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Abstract 

Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and 

substances in a fashion similar to the periodic table. The goal is to group and tabulate substances 

using nanoscale force footprints rather than atomic number or electronic configuration as in the 

periodic table. The process is divided into: 1) acquiring nanoscale force data from materials, 2) 

parameterizing the raw data into standardized input features to generate a library, 3) feeding the 

standardized library into an algorithm to generate, enhance or exploit a model to identify a 

material or property. We propose producing databases mimicking the Materials Genome 

Initiative, the Medical Literature Analysis and Retrieval System Online (MEDLARS) or the 

PRoteomics IDEntifications database (PRIDE) and making these searchable online via search 

engines mimicking Pubmed or the PRIDE web interface. A prototype exploiting deep learning 

algorithms, i.e. multilayer neural networks, is presented. 
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The starting point in this work for the standardization or tabulation of materials via nanoscale 

forces consists of force versus distance curves (FDCs) as acquired in force spectroscopy. These 

curves contain the nanoscale footprint of the substance or material and are typically acquired 

with an atomic force microscope (AFM) or with a surface force apparatus (SFA). The force 

between a nanostructure, i.e. the tip of an AFM, and a surface is monitored as a function of 

separation or distance. In principle, the sensitivity of the AFM should provide information from 

all the relevant nanoscale force footprints or force contributions exerted between materials in the 

form of FDCs, as concluded when the AFM was first introduced as a method1.  

 

On the other hand, the quest to identify and recognize atoms or materials from atomic footprints 

or FDC data has remained an active field of research up to this date2, 3, remains challenging and 

proves elusive particularly when considering the generalization and standardization of 

measurements and procedures4, 5. Furthermore, experiments are typically sophisticated6 and are 

reported by carrying out extensive analysis from complex models or fundamental theory2 rather 

than via automated processes. Approximately a decade ago a significant advance was reported by 

invoking a particular form of normalization of the raw FDC data4 and single atoms were 

identified via specific atomic footprints. Similar normalization of FDC data was more recently 

employed to identify more complex heterogeneous systems2. Even more recently the influence of 

the AFM tip and chemical bonding configuration between materials has been reported to 

influence the force footprint curve to the point of preventing atom identification7. Other forms of 

sample recognition and identification consist of modelling the FDC and parameterizing it with 

physically relevant parameters such as stiffness8, adhesion, viscoelasticity9 or other parametric 

models10, and even model free parameters11-13. Parameterization typically involves an 
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intermediate step after acquiring the raw data which consists of quantification and comparison. 

In this way differences detected in the interaction are exploited as parameter contrast maps that 

might be employed to discriminate between materials11. Standardization and tabulation however 

is still lagging far behind14 other fields of research such as proteomics, metabolomics and 

genomics that are heavily assisted by computer science, large databases, powerful search engines 

and submission protocols15 that allow rapid access to the databases. On the other hand, Kalinin, 

et al. have been early proponents of the exploitation of computer science techniques in probe 

microscopy13, 16.  

 

Here we propose a full transition in the field towards an integration of force spectroscopy and 

advanced computer science techniques as done in bioinformatics assisted biology. The objective 

is to parameterize force curves, or more generally nanoscale footprints arising form force 

microscopy, by turning the FDC raw data into features with the abstract meaning typically given 

to the features employed in machine learning algorithms. In this way, we do not impose any 

restriction to the number of input features to identify a given material or family of materials or 

substances. We further employ the term substance purposefully to emphasize that we would like 

to deal with chemistry, mechanics or even phases, i.e. whether a material’s surface is hydrated. 

Features are then employed to construct feature libraries for groups of families or specific 

families. Finally an algorithm is exploited to generate a model from a given feature library that, 

as in the periodic table, groups materials according to similarity. We further employ the concept 

of classification from standard machine learning where the output of the algorithm is zero when 

a non-match is predicted and one when the algorithm predicts a match. In the prototype that we 

report here a deep learning algorithm, i.e. a multilayer neural network, is trained with the 
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backpropagation method (see supplementary) in Matlab17. We use F-score as a figure of merit to 

quantify Precision and Recall for the models or classifiers. Precision and Recall are defined as in 

machine learning where Precision is the ratio between true positives and predicted positives and 

Recall is the ratio between true positives and actual positives. The F-score parameter combines 

Precision and Recall as 

 

RecallPrecision

RecallPrecision
2  score-




F       (1) 

 

The advantage of employing the F-score rather than Precision or Recall alone is that high values 

in F-score will be obtained if and only if both Recall and Precision are high simultaneously. In a 

more intuitive note, Precision could be defined as specificity and Recall as sensitivity implying 

that high F-score values include both high specificity and sensitivity. More detail on these 

figures of merit is given when discussing a practical example below. We then show that raw 

contrast images can be processed with the learned models to turn them into images that predict 

the likelihood that a given material has been identified in every pixel of the image.  

 

Raw data acquisition 

The initial step for parametrization and tabulation involves acquiring the nanoscale force 

footprint in the form of an FDC. An example of a raw experimental force curve is shown in Fig. 

1a(i) where the tip-sample force F is shown in the y-axis and the distance d in the x-axis. This 

force arises from the atomic interactions between the atoms on the tip and the atoms on the 

sample. We note that both net attractive, i.e. F<0 nN, and net repulsive, i.e. F> 0 nN, forces are 

shown in the figure. It is also typical to associate the point of minima in force with mechanical 
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contact between the AFM tip and the surface18. Only points in the force curves satisfying F<0 nN 

are considered next since we find that these provide enough information to classify materials. 

Our method of parameterization is also suited for such range as detailed below.  

 

Parametrizing raw data and transformation into input features 

The second step consists of parametrizing the raw FDC. Here we choose to measure the 

distances in the well of the FDC in a similar fashion to that recently proposed elsewhere by the 

authors19, 20. The steps are as follows: 

 

1) The adhesion force FAD (or minima in force, see Fig. 1a(ii)) is taken as the force 

reference for a given curve.  

2) This reference allows considering all other force-distance pairs with the use of a factor β 

as F=βFAD. We note that by varying β from 0 to 1 any arbitrary force curve can be fully 

parameterized and quantified19 for F<0 nN.  

3) Without loss of generality we limit β to 0.85, 0.75… 0.05 and normalize the distances in 

the well of the curves with the reference β=0.85.  

4) This is done by first computing the absolute distances dFβ=dF0.85, …, dF0.05 where 

β=0.85, …, 0.05 as illustrated in Fig. 1a(ii). This produces 9 distances as input features 

for each single curve.  

5) We next normalize the distances dFβ by computing the ratios dFi=dFβ/dF0.85 where i=1 to 

8 resulting in 8 normalized distances as illustrated in Fig. 1a(iii).  

6) The distances dF1 to dF8 can be now employed as a table of input features for a machine 

learning algorithm to generate a model. In order to remove noise we averaged the 
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distances for a given substance or family of substances over 40-100 samples. An example 

of tabulation of input features to generate a feature library is shown in Table I. In Table I 

two polymers, polyethylene high-density (PEHD) and Polycaprolactone (PCL), and two 

materials from the silica family, i.e. glass and silicon, have been employed to generate 

three sets of input features. The three sets for each family form a feature library for 

polymers and silica respectively and concluding the second step of the procedure as 

shown as an illustration in Fig. 1a(iv).   

 

Feeding the standardized input feature library into a learning algorithm 

The third step consists of generating a model from a feature library as shown in the diagram in 

Fig. 1a(v). In the case of Table I, this model should be able to identify or detect whether input 

features belong to the polymer family or the silica family. In order to generate models we 

implemented a standard multilayer artificial neural network in Matlab17 that included a 

regularization term λ to avoid overfitting. The steps are as follows: 

 

1) Inputting an input feature library, as that shown in Table I and as illustrated in Fig. 1a(iv), 

into a machine learning algorithm as illustrated in Fig. 1a(v). Here we have chosen an 

artificial neural network composed of U units per layer L. Units in these algorithms stand 

for unit cells or neurons and each unit is modelled with a sigmoid function where the 

inputs are processed by the function and the output fed into the units U in the next layer L 

as illustrated in Fig. 1b. The very last layer of the system will produce the predicted 

outputs as shown in the figure. For example, in the case of Table I, the two unit cells in 
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the last layer L will produce the predictive outcomes for the polymer (one unit) and silica 

(another unit) families. 

 

2) The model is first trained with a set of input features from a given library where the 

output is known. For example, in the case of Table I, the last unit cell for polymers 

should produce ones if and only if data from polymers is fed into the system and similarly 

for the unit cell of the silica family.  

 
3) Then the model is tested by inputting data into the model generated from the training data 

and comparing the output to the known values for the output. This is typical from 

supervised algorithms where the algorithm learns from inputting data for which the 

outcome is known by the user in advance. Errors in the outcomes are quantified via 

Recall and Precision and together via the F-score parameter as discussed above. In the 

experimental section we report errors on testing sets of data via Precision, Recall and F-

score. The testing step is discussed in more detail below.  

 

This concludes the procedure of training and testing a model from feature libraries for substance 

identification. An illustration of the full process is shown as a diagram in Fig. 1b.   
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Figure 1| Illustrations of (a) i) raw data, ii) input features, iii) normalized input features, to iv) generation 

of a feature library and v) model generation from a feature library set. b, Scheme of the hierarchy and 

ordering of the number of layers L and number of unit cells U in the artificial neural networks. c, Process 

of identifying and classifying data first into families or groups and then into specific substances or 

samples. 

 

β Set 1 Pol Set 2 Pol Set 3 Pol Set 1 Silica Set 2 Silica Set 3 Silica 

0.75 0.95 0.95 0.94 0.89 0.89 0.9 

0.65 0.88 0.88 0.88 0.8 0.78 0.81 

0.55 0.8 0.8 0.81 0.71 0.69 0.71 

0.45 0.7 0.72 0.73 0.61 0.6 0.61 

0.35 0.59 0.62 0.6 0.52 0.5 0.5 

0.25 0.45 0.48 0.48 0.4 0.38 0.37 

0.15 0.3 0.31 0.31 0.27 0.24 0.26 

0.05 0.1 0.1 0.13 0.11 0.09 0.1 
 Precision Recall F1 Score 

2 L 2 U 0.8 0.66 0.72 

3 L 2 U 0.78 0.71 0.74 

4 L 4 U 0 0 0 
 

Table I. Example of libraries employed as the input data to generate models for two groups of materials:  

polymers family (Pol) and silica (Silica) family. The features employed to parameterize the raw data 

consist of the normalized dF values at the β points given in the first column. Each value for each set 

consists of averages of 40-100 data points or force curves each. At the bottom, figures of merit for 2L-2U, 

3L-2U and 4L-4U models are shown. The models were produced with the input data shown in this table 

and then tested on separate data from the silica and polymer families. 

 

 

In order to test the performance of the models, raw data obtained by different users and with 

different cantilever-sample systems are acquired and fed into trained neural networks (model) 

produced from the feature libraries. Here we illustrate this procedure with the help of the data 

from Table I employed to generate the models for the polymer and silica families as described 
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above. Our first testing sample was silicon. Approximately 1000 data points were collected in 

approximately 30 minutes and then fed into the trained model. The performance of the models 

was calculated by computing Precision, Recall and F-score. We defined true positives=TP, false 

positives=FP and false negatives=FN. Then Precison=TP/(TP+FP), Recall=TP/(TP+FN) and F-

score=2(Precison×Recall)/ (Precison+Recall) as described above in Eq. (1). The results of the 

test are shown in Table I for a 2 L 2 U model, a 3 L 3 U model and a 4 L 4 U model. Values of 

F-score above 0.5 are indicative of significant predictive power of the model to successfully 

identify and discriminate between the silica and polymer families. Values of 0.5 or below imply 

that the models lack sufficient predictive power. We have added data for three models in Table I 

to exemplify that arbitrarily increasing L or U might not result in a better model. That is, 

relatively simple models, consisting of a few number of layers L and units U, might produce 

models with enough predicting power and might not be improved by increasing the complexity 

of the model arbitrarily. This is typical behavior in machine learning algorithms21. Finally, zero 

values in the figures of merit indicate overfitting, i.e. the output from the unit cells in the last 

layer of the model is always 0.5 independently of the input. 

 

In Table II we show a training feature library produced to discriminate between the PEHD and 

PCL polymers. The data was employed to train and produce models and the models were then 

tested. In the table we show the results of these tests, in terms of figures of merit, after feeding 

data (approximately 200 data points) from a PEHD sample into the generated model. Again we 

see that a single layer and two unit cells suffice to produce a model with enough predicting 

power to discriminate between the two samples, i.e. F-score > 0.5. In summary, these two 

examples illustrate how by using multiple processes or steps, specific samples can be identified.  



12 
 

That is, a given model can be employed to first discriminate between families, as in the case of 

the silica and polymer families described above (Table I). Then, in a second step, a more specific 

model can be exploited to discriminate between samples in the same family (Table II). A scheme 

of such flow is illustrated in Fig. 1c.   

 

β Set 1 PCL Set 2 PCL Set 3 PCL Set 1 PEHD Set 2 PEHD Set 3 PEHD 

0.75 0.949 0.95 0.947 0.929 0.927 0.936 

0.65 0.9 0.889 0.893 0.855 0.865 0.862 

0.55 0.839 0.823 0.819 0.772 0.785 0.783 

0.45 0.752 0.724 0.736 0.689 0.689 0.692 

0.35 0.655 0.606 0.624 0.572 0.573 0.585 

0.25 0.523 0.467 0.487 0.45 0.455 0.462 

0.15 0.349 0.322 0.317 0.292 0.309 0.31 

0.05 0.124 0.133 0.111 0.11 0.11 0.113 
 Precision Recall F-Score 

1 L 2 U 0.71 0.59 0.64 

2 L 2 U 0.7 0.64 0.67 

3 L 4 U 0 0 0 
 

Table II. Example of libraries employed as input data to generate models for PCL and PEHD samples. 

The features consist of the normalized dF values at the β points as given in the first column. Each value 

for each set consists of averages of 40-100 data points or force curves each. At the bottom, figures of 

merit for 1L-2U, a 2L-2U and a 3L-4U models obtained when feeding a test sample (PEHD) into the 

trained model are given.  

 

For completeness we also report a feature library in Table III that includes an otherwise disparate 

collection of samples; barium fluoride (BaF2), calcium fluoride (CaF2), silicon, PCL, graphite 

and glass. In this case we report the F-score in Fig. 2 as a function of regularization parameter λ. 

Three different models are also shown for 1L-2U, 3L-5U and 4L-5U. The F-score is 1 for the 

lowest values of λ for the 4L-5U models. Low values of λ imply more over-fitting and therefore 
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less capacity to generalize to data other than that of the training and testing sets. In this respect 

the largest values of λ giving high F-score values should be preferred. For the 1L-2U model the 

F-score is never 1 implying that the model is never 100% sensitive (Recall) and specific 

(Precision) independently of the selected λ value. Since F-score=1 in Fig. 2 for some λ values, 

this figure illustrates that it is possible to discriminate between substances or materials belonging 

to different groups or families directly, that is, without first employing a family discrimination 

model. This is provided the model is complex enough however, i.e. in this case we never 

obtained F-score=1 with models consisting of less than 3 layers.  

 

 β Set BaF2 Set CaF2 Set Silicon Set PCL Set graphite Set glass 

0.75 0.79 0.97 0.90 0.94 0.94 0.87 

0.65 0.61 0.92 0.82 0.88 0.87 0.76 

0.55 0.46 0.88 0.72 0.81 0.80 0.67 

0.45 0.34 0.82 0.65 0.71 0.70 0.57 

0.35 0.25 0.75 0.53 0.60 0.56 0.46 

0.25 0.16 0.65 0.39 0.45 0.42 0.34 

0.15 0.11 0.44 0.22 0.29 0.24 0.22 

0.05 0.05 0.17 0.07 0.11 0.08 0.09 

 

Table III. Example of libraries employed as input data to generate models for a set of samples. The 

features employed to parameterize the raw data consist of the normalized dF values at the β points given 

in the first column. Each value for each set consists of averages of 40-100 data points each.  
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Figure 2| F-score reported as a function of regularization parameter λ and for three different models 

consisting of  1L-2U (stars), 3L-5U (triangles) and 4L-5U (circles). 

 

Next we employ a feature library capable to differentiate between calcite and CaF2. The surface 

of calcite can further be divided into two different substances or phases, namely an unhydrated 

and a hydrated phase. These phases can be routinely imaged with an AFM22. For the purpose of 

this example we term the two phases calcite P1 and calcite P2 and these are shown as a standard 

phase contrast image in Fig. 3a. The third substance of the feature library consists of CaF2. We 

constructed a model with 4L and 6U that gave us an F-score=1 when tested. Then we acquired 

FDCs on a 80 nm2 area of the calcite sample. The mapping was carried out with a 32 by 32 pixel 

resolution producing pixels with areas of ≈ 6nm2 and 1024 force curves or FDC data points per 

image.  Then we tested the model consisting of calcite P1, calcite P2 and CaF2 against the 1024 

data points collected. The results are shown in Fig. 3b. The black pixels imply that the model 

could not assign or identify (107 out of 1024 pixels) any of the three samples to that pixel. The 

blue pixels stand for positive identification of calcite P1 (402 out of 1024 pixels), the green 
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stands for positive identification of calcite P2 (459 out of 1024 pixels), and the red pixels stand 

for positive identification of CaF2 (56 out of 1024 pixels). We observed thermally-induced drift 

when collecting the force data. This can be observed as a relative displacement of the surface in 

in Fig. 3b relative to 3a. The patch of calcite P2 in Fig. 3a has been circled in order to relate it to 

the displaced patch predicted by the model in Fig. 3b, also circled. A feature library for calcite 

P1 and calcite P2 was then employed to generate models to discriminate between these two 

substances only. The results are shown in Figs. 3c-e for a model of 1L-2U (3c) and  2L-3U (3d) 

where black pixels stand for ambiguity, blue for calcite P1 and green for calcite P2. The fact that 

Figs. 3c-d look almost identical implies that increasing the complexity of the model from 1L-2U 

to 2L-3U did not significantly improve predicting power – a figure including 3L-4U is showed in 

the Supplementary. The implication is that the 1L-2U model is superior since it is equally 

predictive and computationally much simpler.  

 

The generality of the model produced to discriminate between calcite P1 and calcite P2 above 

was tested with a second set of calcite data collected using a different AFM tip and a different 

calcite sample. The results are shown in Figs. 4a-b. In this case the thermal drift was much 

smaller. A standard phase contrast image is shown in Fig. 4a and the prediction of the model 

against force data for the same spot in Fig. 4b. The central pattern in Fig. 4a is relatively well 

reconstructed by the model even though the model was generated with data from a different 

cantilever and calcite sample.  
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Figure 3| a, Two phases of calcite P2 (pink-purple) and calcite P1 (rest of the image) acquired as a 

standard phase image in dynamic AFM. b, Prediction of the model produced from a feature library 

consisting of calcite P1 (blue), calcite P2 (green) and CaF2 (red). The black pixels refer to pixels where 

the model could not predict any output unambiguously. The two images where generated in 

approximately the same spot (80 nm2) but some thermal-drift is observed. c-d, Predictions of the models 

produced from a feature library consisting of calcite P1 (blue), and calcite P2 (green) only for the same 

raw data as b. The black pixels refer to pixels where the model could not guess any output 

unambiguously. The results are shown for models consisting of (c) 1L-2U and (d) 2L-3U. 

 

 

Figure 4| a, Two phases of calcite acquired with different tip and sample phase image in dynamic AFM. 

b, Guess of the model produced from another data set. The blue pixels refer to calcite P1, green pixels 
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refer to calcite P2 and black pixels refer to pixels where the model could not predict any output 

unambiguously.  

 

Conclusion 

While we acknowledge that there are obstacles to overcome for The Mendeleev-Meyer Force 

project, we conclude that the use of libraries and models generated from libraries can be 

exploited to automatically identify substances from force data alone. The final goal is to generate 

standardized open source databases mimicking either the recent Materials Genome Initiative, the 

Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics 

IDEntifications database (PRIDE)14. These databases should be searchable via dedicated search 

engines mimicking, for example, the Pubmed or the PRIDE web interface23. The generation of 

models should not be restricted to artificial neural networks either, but could be enhanced, or 

even replaced, by other methodologies. We suggest to implement well known methodologies in 

machine learning such as support vector machines or Bayesian networks and to exploit them in 

parallel to improve predictive power. These methods are standard in the machine learning field 

and packages can be found in Matlab, python and the R languages.  Finally, we would like to 

point out that the ordering or fabrication of libraries does not need to be limited to the air 

environment, but can be expanded to liquid and vacuum environments and to the use of probes 

other than silicon. Furthermore the classification into families does not have to be restricted to 

material properties but can be enhanced to, for example, identifying the presence or absence of 

atomic irregularities or dislocations or identifying biological patterns or behavior of systems for 

which distinct features might be produced13, 24. The number and type of input features might be 

further increased into linear or non-linear combinations of the features presented here or any 
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other input feature, such as temperature, relative humidity, tip radius, geometry or chemistry, that 

might enhance identification or recognition. Arguably the intuition of researchers working in a 

particular field will suggest the number and type of features that will make a given feature library 

preferable to produce a given model. In summary, the application of models and the massive 

testing of data should ultimately tell us what the limit of the proposed method of standardization 

is in the field of force spectroscopy. In this sense, we anticipate that the tip radius, the tip 

geometry and the relative humidity might have to be treated as input features to improve 

predictability and this process might be very challenging.  
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