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Abstract

This paper proposes a new approach to control the grid-side current of LCL-grid

connected voltage source converters using hysteretic relay feedback controllers.

The closed loop system is stabilized by designing a local feedback around the

relay element. The compensator allows the use of relay feedback controllers by

making the controlled plant almost strictly positive real. The article proposes

the use of the locus of the perturbed relay system as analysis and design tool

and studies orbital stability for several plant and controller conditions. The

approach is validated by means of simulation testing.
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1. Introduction

Hysteretic controlled systems in particular and, in general, Relay Feedback

Systems (RFS), are among the oldest and most spread control schemes in the

world. The feedback loops controlled in that way present a high degree of

simplicity, a superb performance and wide robustness margins. A good proof5

of that is their wide presence in quotidian systems as home heaters, electrical

appliances, etc.
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The use of RFS is also extended in the control of power electronics systems.

Their advantages have been proved to be useful in AC machine current con-

trol [17, 15, 5], and grid-connected current control, in both SISO and MIMO10

plants [21, 7, 14]. A common feature of these proposals is the resistive-inductive

dynamical characteristic, from the current control point of view, of the system

the power converter is facing, being it a consequence of the RL EMI filter or

of the equivalent circuit of, for example, an electric machine. The simplicity of

this structure perfectly suits the relay feedback behaviour creating control loops15

with outstanding robustness to grid, load or filter parameter mismatching, lack

of current tracking errors, and very fast dynamics only limited by plant band-

width. Although the use of RL filters was standard in the early ages of the

connection of VSCs to the grid, the use of higher order filters as, for example,

LCL filters is increasingly gaining presence in grid applications. In the latter20

cases the application of RFS presents several problems and there are only pro-

posals to control the converter-side current, such as [20] or [3], or the whole state

vector as is the case in the related approach based on sliding control schemes

[9, 23, 10].

This fact is probably caused by the interesting dynamical characteristics of25

the transfer function relating converter-side current and converter output volt-

age: it is and admittance transfer function, and it is well known that impedance

or admittance transfer functions are positive real (PR)[1]. That is to say

F (jw) + F ∗(jw) ≥ 0, (1)

where F (jw) is either the admittance or impedance transfer function and ∗ rep-

resents the complex conjugated. The family of PR transfer functions presents in-30

teresting stability properties when considered inside of a feedback loop. Among

them, they are known to behave in a stable way when controlled with a RFS

[22]. However, even in this convenient situation, the fact that the controlled

variable is the converter-side current and not the actual grid injected current

generates some undesirable side effects such as uncontrolled oscillations, un-35
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Figure 1: Hysteretic relay feedback servo system with the proposed compensator.

controlled displacement power factor (DPF) and, in general, a certain lack of

control due to the partial open-loop configuration. Some partial solutions to

these problems can be found in the literature [3]. Unfortunately PR properties

vanish when the fed back signal is the grid-side current as the transfer function

under control is not an admittance any more. A RFS-based control loop of this40

kind of plant is unstable.

This paper proposes the use of a compensator K(s) locally feeding back

the relay element as shown in Fig. 1. The function of the compensator K(s)

will be to render the control loop stable while ensuring that the output current

i1(t) tracks the reference signal iref . This approach will rely on the concept of45

parallel compensation of non-minimum phase plants [8] and on the concept of

Almost Strictly Positive Real (ASPR) [18] function.

Section 2 presents the theoretical foundations of the proposal. Section 3 dis-

cusses the particular application of the described methodology to the concrete

problem of LCL grid-side current control. Section 4 benchmarks the proposal50

in a detailed simulation environment. Finally section 5 reports the main con-

clusions of the proposal.
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2. Theoretical background

2.1. Reference signal propagation through a relay servo system

Consider a relay servo system like the one displayed on Fig. 1, for the moment55

without the compensator1 K(s). Assume, also, that the linear part, G(s), is

a low-pass LTI transfer function and that the external inputs, reference and

disturbances, are much slower than the self-excited oscillations characteristic

of this kind of systems. In [4] it was shown that, under these assumptions,

the dynamics of the system can be split into two separate subsystems: a slow60

subsystem and a fast subsystem.

The fast subsystem is responsible for the self-excited oscillations or periodic

motions (limit-cycle) characteristic of RFS while the slow subsystem deals with

the forced motions caused by the reference (see Fig. 1), the disturbances or

the non-zero initial conditions of some elements in the system. Note also that65

both systems interact so the slow dynamics depend on the fast ones [4] and

vice-versa.

From the slow subsystem point of view, the system averagely behaves follow-

ing the closed-loop that results from replacing the relay element by an equivalent

gain keq. The actual output additionally presents a high frequency (self-excited)70

oscillation that follows the fast motion model of the feedback loop.

2.2. Stability of the control scheme. Almost strictly positive realness concept

Assuming that the relay element behaves as an equivalent constant keq for

low frequency signals, the closed loop will be stable if the plant G(s), when

connected in feedback through that constant, is stable. In this context, the75

concept of Almost Strictly Positive Realness plays an interesting role.

Definition 1. A linear system P (s) is said to be Almost Strictly Positive

Real (ASPR) [18] if there exists a constant gain ke, not necessarily known, such

1It is worth to remark that the whole controller is composed by the relay element and the

compensator K(s).

4



that the closed loop transfer function

Z(s) =
P (s)

1 + keP (s)
(2)

is Strictly Positive Real.

Lemma 1. [18] Let P (s) be a LTI transfer function. P (s) is ASPR if:

• rd{P (s)} = 1.

• P (s) is minimum-phase: if zi is a system zero, P (zi) = 0, then <e{zi} <80

0.

Where rd{·} represents the relative degree (denominator degree minus numer-

ator degree) of the rational transfer function P .

Lemma 2. [18] If P (s) is an ASPR LTI transfer function then there exists a

kn ∈ R with kn > 0 such that 1 + kP (s) is Hurwitz for all k > kn.85

The first lemma gives the conditions for a transfer function to be ASPR

while the second one provides with a stabilization method: when controlling an

ASPR function, if the relay equivalent gain keq > kn, the closed loop will be

stable. The objective of the parallel compensator K(s) is, thus, to transform

G(s) into an ASPR plant with a low enough minimal gain kn.90

2.3. ASPR synthesis via parallel compensation

Unlike other control schemes, as for example linear controllers, the topology

of a relay feedback control scheme limits to a big degree the possible locations of

user-defined transfer functions that could modify the loop behaviour or stability.

A traditional strategy is the use of a local relay feedback function, as shown95

in Fig. 1. In this scheme the compensator, K(s), uses the output of the relay

element, linearly modifies it and feeds it back into the relay element input again.

From the point of view of the system stability, this schema is topologically

equivalent to applying a linear parallel compensator to the transfer function
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Figure 2: Compensated plant equivalent from stability point of view.

plant relating the grid-side LCL current with the converter output voltage, as100

shown in Fig. 2.

The primary objective of the compensator is, then, that the augmented

process under control, Gp = G + K is an ASPR plant that is stable when it

is fed back with a gain keq > kn. Additionally, it is necessary to stress on the

fact that, as shown in Fig. 2, although the fed back variable is y (and, thus, the105

one that is kept within the hysteresis band), it is the output i1 of the transfer

function G the variable that is chosen to track the reference iref . The latter

statement implies the selection of a parallel compensator K with low gain at

the frequencies where good reference tracking is required.

The process of parallel synthesis of ASPR plants has already been tackled110

in other scenarios. It has been used in the field of adaptive control [13, 12, 16]

where a class of adaptive control algorithms can be used in the case the pro-

cess is ASPR. The basis of this process is the existing duality between parallel

compensation and negative feedback, described in [19]. A different, although re-

lated, approach of RFS stabilization via parallel compensation has been tackled115

in [8].

Consider a strictly proper transfer function G(s) with rd{G(s)} = deg{dG}−

deg{nG} ≥ 1, where nG and dG stand for the numerator and denominator of

G, respectively. Consider also the transfer functions A(s) = nA(s)
dA(s) and B(s) =
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Figure 3: Negative feedback vs Parallel feedforward.

nB(s)
dB(s) . The transfer function relating the reference input r to the output y in120

the negative feedback scenario (Fig. 3.a) is:

Gf (s) ,
Y (s)

R(s)
=

A(s)G(s)

1 +A(s)G(s)
=

nA(s)
dA(s)

nG(s)
dG(s)

1 + nA(s)
dA(s)

nG(s)
dG(s)

=
nAnG

dAdG + nAnG
(3)

Similarly, the equivalent transfer function relating r and y in the parallel

feedforward scenario (Fig. 3.b) is:

Gp(s) , G(s) +B(s) =
nG(s)

dG(s)
+
nB(s)

dB(s)
=
nBdG + dBnG

dBdG
(4)

If we now consider B(s) = A−1(s) or in other words nB = dA, dB = nA, it

can be seen from (3) and (4) that the numerator of Gp equals the denominator125

of Gf . This fact is the basis of the duality: while the negative feedback process
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allows the placement of the compensated system poles, the parallel feedforward

allows the placement of the zeros.

The above property gives a method to render a plant ASPR for any strictly

proper plant:130

1. The condition of relative degree 1, can be achieved remembering that, in

the case of parallel compensation:

rd{Gp(s)} = min{rd{B(s)}, rd{G(s)}}

so a rd{Gp} = 1 can be ensured if B(s) has relative degree 1. That implies

A(s) with rd{A(s)} = −1.

2. The condition of Gp being minimum phase is equivalent to being its nu-

merator Hurwitz. As the numerator of Gp equals the denominator of Gf ,

the condition is equivalent to Gf being asymptotically stable.135

Additionally it is desirable to obtain a plant Gp = G+B with well damped

zeros (poles of Gf ) and good stability margins, to guarantee stability even for

not so big keq (low switching frequencies or big steps on disturbances). Some

more insight into the design process can be obtained by observing the transfer

function relating the reference the grid injected current i1 and its reference iref140

(see Fig. 1) replacing the relay element by its equivalent gain keq:

I1
Iref

(s) =

keq
1+keqK(s)G(s)

1 +
keq

1+keqK(s)G(s)
=

keqG(s)

1 + keq (K(s) +G(s))︸ ︷︷ ︸
Gp

Focusing on its denominator, namely V (s) = 1 + keqGp(s), its roots will

define the dynamics of the closed loop response. Equaling it to 0 and recalling

equations (3) and (4):

1 + keq

(
nBdG + dBnG

dBdG

)
=0

dBdG + keq(nBdG + dBnG) =0

V (s) = k−1
eq dBdG + (nBdG + dBnG) =0 (5)
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now, assuming a high keq and taking limits,145

lim
keq→∞

V (s) = 0 ⇐⇒ (nBdG + dBnG) = 0. (6)

Equation (6) indicates that the final closed loop dynamics, neglecting the

limit cycle oscillation, will be marked by the roots of (nBdG+dBnG), which are

the poles of Gf and the zeros of Gp.

3. LCL grid-side current control. Parallel compensator design

The LCL transfer function relating the converter output voltage with the150

grid-side current is

G(s) ,
I1
U

(s) = (7)

E

L2L1C1s3 + (R2L1C1 + L2R1C1)s2 + (L1 +R2R1C1 + L2)s+R1 +R2

where L1, R1, L2, R2 stand for the inductance and resistance of the grid-side

and convert-side branches of the LCL filter respectively, C1 stands for the LCL

capacitor and i1 and u are the grid-side current and converter voltage output

normalized to the DC bus voltage E respectively2.155

G(s) is of order three and has no zeros. As a consequence it is far from being

ASPR. Note that this situation is completely different in the case of the transfer

function relating the converter output voltage with the converter-side current

i2. As this transfer function is a dissipative impedance it is strictly positive real

(SPR) [1] and the RFS control loop is stable for all keq (easily deducible from160

the fact that the polar plot of this transfer function is always in the right-hand

complex plane so there is no way it can encircle the −1 point).

In order to convert G(s) into an ASPR plant it is necessary to compensate

it with a parallel feedforward transfer function K(s) that fulfills the following

requirements:165

2To better illustrate the design process, all the design diagrams are obtained with the

parameters on Table. 1 of Section 4
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1. rd{K(s)} = 1.

2. Gp = K(s) +G(s) minimum-phase, that is Gf = K(s)−1G(s)
1+K−1(s)G(s) stable.

3. K(s) should be small in the frequencies where the reference is expected. In

this case, we are considering a VSC delivering power at the fundamental

frequency of the grid so K(jω) should have little modulus at 50Hz (ω1 =170

2π50 rad s−1) to ensure i1 is close to y in Fig. 2.

As an example design, this section considers a parallel compensator of the

form:

K(s) = C
s+ a

(s+ (b1 + jb2))(s+ (b1 − jb2))

K(s) fulfills relative degree requirement. The selection of the parameters C,

a, b1 and b2 must ensure that new zeros stay in the left-hand complex plane175

so the compensated plant is minimum-phase. Fig. 4.a shows the root locus

diagram of the negative feedback dual problem, G(s) in negative feedback with

K−1(s). Closed-loop poles (compensated-plant zeros) are chosen to be stable,

and as damped as possible. The third requirement states the convenience of

choosing a K(s) with small gain in the fundamental frequency, ω1, in order to180

avoid tracking errors in i1. Depending on the concrete application this could be

obtained directly by adequately choosing a, b1 and b2.

If that were not enough, it is important to remark that inside the slow

signal propagation domain the full LTI theory is available to ensure track-

ing/disturbance rejection at one or several frequencies. In this case, to ensure185

a good fundamental frequency tracking accuracy, a notch filter has been added

to the compensator function, getting:

K(s) =C
s+ a

(s+ b1 + jb2)(s+ b1 − jb2)
· s

2 + 2σs+ (σ2 + ω2
1)

s2 + ω2
1

(8)

This procedure can be extended to other typical specifications as, for exam-

ple, the improvement of the attenuation of a certain grid voltage harmonic or
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Figure 4: a. Root locus diagram of the negative feedback dual problem. The circles represent

the zeros of A (the poles of K), the crosses represent the poles A = K−1 and the squares the

poles of the closed loop system Gf , that will be the zeros of Gp = G + K. b. Detail of the

effect of the notch filter around w1 over the root locus diagram.

11



the tracking of higher order harmonics, as required in active filtering applica-190

tions. It has to be remarked, however, that most typical grid disturbances can

alternatively be attenuated by a proper feedforward of the grid PCC voltages.

This procedure is described in detail in subsection 3.3.

Fig. 4.b shows a detail of the root locus branches generated with the intro-

duction of the notch filter. Fig. 5 shows the Bode plot of the original plant G(s),195

the parallel compensator K(s) and the compensated plant Gp(s) = K(s)+G(s).

Fig. 6.a shows the Nyquist plot for function Gp and Fig 6 zooms this plot around

the -1. point. This latter subplot shows that the compensated plant polar plot

crosses again the negative real axis at lower values than -1, ensuring the -1 point

is encircled twice: one in clockwise direction (marked with (+) in the figure),200

and one in counterclockwise direction (marked with (-) in the figure). As the

open loop plant does not have right-hand-plane pole (is stable), the closed-loop

system will be stable for keq > k0, being k0 the minimum relay equivalent gain

that ensures system stability.

3.1. Frequency-domain analysis. Locus of the perturbed relay system.205

The locus of the pertubed relay system [4] (LPRS) provides the designer

with an exact and usefull hodograph-based graphical analysis -and synthesis -

tool. It is defined as follows:

Definition 2. The Locus of a perturbed relay system is defined as the function

J(ω):

J(ω) = −1

2

1

keq
+ j

π

4c
y(t)|t=0 (9)

where keq represents the relay element equivalent gain, c stands for the relay

element positive output vale and y(t)|t=0 represents the condition of the switch210

of the relay from minus to plus (defined at zero time), that is −b.

Once the LPRS of a given system is computed, the frequency of the possi-

ble limit cycle and the corresponding relay element equivalent gain keq can be

extracted by calculation the intersection of J(ω) with an horizontal line, which

lies πb/4c below (b > 0) or above (b < 0) the horizontal axis.215
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The computation of the LPRS is extracted from the solution of the Poincaré

map of the relay system:

η = eAθ1ρ+A−1(sAθ1 − I)B

ρ = eAθ2η +A−1(sAθ2 − I)B

(10)

where ρ = x(0) = x(T ), η = x(θ1), θ1 and θ2 are the positive and negative

duration of the control signal u(t).

For the case of a non-integrating delay-free plant, as the one here studied,220

the LPRS has the following explicit solution [4]:

J(ω) = −0.5C[A−1 +
2π

ω
(I − e 2π

ω )−1e
π
ωA]B + j

π

4
C(I + e

π
ωA)−1(I − e πωA)A−1B

(11)

Fig. 7 presents the LPRS hodograph for the compensated plant G + K. It

can be seen that, for the relay configuration above described and a relay band

amplitude c = 5, the hodograph predicts a limit cycle of Ω = 2π1.806 rad s−1.

The real part of the hodograph (<e{J(ω)}) gives an equivalent gain keq = 1.831.225

In section 4 it will be shown that this prediction is accurate.

It has to be remarked, however, that the predicted frequency of the limit

cycle is valid in the case of symmetric limit cycle oscillation.

3.2. Orbital stability

The following theorem, presented in [2], gives necessary an sufficient condi-230

tion for a relay feeback system orbit to be stable. It constitutes, then, a strong

condition for the local stability of the relay feedback compensated system pre-

sented in this proposal.

Theorem 3. [2] The relay feedback system shown in Fig 1 is locally orbitally

stable if and only if all eigenvalues of the matrix:235

ΦO =

[
I −

v(T2−)CC

CCv(T2−)

]
eAC

T
2 , (12)
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where T = 2π
Ω is the period of the oscillations, CC and AC are the C and A

matrix of the compensated plant G + K, respectively, and v = ẋ is the velocity

matrix,

v(
T

2
−) = 2(I + eA

T
2 )−1eA

T
2 B, (13)

have magnitudes less than one

The limit cycle frequencies where the compensated system is stable are shown240

(yellow trace) in Fig. 7. It can be seen that, according to the described theory,

there exists a maximum relay bandwidth (blimit value) that gives the minimum

keq that generates a stable limit cycle in the system. For b < blimit, the keq is

bigger and the limit cycle would be always stable.

In this case, the minimum frequency for a stable orbit is 3.97 kHz. This245

value is very close to the falling edge of the LCL resonance (see Fig. 5). So, in

the same way that happens in PI control approaches and in hysteresis control of

the bridge-side current [6], the LCL resonance practically limits the minimum

system switching frequency. As this parameter strongly influences system losses,

a complete design may include, and in practice indeed usually does, not only250

the controller, but also the filter shaping.

Regarding the robustness with respect to plant parameters, it is difficult to

extract conclusions from (12) due to its inherent complexity. Design experience

says that a major objective for particularly robust designs is to create a compen-

sator that turns the plant into ASPR for the desired range of plant parameters.255

This is an LTI design problem that may be faced up with classical procedures.

Once the plant is ASPR for the desired conditions, the limit values for stable

orbit periods can be easily obtained with the aforementioned tools, just as in

the Fig. 7 case.

3.3. Disturbance feedforward compensator260

One of the advantages of Boiko’s LPRS-based analysis is that it gives the

designer the possibility of applying linear compensators to improve performance
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by substituting the relay element by its equivalent gain keq, if this improvement

is limited to the slow-dynamics of the relay feedback system.

In LCL grid-connected applications, it is sometimes preferred to compensate265

the influence of grid voltage disturbance. This compensation eliminates some

tracking and transient issues at very small cost: grid voltage is always sensed

for synchronisation purposes or higher hierarchy loops, so only the compensator

complexity is lightly increased. It provides a way, for example, to improve

current tracking at fundamental frequency when voltage grid harmonics are270

present.

Fig. 8.b shows the proposed solution. It consists in the addition of the

transfer function Kd(s) output to the previous compensator K. The input to

Kd is the grid measured signal vg. For design purposes, the LCL behaviour has

been split into the bridge output voltage-to-output current G transfer function,275

and the grid voltage-to-output current Gd transfer function.

The system operation in the presence of such a compensator is described by

the following equations:

i1 =
keqG

1 + keq(G+K)
· iref +

−KdGkeqK +Gd(1 + keqK)

1 + keq(G+K)
· vg (14)

e =
1 + keqKd

1 + keq(G+K)
· iref −

−KdGkeqK +Gd(1 + keqK)

1 + keq(G+K)
· vg

To obtain a good compensation of the disturbance, the effect of vg signal

over the error signal should be null. Imposing that condition over (14):280

−KdGkeqK +Gd(1 + keqK) = 0

The theoretical expression for the compensator Kd is the following:

Kd =
Gd
G
· 1 + keqK

keqK
(15)

This Kd expression is, for the case under study, acausal. That is due to

the fact that G and Gd present relative degree 3 and 1, respectively. Both

18



transfer functions share the same denominator, so the result of the quotient is

Gd numerator. To partially solve it, two high frequency poles with unity dc gain285

are added to the compensator. The poles frequencies should be well above the

system resonance to avoid modifying the fundamental compensator behaviour:

Kd =
Gd
G
· 1 + keqK

keqK
· p

s+ p
, |p| >

√
1

L2C
(16)

Fig. 9 shows the Bode plot of the perfect (acausal) disturbance compensator

and the proposed causal approximation, following (16).

4. Simulation results290

The proposed design has been tested under a Matlab/SimPowerSystems sim-

ulated model. Table 1 summarises the main parameters of the simulated system.

Fig. 10 shows the response of the system in the presence of a voltage dip

in the grid. During the grid fault, the voltage magnitude decreases to a 30%

and its phase jumps π rad. It can be seen that the current quickly recovers295

its reference. There is a short transient oscillating at the frequency of the Gp

complex-conjugated zeros. The transient dissapears quickly, adding a negligible

impact over the main quality index as, for example, THD. Additionally, when

dealing with LCL connection, it is quite common to find that the oscillations

during the falling edge of a dip are less present in an experimental setup than in300

the simulations. The non-infinite falling slope of the grid voltage and the non-

modelled resistive losses usually add some extra damping, improving system

response.

Fig. 11 shows the response of the current controller under a step reference in

both magnitude and phase of the grid injected current reference (i1). Again the305

grid-injected current quick and accurately tracks the imposed reference. Fig. 12

makes a zoom on the evolution of the controlled system during the second set-

point change in Fig. 11. Top plot of Fig. 12 shows the relay hysteresis band,

the compensated plant Gp output, showing the characteristic limit cycle, and
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(b) Block diagram of the proposed solution for disturbance compensation. G and Gd

represent the transfer functions relating the grid output current i1 with the plant

input u and plant disturbance vg respectively. Kd is the transfer function of the

disturbance compensator. keq is the relay equivalent gain obtained by means of the

LPRS

Figure 8: Disturbance feedforward compensator
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Table 1: Simulation parameters

Simulation step tsim 0.2 µs

Converter nom. pow. Pn 8 kVA

DC bus nominal voltage VDC 850V

LCL grid-side inductor L1, R1 0.2mH, 10mΩ

LCL converter-side ind. L2, R2 0.5mH, 50mΩ

LCL capacitor C 20 µF

Grid nom. voltage Vg 230V

Grid nom. fundamental freq. f 50Hz

Grid line base inductance Lg 0.1mH

Hysteresis band half-width c 5

K(s) parameters C 16.91

a -12443.67

b1 -236.18

b2 13793.10

σ -0.02

ω1 2π50 rad s−1
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Figure 9: Disturbance feedforward compensator. Perfect (acausal) feedforward compensator

in dark-blue(round marker)

the grid injected current i1. The oscillation that is visible in i1 is due to the310

complex zeros in Gp. Middle plot of Fig. 12 shows the output of the parallel

compensator K that is added to the output signal i1 and introduced in the

hysteretic comparator (relay) input. Bottom plot of Fig. 12 shows the output

of the hysteretic comparator and input to the plant G.

To comply with the different existing grid codes, the converter closed loop315

grid voltage admittance has to attenuate the possible grid voltage harmonics.

From Fig. 2 and the following development, shown in section 2, it is easy to

see that if the compensator K(s) presents a nonzero modulus |K(jfh)| > 0 at a

frequency fh, the grid current i1 is going to present some difference with respect

to the hysteresis controlled variable y. As a consequence, the grid current may320

have a nonzero fh component. That is the case of the design example described

in section 3. Fig. 13.a shows the response of the system when, in t = 0.02s,

a 30% fifth harmonic is added to grid PCC voltage. The grid current is, as

expected, distorted. It can be seen that y is well inside the hysteresis band,
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Bottom: Grid voltage and grid injected current.

24



−1

−0.5

0

0.5

G
rid

 C
ur

re
nt

 (p
.u

.)
Pa

ra
lle

l 
co

m
p

.
 o

u
tp

u
t

H. Band
y
i
1

−0.2
0

0.2
0.4
0.6

0 0.5 1 1.5 2 

−1

0

1

R
e
la

y
 o

u
tp

u
t

2.5 
time (ms)

Figure 12: Detail of the response of the compensated hysteretic controlled system during

a magnitude and phase current reference step change. Top: i1, y = Gp(u) = (G + K)(u)

and hysteresis bands. Middle: Output of parallel compensator K. Bottom: Output of the

hysteretic comparator and input to the plant G.

25



stable but the grid current i1 presents a 5th harmonic whose amplitude is 8.45%325

of the fundamental component (fundamental component peak value: 50.95 A,

THD=8.5%).

Although the design presents some natural attenuation that could be enough

for certain applications, the proposed method allows two alternative ways to

improve it. The first option is to modify the parallel compensator K(s) so330

that it presents zero/low gain at the frequency of interest. This could be done,

for example, introducing another notch filter at that frequency. An alternative

method is the use of the grid disturbance feedforward described on section 3.3.

In fact using this feedforward allows to eliminate nearly any influence from the

grid. Fig. 13.b shows the effect of introducing the grid feedforward compensator335

at t = 0.02s. It can be seen that the grid current quickly decreases its distortion

to THD=0.54%.

Again it can be remarked that, as the hysteresis loop remains stable, the

low bandwidth dynamics can be compensated with classical LTI theory, so the

designer can make use of the tool of their choice to solve classical energy quality340

issues.

Another typical source of distortion in single-phase applications is the ex-

istence of a 2 · f1 component in the DC bus energy that induces an oscillation

in the bus voltage. Hysteresis controller shows a natural good behaviour in the

presence of this perturbation. From a practical point of view it is important to345

guarantee that in the lowest voltage value the system still follows a stable orbit.

An increased DC bus voltage would move the system towards higher frequency

orbits where stability is guaranteed, as can be seen in Fig. 7.

To evaluate the sensitivity of the proposed current controller under the de-

scribed oscillation, Fig. 14 shows the system behaviour when the DC bus voltage350

oscillates at twice the fundamental frequency. This approximated scenario al-

lows to test the systems under oscillations that would appear under a broad

variety of system conditions and parameters. More concretely, the system is

tested under an oscillation of 10 (THD: 1.62%), 25 (THD: 4.16 % at 425 V,

2.85% at 600V), and 50% (THD = 8.52% at 600V, 6.24% at 800V) of the DC355
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Figure 13: Current controller behaviour under 30% 5th harmonic presence. Top: i1 (red line)

, y = Gp(u) (blue line), and hysteresis bands (light green lines). Bottom: Grid voltage.
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Figure 14: Current controller behaviour under a 2f1 oscillation in the DC bus voltage of 10,

25 and 50% of the bus nominal voltage value. Top: i1 (red line), y = Gp(u) (blue line), and

hysteresis bands (light green lines). Bottom: DC bus voltage.

bus voltage value. The oscillation influence increases with its amplitude but

is kept under acceptable levels given the DC bus conditions of the tests. It is

important to see that the effect is mitigated by increasing bus voltage. Again,

the y signal shows a stable, periodic orbit, so some LTI compensators could be

used to decrease this effect, if desired.360

The presented scheme shows also a natural robust behaviour with respect

to parameter variation. One parameter that always presents some uncertainty

is the grid equivalent impedance, seen from the PCC.

Fig. 15 shows the behaviour of the control loop for different values of the grid

equivalent inductance. It can be seen that the controller starts showing unstable365

behaviour for twice the grid inductance design value (100% uncertainty). The

same results are obtained if the grid equivalent inductance is not only uncertain,

but time-variant, as shown on Fig. 16. It has to be noted that, in this case, the
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Figure 15: Current controller behaviour for different constant values of the grid equivalent

inductance. Top: i1 (red line) , y = Gp(u) (blue line), and hysteresis bands (light green lines).

Bottom: Grid equivalent inductance value.

design was formulated without considering any grid uncertainty. However the

ASPR synthesis procedure may be reformulated in a robust fashion using LTI370

theory.

Fig. 17 shows the behaviour of the system for several hysteresis band val-

ues, c. Fig. 17.a shows the system behaviour, switching periods3 and current

spectrum for c = 5. It can be seen that the switching frequency is influenced by

3The terms switching period or frequency are not strictly correct when there are perturba-

tion or reference signals entering the loop because the limit cycle looses its periodicity. When

used, they refer to the time lapsed between two consecutive switchings of the relay element

and its inverse, respectively.
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exogenous perturbation signals as the grid voltage and current reference. This375

is a common behaviour in relay controllers and can be mitigated using a classi-

cal variable hysteresis band [5, 11, 24] equalisation algorithm. Fig. 17.b shows

the system behaviour when c = 9. This value, when the effect of the grid over

the switching frequency is considered, represents a limit stability value. Note

that the slowest switching cycles last 250 µs, whose corresponding frequency is380

beyond the limit shown in Fig. 7. Finally, Fig. 17.c shows the system behaviour

for c = 17.5 in the absence of grid voltage (short-circuit). In this case, although

sinusoidal grid current reference also induces a variation on the switching fre-

quency (see the detail shown on bottom axis of Fig 7.c), its magnitude is very

small because the influence of the current reference over the control loop is much385

smaller than the grid voltage one.

In this case, the hysteresis band and switching period values are slightly

smaller than those of the critical stability point. It can be seen that the obtained

frequency slightly oscillates around the predicted one on Fig. 7.

The right column plots of Fig. 17 display the harmonic content of the in-390

jected current for the three different considered situations. As expected, the

three plots show a big component on the fundamental frequency and switching

distortion caused by the hysteresis induced limit cycle. In the first two cases the

switching frequency is variable and, consequently, the distortion is distributed

on a frequency band. In the third case, the switching band is very narrow395

because of the smaller influence of the current reference on the control loop or-

bital behaviour. It can be seen that THD of the injected current increases as the

hysteresis band increases and switching frequency decreases. This behaviour is

expected because the LCL filter attenuation is smaller for lower frequencies.

5. Conclusions400

This paper has presented a method that allows the use of a hysteretic com-

parator to control the grid-side current of a LCL grid-connected VSC. The

method is based in the synthesis of an Almost Strictly Positive Real transfer
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Figure 17: Proposed system switching behaviour for different hysteresis bands. Left column

figures: Top: Current controller response. i1 (red line) , y = Gp(u) (blue line), and hysteresis

bands (light green lines). Bottom: Switching period of the relay element. Right column

figures: Current spectrum modulus.
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function from the transfer function relating the LCL grid-side current and con-

verter output voltage. To that end a parallel compensator is designed.405

The paper proposes a design process based on the duality existing between

negative feedback and positive feedforward. The locus of the perturbed relay

system (LPRS) has proved to be a valuable tool for analysis and design pur-

poses. Particularly important is the information it gives about system orbital

stability. The system shows stable behaviour for any orbital frequency above410

a minimum stability value. This minimum operating frequency is given by the

LCL resonance frequency in a similar way it does in traditional linear compen-

sation systems.

To illustrate the compensator design process, the paper has presented an

example design that has been tested under simulation setup. The paper has415

shown the correct behaviour of the system under grid voltage dips, reference

step changes, grid harmonics, DC bus voltage oscillation and grid inductance

100% uncertainty conditions.

In cases where the natural behaviour is not good enough, the paper has

proposed a grid feedforward compensation method that allows to practically420

reject all grid disturbances. In the same direction the paper describes other

compensator possibilities that arise when considering the low bandwidth LPRS

equivalent of the relay element.

Relay feedback controllers have represented for decades an alternative to

linear schemes in grid VSC converters for their advantages in certain scenarios:425

no need of analog-to-digital acquisition devices nor digital signal processor, nor

modulators; natural good dynamics and robustness. Good proof of it is its still

common use in that applications that, when controlled by these methods, are, by

default, stable: L filter connection and LCL connection, with converter current

i2 feedback, machine control, etc. In this sense, this article opens the possibility430

to also use this schema in LCL connection with grid current feedback, which is

unstable by default. The obtained results seem to be promising, encouraging the

authors to perform further investigations on interesting topics as, for example,

a more systematic design procedure including, among other criteria, robustness
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