performing several coupling iterations at each time step significantly increases the
computational cost of the FSI simulations. Semi-implicit methods try to mitigate this problem by
splitting the fluid equations and applying implicit coupling only to the terms associated with the
added-mass effect. This modification prevents excessive computational cost while maintaining
the stability [10-12].

In this study, we follow a semi-implicit approach to solve FSI problem of an incompressible
flow inside a deformable vessel, a test case in the context of blood flow inside arteries. The specific
combination of physical parameters in this test case brings about a particularly challenging FSI
problem due to a strong added-mass effect. Using a fractional step projection method allows us
to separate the added-mass term and couple it implicitly to the structural solver. Two different
family of solvers, namely fixed-point and Newton-Krylov solvers are used to solve the resulting
interface problem. Results are represented and a comparison is made between performance of
different methods.

2. Governing equations

In this section we provide the governing equations for both sub-domains of the problem. The
fluid and structural domains will be referred to as £2f and €25 respectively. The interface of the
domains will be denoted by I'; = ¢ N €.

2.1. Fluid domain
The unsteady flow of an incompressible viscous fluid is governed by the Navier-Stokes equations.
An Arbitrary Lagrangian-Eulerian (ALE) formulation of these equations to be solved on a
moving mesh is given by:
V-u=0 (1)
ou 1
— 4+ (u—w)-Vu=-—-—Vp+rvAu 2
W) V- )
where u and p denote fluid velocity and pressure respectively, pr is the fluid density, v the
kinematic viscosity and ¢ is time. The velocity of the control volume’s faces is denoted by w.
The boundary condition for the fluid on the fluid-structure interface comes from the coupling

condition:
od

ot
with d representing the location of the interface. Appropriate boundary conditions should be
provided on the rest of the fluid boundaries.

Before fluid equations could be solved, a moving mesh technique should be used to adapt
the fluid mesh to the new location of the interface at each time step and evaluate the surface
velocities w. For the discretized equations to be conservative in time, the Space Conservation
Law (SCL) should be satisfied while evaluating the surface velocities. SCL states that the volume
swept by the surfaces of each control volume must be equal to the time rate of change of its
volume v:

u

on I} (3)

o _
ot ov

where Jv is the boundary of the control volume and A is the area vector pointing outward.

w-dA =0 (4)
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The process of moving the fluid mesh and evaluating the surface velocities at a new time step
t"*t! would be denoted by the function M:

(an+1’ Wn+1) _ M(dn+1) (5)
The complete process of solving the fluid equations would then be concisely represented as:
oi = F(d) (6)

where o stands for the fluid stress on the interface I';. Given the current location of the interface
d, the fluid solver F will adapt the fluid mesh accordingly and solve the fluid equations to obtain
the velocity and pressure fields. In particular, velocity and pressure distribution on the interface
will be used to calculate the fluid stress o, which will further be used by the structural solver.

2.2. Structural domain

The FSI problem to be considered in this work is the one of blood flow inside arteries. Thus the
structural domain to be modeled is the vascular wall. Neglecting the anisotropic behaviour of
the vascular wall and its circumferential deformation, it can be modeled by Navier’s equations
[13]:

82D, oD, Eh € 8D, D,
it~ = )=
pshgm Mot e R e TR T @
9D,  Eh £ 0D, %D,
Psh=5 _1—gﬂﬁgaz 9.2 )= )

in which d = [D,,0,D,]T is the displacements of the interface with respect to a reference state
in the cylindrical coordinate (r,6, z). Ro(z) denotes the vessel reference radius at rest, h is the
wall thickness, k is the Timoshenko shear correction factor, G the shear modulus, E the Young
modulus, ¢ the Poisson ratio and ps the density of the structure. The external force term is
represented by o; = [®1, ®2,0]7 which is a function of fluid velocity and pressure distribution
on the solid wet boundary o; = o;(u, p)r,.

In this study we will use a more simplified model for the vessel wall, assuming that the force
term o; is due to the fluid pressure only and also neglecting the longitudinal deformation of the
wall. These further assumptions (also suggested in [13] and used in [14, 15]) will reduce the wall
model into a single PDE equation given by:

0%d 0%d Eh d

L —kGho—m + —— — — 0 (9)
o2 02 1-2R}

psh
where d = [D,,0,0]” and a; = [®1,0,0]7. The structural solver then could be represented as:

d = S(oy) (10)
Given the current fluid stress on the wet boundary, the structural solver S will solve the

equation 9 to obtain the new location of the interface.

3. Semi-implicit coupling approach
Defining the fluid and structural equations concisely as equations 6 and 10, will reduce the
coupled fluid-structure system of equations into an interface problem of the form:

SoF(d) —d=0 (11)
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with d and functions F and S, all in the new time step ¢**!. In an implicit coupling approach,
equation 11 would be solved iteratively at each time step until a predefined convergence criterion
is met. In this study we will follow a semi-implicit approach which is coupling only the pressure
stress term of the fluid, implicitly to the structure, while the rest of the terms are coupled
explicitly. Pressure stress term is responsible for the added-mass effect and coupling this term
explicitly will cause numerical instability [4]. By implicitly coupling the pressure stress term,
stability problems could be alleviated while explicitly coupling the other terms would save a
significant computational cost. This idea was first proposed in [10] and later used in [11,12].

The pressure stress term is split off by using a fractional step projection method for fluid flow
equations. The method, described in detail in [16], along with an explicit time advancement
yields to a three step solution procedure for the equations 1 and 2:

u’ = u" — At[(u" — w).Vu" — vAu"| (12)
gAp““ = V.uP (13)
IZ;
un+1 — up _ gvpnﬂ-l (14)
Pt

with uP denoting the predicted velocity. The velocity predictor step (equation 12) which contains
the fluid convective and diffusive terms, will be coupled explicitly to the structure. In contrast to
reference [10] that implicitly couples both pressure equation (equation 13) and velocity correction
(equation 14) steps, we shall only implicitly couple the pressure equation. So the process of
solving the full coupled problem at each time step will be as follows:

step 0: extrapolating d:

d™t = 2.5d" — 2d™! + 0.5d™2 (15)
step 1: moving the fluid mesh (explicit coupling):
Q" W) = M) (16)
step 2: velocity prediction (explicit coupling):
uP = u" — At[(u” — w" ). Vu" — vAu" in Q! (17)

step 3: pressure equation and structural solver (implicit coupling with & denoting the
coupling iteration index):

d2+1 —dn .
At
—Apptt=v.uf in Q! (19)
Pf
oi, = O'i(pz—"_l) on I'7H1 (20)
4t = (o) on [+ 1)
step 4: velocity correction (explicit coupling):
At
u'tl = P — = yprtt in Q! (22)

Pt
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ntl _ dn+1 —d»
At

With this semi-implicit coupling approach, the FSI interface problem (equation 11) is
modified to:

u on I+t (23)

R(d) = Sof(d)—d=0 (24)

which stands for the step 3 of the above algorithm. In the new FSI equation, instead of full
fluid solver function F, only the pressure equation (denoted by f) is coupled to the structure
implicitly. Again d and the functions f and S, all are in the new time step t"*!. In the next
chapter we will explain the solution methods to resolve the equation 24.

4. Coupling schemes
In this section we will discuss two family of solvers to solve the nonlinear FSI interface problem
(equation 24), namely fixed-point and Newton-Krylov solvers.

4.1. Fized-point solvers

This is a class of iterative solvers that are popular mostly for their simplicity. Jacobi and Gauss-
Seidel iterations are the most basic and popular forms. A block Gauss-Seidel method is used in
this study. Each iteration begins with solving the coupled system:

dicy1 = S o f(dy) (25)

where k indicates the coupling iterations. The index n + 1 is dropped because all the parameters
are at the same time step. The interface residual is defined as:

rps1 = R(dg) = djp1 — di (26)

FSI convergence is achieved at every time step when the 2-norm of the interface residual
is small enough to meet the predefined convergence criterion. It has been shown in several
works that Gauss-Seidel scheme either converges very slowly or does not converge at all for FSI
problems involving incompressible flow. Our own tests proved this method to be unstable for
the problem in hand. To alleviate the convergence problem of the Gauss-Seidel method, a static
or dynamic relaxation is needed:

dpy1 = dg + wWrTrp1 (27)

The relaxation factor w is evaluated in three different ways:

1- Fized relazation factor: a fixed value is assigned for all iterations. This value should be
adjusted for each problem to be small enough to keep the solution stable during whole simulation.
It also should not be too small to avoid excessive unnecessary iterations.

2- Aitken’s dynamic relazation method: Aitken’s A% method uses values from two previous
iterations to enhance the current step. For a vector equation, wy could be obtained by [17]:

rj (rps1 — 1)

28
! |1"k+1—1f‘1c|2 ( )

Wi = —Wk—

3- Steepest descent method: This method is based on taking the optimal step length at ryiq
direction so that the next residual vector is orthogonal to the current one. An approximated
way of calculating the relaxation factor based on this idea is proposed by [6] as:

T
rpr1Th+1
T /
rp R (dp)res1

Wg = (29)
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where R/ is Jacobian of R. Normally, the Jacobian matrix of the coupled system of fluid-
structure equations is not easily accessible. The product of the Jacobian matrix and a vector v
could be evaluated by a first order Taylor series approximation:

d; +6v) — R(dy)
)

R
R/(dg)v = ( (30)
where 0 is a sufficiently small value (§ = 1075 has shown adequate accuracy and is used in this
study).

4.2. Newton-Krylov solvers

This method consists of two levels of iterative solvers. First level is Newton’s method for
linearizing the problem and the second level is a Krylov subspace solver to solve the resulting
linear system of equations. In order to apply the Newton’s method to the nonlinear interface
problem (equation 24), the interface residual is defined similarly by equation 26 while the line
search step of the fixed-point method (equation 27) is replaced by:

R/(dy)Adyi s = —R(dy) (31)

di1 =di + Adgas (32)

Since the Jacobian matrix of the coupled system of fluid-structure equations is not easily
accessible, a Jacobian-free Krylov subspace solver could be used to solve the inner system
of equations (equation 31). The product of the Jacobian matrix and a vector is similarly
approximated by the equation 30. A GMRES solver [18] without preconditioner is used in
this study as the inner Krylov solver. A survey on Jacobian-free Newton-Krylov methods and
their considerations could be found at [19].

5. Numerical tests

Numerical tests are conducted on a benchmark problem proposed by [15] and studied, among
others, by [6,8,20,21]. The problem is a 3D flow inside a deformable tube which is motivated
by the type of problems faced in hemodynamics. The tube has a length of | = 0.05m, an
inner diameter of r; = 0.005m and a wall thickness of h = 0.00lm. The structural density is
ps = 1200kg/m?3, the Young modulus £ = 3 x 105N/m? and the Poisson ratio & = 0.3. The
Timoshenko factor is set to k¥ = 5/6. The fluid density and viscosity are py = 1000kg/ m? and
py = 0.003Pa - s, respectively. The tube is clamped at both ends and the fluid is initially at
rest. A pressure of 1333.2Pa is applied at the tube inlet during a period of 0.003s and OPa after.
Pressure at the outlet is set to 0Pa during whole simulation. Simulations are carried out during
0.01 s with time steps of 0.0001 s.

Finite-volume method is used for spatial discretization of both fluid and structural equations.
Second-order symmetry-preserving schemes are used for fluid equations. The in-house fluid
solver code and the numerical methods are described in detail in [16,22]. Second-order central-
difference spatial discretization scheme along with implicit time integration is used for structural
equation. The fluid mesh is unstructured and consists of 2.1 x 10* control volumes with 3.5 x 103
nodes on the fluid-structure interface which is also used as solid mesh. Moving mesh technique
is explained at [23].

The propagation of the pressure wave inside the vessel is observed. Figure 1 shows pressure
contour plots at three different times: t=0.0025, 0.005 and 0.0075 s. Deformation of the interface
is magnified by a factor of 10 to be visible more clearly. Results are in a good agreement with
those of [6, 8, 20, 21].

Three of the four coupling schemes were able to secure FSI convergence at each time step and
they all converged to the same solution. The fixed-point method with steepest-descent relaxation
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Figure 1. Pressure wave propagation inside the deformable vessel: (a) t=0.0025s, (b) t=0.005s
and (c) t=0.0075s.

technique failed to converge at every time step and was found to be an inadequate method for
the current problem. Table 1 contains performance criteria of the three stable coupling methods.
It indicates the average number of coupling iterations each scheme requires to converge. It also
contains the frequency at which the coupled system of fluid-structure equations, S o f(d), must
be solved at each time step. These two criteria are essentially identical for the two fixed-point
schemes but vary for Newton-Krylov method, because it undergoes an inner loop inside every
coupling iteration. The actual CPU time for the simulations are also presented in the table,
normalized by the smallest one which is that of Newton-Krylov method.

Table 1. Performance comparison of different coupling schemes.

Coupling scheme Average No. of Average Frequency of relative CPU time
FSI iterations  system solution

Fixed-point (const. relax.) 389.7 389.7 7.51

Fixed-point (Aitken) 55.6 55.6 1.07

Newton-Krylov 3.2 45.2 1.00

Newton-Krylov method has proved the most efficient coupling scheme based on computational
time. Aitken’s method, which is a less complicated method in terms of implementation, also
shows a good performance and takes only 7% more CPU time. Comparing two fixed-point
schemes, it is seen that Aitken’s dynamic relaxation method reduces the average number of
coupling iterations dramatically. The required computational time is also decreased by the
same rate.

Both Aitken’s and Newton-Krylov methods show a favorable performance and stability.
Although Newton-Krylov method secures convergence in a far less number of iterations, the
average frequency of solving the coupled equations is not hugely different from that of Aitken’s
method, and so is the computational time. This fact is highlighted in figures 2 and 3 which
compare, respectively, the number of coupling iterations and CPU time each method needs to
converge at each time step. CPU times are normalized by the average CPU time Newton-Krylov
method takes for one time step.

It is worth reminding that no preconditioner is used for the GMRES solver of the Newton-
Krylov method in this work. Performance of Krylov subspace solvers can be significantly boosted
by using a preconditioner. However, designing a matrix-free preconditioner that can use the
approximated Jacobian of the system is not straightforward.
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6. Conclusions

A semi-implicit approach is followed to solve FSI problem of an incompressible flow inside a
deformable vessel. Only the pressure stress term of the fluid is coupled implicitly to the structure
and adequate stability is seen in a test case with strong added-mass effect. Four different coupling
schemes are tested including three fixed-point solvers with constant, Aitken’s and steepest
descent relaxations as well as one Newton-Krylov solver with approximated Jacobian. The
fixed-point solver with steepest-descent relaxation failed to achieve FSI convergence at every time
step and was found inadequate for the current problem. The other three schemes showed proper
stability, although constant relaxation scheme had a very poor performance. Both Aitken’s
and Newton-Krylov methods are found to be efficient for the current FSI simulations, with
Newton-Krylov method being slightly faster and Aitken’s method being easier to implement.
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