
An algorithm for a bi-objective parallel
machine problem with eligibility, release
dates and delivery times of the jobs.

Manuel Mateo ∗ Jacques Teghem ∗∗ Daniel Tuyttens ∗∗∗

∗ Universitat Politècnica de Catalunya(UPC), Avda.Diagonal
647,p7,08028 Barcelona,Spain (e-mail:manel.mateo@upc.edu).

∗∗ University of Mons, Polytechnic Faculty, Laboratory of Mathematics
and Operational Research,Belgium (e-mail:

jacques.teghem@umons.ac.be)
∗∗∗ University of Mons, Polytechnic Faculty, Laboratory of
Mathematics and Operational Research,Belgium (e-mail:

daniel.tuyttens@umons.ac.be)

Abstract: The scheduling of parallel machines is a well-known problem in many companies.
Nevertheless, not always all the jobs can be manufactured in any machine and the eligibility
appears. Based on a real-life problem, we present a model which has three different machines,
called as high, medium and low level respectively. The set of jobs to be scheduled on these
three parallel machines are also distributed among these three levels: one job from a level can
be manufactured in a machine of the same or higher level. But a penalty appears when a job
is manufactured in a machine different from the higher level. Besides, there are release dates
and delivery times associated to each job. The tackled problem is bi-objective with the criteria:
minimization of the final date - i.e. the maximum for all the jobs of their completion time plus
the delivery time - and the minimization of the total penalty generated by the jobs. In a first
step we revisited possible heuristics to minimize the final date on a single machine. In a second
step a heuristic is proposed to approximate the set of efficient solutions and the Pareto front of
the bi-objective problem. All the algorithms are experimented on various instances.

Keywords: scheduling; parallel machines; eligibility; release dates; delivery times;
multi-objective optimization; Pareto front.

1. INTRODUCTION

The scheduling problem of parallel machines is very usual
in the companies. A single operation must be done on
a set of jobs and it is only necessary to perform each
job in one of the available machine. In this work we deal
with a particular problem within the scheduling of parallel
machines, when some jobs cannot be done on any machine,
what is known in literature as eligibility Leung and Li
(2008).

Given a set of jobs (j = 1, . . . , n) to be scheduled on
3 parallel machines mk, k = 1, 2, 3; these machines are
different by their production quality called high (k = 1),
medium (k = 2) and low (k = 3) level respectively. The
same is done for the jobs: each of them is assigned to one of
the 3 levels and a machine of level k can manufacture jobs
of its own level and also of levels k + 1, 3. The processing
time of a job is the same for any machine.

The characteristics of each job are the processing time
pj for the parallel machine operation, the release date rj
which can be a consequence of the previous operations
received by the job, and the delivery time qj as a result
of the subsequent tasks or transport to the end of the
production system.

Our problem is based on the scheduling process of a
company devoted to paintings. It has a set of machines,
which are reactors. The costs of manufacturing are im-
portant. The manager of the company prefers the use of
the most modern resources, in our case the machine m1.
Nevertheless, if all the jobs were done in this machine, the
final date of production would reach a very high value.
In this case, the rest of machines would be completely
free and available to manufacture. For this reason, some
works from machine m1 can be moved to the two others
machines. But in such case, we define a penalty whose
value is 1 if a job (of medium or low levels) is scheduled in
machine m2 and is 2 if a job (of low-level) is scheduled in
the machine m3. Therefore two objectives are taken into
account when a feasible schedule is considered: to minimize
the final date M of production, taking into account the
delivery times, and to minimize the total penalty P due
to the jobs scheduled on machines m2 and m3.

Section 2 indicates some references concerning related
works. Section 3 presents the problem of scheduling n
jobs with release dates and delivery times in a single
machine, the heuristics proposed to treat this problem
and some numerical experiments. After that, Section 4
focuses on the bi-objective problem, as the classification of
machines, and some penalties are introduced. We propose

a procedure based on an initial solution, and later a depth
first search combined with a backtracking phase. Two
examples illustrate how the algorithm is applied. Finally,
Section 5 gives some conclusions and new perspectives to
study this problem.

2. RELATED WORKS

The variety of studied scheduling problems is very large as
described in several specialized books as those of Blazewicz
et al. (2001) and Pinedo (2002) among many others.
Despite our model has never been treated in the literature,
a basic component of this model is the particular problem
to schedule n jobs with release dates and delivery times on
a single machine to minimize the final date. For this well-
known problem which isNP-Hard, see Garey and Johnson
(1989), Schrage proposed a heuristic (see Blazewicz et al.
(2001)) and Carlier (1982) an exact Branch-and-Bound
using the Schrage’s heuristic to generate an initial sched-
ule. Later, the problem has been extended to parallel ma-
chines by Carlier (1987) and Gharbi and Haouari (2002).
Some models of parallel machines with eligibility restric-
tions, which prohibit the schedule of some jobs to certain
machines, have been analysed by Centeno and Armacost
(1997), Centeno and Armacost (2004) and Leung and Li
(2008). It is also the case of our model but in a different
context with the particularity to consider a bi-objective
minimization of the final date and a global penalty. So our
original model takes place in the multicriteria scheduling
theory as described by T’Kindt and Billaut (2002).

3. MINIMIZATION OF THE FINAL DATE OF A
SINGLE MACHINE

3.1 The problem

We first consider the problem to schedule n jobs with
processing times pj , release dates rj and delivery times
qj on a single machine to minimize the final date

M = max
j=1,...,n

(Cj + qj)

where Cj is the completion time of the job j.

As it will be necessary to solve very often this problem in
the next section, we consider essentially heuristic methods.

3.2 The Schrage heuristic H0

This heuristic is based on the following. We note U the
set of jobs not yet scheduled. Initially U = {1, . . . , n}
and the time t = minj∈U rj . Among the ready jobs

{j ∈ U | rj ≤ t}, the job i with the greatest qi is scheduled

at time t. Then U = U \{i} and t = max(t+pi,minj∈U rj)

are updated before the next iteration.

3.3 Two other heuristics H1a and H1b

Others simple heuristics are possible to determine the
order of the jobs in the schedule.

Heuristic H1a: at each iteration determine the job i ∈ U
corresponding to

min
j∈U

(rj , qj) = δi

If δi = ri, the job i is placed at the first place still
available in the order. If δi = qi, the job i is placed at the
latest place still available in the order. Then U = U \{i}.

Heuristic H1b: at each iteration determine the job i ∈ U
corresponding to

max
j∈U

(rj , qj) = δi

If δi = ri, the job i is placed at the latest place still
available in the order. If δi = qi, the job i is placed at the
first place still available in the order. Then U = U \ {i}.

For both heuristics in case of ex-aequo, place in front a job
with the largest value qi or with the smallest value ri.

3.4 A different heuristic H2

This heuristic is based on the following dominance relation
between jobs : i ≻ j if ri ≤ rj and qi ≥ qj with at least a
strict inequality.

Clearly if i ≻ j, i must be scheduled before j. At each
iteration of H2, a non-dominated job is scheduled and the
set D of non-dominated jobs inside U is updated. Inside
D the jobs are ranked in increasing order of rj and qj . Let
l ∈ D be the largest index satisfying rl ≤ t. Only the jobs
{j ∈ D | j ≥ l} = D̃ are candidate to be scheduled. If there
exist i and j, with i < j such that ri+pi ≤ rj , the job j is
not considered because it is more interesting to schedule
job i. A pairwise comparison of the remaining jobs of D̃
based on the ”lost” rn − rm and the ”gain” qn − qm, with
m < n, is made.

If m∗ and n∗ are determined by

min
m,n∈D̃

(qn − qm) = qn∗ − qm∗ ,

D̃ is reduced in the following manner:

D̃ = D̃ \ {m∗} if rn∗ − rm∗ < qn∗ − qm∗

D̃ = D̃ \ {n∗} if rn∗ − rm∗ ≥ qn∗ − qm∗

till |D̃| = 1 and the remaining job is then scheduled.

3.5 An improvement algorithm

Based on the idea of the critical path inside the schedule
proposed by Carlier (1982), an algorithm H+ is also
proposed to improve the final date of an heuristic H ∈
{H0,H1a,H1b,H2}. We note this critical path C =
{a, . . . , p} with thus a first job a and a last job p such
that M = Cp + qp. Such critical path begins at a time Ta

and can be preceded by an empty time Ea of the machine:
if Ea ̸= 0 then Ta = ra, if Ea = 0, then Ta = ra = 0.

The main idea of H+ consists to analyse if the final date
can be decreased either placing a job j ∈ C with rj < ra
before the critical path C or placing a job j ∈ C with
qj < qp after C.

For each of these two situations, we determine the suffi-
cient conditions to be able to decrease the final date M .
If these conditions are satisfied, the move of the job j is
realized.

Conditions in the case rj < ra.

We note Ti the starting time of a job i ∈ C,K = {1, . . . , j−
1} and L = {j+1, . . . , p}. First of all, if r′j + pj ≤ Ta with
r′j = max(rj , Ta − Ia), the job j can be removed of C and
placed before Ta. Otherwise, the jobs of K will be delayed
of the quantity RK = r′j + pj − Ta and a first condition to
be able to decrease the final date M is

RK < M −max
k∈K

(Ck + qk).

The jobs of L can be advanced if it is compatible with their
release date. So a second condition to be able to decrease
the final date is

Tl > rl ∀ l ∈ L.

Conditions in the case qj < qp.

First of all, there is no consequence for the jobs k ∈ K. As
above, the jobs of L can be advanced if it is compatible
with their release date. So a first condition to be able to
decrease the final date is

Tl > rl ∀ l ∈ L.

A second condition, related to the job j placed after C, is

qj + I < qp

with I = max (0,maxl∈L (rl − Tl−1)) is the possible total
idle time appearing inside the jobs of L. Finally, a third
condition is related to the jobs u ∈ U scheduled after the
critical path C. If Iu is the total idle time appearing in the
schedule after the job p but before the job u, this third
condition is

max (0, I − Iu) < M − (Cu + qu) ∀ u ∈ U

3.6 Numerical experiments

A large set of 40 instances is randomly generated by
the way proposed by Carlier (1982) and with n ∈
{10, 50, 100, 200, 500, 1000}.
Table 1 indicates the number of times the best value is
obtained among the four algorithms H0,H1a,H1b,H2
and their respective improvement H0+,H1a+,H1b+ and
H2+. The first line corresponds to 8 instances with n =
10 or 50; the second to 16 instances with n = 100 or 200;
the third to 16 instances with n = 500 or 1000. The last
line gives the results for the 40 instances.

Table 1. Results of the 8 heuristics H and H+
on 40 instances.

n H0/H0+ H1a/H1a+ H1b/H1b+ H2/H2+

10, 50 5/8 7/8 0/8 7/8
100,200 9/16 16/16 0/16 13/16
500,1000 13/15 16/16 0/16 12/16

TOTAL 27/39 39/40 0/40 32/40

It appears that for these instances:

• The performance of H1b is really bad;

• H1a has the best performance followed by H2 and
H0;

• H+ gives always the best value of the 40 instances,
with only one exception with H0+ (see Section 5 for
this exception).

4. THE BI-OBJECTIVE PROBLEM

Multicriteria scheduling problems are now classical stud-
ies (see T’Kindt and Billaut (2002)), in particular the
determination of the Pareto front in the objective space.
Our aim is here to approximate the Pareto front of the
bi-objective problem described in the section 1.

We will use the following notations:

• mk the machine of level k, k = 1, 2 and 3.

• Jk the subset of jobs of level k, k = 1, 2 and 3.

• Ik the subset of jobs assigned to machine mk for a
solution, with I2 ⊆ J2 ∪ J3 and I3 ⊆ J3.

• Mk the final date of the jobs Ik on machine mk

defined by Mk = maxj∈Ik (Cj + qj).

• The two objectives to minimize are thus the global
final date M = maxk=1,2,3 Mk and the total penalty
P = |I2|+ 2|I3|.

Remark: To assign jobs to a machine, we always use the
algorithm H1a+ of the section 2.

4.1 The initial solution with P = 0

This solution corresponds to the case I1 = {1, . . . , n}, I2 =
I3 = ∅. All the jobs are thus scheduled on machine m1

applying algorithm H1a+ and for this solution M =
M1,M2 = M3 = 0.

4.2 Depth first phase

Each iteration of this phase consists to generate a new
solution with an increasing of one unit of the penalty P .

• If M = M1, a job j ∈ J2 ∪ J3 and belonging to the
critical path of machine m1 will be transferred from
machine m1 till machine m2. For each possible j, the

new value final dateM
(j)
1 of machinem1 with the jobs

of I1 \{j} and the new final date M
(j)
2 of machine m2

with the jobs of I2 ∪{j} are measured and the job j∗

to transfer is determined by minj(max(M
(j)
1 ,M

(j)
2)).

The new solution corresponds to P + 1 and M =

max(M
(j∗)
1 ,M

(j∗)
2 ,M3).

• If M = M2, a job j ∈ J3 and belonging to the
critical path of m2 will be transferred from machine
m2 till machine m3. For each possible j, the new

value M
(j)
2 of machine m2 with the jobs of I2 \ {j}

and the new final date M
(j)
3 of machine m3 with

the jobs of I3 ∪ {j} are measured and the job j∗

to transfer is determined by minj(max(M
(j)
2 ,M

(j)
3)).

The new solution corresponds to P + 1 and M =

max(M1,M
(j∗)
2 ,M

(j∗)
3).

Nevertheless each time an iteration withM = M2 succeeds
to an iteration with M = M1, this preceding iteration is
registered with the corresponding j∗ to be treated in the
backtracking phase.

• If M = M3, the backtracking phase of next section is
applied.

4.3 The backtracking phase

We consider each registered solution, i.e. a solution with
M = M1 and such that the transfer of the job j∗ from m1

till m2 generates a solution with M = M2. This transfer
of j∗ produces the best solution with the value P + 1.
Nevertheless it is possible that two different successive
iterations - with at the first one the transfer of a job
different than j∗ - will produce a better solution with the
value P + 2.

Effectively if another job j1 ̸= j∗, j1 ∈ J2 ∪ J3 is trans-
ferred from m1 till m2, we first obtain a less interesting

solution with value P + 1, as max(M
(j1)
1 ,M

(j1)
2) > M =

max(M
(j∗)
1 ,M

(j∗)
2).

But if M
(j1)
1 > M

(j1)
2 , a second iteration can be made to

transfer another job j2 ̸= j1, j2 ∈ J2 ∪ J3 from m1 till m2,

or if M
(j1)
1 ≤ M

(j1)
2 , a second iteration can be made to

transfer a job j2 ∈ J3 from m2 till m3, and in each case it
is possible that the new solution of value P + 2 is better
that the preceding one obtained in the depth first phase,
with the same value of the penalty.

So for each registered solution in the first phase, we check
all the following situations consisting of two successive
iterations:

• First transfer from m1 till m2 any job j ̸= j∗, j ∈ J2∪
J3 and belonging to the critical path of m1;

• Then apply a second iteration, either if M = M1 with
the transfer of a job from m1 till m2 or if M = M2

with the transfer of a job from m2 to m3 to obtain a
solution with the value P + 2.

All these possibilities are checked and of course, if the
best solution obtained is better that the solution obtained
with the same value of the penalty in the first phase, we
continue to apply the algorithm from this solution.

4.4 A first illustration

It concerns an instance with 20 jobs. The data of this
instance are given in Table 2 with J1 = {1, . . . , 6}, J2 =
{7, . . . , 16} and J3 = {17, . . . , 20}. As the dimension of
this instance is small, it is possible, by a long but complete
enumeration, to obtain the exact Pareto front.

Table 3 presents in the first column the value P of the
solutions, in the second column the value of M obtained
with the heuristic described above and in the third column
the value of M in the exact Pareto front. The symbol ”*”
indicates the solutions generated by the heuristic which
are in fact dominated.

In Table 4, we describe each iteration of the heuristic
indicating the final date (M1,M2,M3) of each machine,
the transfer from one machine to another and the complete
solutions. Table 5 gives the solutions of the Pareto front
dominating these obtained by the heuristic.

Analysing in details the structure of the exact efficient
solutions, it appears that sometimes some jobs placed

initially, at any preceding iteration, on the machine m2

by the heuristic must in fact, in the solution with the next
value of the penalty, be removed to the machine m1 and
replaced on machine m2 by two others jobs. Clearly such
possibility is not taken into account in the heuristic due
to the very high combinatorial aspect of such mechanism.
Nevertheless it gives a direction of research to improve the
performance of the heuristic in the future.

4.5 A second illustration

It is also an instance with 20 jobs. The data of this instance
are given in Table 6 with J1 = {1, . . . , 5}, J2 = {6, . . . , 11}
and J3 = {12, . . . , 20}.
For this instance, the heuristic obtains exactly the Pareto
front which is presented in Table 7.

In Table 8, we describe each iteration of the heuristic
indicating the final date (M1,M2,M3) of each machine,
the transfer of jobs from one machine to another and the
complete solutions.

Table 2. Data of the first instance

j rj pj qj
1 1 8 4
2 10 6 1
3 19 9 18
4 16 2 9
5 6 4 7
6 8 4 16
7 19 2 9
8 6 2 7
9 16 1 5
10 2 9 8
11 20 6 3
12 14 7 2
13 16 4 8
14 9 9 10
15 12 9 13
16 3 10 5
17 1 7 3
18 12 10 11
19 8 10 12
20 17 3 11

Table 3. Results of the first instance

P M (Heuristic) M (Pareto front)

0 124 124
1 114 114
2 104 104
3 94 94
4 85 85
5 76 76
6 67 67
7 66 (*) 64
8 60 60
9 59 59
10 58 (*) 54
11 54 (*) 53
12 51 51
13 - 50
14 50 (*) 49

5. CONCLUSIONS AND PERSPECTIVES

As often, despite the simplicity of its formulation, the
problem appears complex to solve. But some perspectives
exist to improve the presented study and to extend the
model treated.

• A first keypoint is clearly the problem of a single
machine treated in section 2. If we analyze the be-
havior of the improvement algorithm H+, it appears
that, even if this algorithm generates very often an

Table 4. Iterations of the heuristic for the
second instance

P M1,M2,M3 Transfer of jobs

0 124, 0, 0 all the jobs on m1

1-17-10-16-5-8-6-19-14-15-3-18-20-4-7-13-9-11-12-2 // //

1 114, 18, 0 job 16 from m1 to m2

1-17-10-5-8-6-19-14-15-3-18-20-4-7-13-9-11-12-2 // 16 //

2 104, 33, 0 job 19 from m1 to m2

1-17-10-5-8-6-14-15-3-18-20-4-7-13-9-11-12-2 // 19-16 //

3 94, 43, 0 job 18 from m1 to m2

1-17-10-5-8-6-14-15-3-20-4-7-13-9-11-12-2 // 19-18-16 //

4 85, 46, 0 job 10 from m1 to m2

1-17-5-8-6-14-15-3-20-4-7-13-9-11-12-2 // 10-19-18-16 //

5 76, 55, 0 job 15 from m1 to m2

1-17-5-8-6-14-3-20-4-7-13-9-11-12-2 // 10-19-15-18-16 //

6 67, 64, 0 job 14 from m1 to m2

1-17-5-8-6-3-20-4-7-13-9-11-12-2 // 10-19-14-15-18-16 //

7 66, 65, 0 (*) job 9 from m1 to m2

1-17-5-8-6-3-20-4-7-13-11-12-2 // 10-19-14-15-18-9-16 //

8 60, 58, 33 backtracking from P = 6
job 9 from m2 to m1,
job 12 from m1 to m2,
job 18 from m2 to m3

1-17-5-8-6-3-20-4-7-13-9-11-2 // 10-19-14-15-16-12 // 18

9 59,59, 33 job 9 from m1 to m2

1-17-5-8-6-3-20-4-7-13-11-2 // 10-19-14-15-16-9-12 // 18

10 58, 50, 39 (*) backtracking from P = 8
job 9 from m2 to m1,
job 8 from m1 to m2,
job 19 from m2 to m3

1-17-5-6-3-20-4-7-13-9-11-2 // 10-8-14-15-16-12 // 19-18

11 54, 54, 39 (*) job 13 from m1 to m2

1-17-5-6-3-20-4-7-9-11-2 // 10-8-14-15-13-16-12 // 19-18

12 51, 50, 39 backtracking from P = 10
job 13 from m2 to m1,
job 17 from m1 to m2,
job 17 from m2 to m3

1-5-6-3-20-4-7-13-9-11-2 // 10-8-14-15-16-12 // 17-19-18

14 48, 50, 42 (*) backtracking from P = 12
job 13 from m2 to m1,
job 20 from m1 to m2,
job 20 from m2 to m3

1-5-6-3-4-7-13-9-11-2 // 10-8-14-15-16-12 // 17-19-18-20

Table 5. Solutions of the Pareto front

P M1,M2,M3

7 64, 64, 0
1-17-16-5-8-6-3-20-4-7-13-9-2 // 10-19-14-15-18-11-12 //

10 54, 54, 39
1-17-5-8-6-3-20-4-7-13-9-2 // 10-14-15-16-11-12 // 19-18

11 53, 48, 39
1-17-5-8-6-3-20-4-7-13-9-11-2 // 10-14-15-16-12 // 17-19-18

13 50, 48, 42
1-5-8-6-3-4-7-13-9-11-2 // 10-14-15-16-12 // 17-19-18-20

14 49, 49, 42
1-5-8-6-14-3-4-7-9-2 // 10-16-15-13-11-12 // 17-19-18-20

optimal schedule, it is not always the case in its
present form. Some new developments of H+ must
thus be considered. In particular it seems that the
main difficulty is coming in the case when the move
of a job, before or after the critical path generates
a new empty time Ea and thus modifies the subset
of jobs forming this critical path : the order of the
jobs inside this new critical path is not always the
best one so that the corresponding final date is not
the best one and the move can be rejected for this
reason. For instance, it is what happens in the case
mentioned in Table 1 where H0+ does not give the
best value. Another question to analyze appears when
a job j with qj < qp is moved after the critical path.
Presently inH+ this job j is placed immediately after
the job p, but sometimes it appears more interesting
to place this job j at another place after the job p.

• Concerning the bi-objective problem, as indicated in
sub-section 4.4. the present heuristic does not allow
to replace on machine m1 (or m2) a job placed at
a preceding iteration on machine m2 (or m3). It is
thus necessary to analyze if such possibility can be
introduced inside the proposed method. A complete

Table 6. Data of the second instance

j rj pj qj
1 5 10 10
2 20 1 5
3 5 8 19
4 15 3 9
5 1 6 17
6 1 9 12
7 1 8 18
8 5 9 12
9 1 2 6
10 12 3 10
11 19 2 16
12 18 10 1
13 20 2 2
14 11 2 16
15 11 6 20
16 11 3 18
17 14 6 9
18 17 2 13
19 2 10 11
20 1 7 15

Table 7. Results of the second illustration

P M (Heuristic and Pareto front)

0 111
1 101
2 92
3 83
4 75
5 68
6 61
7 58
8 55
9 53
10 50
11 49
12 47
13 46
14 44
15 43

different way to heuristically tackle the problem may
be also to propose a particular multi-objective meta-
heuristic adapted to the model.

• Finally it will be also interesting but difficult to ex-
tend the model.

- A first direction is to modify the two considered
penalties. Clearly fixing these two penalties to 1
and 2, when a job is scheduled on machine m2

and m3 respectively, makes the problem easier.
With two any penalties P1 and P2 (> P1), the
problem becomes harder to solve.

- A second direction is to introduce several parallel
machines at each level k, modifying the model
of section 3 inside the model studied by Gharbi
and Haouari (2002). To examine if the heuristics
in the present study are adaptable to such more
complex model can be of course a next step of
our work.

Table 8. Iterations of the heuristic for the
second instance

P M1,M2,M3 Transfer of jobs

0 111, 0, 0 all the jobs on m1

7-5-20-6-9-19-3-8-1-15-16-14-11-18-10-17-4-2-13-12 // //

1 101, 23, 0 job 19 from m1 to m2

7-5-20-6-9-3-8-1-15-16-14-11-18-10-17-4-2-13-12 // 19 //

2 92, 31, 0 job 6 from m1 to m2

7-5-20-9-3-8-1-15-16-14-11-18-10-17-4-2-13-12 // 6-19 //

3 83, 40, 0 job 8 from m1 to m2

7-5-20-9-3-1-15-16-14-11-18-10-17-4-2-13-12 // 6-8-19 //

4 75, 48, 0 job 7 from m1 to m2

5-20-9-3-1-15-16-14-11-18-10-17-4-2-13-12 // 7-6-8-19 //

5 68, 48, 0 job 12 from m1 to m2

5-20-3-1-15-16-14-11-18-10-17-4-9-2-13 // 7-6-8-19-12 //

6 61, 55, 0 job 20 from m1 to m2

5-3-1-15-16-14-11-18-10-17-4-9-2-13 // 7-20-6-8-19-12 //

7 58, 58, 0 job 16 from m1 to m2

5-3-1-15-14-11-18-10-17-4-9-2-13 // 7-20-6-8-16-19-12 //

8 55, 51, 23 backtracking from P = 6
job 16 from m2 to m1,
job 17 from m1 to m2,
job 19 from m2 to m3

5-3-1-15-16-14-11-18-10-4-9-2-13 // 7-20-6-8-17-12 // 19

9 53,53, 23 job 18 from m1 to m2

5-3-15-16-14-11-1-10-4-9-2-13 // 7-20-6-8-18-17-12 // 19

10 49, 50, 29 backtracking from P = 8
job 18 from m2 to m1,
job 15 from m1 to m2,
job 20 from m2 to m3

5-3-1-16-14-11-18-10-4-9-2-13 // 7-6-15-8-17-12 // 20-19

11 49, 44, 38 job 15 from m2 to m3

5-3-1-16-14-11-18-10-4-9-2-13 // 7-6-8-17-12 // 20-15-19

12 46, 47, 38 job 10 from m1 to m2

5-3-16-14-11-18-1-4-9-2-13 // 7-6-8-10-17-12 // 20-15-19

13 46, 41, 40 job 17 from m2 to m3

5-3-16-14-11-18-1-4-9-2-13 // 7-6-8-10-12 // 19-15-20-17

14 43, 44, 40 job 16 from m1 to m2

5-3-14-11-18-1-4-9-2-13 // 7-6-16-8-10-12 // 19-15-20-17

15 43, 41, 43 job 16 from m2 to m3

5-3-14-11-18-1-4-9-2-13 // 7-6-8-10-12 // 19-15-16-20-17

REFERENCES

Blazewicz J., Ecker K, H., Pesch E., Schmidt G., and
Weglarz J. Scheduling computer and manufacturing
processes. Springer-Verlag, Berlin Heidelberg New York,
2001.

Carlier J. The one machine sequencing problem. European
Journal of Operational Research, 11, 42-47, 1982.

Carlier J. Scheduling jobs with release dates and tails on
identical machines to minimize the makespan. European
Journal of Operational Research, 29, 298-306, 1987.

Centeno G. and Armacost R.L. Parallel machine schedul-
ing with release time and machine eligibility restrictions.
Computers and Industrial Engineering, 33 (1-2), 273-
276, 1997.

Centeno G. and Armacost R.L. Minimizing makespan on
parallel machines with release time and machine eligi-
bility restrictions. International Journal of Production
Research, 42 (6), 1243-1256, 2004.

Garey M.R. and Johnson D.S. Computers and intractabil-
ity. A guide to the theory of NP-completeness. Freeman
Ed, 1989.

Gharbi R.L. and Haouari M. Minimizing makespan on
parallel machines subject to release dates and delivery
times. Journal of scheduling, 5, 329-355, 2002.

Leung J. Y. T. and Li C. L. Scheduling with processing
set restrictions: a survey. International Journal of
Production Economics, 116, 251-262, 2008.

Pinedo M.L. Scheduling theory, algorithms, and systems.
Prentice-Hall, 2002.

T’Kindt V. and Billaut J.-Ch. Multicriteria scheduling
(theory, models and algorithms). Springer-Verlag, Berlin
Heidelberg New York, 2002.

