UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Agquesta és una copia de la versié author's final draft d'un article
publicat a la revista Energy Policy.

URL d'aquest document a UPCommons E-prints:

http://upcommons.upc.edu/urlFiles?idDrac=19286376

Article publicat /7 Published paper-

Arias, A., Caum, J., Grifid, R. Moving towards the maximum
speed in stepping motors by means of enlarging the

bandwidth of the current controller. "Mechatronics", December
2016, p. 51-62. DOI:
http://dx.doi.org/10.1016/j.mechatronics.2016.10.018

© 2016. Aquesta versid esta disponible sota la llicencia CC-BY-NCND
3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/es/




Mechatronics xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

journal homepage: www.elsevier.com

Moving towards the maximum speed in stepping motors by means of enlarging the
bandwidth of the current controller

Antoni Arias® *, Jesus Caum®, Robert Grifi6 ®

& Institute of Industrial and Control Engineering, Universitat Politécnica de Catalunya, Diagonal 647, 08028, Barcelona, Catalonia, Spain
b Centre for Sensors, Instruments and Systems Development Universitat Politécnica de Catalunya, Rambla de Sant Nebridi, 10, 08222, Terrassa, Catalonia, Spain

ARTICLE INFO ABSTRACT

Article history: This paper pursues to maximise the mechanical speed when using stepping motors (SM) without position sensors in order

Received 6 May 2016 to achieve a rapid-response manufacturing whenever any equipment based on such electrical machines is involved.
ngzwed in revised form 20 September The novelty of this paper is the fact that not only the bandwidth of the current controllers is improved for such max-

imization of the SM mechanical speed, as traditionally done in previous works, but also a comprehensive approach has
been addressed. Such global approach starts justifying why the traditional PI controller is not sufficient and it includes the
analytical tuning of the current controllers, considering implementation tiny issues (but of paramount importance) such
as the delays caused by the processor and the sample and hold current measurements. It is proved and justified that this
previously mentioned issues, which are often omitted, play a crucial role when trying to maximise the speed of the SM,
since the electrical fundamental frequencies of the SM move close to the sampling frequency. Therefore, the analytical
process to tune and implement the current controllers will have to be done in discrete-time domain, i.e. using the Z trans-
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form and treating the SM drive as a sampled data system.
Experimental waveforms and results based on real prototypes will prove the validity of the entire research.

PCB Finally, a real case-study based on Printed Circuit Board (PCB) prototyping machine which is composed by two step-
per machines, is fully reported. Such PCB prototype is the fruitful collaboration between the University (research institu-

tion) and a private company (industry).

© 2016 Published by Elsevier Ltd.

1. Introduction

Stepping or stepper motors (SMs) are extensively used in position
controlled drives in a wide range of applications, from traditional dri-
ves [1,2], up to state of the art applications [3—6]. In [3], an automatic
ultrasound scanning system uses an SM to accurately position the pla-
nar piston transducer and the needle-type hydro-phone in the tank. In
[4], the authors point out that the SM is a satisfactory choice for dri-
ving the control rods in a modular high temperature gas-cooled reac-
tor. The state of the art I1-joint lab prototype presented in [S] uses a
miniature hybrid SM as a linear actuator, while in [6] a new type of
a linear stepper drive for sensorless positioning tasks in hydraulics is
reported.

Despite some Field Oriented Controllers [7] with position feedback
are reported [8,9], the SM major advantage is the capability to per-
form control position without the need of any electromechanical sen-
sor to measure the position. Such inherent open-loop control position
capability is based on the fact that this electrical machine is able to
be driven in a step-by-step algorithm. Furthermore, the micro step-
ping technique, which divides each step in many incremental parts sur-
passes the discretization of the steps and allows an almost continu-
ous position control [1,2]. Such stepping open-loop position control
is reliable as long as the machine does not lose synchronisation and
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does not miss any step. Research efforts are driven in [10] and [11] to
detect step-outs and compensate for them to keep the accuracy in the
position control. Also, more traditional sensorless control approaches
have been carried out based on extended Kalman filters [12,13] and
passive nonlinear [14—-16] as well as disturbance [17] observers.

Still, SMs have torque and speed ripples problems which have dri-
ven the research attention [18-20] sometimes even using artificial in-
telligent techniques such as neural networks [21,22].

This paper pursues to maximise the SM mechanical speed in or-
der to achieve a rapid-response manufacturing. Many high-precision
motion systems [23] are designed in the continuous s domain, which
is a handicap when facing high speeds. The three highest maximum
speeds reported in the previously cited works are 288 rpm for [11],
380 rpm for [12] and 450 rpm for [22], whereas in this paper 1320 rpm
is the highest maximum speed reported. To achieve such goal, firstly,
the need of surpassing the widely used traditional proportional and
integral (PI) controller [24,25] is justified and secondly, a new sec-
ond-order controller is designed and tuned in z domain, which brings
the possibility to properly compensate the processing delays as well
as the pulse width modulation (PWM) of the power electronics ac-
tuator. Such proposed high bandwidth (BW) controller has envis-
aged, from the very beginning, the industrial feasibility for further
commercialization. Therefore, the proposed algorithm not only has
the possibility to be implemented in cheap microcontrollers but also
it is fully understandable attending the classic control theory,
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likewise the well-known PI controller, which is always a plus when
dealing with industry and practical engineers.

Lastly, a real prototype designed for such research is fully de-
scribed and high speed results are reported.

Considering that the proposed controller is somehow competing
with the well-known and widely used Pls, an extensive experimental
comparison with the mentioned PIs controllers is illustrated.

To conclude the work, a 2 axis rapid prototyping Printed Circuit
Boards (PCBs) machine [26], which has two stepper motors axis, is
fully reported. Such PCB machine is the fruitful collaboration between
the University and a private company and it is a tangible example of
how increasing the SM speed reduces the time employed for rapid pro-
totyping applications. The PCB manufacturing is an emblematic ex-
ample of the nowadays electronics industry [27,28].

2. Stepper motor model

SMs have two phases (labelled a and B) in quadrature, whose elec-
trical equations are represented in (1) and (2).

di 1 . .
7;’ =7 (Va — Ri, + w,,ypyN, sin (Nrwmt)) )
E = z (Vﬂ - Rlﬂ + a)ml[/PMN, sSin (Nra)mt - 7[/2)) (2)

The torque production, whose mathematical expression is given in
(3), is achieved, as in the majority of electrical machines, by the inter-
action (or vector product) between the magnetic flux and the current.

T, = Napy sin (N,w,t + 7/2) iy — Napy sin (N,w,t) i, 3)

r~“m

Finally the mechanical speed is given in (4), which models a first
order mechanical system with an external load torque

@on _L(1, _1,_ Fa,)

dt J 4)

In order to guarantee the proper micro stepping functionality, a
closed-loop current controller (with current sensors) must be per-
formed. Despite the only references are the alpha and beta currents,
the position set point is indirectly given within the angle included by
the mentioned current references, which are sinusoidal. Therefore, the
success of the position control depends entirely on the sinusoidal cur-
rent tracking capability and, consequently, on the current controller
performance.

From (1) and (2) it is concluded that the plant dynamics can be
simplified to a first order system composed by the resistance and the
inductance. The third term corresponds to back electromotive force
(EMF) and it can be modelled as a disturbance. Fig. 1 shows the gen-
eral block diagram.

Due to the nature of the SM, the typical number of rotor slots is
50, which implies that the electrical angular speed is 50 times larger
than the mechanical one. This multiplying factor is the main challenge
when maximising the mechanical speed. For instance, for achieving
an angular speed of 500 rpm (=57,36 rad/s, 8,33 Hz) a sinusoidal cur-
rent waveform of 25.000 rpm (22618 rad/s, 416 Hz) is needed, which
clearly compromises the BW of the current controller.

EME, 4(s)
g : % L5(5)
Loy 5(5) - Varp(s) - /R alp
+?_ C(s) m T

Fig. 1. Control scheme with the controller C(s), plant transfer function and the current,
voltage and back EMF signals for the alpha and beta phases.

Research efforts have been made to design the controller (C(s)) not
only to guarantee the stability but also to maximise the tracking capa-
bility of this current closed-loop control at such high angular speeds
[29].

3. Traditional PI control approach. System_1 and System_2

Traditionally the current controllers for electric machines are ad-
dressed tuning a proportional and integral (PI) controller in Laplace
(s) domain, as it is shown in Fig. 2, to fulfil the desired specifications.
The pre filter (PF), PI and the plant transfer function (G(s)) are given
in Egs. (5), (6) and (7) respectively.

1
PF(s) = ——
(Kp/K;) s+1 )

PI(s) = Kp+~L = K ——— ©

Eo 1/R
)= ——
(L/R) s+1 (7

The closed-loop system transfer function can be expressed as indi-
cated in (8)

(Kp/K;) s +1

I (s)
= (K;/L
(Ki/ )S2+S(R+KP)/L+K1/L @®)

Iop(s)

By means of the unity-gain PF given in (5) and provided that (Kp
/ K;) > 0, the unwanted zero is cancelled and therefore Eq. (8) is re-
duced to a second-order system, whose generic transfer function is
equal to:

wZ
n

21 2% - 2
52+ 2w, s + o2 )

The PI will be tuned using Eqs. (10) and (11), to fulfil the spec-
ifications of settling time at 2% (75s,o;), given in Eq. (12) and damp-
ing factor (§), which will be fixed to {=0.7071 in order to keep the
overshoot to less than 4.3% and therefore to avoid the resonance peak
in the gain of the closed-loop frequency response. On the other hand,

1) I (s)

I(s)
—» PF(s) _ﬁ?* PI(s) | G |7

Fig. 2. Current control loop with a PI controller and a PF. System_1.
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the Ts,,, will be minimised in order to increase the current closed-loop
BW and, therefore, maximise the maximum mechanical speed.

422% L
K=—a
£ Ty, (10)
K, <2421 g
T'syy, (11
4.22 4.22
TSZ% = - W, = ——
¢ w, ¢ Ty, (12)

In order to implement it digitally (i.e. in a microcontroller or a in
a digital signal processor (DSP)), the traditional approach, valid for
the majority of electric machines drives [7], consists in using the Euler
rectangular, either forward or backward, approximation given in Egs.
(13a) and (13b) respectively.

Lo
s z—1 (13a)
1 _,_z
s z—1 (13b)

The Euler discretized current control loop is no longer represented
by Fig. 2 and its new block diagram is illustrated in Fig. 3:

The well-known zero-order hold (ZOH) transformation method
[30] has been used to obtain the plant transfer function in z domain ac-
cording to expression (14).

Gz =(1-z7") 7 {G(s)}

N

(14)

The new PF; and PI; controller transfer functions are given in ex-
pressions (15) and (16), where versions (a) and (b) stand for the for-
ward (f) and backward (b) Euler approximations, respectively.

1 1
PFf (Z) = =
2=l Xp _ &
(Kp/Kj) = +1 TR (150
1 z
PF, (z) = P s A
(P/ I)Tz+ (K,_T+1>Z_ﬁ
(15b)
I'G)
—» PFi(z)

Fig. 3. Current control loop with the Euler discretized PI; and PF; controllers, where
i=(f, b) stands for the forward and backwards Euler approximations. System_2.

Kpz+ KT — K,
PL (2) = Kp + K, T—— = “P2 T £
7=

z—1 (16a)

Kp+KT) z—K
Pl, (z) = Kp + K,T Zl=( U )1 L
zZ — z —

(16b)

As a matter of example, Table 1 and Table 2 compare the
closed-loop poles, the PF poles and the BW of both systems for two
different T's,,, values and always for a 7=150 ps and {=0.7071. When
the closed-loop BW is far from F¢/2, as in the case of Table 1, the
Euler's approximation is good enough and the error introduced is al-
most imperceptible. On the contrary, when the closed-loop BW is in-
creased to achieve high speeds, the closed-loop poles differ from the
targeted place and eventually they may lay outside the unit circle in
the z-plane and therefore the system might become unstable. Table 2
shows the data for this later case, where the System 2 closed poles are
outside the unit circle.

To conclude, it has to be pointed out that this traditional approach,
which is widely used for other types of electrical machines, is not suit-
able for the SM. A first reason is the fact that a regulation oriented
controller is not enough and it is needed a sinusoidal tracking regula-
tor. In other words, because the Park transformation cannot be applied
for the lack of position information, the closed-loop system must track
a sinusoidal reference, instead of just a step. The second reason is the
error introduced by the Euler's approximation when the closed-loop
system BW gets closer to the F'¢/2, (which is rather the case when deal-
ing with SM with a factor of 50 between the mechanical and the elec-
trical angular frequencies).

Table 1
Closed loop poles, PF pole and BW when Ts,,, =5 ms.

System / description Closed loop poles PFpole BWHz
System_1 / Ideal continuous —844 +/— 844i -1018 189
System_2(a) / forward Euler 0.958 +/—0.042i 0.949 198
System_2(b) / backward Euler 0.956 +/— 0.041 0.952 189
Table 2
Closed loop poles, PF pole and BW when Ts,,, = 200 ps.
Non
cancelled Overall
System/description Closed loop poles Zeros PF poles BW Hz
System_1/Ideal —21,100 +/—21100i  None —21,200 47433
continuous
System_2(a)/forward —0.0474 +/— 1.051 None 0.0623  Unstable
Euler
System_2(b)/backward —0.404 None 0.485 Unstable
Euler
-2.71
System_3/PI(Z) tuned. 0.17 +/- 0.3i None 0.52 6100.8
No delays in the plant
System_4/3 PI(Z). Delay  0.404 —0.993 0.52 Unstable
in the plant.
0.37 +/-0.959i
System_5/PI(Z) tuned 1.71 —0.993 -3.05 Unstable
with delay
0.17 +/-0.3i
System_6/New controller 0.17 +/—0.3i —0.993 0.594 4766
0.0028

—0.06 +/—0.1i
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The rational next step is to tune all controllers directly in z domain,
i.e. to do a direct digital design.

4. PI controller tuned in z domain. System_3 and System_4

The new scheme, labelled as System_3, is illustrated in Fig. 4, and
its characteristic equation is given in (17). Using backward or forward
PI transfer function will make no difference since the constants will
take the necessary values to always end up with the same controller
and therefore the same closed-loop system.

1+PI(z)-G(z) =

KP Z—KP+K1T l ]—e_gr _ O
-1 R et (17)

1+

=

Provided that the specifications are still the same, settling time
(Tsy9,) as given in Eq. (12) and damping factor (), the desired
closed-loop characteristic equation is:

_422T 4224/1 = E2.T _2422T
zz—2e( sz%)-cos —é -z+e( Ts29, ) =0
Tsyq-C

(18)

From Egs. (17) and (18), the PI controller will be tuned according
to expressions (19) and (20)

-327 422v/1-e2.1 Rt
—2e T%2% - cos <—> +1+e L

Tsp9¢
KP == R R
1—e " (19)
4.22
e_ Tspq, _ET
KT = ——R+Kp
1-ez” (20)

Despite the fact that in simulation this approach performs as in-
tended, once it is implemented it underperforms and eventually, when
increasing the BW, it may become unstable. The reason for this is the
fact that the delays are neither modelled nor considered when design-
ing and tuning the PI controller. Actually this approach is unrealistic;
however it can work properly when the BW is low.

The real system, labelled as System_4, is the one composed by this
PI together with the delays. In Table 2 it can be seen how System 4
has its closed-loop poles in the unstable region, while the ideal and un-
realistic System_3 fulfils the specifications.

5. Modelling the delays. System_5
The delays are mainly caused by the time needed by the DSP to

sample the currents and execute the controllers as well as the PWM
unit to synthetize the required voltage. In this work such delay has

I'(z) I (2) I(z)
—»{ PF(z) —> PIz) | Gz |

Fig. 4. Current control loop with the PI and PF controllers already tuned in z domain.
System_3.

been reduced from the typical one sample time (z ) to just a portion
(m) of it (z '*™). However, the Z transform is defined for an entire
number of delays, not for a fractional portion of them. Therefore, the
modified Z transform (Z,,) [30] needs to be used to model such frac-
tional part of the sampling time delay as shown in Fig. 5.

The new characteristic equation is given in (21) and its equivalent
polynomial form in (22).

Kpz+KT —K, (1‘e_§m7>z+e_zmT‘e_§T
1+ =0
z-1 Rz (z—e"gT)
21
23+ 22 (—1 - e"gT + % (1 - e"%”’T))
B A W= (R
R
(ke (et 2o)) Lo
(22)

From (22) it is clear that the new closed-loop system will now have
three poles; the targeted two poles from (18) plus an extra third pole
labeled as “c” in (23).

_szr 42127
2 27T ) cos [ E2VIZT )
T'syy- €
2:422.T
+e(_ Ts2s )) (z=-¢)=

(23)
The new wanted polynomial expression is given in (24)
4T 5
23+ 22 —2e< 525 ) cos M) -c
Tsyq¢
2:422.T 4.22-T 2:4.22.T

+z <e(_ Tsyg > —2¢ e(_ Tsp9, ) cos (44227- 1—§2-T> ) —c e<_ Tsyq, )=0

52%

According to the control theory [31,32], in order to place the
closed-loop poles in any desired place, the controller must have a
number of coefficients equal to the number of the closed-loop poles.
Therefore, a PI with just two coefficients is not enough. The mathe-

I (e 1o
— PF(z) [ Pl(z) (3 2™ | G(z) >

Fig. 5. Current control loop with the PI and PF controllers already tuned in z domain.
A delay smaller than the sampling time has been modeled by means of the modified Z
transform. System_5.

I'(2) Ipp(2) I(z)

—» PF(z) —-?» Cz) {2 Lol Gz) |

Fig. 6. Current control loop with the C and PF controllers already tuned in z domain.
A delay smaller than the sampling time has been modeled by means of the modified Z
transform. System_6.
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matical solution to impose the desired closed-loop poles, might even-
tually bring the third pole of the system outside the stable region
(1,71 + 01) when maximising the BW, as it is indicated in Table 2.

6. New controller. System_6

As it has been mentioned before, and in order to fulfil the control
theory, the new controller must possess a number of coefficients equal
to the number of closed-loop poles. Moreover, the integral action is re-
quired to guarantee the regulation capability (zero error in steady state
in front of a step reference). Also, the controller must be causal and
therefore the order of the controller denominator has to be increased.
The proposed controller and the new characteristic equation are given
in (25) and (26) respectively.

b222+blz+b0

C(z)=
(z—ao) z=1 25)

—Rmr —Bmr _ _Rr
N O ) L T

(z—ao) (z=1)

(26)

From (26), it can be seen that the closed-loop system has four poles
but the controller possesses also the same number of coefficients.

The specifications will then be the closed-loop poles positions.
Two of them to fulfil the wanted dynamics pointed out in (18) and the
other two will be placed to possess the maximum dynamics, i.e. its
T,,, will be twice the sampling time and its damping factor equal to
0.7071. Hence, the targeted characteristic equation will be:

4.22.T 24.22T
— . 2' —
2 _ el nz%).COS<M).Z+e( o)
T'spqC

X (22 =2e . cos (2.11)-z+ e*?) =0 @7)

Imposing the characteristic Eq. (26) and the specifications (27) to
be the same, the four coefficients a,, b,, b; and b, are found.

Once the controller is properly designed, stable and fulfilling the
required dynamics, the PF needs to be designed in order to can-
cel the undesired influence of the existing closed-loop zeros. The
closed-loop numerator is given in (28) and it contains three zeros,

two from the controller and a third one from the plant itself.

1= efng

L ’%”’T ’%T
o (0 + bz +by) <z+#>

R
1= efzmT

(28)

The zero from the plant might be very close to the unity circle.
Actually, for the data given in Table 2, this zero takes the value
(—0.993 + 0i). Therefore, if the PF includes such pole, it would intro-
duce a very slow oscillating dynamics which would worsen the overall
response. Therefore, the feasible PF, whose transfer function is given
in (29) and has a unity gain, will just cancel the two zeros introduced
by the controller.

b, + b, + b,
b2 z2 + b]Z + bO (29)

7. Implementation and workbench

For the real implementation, the voltage demand must be saturated
in order to protect the whole drive. Therefore, the integrator part must
contain an anti-windup [33,34] strategy. Hence, the proposed con-
troller must be split to isolate the integral part according to (30). The
adopted anti-windup strategy is detailed in Fig. 7.

by z* + bz +b
2 ! g — A + B +b2
(z=ap)(z—1) z—1 z—qg G0
Egs. (31) and (32) show the new coefficients
by + ag (aph, + b
A=b1+b2((10+1)— 0 0(02 1)
ao—l (31)
b0+ao (aob2+b1)
ao—l (32)

The floating point digital signal controller used is the Texas Instru-
ments TMS320F28335 at 150 MHz [35], which (i) minimizes any nu-
merical problem when executing the controllers and (ii) achieves low
sampling time (50 ps in this work). It contains also the required PWM
units and analogue to digital converters (ADC) with a conversion time
of 6.67 ns and 12 bits.

H bridge / Tpyy =50 us

(x2) o p

Fig. 7. Current control with the saturation and anti-windup, H-bridge power converter and SM detailed scheme. There are two identical schemes for the alpha and beta SM phases.
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Two identical power converters, whose specific semiconductors
data are detailed in Table 3, have been used for the alpha and beta
phases, based on the well-known H-bridge topology, as Fig. 7 illus-
trates. The PWM strategy used is based on the well-known unipolar
one, fully described in [36], and the sampling time of the whole con-
troller, which is the same as the PWM period, has been set to 50 pus.

The current references are obtained from either a position or speed
set point, as it is illustrated in Fig. 8.

Fig. 9 is a picture of the workbench composed by the SM, an en-
coder and a DC machine in order to create an external load torque.
Also the DSP board and the power unit are illustrated. Such work-
bench has been firstly used to corroborate the proper functionality of
the new algorithms prior to being implemented in a real industrial
drive.

8. Experimental results

In order to corroborate the SM current control algorithm and prove
its tracking capability at high speeds, three sets of experimental

Table 3
Stepper motor and H bridge converter characteristics.

Stepper Motor IGUS 56 (NEMA23)

Maximum voltage (DC) 60 V

Nominal voltage (DC) / current 48V/42 A
Holding/detent torque 2.0 Nm/0.068 Nm
R/L 0.5Q/1.9 mH
Step angle / Nr 1.8°/50

Power MOSFET IRF540N

Vpss =100V Ip =33A Rps(ony =44 mQ
Other parameters

U, =100V T= Tpyp =50 ps

TMS320F28335 / T=50 pus

Fig. 8. Current references generation block. The electrical angle is given by either the
speed or position set point.

Fig. 9. Test workbench composed by the SM, DC machine and an encoder. The DSP
controller and the power unit are also illustrated.

results have been carried out. Hence, current, speed and position
waveforms in front of (i) speed steps, (ii) speed reversal trapezoidal
profile and (iii) constant speed with load impact, have been carried
out.

For the speed steps and speed reversal trapezoidal profiles, a com-
parison to prove the superiority of the new controller has been ad-
dressed. The systems under comparison are the PI and the new con-
troller, previously named as System_ 5 and System_6, respectively.
The closed-loop poles have been placed to enlarge the most the
closed-loop BW, keeping the closed-loop system stable. Hence, the
settling time is 400 ps (Ts,,, =400 ps) and 200 ps (Ts,, =200 ps) for
System_5 and System_6, respectively.

System_5 (blue trace) and System_6 (red trace) closed-loop fre-
quency response including the pertinent PF are plotted in Fig 10,
where it is clearly illustrated how System 6 has a larger BW.

Fig. 11 plots System_5 (blue trace) and System_ 6 (red trace) fre-
quency response in front of a perturbation. As a matter of exam-
ple, the back EMF sinusoidal perturbation, will have a rejection of
—24.6 dB and —36.4 dB at 1 kHz for systems 5 and 6, respectively.

Bode Diagram
10 r v v — 7T

Magnitude (dB)
)

10° 10°
Frequency (rad/s)

Fig. 10. System_5 (blue trace) and System 6 (red trace) close-loop frequency re-
sponse. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Bode Diagram
-20 .

Magnitude (dB)

10° 10"
Frequency (rad/s)
Fig. 11. System_5 (blue trace) and System_6 (red trace) frequency response in front of

a perturbation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 12. Pole zero map for System_5 (left) and System_6 (right). In blue the poles and zeros of the close-loop systems and in red the poles and zeros of the PFs. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Assuming a back EMF of 50 V, it would create against the 4.2 A of the
nominal phase current, an unwanted sinusoidal current of 2.95 A and
0.76 A for System_5 and System_6, respectively. This numerical ex-
ample proves the superior back EMF rejection capability of System 6.

Fig. 12 plots the pole zero map for systems 5 and 6. In blue the
poles and zeros of the close-loop systems and in red the poles and ze-
ros of the PF. System_6 pole zero map is consistent with Table 2. No-
tice how the zero placed at (—0.993 + 0i) is not compensated by the PF
as justified in Section 6.

8.1. Speed steps response

Fig. 13 plots the encoder measured position response (upper traces)
of the three systems when the speed reference (lower trace) has been
continuously increased with steps of 120 rpm (i.e. 100 Hz for the cur-
rent frequency). The three systems involved are the two previously de-
scribed and an additional System _6 with the same BW as the PI (i.e.
Ts,0, =400 ps).

It is clearly illustrated how System_ 5 (blue upper trace) is the first
of not being able to track the speed at 1200 rpm (i.e. 1000 Hz). This
lack of trackability is manifested because the measured position does
not increase as it should. Actually, the SM is losing steps.

System 6 (red upper trace) with the same BW as the PI (i.e.
Ts,, =400 ps) has been included for comparative reasons. Such sys-
tem is able to track the demanded speed up to 1440 rpm and loses the
tracking capability at 1560 rpm (i.e. 1300 Hz).

Finally, when the BW of System 6 is increased towards its max-
imum, the speed tracking capability still exits at 1800 rpm (i.e.
1500 Hz), as it can be clearly seen in the green upper trace of Fig. 13.

Such comparison not only experimentally proves that at the same
BW the new controller tracking capability is superior to the PI one, but
also demonstrates how the new controller can enlarge its BW without
losing stability and therefore increasing the maximum speed.

8.2. Speed reversal trapezoidal profile

A widely common test for electrical machines speed controllers is
the speed reversal following a trapezoidal speed profile, which implies
that the position follows a second order polynomial waveform.

Such test compares System 5 (Tsy, =400 pus) and System 6
(Ts50, =200 ps), both at its maximum BW. To fully show both con-
trollers’ performance, the magnitudes illustrated are the measured cur-
rent (just one axis), the speed reference and the reference and mea-
sured positions.

It should be noticed firstly, how the speed ramp is so steep, achiev-
ing the final speed in less than 20 ms and secondly how the speed re-
versal test includes both positive and negative speeds.

Final value of the speed ramp is 900 rpm (i.e. 750 Hz for the cur-
rent frequency) for Figs. 14 and 15, 1080 rpm (i.e. 900 Hz) for Figs.
16 and 17 and 1320 rpm (i.e. 1100 Hz) for Fig. 18.

Similarly as in the previous section, it is clearly proved that Sys-
tem_6 has a larger BW than System_ 5, since the former is still able
to track 1320 rpm, as it is illustrated in Fig. 18, meanwhile the latter
loses the tracking capability at 1080 rpm, as it is shown in Fig. 16.
Such waste of speed trackability can be seen very clearly in Fig. 16
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Fig. 13. Experimental speed steps response of System_5 (PI) and System_6 (new controller). It is illustrated the superior speed tracking capability of the proposed System_6. Top:
measured position. Blue trace System_5 with Ts,, =400 us. Red trace System_6 with Ts,,, =400 ps. Green trace System_6 with Tsy, =200 pus. Bottom: speed reference for the three
systems with step increments of 120 rpm (i.e. 100 Hz). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Speed reversal ramp profile from zero, up to +900 rpm, down to —900 rpm and back to zero for System_6 (new controller). From top to bottom: alpha measured current,
speed reference and reference and measured positions.

bottom trace, where the symmetry in the measured position waveform not going higher in frequency and both of them are due to the back

is lost because the SM is losing steps. EMEF.

As a conclusion, it should be pointed that the new controller has The first reason is that at high speeds, large back EMF needs to
increased the BW, according to Table 2, up to 4766 Hz, which is be cancelled and consequently greater voltages are required. Actually,
much further away than the experimental results shown in Sections when the maximum DC voltage is reached, the current loop saturates

8.1 (1500 Hz, i.e. 1800 rpm) and 8.2 (1100 Hz, i.e. 1320 rpm). With and the anti-windup is activated, causing a current distortion and chal-

the new design proposed, the BW is no longer the limitation for lenging the tracking capability.

mounting in speed. Still, however, the there are two main reasons for The second reason is the limited back EMF rejection capability, as
it was previously discussed with the help of Fig. 11. The detail pro-
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Fig. 17. Speed reversal ramp profile from zero, up to +1080 rpm, down to —1080 rpm and back to zero for System 6 (new controller). From top to bottom: alpha measured current,

speed reference and reference and measured positions.

vided in Fig. 19 illustrates how the measured current is phase shifted
from the reference one, despite being inside the BW (1080 rpm, i.e.
900 Hz). This lack of entire back EMF cancellation, which worsens at
higher speeds, is the main cause of such current phase shift. At lower
speeds, the current tracking is almost perfect, as it can be seen in Fig.
20. Such phase shifts, nevertheless, does not compromise the torque
developed by the SM, since it affects at the same time and manner
both alpha and beta current components.

8.3. Load impact at constant speed

The third experiment involves a load impact test when the speed
reference is set at 540 rpm. Such external load torque has been intro-
duced by the DC machine of the workbench, which is illustrated in
Fig. 9. In Fig. 21, the top signal is the measured alpha current which
is undisturbed when the load impact is applied at 0.02 s according to
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Fig. 19. Current loop performance at high speed (1080 rpm, i.e. 900 Hz). Top: alpha
axis set point (blue) and actual (red) currents. Bottom: speed reference. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the bottom waveform. The point of the middle waveform is to prove
the load application. It shows the subtraction between the angle of the
vector current (workout from the measured alpha and beta currents)
and the angle measured from the encoder (which is somehow the per-
manent magnet angle). From Eq. (3), it can be concluded that the angle
between the permanent magnet vector and the current vector regulates
the electromechanical torque developed by the SM [2].
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Fig. 20. Current loop performance at low speed. Top: alpha axis set point (blue) and
actual (red) currents. Bottom: speed reference. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Therefore, it is experimentally proved the capability of the new al-
gorithm to cope with sudden load torque variations.

9. Industry prototype
This new controller has been applied in an industry 2 axis rapid

prototyping Printed Circuit Boards (PCBs) machine [26], which is il-
lustrated in the picture of Fig. 22. Such milling PCB machine is the
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Fig. 22. Industry 2 axis rapid prototyping Printed Circuit Boards (PCBs) milling ma-
chine.

fruitful collaboration between the University and a private company
and it is a tangible example of how increasing the SM speed reduces
the time employed for rapid prototyping.

Currently, such novel high BW SM based drive is being imple-
mented in a labeling machine for a wine manufacturer and it is ex-
pected that it will implemented in more industry applications where
the rapidity is a key issue.

10. Conclusions

High speed is one of the challenges of Stepping motors (SM) for
industry based motor drives. In this work, it has been maximised the
achievable speed when using SM drives in order to try to compete with
other encoder feedback based AC motor drives.

Initially, this work has justified why traditional PI controllers are
not sufficient to achieve high dynamics drives when using SM. In-
stead an accurate model of the SM drive, with all existing delays, has
been obtained in order to design a pole placement discrete-time do-
main controller with a high bandwidth.

A first set of experimental results, obtained in a University based
laboratory workbench, has been reported. Speed reversal trapezoidal
profile up to 1320 rpm and load impact experimental tests and wave-
forms are fully reported. Even a maximum speed of 1800 rpm has
been achieved and illustrated.

It can be concluded that with the new proposed design, the
closed-loop BW is no longer the limitation for mounting in speed.

Finally, a real 2 axis rapid prototyping Printed Circuit Boards ma-
chine has been designed and commercialised by an industry, which is
a tangible example of how increasing the SM speed reduces the time
employed for rapid prototyping.
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Appendix. List of symbols

Stepper motor variables

v;; i={a, B} (V) Voltage per phase

i;; i={a,B} (A)Current per phase

R () Stator resistance per phase
L (H) Inductance per phase

0, (rad) Electrical angle from the encoder

0,, (rad) Mechanical angle from the encoder

0; (rad) Electrical angle from the measured currents
Wpns (WD) Permanent magnet flux

o, (rad/s) Electrical angular speed

®,, (rad/s) Mechanical angular speed

n, (rpm) Mechanical angular speed

T, (N'm) Electromechanical torque

Nr Rotor Pole number

Other variables

Townr (s) Pulse width modulation period
T (s) Sampling period
Fs (Hz) Sampling frequency
Ts, (s) Settling time at 2%
Damping factor of a second-order system
, (rad/s) Natural frequency of a second-order system
J (Kg'm2) Total moment of inertia
F (N'm-s/rad) Total friction coefficient
T, (N'm) External load torque
Operators
K Laplace operator
z Z transform operator

Axis reference frames

ao/p Two-phase orthogonal stationary frame
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ARTICLE INFO ABSTRACT

Article history: This paper pursues to maximise the mechanical speed when using stepping motors (SM) without position sensors in order

Received 6 May 2016 to achieve a rapid-response manufacturing whenever any equipment based on such electrical machines is involved.
ngzwed in revised form 20 September The novelty of this paper is the fact that not only the bandwidth of the current controllers is improved for such max-

imization of the SM mechanical speed, as traditionally done in previous works, but also a comprehensive approach has
been addressed. Such global approach starts justifying why the traditional PI controller is not sufficient and it includes the
analytical tuning of the current controllers, considering implementation tiny issues (but of paramount importance) such
as the delays caused by the processor and the sample and hold current measurements. It is proved and justified that this
previously mentioned issues, which are often omitted, play a crucial role when trying to maximise the speed of the SM,
since the electrical fundamental frequencies of the SM move close to the sampling frequency. Therefore, the analytical
process to tune and implement the current controllers will have to be done in discrete-time domain, i.e. using the Z trans-
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form and treating the SM drive as a sampled data system.
Experimental waveforms and results based on real prototypes will prove the validity of the entire research.

PCB Finally, a real case-study based on Printed Circuit Board (PCB) prototyping machine which is composed by two step-
per machines, is fully reported. Such PCB prototype is the fruitful collaboration between the University (research institu-

tion) and a private company (industry).

© 2016 Published by Elsevier Ltd.

1. Introduction

Stepping or stepper motors (SMs) are extensively used in position
controlled drives in a wide range of applications, from traditional dri-
ves [1,2], up to state of the art applications [3—6]. In [3], an automatic
ultrasound scanning system uses an SM to accurately position the pla-
nar piston transducer and the needle-type hydro-phone in the tank. In
[4], the authors point out that the SM is a satisfactory choice for dri-
ving the control rods in a modular high temperature gas-cooled reac-
tor. The state of the art I1-joint lab prototype presented in [S] uses a
miniature hybrid SM as a linear actuator, while in [6] a new type of
a linear stepper drive for sensorless positioning tasks in hydraulics is
reported.

Despite some Field Oriented Controllers [7] with position feedback
are reported [8,9], the SM major advantage is the capability to per-
form control position without the need of any electromechanical sen-
sor to measure the position. Such inherent open-loop control position
capability is based on the fact that this electrical machine is able to
be driven in a step-by-step algorithm. Furthermore, the micro step-
ping technique, which divides each step in many incremental parts sur-
passes the discretization of the steps and allows an almost continu-
ous position control [1,2]. Such stepping open-loop position control
is reliable as long as the machine does not lose synchronisation and

* Corresponding author. Fax. +34937398016.
Email address: antoni.arias@upc.edu (A. Arias)

http://dx.doi.org/10.1016/j.mechatronics.2016.10.018
0957-4158/© 2016 Published by Elsevier Ltd.

does not miss any step. Research efforts are driven in [10] and [11] to
detect step-outs and compensate for them to keep the accuracy in the
position control. Also, more traditional sensorless control approaches
have been carried out based on extended Kalman filters [12,13] and
passive nonlinear [14—-16] as well as disturbance [17] observers.

Still, SMs have torque and speed ripples problems which have dri-
ven the research attention [18-20] sometimes even using artificial in-
telligent techniques such as neural networks [21,22].

This paper pursues to maximise the SM mechanical speed in or-
der to achieve a rapid-response manufacturing. Many high-precision
motion systems [23] are designed in the continuous s domain, which
is a handicap when facing high speeds. The three highest maximum
speeds reported in the previously cited works are 288 rpm for [11],
380 rpm for [12] and 450 rpm for [22], whereas in this paper 1320 rpm
is the highest maximum speed reported. To achieve such goal, firstly,
the need of surpassing the widely used traditional proportional and
integral (PI) controller [24,25] is justified and secondly, a new sec-
ond-order controller is designed and tuned in z domain, which brings
the possibility to properly compensate the processing delays as well
as the pulse width modulation (PWM) of the power electronics ac-
tuator. Such proposed high bandwidth (BW) controller has envis-
aged, from the very beginning, the industrial feasibility for further
commercialization. Therefore, the proposed algorithm not only has
the possibility to be implemented in cheap microcontrollers but also
it is fully understandable attending the classic control theory,
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likewise the well-known PI controller, which is always a plus when
dealing with industry and practical engineers.

Lastly, a real prototype designed for such research is fully de-
scribed and high speed results are reported.

Considering that the proposed controller is somehow competing
with the well-known and widely used Pls, an extensive experimental
comparison with the mentioned PIs controllers is illustrated.

To conclude the work, a 2 axis rapid prototyping Printed Circuit
Boards (PCBs) machine [26], which has two stepper motors axis, is
fully reported. Such PCB machine is the fruitful collaboration between
the University and a private company and it is a tangible example of
how increasing the SM speed reduces the time employed for rapid pro-
totyping applications. The PCB manufacturing is an emblematic ex-
ample of the nowadays electronics industry [27,28].

2. Stepper motor model

SMs have two phases (labelled a and B) in quadrature, whose elec-
trical equations are represented in (1) and (2).

di 1 . .
7;’ =7 (Va — Ri, + w,,ypyN, sin (Nrwmt)) )
E = z (Vﬂ - Rlﬂ + a)ml[/PMN, sSin (Nra)mt - 7[/2)) (2)

The torque production, whose mathematical expression is given in
(3), is achieved, as in the majority of electrical machines, by the inter-
action (or vector product) between the magnetic flux and the current.

T, = Napy sin (N,w,t + 7/2) iy — Napy sin (N,w,t) i, 3)

r~“m

Finally the mechanical speed is given in (4), which models a first
order mechanical system with an external load torque

@on _L(1, _1,_ Fa,)

dt J 4)

In order to guarantee the proper micro stepping functionality, a
closed-loop current controller (with current sensors) must be per-
formed. Despite the only references are the alpha and beta currents,
the position set point is indirectly given within the angle included by
the mentioned current references, which are sinusoidal. Therefore, the
success of the position control depends entirely on the sinusoidal cur-
rent tracking capability and, consequently, on the current controller
performance.

From (1) and (2) it is concluded that the plant dynamics can be
simplified to a first order system composed by the resistance and the
inductance. The third term corresponds to back electromotive force
(EMF) and it can be modelled as a disturbance. Fig. 1 shows the gen-
eral block diagram.

Due to the nature of the SM, the typical number of rotor slots is
50, which implies that the electrical angular speed is 50 times larger
than the mechanical one. This multiplying factor is the main challenge
when maximising the mechanical speed. For instance, for achieving
an angular speed of 500 rpm (=57,36 rad/s, 8,33 Hz) a sinusoidal cur-
rent waveform of 25.000 rpm (22618 rad/s, 416 Hz) is needed, which
clearly compromises the BW of the current controller.

EME, 4(s)
g : % L5(5)
Loy 5(5) - Varp(s) - /R alp
+?_ C(s) m T

Fig. 1. Control scheme with the controller C(s), plant transfer function and the current,
voltage and back EMF signals for the alpha and beta phases.

Research efforts have been made to design the controller (C(s)) not
only to guarantee the stability but also to maximise the tracking capa-
bility of this current closed-loop control at such high angular speeds
[29].

3. Traditional PI control approach. System_1 and System_2

Traditionally the current controllers for electric machines are ad-
dressed tuning a proportional and integral (PI) controller in Laplace
(s) domain, as it is shown in Fig. 2, to fulfil the desired specifications.
The pre filter (PF), PI and the plant transfer function (G(s)) are given
in Egs. (5), (6) and (7) respectively.

1
PF(s) = ——
(Kp/K;) s+1 )

PI(s) = Kp+~L = K ——— ©

Eo 1/R
)= ——
(L/R) s+1 (7

The closed-loop system transfer function can be expressed as indi-
cated in (8)

(Kp/K;) s +1

I (s)
= (K;/L
(Ki/ )S2+S(R+KP)/L+K1/L @®)

Iop(s)

By means of the unity-gain PF given in (5) and provided that (Kp
/ K;) > 0, the unwanted zero is cancelled and therefore Eq. (8) is re-
duced to a second-order system, whose generic transfer function is
equal to:

wZ
n

21 2% - 2
52+ 2w, s + o2 )

The PI will be tuned using Eqs. (10) and (11), to fulfil the spec-
ifications of settling time at 2% (75s,o;), given in Eq. (12) and damp-
ing factor (§), which will be fixed to {=0.7071 in order to keep the
overshoot to less than 4.3% and therefore to avoid the resonance peak
in the gain of the closed-loop frequency response. On the other hand,

1) I (s)

I(s)
—» PF(s) _ﬁ?* PI(s) | G |7

Fig. 2. Current control loop with a PI controller and a PF. System_1.
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the Ts,,, will be minimised in order to increase the current closed-loop
BW and, therefore, maximise the maximum mechanical speed.

422% L
K=—a
£ Ty, (10)
K, <2421 g
T'syy, (11
4.22 4.22
TSZ% = - W, = ——
¢ w, ¢ Ty, (12)

In order to implement it digitally (i.e. in a microcontroller or a in
a digital signal processor (DSP)), the traditional approach, valid for
the majority of electric machines drives [7], consists in using the Euler
rectangular, either forward or backward, approximation given in Egs.
(13a) and (13b) respectively.

Lo
s z—1 (13a)
1 _,_z
s z—1 (13b)

The Euler discretized current control loop is no longer represented
by Fig. 2 and its new block diagram is illustrated in Fig. 3:

The well-known zero-order hold (ZOH) transformation method
[30] has been used to obtain the plant transfer function in z domain ac-
cording to expression (14).

Gz =(1-z7") 7 {G(s)}

N

(14)

The new PF; and PI; controller transfer functions are given in ex-
pressions (15) and (16), where versions (a) and (b) stand for the for-
ward (f) and backward (b) Euler approximations, respectively.

1 1
PFf (Z) = =
2=l Xp _ &
(Kp/Kj) = +1 TR (150
1 z
PF, (z) = P s A
(P/ I)Tz+ (K,_T+1>Z_ﬁ
(15b)
I'G)
—» PFi(z)

Fig. 3. Current control loop with the Euler discretized PI; and PF; controllers, where
i=(f, b) stands for the forward and backwards Euler approximations. System_2.

Kpz+ KT — K,
PL (2) = Kp + K, T—— = “P2 T £
7=

z—1 (16a)

Kp+KT) z—K
Pl, (z) = Kp + K,T Zl=( U )1 L
zZ — z —

(16b)

As a matter of example, Table 1 and Table 2 compare the
closed-loop poles, the PF poles and the BW of both systems for two
different T's,,, values and always for a 7=150 ps and {=0.7071. When
the closed-loop BW is far from F¢/2, as in the case of Table 1, the
Euler's approximation is good enough and the error introduced is al-
most imperceptible. On the contrary, when the closed-loop BW is in-
creased to achieve high speeds, the closed-loop poles differ from the
targeted place and eventually they may lay outside the unit circle in
the z-plane and therefore the system might become unstable. Table 2
shows the data for this later case, where the System 2 closed poles are
outside the unit circle.

To conclude, it has to be pointed out that this traditional approach,
which is widely used for other types of electrical machines, is not suit-
able for the SM. A first reason is the fact that a regulation oriented
controller is not enough and it is needed a sinusoidal tracking regula-
tor. In other words, because the Park transformation cannot be applied
for the lack of position information, the closed-loop system must track
a sinusoidal reference, instead of just a step. The second reason is the
error introduced by the Euler's approximation when the closed-loop
system BW gets closer to the F'¢/2, (which is rather the case when deal-
ing with SM with a factor of 50 between the mechanical and the elec-
trical angular frequencies).

Table 1
Closed loop poles, PF pole and BW when Ts,,, =5 ms.

System / description Closed loop poles PFpole BWHz
System_1 / Ideal continuous —844 +/— 844i -1018 189
System_2(a) / forward Euler 0.958 +/—0.042i 0.949 198
System_2(b) / backward Euler 0.956 +/— 0.041 0.952 189
Table 2
Closed loop poles, PF pole and BW when Ts,,, = 200 ps.
Non
cancelled Overall
System/description Closed loop poles Zeros PF poles BW Hz
System_1/Ideal —21,100 +/—21100i  None —21,200 47433
continuous
System_2(a)/forward —0.0474 +/— 1.051 None 0.0623  Unstable
Euler
System_2(b)/backward —0.404 None 0.485 Unstable
Euler
-2.71
System_3/PI(Z) tuned. 0.17 +/- 0.3i None 0.52 6100.8
No delays in the plant
System_4/3 PI(Z). Delay  0.404 —0.993 0.52 Unstable
in the plant.
0.37 +/-0.959i
System_5/PI(Z) tuned 1.71 —0.993 -3.05 Unstable
with delay
0.17 +/-0.3i
System_6/New controller 0.17 +/—0.3i —0.993 0.594 4766
0.0028

—0.06 +/—0.1i
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The rational next step is to tune all controllers directly in z domain,
i.e. to do a direct digital design.

4. PI controller tuned in z domain. System_3 and System_4

The new scheme, labelled as System_3, is illustrated in Fig. 4, and
its characteristic equation is given in (17). Using backward or forward
PI transfer function will make no difference since the constants will
take the necessary values to always end up with the same controller
and therefore the same closed-loop system.

1+PI(z)-G(z) =

KP Z—KP+K1T l ]—e_gr _ O
-1 R et (17)

1+

=

Provided that the specifications are still the same, settling time
(Tsy9,) as given in Eq. (12) and damping factor (), the desired
closed-loop characteristic equation is:

_422T 4224/1 = E2.T _2422T
zz—2e( sz%)-cos —é -z+e( Ts29, ) =0
Tsyq-C

(18)

From Egs. (17) and (18), the PI controller will be tuned according
to expressions (19) and (20)

-327 422v/1-e2.1 Rt
—2e T%2% - cos <—> +1+e L

Tsp9¢
KP == R R
1—e " (19)
4.22
e_ Tspq, _ET
KT = ——R+Kp
1-ez” (20)

Despite the fact that in simulation this approach performs as in-
tended, once it is implemented it underperforms and eventually, when
increasing the BW, it may become unstable. The reason for this is the
fact that the delays are neither modelled nor considered when design-
ing and tuning the PI controller. Actually this approach is unrealistic;
however it can work properly when the BW is low.

The real system, labelled as System_4, is the one composed by this
PI together with the delays. In Table 2 it can be seen how System 4
has its closed-loop poles in the unstable region, while the ideal and un-
realistic System_3 fulfils the specifications.

5. Modelling the delays. System_5
The delays are mainly caused by the time needed by the DSP to

sample the currents and execute the controllers as well as the PWM
unit to synthetize the required voltage. In this work such delay has

I'(z) I (2) I(z)
—»{ PF(z) —> PIz) | Gz |

Fig. 4. Current control loop with the PI and PF controllers already tuned in z domain.
System_3.

been reduced from the typical one sample time (z ) to just a portion
(m) of it (z '*™). However, the Z transform is defined for an entire
number of delays, not for a fractional portion of them. Therefore, the
modified Z transform (Z,,) [30] needs to be used to model such frac-
tional part of the sampling time delay as shown in Fig. 5.

The new characteristic equation is given in (21) and its equivalent
polynomial form in (22).

Kpz+KT —K, (1‘e_§m7>z+e_zmT‘e_§T
1+ =0
z-1 Rz (z—e"gT)
21
23+ 22 (—1 - e"gT + % (1 - e"%”’T))
B A W= (R
R
(ke (et 2o)) Lo
(22)

From (22) it is clear that the new closed-loop system will now have
three poles; the targeted two poles from (18) plus an extra third pole
labeled as “c” in (23).

_szr 42127
2 27T ) cos [ E2VIZT )
T'syy- €
2:422.T
+e(_ Ts2s )) (z=-¢)=

(23)
The new wanted polynomial expression is given in (24)
4T 5
23+ 22 —2e< 525 ) cos M) -c
Tsyq¢
2:422.T 4.22-T 2:4.22.T

+z <e(_ Tsyg > —2¢ e(_ Tsp9, ) cos (44227- 1—§2-T> ) —c e<_ Tsyq, )=0

52%

According to the control theory [31,32], in order to place the
closed-loop poles in any desired place, the controller must have a
number of coefficients equal to the number of the closed-loop poles.
Therefore, a PI with just two coefficients is not enough. The mathe-

I (e 1o
— PF(z) [ Pl(z) (3 2™ | G(z) >

Fig. 5. Current control loop with the PI and PF controllers already tuned in z domain.
A delay smaller than the sampling time has been modeled by means of the modified Z
transform. System_5.

I'(2) Ipp(2) I(z)

—» PF(z) —-?» Cz) {2 Lol Gz) |

Fig. 6. Current control loop with the C and PF controllers already tuned in z domain.
A delay smaller than the sampling time has been modeled by means of the modified Z
transform. System_6.
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matical solution to impose the desired closed-loop poles, might even-
tually bring the third pole of the system outside the stable region
(1,71 + 01) when maximising the BW, as it is indicated in Table 2.

6. New controller. System_6

As it has been mentioned before, and in order to fulfil the control
theory, the new controller must possess a number of coefficients equal
to the number of closed-loop poles. Moreover, the integral action is re-
quired to guarantee the regulation capability (zero error in steady state
in front of a step reference). Also, the controller must be causal and
therefore the order of the controller denominator has to be increased.
The proposed controller and the new characteristic equation are given
in (25) and (26) respectively.

b222+blz+b0

C(z)=
(z—ao) z=1 25)

—Rmr —Bmr _ _Rr
N O ) L T

(z—ao) (z=1)

(26)

From (26), it can be seen that the closed-loop system has four poles
but the controller possesses also the same number of coefficients.

The specifications will then be the closed-loop poles positions.
Two of them to fulfil the wanted dynamics pointed out in (18) and the
other two will be placed to possess the maximum dynamics, i.e. its
T,,, will be twice the sampling time and its damping factor equal to
0.7071. Hence, the targeted characteristic equation will be:

4.22.T 24.22T
— . 2' —
2 _ el nz%).COS<M).Z+e( o)
T'spqC

X (22 =2e . cos (2.11)-z+ e*?) =0 @7)

Imposing the characteristic Eq. (26) and the specifications (27) to
be the same, the four coefficients a,, b,, b; and b, are found.

Once the controller is properly designed, stable and fulfilling the
required dynamics, the PF needs to be designed in order to can-
cel the undesired influence of the existing closed-loop zeros. The
closed-loop numerator is given in (28) and it contains three zeros,

two from the controller and a third one from the plant itself.

1= efng

L ’%”’T ’%T
o (0 + bz +by) <z+#>

R
1= efzmT

(28)

The zero from the plant might be very close to the unity circle.
Actually, for the data given in Table 2, this zero takes the value
(—0.993 + 0i). Therefore, if the PF includes such pole, it would intro-
duce a very slow oscillating dynamics which would worsen the overall
response. Therefore, the feasible PF, whose transfer function is given
in (29) and has a unity gain, will just cancel the two zeros introduced
by the controller.

b, + b, + b,
b2 z2 + b]Z + bO (29)

7. Implementation and workbench

For the real implementation, the voltage demand must be saturated
in order to protect the whole drive. Therefore, the integrator part must
contain an anti-windup [33,34] strategy. Hence, the proposed con-
troller must be split to isolate the integral part according to (30). The
adopted anti-windup strategy is detailed in Fig. 7.

by z* + bz +b
2 ! g — A + B +b2
(z=ap)(z—1) z—1 z—qg G0
Egs. (31) and (32) show the new coefficients
by + ag (aph, + b
A=b1+b2((10+1)— 0 0(02 1)
ao—l (31)
b0+ao (aob2+b1)
ao—l (32)

The floating point digital signal controller used is the Texas Instru-
ments TMS320F28335 at 150 MHz [35], which (i) minimizes any nu-
merical problem when executing the controllers and (ii) achieves low
sampling time (50 ps in this work). It contains also the required PWM
units and analogue to digital converters (ADC) with a conversion time
of 6.67 ns and 12 bits.

H bridge / Tpyy =50 us

(x2) o p

Fig. 7. Current control with the saturation and anti-windup, H-bridge power converter and SM detailed scheme. There are two identical schemes for the alpha and beta SM phases.
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Two identical power converters, whose specific semiconductors
data are detailed in Table 3, have been used for the alpha and beta
phases, based on the well-known H-bridge topology, as Fig. 7 illus-
trates. The PWM strategy used is based on the well-known unipolar
one, fully described in [36], and the sampling time of the whole con-
troller, which is the same as the PWM period, has been set to 50 pus.

The current references are obtained from either a position or speed
set point, as it is illustrated in Fig. 8.

Fig. 9 is a picture of the workbench composed by the SM, an en-
coder and a DC machine in order to create an external load torque.
Also the DSP board and the power unit are illustrated. Such work-
bench has been firstly used to corroborate the proper functionality of
the new algorithms prior to being implemented in a real industrial
drive.

8. Experimental results

In order to corroborate the SM current control algorithm and prove
its tracking capability at high speeds, three sets of experimental

Table 3
Stepper motor and H bridge converter characteristics.

Stepper Motor IGUS 56 (NEMA23)

Maximum voltage (DC) 60 V

Nominal voltage (DC) / current 48V/42 A
Holding/detent torque 2.0 Nm/0.068 Nm
R/L 0.5Q/1.9 mH
Step angle / Nr 1.8°/50

Power MOSFET IRF540N

Vpss =100V Ip =33A Rps(ony =44 mQ
Other parameters

U, =100V T= Tpyp =50 ps

TMS320F28335 / T=50 pus

Fig. 8. Current references generation block. The electrical angle is given by either the
speed or position set point.

Fig. 9. Test workbench composed by the SM, DC machine and an encoder. The DSP
controller and the power unit are also illustrated.

results have been carried out. Hence, current, speed and position
waveforms in front of (i) speed steps, (ii) speed reversal trapezoidal
profile and (iii) constant speed with load impact, have been carried
out.

For the speed steps and speed reversal trapezoidal profiles, a com-
parison to prove the superiority of the new controller has been ad-
dressed. The systems under comparison are the PI and the new con-
troller, previously named as System_ 5 and System_6, respectively.
The closed-loop poles have been placed to enlarge the most the
closed-loop BW, keeping the closed-loop system stable. Hence, the
settling time is 400 ps (Ts,,, =400 ps) and 200 ps (Ts,, =200 ps) for
System_5 and System_6, respectively.

System_5 (blue trace) and System_6 (red trace) closed-loop fre-
quency response including the pertinent PF are plotted in Fig 10,
where it is clearly illustrated how System 6 has a larger BW.

Fig. 11 plots System_5 (blue trace) and System_ 6 (red trace) fre-
quency response in front of a perturbation. As a matter of exam-
ple, the back EMF sinusoidal perturbation, will have a rejection of
—24.6 dB and —36.4 dB at 1 kHz for systems 5 and 6, respectively.

Bode Diagram
10 r v v — 7T

Magnitude (dB)
)

10° 10°
Frequency (rad/s)

Fig. 10. System_5 (blue trace) and System 6 (red trace) close-loop frequency re-
sponse. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Bode Diagram
-20 .

Magnitude (dB)

10° 10"
Frequency (rad/s)
Fig. 11. System_5 (blue trace) and System_6 (red trace) frequency response in front of

a perturbation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 12. Pole zero map for System_5 (left) and System_6 (right). In blue the poles and zeros of the close-loop systems and in red the poles and zeros of the PFs. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Assuming a back EMF of 50 V, it would create against the 4.2 A of the
nominal phase current, an unwanted sinusoidal current of 2.95 A and
0.76 A for System_5 and System_6, respectively. This numerical ex-
ample proves the superior back EMF rejection capability of System 6.

Fig. 12 plots the pole zero map for systems 5 and 6. In blue the
poles and zeros of the close-loop systems and in red the poles and ze-
ros of the PF. System_6 pole zero map is consistent with Table 2. No-
tice how the zero placed at (—0.993 + 0i) is not compensated by the PF
as justified in Section 6.

8.1. Speed steps response

Fig. 13 plots the encoder measured position response (upper traces)
of the three systems when the speed reference (lower trace) has been
continuously increased with steps of 120 rpm (i.e. 100 Hz for the cur-
rent frequency). The three systems involved are the two previously de-
scribed and an additional System _6 with the same BW as the PI (i.e.
Ts,0, =400 ps).

It is clearly illustrated how System_ 5 (blue upper trace) is the first
of not being able to track the speed at 1200 rpm (i.e. 1000 Hz). This
lack of trackability is manifested because the measured position does
not increase as it should. Actually, the SM is losing steps.

System 6 (red upper trace) with the same BW as the PI (i.e.
Ts,, =400 ps) has been included for comparative reasons. Such sys-
tem is able to track the demanded speed up to 1440 rpm and loses the
tracking capability at 1560 rpm (i.e. 1300 Hz).

Finally, when the BW of System 6 is increased towards its max-
imum, the speed tracking capability still exits at 1800 rpm (i.e.
1500 Hz), as it can be clearly seen in the green upper trace of Fig. 13.

Such comparison not only experimentally proves that at the same
BW the new controller tracking capability is superior to the PI one, but
also demonstrates how the new controller can enlarge its BW without
losing stability and therefore increasing the maximum speed.

8.2. Speed reversal trapezoidal profile

A widely common test for electrical machines speed controllers is
the speed reversal following a trapezoidal speed profile, which implies
that the position follows a second order polynomial waveform.

Such test compares System 5 (Tsy, =400 pus) and System 6
(Ts50, =200 ps), both at its maximum BW. To fully show both con-
trollers’ performance, the magnitudes illustrated are the measured cur-
rent (just one axis), the speed reference and the reference and mea-
sured positions.

It should be noticed firstly, how the speed ramp is so steep, achiev-
ing the final speed in less than 20 ms and secondly how the speed re-
versal test includes both positive and negative speeds.

Final value of the speed ramp is 900 rpm (i.e. 750 Hz for the cur-
rent frequency) for Figs. 14 and 15, 1080 rpm (i.e. 900 Hz) for Figs.
16 and 17 and 1320 rpm (i.e. 1100 Hz) for Fig. 18.

Similarly as in the previous section, it is clearly proved that Sys-
tem_6 has a larger BW than System_ 5, since the former is still able
to track 1320 rpm, as it is illustrated in Fig. 18, meanwhile the latter
loses the tracking capability at 1080 rpm, as it is shown in Fig. 16.
Such waste of speed trackability can be seen very clearly in Fig. 16

[ -
T
':BE 2 - /,_..f'
/ //'/
0 B e e
0 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)
2000 T ;_
E 1500 f
E‘ —'—o_d
— —
'\::E 1000 ; —
500 .
0 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)

Fig. 13. Experimental speed steps response of System_5 (PI) and System_6 (new controller). It is illustrated the superior speed tracking capability of the proposed System_6. Top:
measured position. Blue trace System_5 with Ts,, =400 us. Red trace System_6 with Ts,,, =400 ps. Green trace System_6 with Tsy, =200 pus. Bottom: speed reference for the three
systems with step increments of 120 rpm (i.e. 100 Hz). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)





8 Mechatronics xxx (2016) XXx-XXx

T T TTTTT AT
.'|| |J'-I'|,|| ’ Jll‘ f |J |1[|H||[ " ™ -!I .| ]|‘ |“l i I[|-|I|-|I||I‘I‘]||I Tﬂ
- il | I 1
g N -|'|| AL |'|\|. A "!-.'.‘- i '“""!'l.'"”" !,lll'\,d,', W
= "IN l"ﬂl\ll '|”|.'|"||‘||.'-'.'|' 1l |]|.1.|r"\ "”'| il \|.'||" 17
]'\"I | ||| 1 [I ' .[1]][|| 1 Ie'l v I'JI ',l '.! !ull‘l ‘||l|l ]r l | Il I'n,':l
% 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)
1000
€ 50 — .
g 0 -
< 500 < —
=105 0.02 0.04 0.06 0.08 01_’ 0.12
Time (s)
= 6
©
~ 4
o
CbE 2
% 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)

Fig. 14. Speed reversal ramp profile from zero, up to +900 rpm, down to —900 rpm and back to zero for System 5 (PI). From top to bottom: alpha measured current, speed reference
and reference and measured positions.
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Fig. 15. Speed reversal ramp profile from zero, up to +900 rpm, down to —900 rpm and back to zero for System_6 (new controller). From top to bottom: alpha measured current,
speed reference and reference and measured positions.

bottom trace, where the symmetry in the measured position waveform not going higher in frequency and both of them are due to the back

is lost because the SM is losing steps. EMEF.

As a conclusion, it should be pointed that the new controller has The first reason is that at high speeds, large back EMF needs to
increased the BW, according to Table 2, up to 4766 Hz, which is be cancelled and consequently greater voltages are required. Actually,
much further away than the experimental results shown in Sections when the maximum DC voltage is reached, the current loop saturates

8.1 (1500 Hz, i.e. 1800 rpm) and 8.2 (1100 Hz, i.e. 1320 rpm). With and the anti-windup is activated, causing a current distortion and chal-

the new design proposed, the BW is no longer the limitation for lenging the tracking capability.

mounting in speed. Still, however, the there are two main reasons for The second reason is the limited back EMF rejection capability, as
it was previously discussed with the help of Fig. 11. The detail pro-
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Fig. 17. Speed reversal ramp profile from zero, up to +1080 rpm, down to —1080 rpm and back to zero for System 6 (new controller). From top to bottom: alpha measured current,

speed reference and reference and measured positions.

vided in Fig. 19 illustrates how the measured current is phase shifted
from the reference one, despite being inside the BW (1080 rpm, i.e.
900 Hz). This lack of entire back EMF cancellation, which worsens at
higher speeds, is the main cause of such current phase shift. At lower
speeds, the current tracking is almost perfect, as it can be seen in Fig.
20. Such phase shifts, nevertheless, does not compromise the torque
developed by the SM, since it affects at the same time and manner
both alpha and beta current components.

8.3. Load impact at constant speed

The third experiment involves a load impact test when the speed
reference is set at 540 rpm. Such external load torque has been intro-
duced by the DC machine of the workbench, which is illustrated in
Fig. 9. In Fig. 21, the top signal is the measured alpha current which
is undisturbed when the load impact is applied at 0.02 s according to
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Fig. 19. Current loop performance at high speed (1080 rpm, i.e. 900 Hz). Top: alpha
axis set point (blue) and actual (red) currents. Bottom: speed reference. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the bottom waveform. The point of the middle waveform is to prove
the load application. It shows the subtraction between the angle of the
vector current (workout from the measured alpha and beta currents)
and the angle measured from the encoder (which is somehow the per-
manent magnet angle). From Eq. (3), it can be concluded that the angle
between the permanent magnet vector and the current vector regulates
the electromechanical torque developed by the SM [2].
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Fig. 20. Current loop performance at low speed. Top: alpha axis set point (blue) and
actual (red) currents. Bottom: speed reference. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Therefore, it is experimentally proved the capability of the new al-
gorithm to cope with sudden load torque variations.

9. Industry prototype
This new controller has been applied in an industry 2 axis rapid

prototyping Printed Circuit Boards (PCBs) machine [26], which is il-
lustrated in the picture of Fig. 22. Such milling PCB machine is the
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Fig. 22. Industry 2 axis rapid prototyping Printed Circuit Boards (PCBs) milling ma-
chine.

fruitful collaboration between the University and a private company
and it is a tangible example of how increasing the SM speed reduces
the time employed for rapid prototyping.

Currently, such novel high BW SM based drive is being imple-
mented in a labeling machine for a wine manufacturer and it is ex-
pected that it will implemented in more industry applications where
the rapidity is a key issue.

10. Conclusions

High speed is one of the challenges of Stepping motors (SM) for
industry based motor drives. In this work, it has been maximised the
achievable speed when using SM drives in order to try to compete with
other encoder feedback based AC motor drives.

Initially, this work has justified why traditional PI controllers are
not sufficient to achieve high dynamics drives when using SM. In-
stead an accurate model of the SM drive, with all existing delays, has
been obtained in order to design a pole placement discrete-time do-
main controller with a high bandwidth.

A first set of experimental results, obtained in a University based
laboratory workbench, has been reported. Speed reversal trapezoidal
profile up to 1320 rpm and load impact experimental tests and wave-
forms are fully reported. Even a maximum speed of 1800 rpm has
been achieved and illustrated.

It can be concluded that with the new proposed design, the
closed-loop BW is no longer the limitation for mounting in speed.

Finally, a real 2 axis rapid prototyping Printed Circuit Boards ma-
chine has been designed and commercialised by an industry, which is
a tangible example of how increasing the SM speed reduces the time
employed for rapid prototyping.
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Appendix. List of symbols

Stepper motor variables

v;; i={a, B} (V) Voltage per phase

i;; i={a,B} (A)Current per phase

R () Stator resistance per phase
L (H) Inductance per phase

0, (rad) Electrical angle from the encoder

0,, (rad) Mechanical angle from the encoder

0; (rad) Electrical angle from the measured currents
Wpns (WD) Permanent magnet flux

o, (rad/s) Electrical angular speed

®,, (rad/s) Mechanical angular speed

n, (rpm) Mechanical angular speed

T, (N'm) Electromechanical torque

Nr Rotor Pole number

Other variables

Townr (s) Pulse width modulation period
T (s) Sampling period
Fs (Hz) Sampling frequency
Ts, (s) Settling time at 2%
Damping factor of a second-order system
, (rad/s) Natural frequency of a second-order system
J (Kg'm2) Total moment of inertia
F (N'm-s/rad) Total friction coefficient
T, (N'm) External load torque
Operators
K Laplace operator
z Z transform operator

Axis reference frames

ao/p Two-phase orthogonal stationary frame
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