An Efficient Generic Algorithm for the Generation of
Unlabelled Cycles*

Conrado Martinez! and Xavier Molinero?!

Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya,
E-08034 Barcelona, Spain.{conrado, molinero}@lsi.upc.es

Abstract. In this paper, we combine two recent generation algorithms to obtain
a new algorithm for the generation of unlabelled cycles. Sawada’s algorithm [12]
lists all k-ary unlabelled cycles with fixed content, that is, the number of oc-
curences of each symbol is fixed and given a priori. The other algorithm [8],
by the authors, generates all multisets of objects with given total size n from any
admissible unlabelled class .A. By admissible we mean that the class can be speci-
ficied using atomic classes, disjoints unions, products, sequences, (multi)sets, etc.
The resulting algorithm, which is the main contribution of this paper, generates
all cycles of objects with given total size n from any admissible class .A. Given
the generic nature of the algorithm, it is suitable for inclusion in combinatorial
libraries and for rapid prototyping. The new algorithm incurs constant amortized
time per generated cycle, the constant only depending in the class .A to which the
objects in the cycle belong.

1 Introduction

The generation of unlabelled cycles (also called necklaces) probably poses the most dif-
ficult problems if we compare them with the generation of other common combinatorial
constructs (see for instance [9, 4, 10]). But in the last few years there has been several
notable progress related to the generation of necklaces, as witnessed by the work of
Wang and Savage [16], Ruskey and Sawada [13, 11], Cattell et al. [1] and Sawada [12].

Recall that a necklace or unlabelled cycle is a sequence of symbols such that it is
lexicographically smaller than any of its circular permutations. Thus, abadc is a cycle
but adcab is not. Of course, we assume a certain order among the symbols in order
to properly define the notion of cycle. When a cycle is aperiodic it is called a primitive
cycle or Lyndon word; thus the cycle abadc is a Lyndon word, but the cycle abab is
not.

In our recent works [6, 8] we have shown how to design general algorithms to it-
erate through all the objects of a given size in labelled and unlabelled admissible com-
binatorial classes, such as those constructed using disjoint unions, products, sets and
multisets, sequences, substitutions, etc. We use the adjective general above in the sense
that the algorithms receive as their input both the size n of the objects and a finite

* This research was supported by the Future and Emergent Technologies programme of the
EU under contract 1ST-1999-14186 (ALCOM-FT) and the Spanish “Ministerio de Ciencia y
Tecnologia” programme TI1C2002-00190 (AEDRI I11).

specification of the combinatorial class which the objects belong to. In this paper we
present an iteration algorithm for unlabelled cycles thus extending the framework al-
ready presented in [8]. Contrary to the other algorithms that we have designed so far,
the algorithm for unlabelled cycles is not based upon a suitable recursive decomposition
of this combinatorial construction; hence, it cannot be used as the basis for an efficient
unranking algorithm (that is, given a rank i and a size n, generate the i-th object of size
n) for unlabelled cycles, which remains still as an open problem.

The framework presented in [6, 8] follows the approach that was pionereed by Flajo-
let et al. [3] for the random generation of combinatorial objects, and later applied by the
authors to the unranking of combinatorial objects [7]. Together with the present paper,
these papers show the viability of this elegant approach for an effective and efficient
solution of the “big four”: counting, random generation, exhaustive/iterative genera-
tion and unranking. For instance, a typical implementation of these iteration algorithms
could be used to generate and print all cycles of positive integers whose sum is 10, as
follows:

neck:= [N, N = Cycle(Set(Z, card >= 1)) , unlabelled];
Z denotes a generic atomic class

it:= init iter (neck, size = 10);

while not is_last(it) do print(get obj (it)); it:= next(it)

We have been able to prove that all the iteration algorithms proposed in [6, 8] run in con-
stant amortized time (CAT) per generated object, provided that the class can be finitely
specified using e-classes (a single object of size 0), atomic classes (a single object of
size 1), disjoint unions, products, sequences, substitutions, sets and multisets. We also
provided there a CAT algorithm for labelled cycles, but unlabelled cycles eluded our
efforts. The proposed algorithms do not perform better than state-of-the-art algorithms,
but do not perform much worse either. And because of their general flavor, they are
useful for rapid prototyping and for their inclusion into general combinatorial libraries
like combstruct for Maple or MuPAD- combinat for MuPAD.

This paper is organized as follows. In Section 2 we review a few basic concepts and
notations. Sections 3 and 4 present our algorithm, which is based upon our algorithm
for unlabelled multisets in [8] and the recent algorithm to generate unlabelled cycles
of fixed content of Sawada [12]. We prove that the resulting algorithm has good per-
formance, namely, it is constant amortized time. Finally, in section 5 we discuss our
current and future work on this topic and report on our preliminary implementation of
the algorithm.

2 Préiminaries

In this paper we consider unlabelled admissible classes of combinatorial structuresand
in particular, unlabelled cycles. Most of the material in this section is standard and
can be found elsewhere, see for instance [2, 14, 15]. However, to make the paper more
self-contained and to fix notation, we will briefly introduce some basic definitions and
concepts. We begin with the formal definition of a combinatorial class.

7

end

Definition 1 A combinatorial class isa pair (A, | - |) such that A is afinite or infinite
denumerablesetand | - | : A — N isasize function such that, for all n > 0, A,, =
{a € A||a| = n} isfinite.

Shall no confusion arise, we will use the same name for the class and for the set of
objects belonging to that class. Also, we use subscripts under a class name to denote the
subset of objects of that class with a given size. Typically, complex objects in a given
class are composed by smaller units, called atomsand generically denoted by Z. Atoms
are objects of size 1 and the size of an object is the number of atoms it contains. For
instance, a string is composed by the concatenation of symbols, where each of these is
an atom, and the size of the string is its length or the number of symbols it is composed
of. Similarly, a tree is built out of nodes —its atoms— and the size of the tree is its
number of nodes. Objects of size 0 are normally denoted by € *.

Two main types of combinatorial classes can be defined depending on whether the
atoms that compose a given object can be distinguished or not. In the former case, we
say the class is labelled whereas in the later we say the class is unlabelled.

As it will become apparent, an efficient solution to the problem of counting, namely,
given a specification, a class and a size, compute the number of objects of the given size,
is fundamental for our solution of the iteration problem. Hence, we turn our attention
to admissible combinatorial classes, that is, those classes that can be constructed from
admissible constructors. An admissible constructor is an operation over classes that
yields a new class, and such that the number of objects of a given size in the new
class can be computed from the number of objects of that size or smaller sizes in the
constituent classes.

In order to formalize the notion of admissibility, we need the fundamental notion of
counting generating functions.

Definition 2 The (counting) generating function of an unlabelled combinatorial class
A isthe ordinary generating function for the sequence {a,, },>o. That is,

A(z) = Z apz" = Z zlel
n>0 aEA

where a,, = #.A,, isthe number of objectsin A of size n. The n-th coefficient of A(z)
isdenoted [z"] A(z), i.e, a, = [2"]A(z2).

Now we can define admissible operators.

Definition 3 An operation ¥ over combinatorial classes A1, A, ..., A isadmissible
if and only if there exists some operator ¢ over the corresponding generating functions
Aq(2),..., A(z) suchthat

C=T(A,..., Ay) = O(2) = B(Ai(2),..., Ax(2))
where C'(z) is the generating function of C.

Finally, we can define admissible specifications.

! Some authors use X to denote object of size 0, also called the empty object.

Definition 4 Anadmissible specification S is a collection of equations of the form
_ (4) (4)
Ai =Ti(A;)0, ALY

where no two equations have the same left-hand side, each ¥; is an admissible opera-
tion, and each A(.:) is either an e-class, an atomic class, or thereis an equation in the
collectionwith that class asitsleft-hand side. An e-classisa classthat containsa single
object of size 0. Each of the classes that appear in the left-hand sides of the equations
in S issaid to be specified by S.

If a class A is specified by an admissible specification, then the class itself is called
admissible. Admissible classes are also called decidable or well-founded classes [17].
Table 1 lists some admissible operators and the corresponding ordinary generating func-
tions (OGFs).

Class OGF
Union(A,B) = A+ B A(2) + B(2)
Prod(A,B) = A x B A(2) - B(2)

Seq(A) 1_/14(2)
PowerSet(A) |exp < > (=t A(Zn)>
n>0
Set(A) exp (E %)
n>0
¢(n)
Cycle(A) Eo = log (#())
Subst(A, B) A(B(z))

Table 1. Unlabelled admissible combinatorial operators

Though the collection of operations given above is small, it can be used to describe
many important and useful combinatorial classes (see Table 2). Unfortunately, not all
operations are admissible, for instance, intersections and differences.

Such admissible classes must have a finite number of objects for any size, i.e.,a,, <
oo for any n € N. Hence, some restrictions over the classes are needed. For instance,
Seq(A) and Set(.A) require that ag = 0; and, Subst(A, B) requires that either by = 0
or A is finite.

From now on, by an admissible class we mean that the class can be finitely speci-
fied using the € class (the class with a single object of size 0), atomic classes (classes
that contain a single object of size 1), disjoint unions (Union or ’+”), products (Prod
or “x”), sequences (Seq), multisets (Set), powersets (PowerSet) and cycles (Cycle)
of admissible classes. Furthermore, the techniques and results presented can be easily
extended to variants of the cycle operator which are admissible operators, in particular,
to cycles with a restricted number of components. As we have already mentioned in the

Unlabelled class Specification

Integer partitions A = Set(Seq(Z, card > 1))

Binary sequences B =Seq(Z+ Z)

Rooted unlabelled trees D = Z x Set(D)

Non plane binary trees E =27+ Set(€,card = 2)

Unlabelled hierarchies F = Z + Set(F,card > 2)

Random mapping patterns G = Set(Cycle(D))

2-3 trees H=Z+Subst((Zx Z2)+(ZxZxZ),H)
Integer partitions without repetition|Z = PowerSet(Seq(Z, card > 1))

Table 2. Examples of admissible unlabelled classes

introduction, in [6, 8] we have developed efficient algorithms to cope with all the com-
binatorial operators mentioned in the list above, except for unlabelled cycles (Cycle).
In this paper, we fill that gap.

3 Generating Cycles: The Fundamentals

Let A be some admissible unlabelled class and assume that we already have an efficient
procedure next to list all objects of a given size n in A, one at a time. How do we list
all the objects in C = Cycle(.A) of a given size?

Roughly, our algorithm to list C,, works as follows:

Procedure GENCYC:

1. Generate the next multiset v of A’s of size n.

2. Generate all valid cycles that can be constructed with the components (possibly
repeated) of .

3. Gotostep 1.

In order to generate all the cycles using the components of the basis multiset
we need to introduce some order among them. If two components a ; and a- have the
same size then their order is given by respective ranks in A (i.e., the order in which
they are listed by the known next procedure). Otherwise, the object of smaller size is
considered smaller than the other object. We write a; < a to denote that a; is smaller
than or equal to a-, in the sense above.

On the other hand, the order of multisets could be similarly defined. Let

v ={ap®ng,a; ®ng,...,ax_1 ®ng_1},

o ! ! ! ! ! !
v = {ag e ng, a3 ONy,...,05 '”jq}:

where the notation a e n indicates that the object a appears n > 0 times in the multiset?.
Assume, furthermore, that each multiset is presented in sorted order, namely, ag <

2 We will usually omit the notation en if n. = 1, though.

ar = -+ X ag—1, and similarly ~'. Then the relative order of v and ~' follows from
the obvious lexicographic order; thus v < ~" if they have a common “prefix” of length
¢ — 1 and either ay < aj or ag = aj and n; > nj.

Notice that the procedure GENCYC will generate all cycles of size n in Cycle(.A)
if we find a way to solve its two main steps; however, the cycles would not be generated
in lexicographic order. For instance, take the basis multisets v = {a ® 3,b,¢} and
' = {a *2,be 3}, with v < +'. However, the cycle abaac will be generated before
than the cycle aabbb, yet the latter is lexicographically smaller than the former. If
we defined the order between multisets in such a way that v’ < ~, we would produce
ababb before aaabc, so the problem is inherent to the structure of our algorithm, not
to the way we have defined the order of multisets.

Our next step is to define a suitable representation of cycles, so that GENCYC can
be efficiently implemented. The representation of cycles is conditioned by our already
existing framework for the generation of other combinatorial objects; some modifica-
tions need to be introduced into that framework in order to accommodate the generation
of cycles.

We use a binary tree and some supplementary information to represent any object
of a combinatorial class. We call the resulting data structure an iterator. Leaves in the
binary tree contain the atoms and ¢ components of the object; the internal nodes are
labelled by operators: ’+’, *x’, etc. Each internal node in contains information about the
subobject represented by the corresponding subtree. In particular, each node holds the
size of the subobject, the specification of the class that the object belongs to, the rank of
the object within its class, and the number of objects of that size in the class. Additional
fields are used for some particular nodes, as we describe below. Furthermore, each node
has pointers to its children and to its parent, and the iterator has a pointer which always
points to the last updated node, so that the generation of the next object can be speeded
further.

In order to be able to cope with the nested generation of cycles, a ’cycle’ node
is similar to a "multiset’ node (we will describe these in detail later) and the object
represented by the subtree beneath is what we have called the basis multiset; the *cycle’
node contains also an auxiliary structure that establishes how the components of the
basis multiset are arranged in the current cycle. While generating all the cycles with
a common basis multiset, the subtree below the ’cycle’ node gets untouched, only the
auxiliary structure is modified. When all such cycles are generated, the algorithm to
generate the next multiset is applied to the *cycle’ node, making the appropriate changes
in the subtree and updating the auxiliary structure associated to the ’cycle’ node, as
necessary.

4 Generating Cycles: The Details
The generation of multisets is based in the following useful recursive decomposition:

OSet(A) = AOA x Set(A), @)

where @ denotes the marking or pointing of the class 5 and AB denotes the diagonal
or stack operator of the class B. The class C = @5 is obtained by marking each atom

of each of its objects, thus producing n different objects for each object of size n in B.
The operator © is admissible since C(z) = ©B(z) = 2L B(z). The class C = ABis
obtained by forming tuples of repetitions of the objects in B; thus

C=B+{(8,8)|8eB}y+{(8,8,8)|6€B}+---,

We have C(z) = AB(z) = B(2)+B(2%)+B(2%)+- - -. Anintuitive way to express the
isomorphism in (1) is that a multiset consists of some distinguished element repeated a
certain number of times, times a multiset. In our representation, a 'multiset’ node has a
left son of size £ whose root is a ’delta’ node and a right son of size n — £ whose root is
a ‘multiset’ node. To compute the next multiset, the algorithm is recursively applied in
the right son; but if no more multisets of size n — ¢ can be generated, then we apply the
next algorithm to the left son and initialize the right son with the smallest multiset of
size n — £ that does not contain components smaller or equal to the object in the delta’
node. If there is no ’delta’ object following the one represented by the current left son,
then we initialize both the left son and the right son with the appropriate ’delta’ and
"multiset’ objects of size ¢’ > ¢ and n — ¢', respectively.

The computation of the next 'delta’ object is quite easy. Suppose that the current
"delta’ object is a o r, of size £ = |a| - r. The ’delta’ node has a special field to carry
the information about the number of repetitions r of the object a, which is represented
in the left subtree. The right subtree of the ’delta’ node is simply discarded. If a is not
the last object in A of its size, then the next *delta’ object is a’ e , where a’ is the
next object of a in 4. Otherwise, find the smallest divisor r’ > r of £ and initialize the
"delta’ node with aq ' where ay is the first object of size £/r in 4. With this scheme,
multisets are not generated in lexicographic order, but as we have discussed, this is not
very relevant as the cycles can’t be generated in lexicographic order either.

In order to generate a multiset that does not contain a given component (nor any
smaller component), we use the rank and size of the .4 object which must be avoided
when initializing the multiset. That means that, recursively, its *delta’ node starts with
the object following the given one, either of the same size and of given rank plus one,
or of the next available size.

Provided that all objects of a given size in .4 can be generated in time proportional
to the total number of generated objects, then it can be shown that the algorithm above
generates all multisets of size n of A’s in time proportional to the total number of
generated multisets [8].

We use Sawada’s algorithm [12] to generate all the cycles with a given basis mul-
tiset. This recent algorithm is able to produce all possible cycles that contain N oc-
currences of the symbol 0, N7 occurrences of symbol 1, etc., i.e., all k-ary cycles of
fixed content. In our algorithm, the components of the basis multiset are the “symbols”
to work with. With some effort, Sawada’s algorithm can be transformed into an iter-
ative version which is more convenient to our purposes, although more involved than
the original recursive version. The algorithm works by appending symbols to suitable
prefixes; in order to avoid linear searches of the available symbols, a global list L of
“available” symbols is used.

To start the generation of cycles, we first initialize the basis multiset y of the "cycle’
object, along the lines sketched above. Let v = {ag ® 7o, ..., ax—1 ® rx—1}. We also

prepare a list L with pointers to the delta’ objects a; e r; and initialize an array NV
with the repetitions r; of each ’delta’ object. Both the list L and the array N are part
of the auxiliary structure attached to the "cycle’ node. Because of the requirements of
Sawada’s algorithm the list L must be filled in reverse order (the first element in the
list points to a;_, and so on) and then L must be rearranged to make sure that the first
element in L points to the component with the largest value ;. Of course, the array
N must be rearranged accordingly. The auxiliary structure also contains the rank of
the current cycle (initialized to 0) and the count of the number of cycles that can be
generated with that particular basis multiset [5]:

o , (N/5)!
O i) = Nngd(NOXp:-.,Nkl)gb(]) (No/j)t- -+ (Nk—1/4)V

where ¢(z) is Euler’s totient function (the number of prime divisors of z) and N =
Ny + Ny + ---+ Nj_1 (observe that IV is not necessarily the size of the cycle, as the
components are not of size 1, in general). Finally, it contains an array V' of pointers
that gives the arrangement of the components within the current cycle, the length p of
the longest Lyndon prefix of the current cycle, as well as other necessary bookkeeping
variables. All this additional information, in particular L and NV, can be easily initial-
ized while initializing the basis multiset, introducing a few minor modifications in the
corresponding algorithm.

Recall that the list L is initialized in reverse order and furthermore, Sawada’s al-
gorithm requires that symbols are renamed to make sure that the largest symbol in
lexicographic order has the largest number of occurrences. Although it would be not
too difficult to take this circumstances into account when accessing the binary trees and
associated data structures which represent the object and undo both the reversing and
renaming, we do not take any further steps on this respect, because we will not be able
to generate all cycles of 4’s in lexicographic order anyway.

When all the cycles with the same basis multiset are exhausted, the next algorithm
is applied to obtain a new basis multiset; the list L, the array IV and the other fields of
the auxiliary structure are updated accordingly. In principle, updating the array N and
the list L would need some non-constant amount of work. But when Sawada’s algorithm
ends, both L and N have recovered their initial contents. Again a minor modification of
the next algorithm will allow us to make no more changes to update NV and L than to
generate the new basis multiset (in the amortized sense). So to speak, most of the times
only one or two components of the multiset will be modified and thus only a constant
amount of work will be necessary to update NV and L.

Sawada’s algorithm generates the C'(No, ..., N,_1) cycles in constant amortized
time per cycle. Denote C'(-y) the cost of generating all the cycles with basis multiset
and €(y) the set of cycles with basis multiset . Thus the cost C, of our algorithm is

given by:
Cn=c-#Set(A), + > (C(v)+¢)

vESet(A)n

=(c+) #Set(A), + Z Z "

vESet(A), veC(y)

=" #Set(A), + " - #Cycle(A),,

where ¢, ¢/, ¢ and ¢""" are constants. The constant ¢ is implied by our CAT algorithm for
multisets; the constant ¢” is implied by Sawada’s algorithm for cycles of fixed content,
and ¢’ is the constant amount of work that needs to be done to update the auxiliary
structure attached to the corresponding ’cycle’ node each time that we move from a
basis multiset onto the next one. Since Set(A),, < Cycle(A),, ifn > 0, it follows that
C', is bounded by a constant times the number of generated objects, and thus it is a CAT
algorithm too.

5 Final Remarks

We have already conducted a few experiments with a preliminar implementation of the
algorithm described in this paper in MAPLE with good results. In particular, we have
used the class /' = Cycle(Set(Z, card > 1)) (cycles of integers), for our experiments.
For instance, all cycles of integers of total size 25—there are 1342183 such cycles—are
generated in 2269 seconds (0.0016911 seconds/cycle) using a machine equipped with a
Pentium processor at 1.7 GHz.

Although the basic ideas behind the algorithms (including the algorithm for mul-
tisets and Sawada’s algorithm) are rather simple, the implementation details are not.
This is because the new algorithm for cycles operates rather differently of the other
generation algorithms with which it should be integrated (the algorithm for multisets is
prototypical in that respect, with a nice recursive decomposition guiding the algorithms
operation). We are looking for a suitable recursive decomposition of cycles that allows
us to design an iteration algorithm which fits better the framework developed in [8].
Also, such an algorithm would be more amenable to a precise analysis of its perfor-
mance. Last but not least, it such a recursive decomposition were obtained, an efficient
algorithm for the unranking of cycles would suggest itself.

Other related questions that we are now investigating include variants of the oper-
ators (for instance, cycles with restrictions on the number of components) and minor
variations of the order in which objects are generated which could improve the overall
performance of the process.

References

1. K. Cattell, F. Ruskey, J. Sawada, and M. Serra. Fast algorithms to generate necklaces, unla-
beled necklaces, and irreducible polynomials over GF(2). J. Algorithms, 37:267-282, 2000.

2. Ph. Flajolet and R. Sedgewick. The Average Case Analysis of Algorithms: Counting and
generating functions. Technical Report 1888, INRIA, April 1993.

10.

11.

12.

13.

14.

15.

16.

17.

Ph. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random generation of
combinatorial structures. Theoret. Comput. Sci., 132(1-2):1-35, 1994,

H. Fredricksen and 1.J. Kessler. An algorithm for generating necklaces of beads in two colors.
Discrete Mathematics, 61:181-188, 1986.

E.N. Gilbert and J. Riordan. Symmetry types of periodic sequences. IllinoisJ. Mathematics,
5:657-665, 1961.

C. Martinez and X. Molinero. Generic algorithms for the exhaustive generation of labelled
objects. In Proc. of the 4" Workshop on Random Generation of Combinatorial Structures
and Bijective Combinatorics (GASCOM’ 01), pages 53-58, 2001.

C. Martinez and X. Molinero. A generic approach for the unranking of labelled combinatorial
classes. Random Structures & Algorithms, 19(3-4):472-497, 2001.

C. Martinez and X. Molinero. Generic algorithms for the generation of combinatorial ob-
jects. In Proc. of the 28" Int. Symposium on Mathematical Foundations of Computer Science
(MFCS), Lecture Notes in Computer Science, 2003. Accepted for publication.

A. Nijenhuis and H. S. Wilf. Combinatorial Algorithms. Academic Press, 1978.

F. Ruskey, C. Savage, and T.M.Y. Wang. Generating necklaces. J. Algorithms, 13:414-430,
1992.

F. Ruskey and J. Sawada. A fast algorithm to generate unlabeled necklaces. In Proc. of the
11" Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 256-262, 2000.
J. Sawada. A fast algorithm to generate necklaces with fixed content. Theoret. Comput. Sci.,
2003. To appear.

J. Sawada and F. Ruskey. An efficient algorithm for generating necklaces with fixed density.
In Proc. of the 10" Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
752-758, 1999.

R. Sedgewick and Ph. Flajolet. An Introduction to the Analysis of Algorithms. Addison-
Wesley, Reading, MA, 1996.

J.S. Vitter and Ph. Flajolet. Average-case analysis of algorithms and data structures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 9. North-Holland,
1990.

T.M.Y. Wang and C. Savage. A Gray code for necklaces of fixed density. SAM J. Discrete
Math., 9(4):654-673, 1996.

P. Zimmermann. Series génératrices et analyse automatique d'algorithmes. PhD thesis,
Ecole Polytechnique, March 1991.

