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Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

2 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

SUMMARY

A framework to validate and generate curved nodal high-order meshes on CAD surfaces is presented. The
proposed framework is of major interest to generate meshes suitable for thin-shell and 3D finite element
analysis with unstructured high-order methods. First, we define a distortion (quality) measure for high-
order meshes on parameterized surfaces that we prove to be independent of the surface parameterization.
Second, we derive a smoothing and untangling procedure based on the minimization of a regularization of
the proposed distortion measure. The minimization is performed in terms of the parametric coordinates of the
nodes to enforce that the nodes slide on the surfaces. Moreover, the proposed algorithm repairs invalid curved
meshes (untangling), deals with arbitrary polynomial degrees (high-order), and handles with low-quality
CAD parameterizations (independence of parameterization). Third, we use the optimization procedure to
generate curved nodal high-order surface meshes by means of an a posteriori approach. Given a linear mesh,
we increase the polynomial degree of the elements, we curve them to match the geometry, and we optimize
the location of the nodes to ensure mesh validity. Finally, we present several examples to demonstrate the
features of the optimization procedure, and to illustrate the surface mesh generation process.

KEY WORDS: high-order methods; high-order mesh generation; quality measure; mesh optimization;
curved elements; CAD ; parameterized surfaces

1. INTRODUCTION

In the last two decades, the solution of partial differential equations (PDEs) with unstructured high-
order methods [1, 2, 3, 4, 5] has experimented a remarkable attention from the community of finite
element methods (FEM). One of the main features that attracted this attention is the ability of
unstructured high-order methods to converge exponentially with the order of the approximating
polynomial when the exact solution of the PDE is smooth and without singularities [1, 6].
Accordingly, it has been possible to show that high-order methods provide higher accuracy with
lower computational cost than low-order methods in a wide range of applications [7, 8, 9, 10, 11,
12, 13, 14, 15, 16].
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To meet the theoretical convergence rate, and therefore enable the main advantages of
unstructured high-order methods, it is required that the geometry is also approximated with high-
order accuracy. To this end, in thin-shell finite element analysis the surface mesh has to be composed
by curved elements represented by polynomials of the proper degree. Furthermore, these curved
surface elements must have a non-singular (valid) and smooth (high-quality) normal vector to allow
the computation of the weak formulation integrals on a master element. Analogously, in 3D finite
element analysis the boundary faces (surface mesh) have to be also curved and fulfill the same
validity and quality requirements. Note that in the 3D case the boundary faces must be valid (high-
quality) to ensure also that the enclosed curved volume mesh is valid (high-quality). That is, if a
boundary face of the mesh is folded (distorted), the corresponding volume element is also folded
(distorted).

The advantages to approximate the domain surfaces with curved and smooth representations have
been highlighted both for thin-shell [17, 18, 19, 20, 21, 22, 23, 24] and 3D [25, 26, 27, 28, 29, 20, 30]
finite element analysis. It has been evidenced that using curved surface meshes mitigates the
spurious errors that may arise from a piece-wise linear approximation of the domain surfaces,
especially when a high-order approximation of the solution of a PDE is required. Accordingly,
the generation of valid and high-quality curved surface meshes is considered mandatory to exploit
all the advantages of unstructured high-order methods.

The direct generation of curved surface meshes is not only required in thin-shell finite element
analysis with unstructured high-order methods. It is also a crucial step of the standard a posteriori
approach used to generate high-order volume meshes suitable for 3D analysis [27, 31, 32, 33, 34,
35, 36, 37, 38, 39]. The goal of this approach is to indirectly generate a high-order volume mesh
that matches a curved boundary. First, a valid initial linear mesh is generated with any established
unstructured mesh generator. Second, the volume mesh is converted to high-order and its boundary
faces are curved to match properly the initial geometry. In this step, invalid elements can be
generated since the newly curved faces can intersect with the internal faces of the volume elements.
Hence, it is necessary a final step where the position of the mesh nodes is optimized or the topology
be modified to obtain a valid and high-quality mesh. The final step of the a posteriori approach,
where the volume elements are curved and repaired, has received an increasing attention in the last
fifteen years. Surprisingly, the generation of valid curved surface meshes, the second step of the a
posteriori approach, has received less attention besides of its major importance both in thin-shell
and 3D finite element analysis.

The most challenging difference between the generation of curved volume meshes and curved
surface meshes is that whereas interior volume nodes can move freely inside the container volumes,
surface nodes can only slide on the surface where they lie. Specifically, it is required to involve the
representation of the domain surfaces as a constraint in the optimization procedure. To this end, we
assume that a CAD model represents the boundary surfaces since it provides some advantages when
compared with other standard surface representations. First, CAD surface representations are more
accurate than the piece-wise linear approximations determined by triangular meshes. Second, they
provide explicit parameterizations of the surfaces as opposed to implicit surface representations.
Finally, CAD models are generated in the standard design process and therefore, they are well
suited for industrial applications of unstructured high-order methods.

The aim of this work is to generate valid and high-quality high-order meshes on parameterized
CAD surfaces by means of an a posteriori procedure. To achieve this goal we present three main
contributions. First, we define a distortion (quality) measure for nodal high-order meshes with
the nodes on parameterized surfaces. The proposed measure quantifies the deviation between an
ideal and a physical surface mesh, and it is expressed in terms of the parametric coordinates of
the mesh nodes. Moreover, we prove that this definition is independent of the selected surface
parameterization.

Second, we derive a smoothing and untangling procedure to optimize the quality of high-
order meshes of any polynomial degree (high-order) on CAD surfaces. The proposed optimization
approach is developed on the parametric space of the surface, ensuring that the nodes always lie on
the exact CAD geometry. Moreover, it is capable to transform an invalid curved high-order mesh to
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a valid mesh (untangling). In addition, we prove that the optimization procedure is also independent
of the parameterization. Hence, we obtain a method that generates untangled (valid) and smoothed
(high-quality) curved high-order meshes from the exact CAD representation regardless of the quality
of its parameterization.

Finally, we propose an a posteriori curved surface mesh generation approach based on the
proposed optimization technique. The approach consists on modifying an initial surface linear mesh
of a CAD geometry by: first, introducing high-order nodes on the parametric space; second, curving
the surface mesh by mapping the parametric high-order nodes through the surface parameterization;
and third, using the optimization procedure to obtain a final parametric configuration that, once
mapped to the physical CAD surface, generates a valid and high-quality surface mesh. The resulting
curved high-order surface meshes can be used either to perform thin-shell analysis or to determine
the curved boundary surface meshes in a volume mesh curving method. Specifically, we use this
method to provide valid boundary conditions, i.e. curved surface meshes, in our curved high-order
tetrahedral mesh generator [39].

The rest of the paper is organized as follows. First, in Sec. 2 we review the related work on surface
mesh optimization and generation of high-order meshes. Next, in Sec. 3 we present the scope of this
work, the statement of the problem that we aim to solve, and the selected approach. In Sec. 4,
we set the framework for the definition of point-wise distortion measures for high-order elements
on parameterized surfaces. In Sec. 5, we detail an smoothing and untangling procedure based on
the minimization of the proposed distortion measures. Following, in Sec. 6 we use the point-wise
measures to define a distortion (quality) measure for high-order elements on parameterized CAD
surfaces. Finally, we present several examples to underline the main properties of the proposed
optimization method and the derived mesh generation procedure, Sec. 7.

2. RELATED WORK

A crucial step in the a posteriori process is to detect invalid elements. For planar and
volumetric high-order elements several approaches have been proposed to detect the validity of the
representation mapping [40, 27, 31, 32, 33, 34, 41, 42, 43], and to define suitable quality measures
[44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. However, these works do not the define quality measures for
curved high-order meshes on parameterized surfaces. On the contrary, we present a new technique
to extend the Jacobian-based distortion measures for planar linear triangles presented in [54, 55], to
curved nodal high-order elements of any polynomial degree on parameterized surfaces. Specifically,
we define the distortion (quality) measure as the deviation of the physical high-order element with
respect to an ideal triangle, as it is proposed in [51, 53] for planar and volumetric curved high-order
elements. Similarly to our previous work for linear elements [56], we express the developed measure
in terms of the parametric coordinates of the mesh nodes and we prove that it is independent of the
surface parameterization.

A posteriori methods to generate high-order surface meshes can be classified into three groups
according to the technique used to curve the mesh and match the domain boundary. The first group
of methods [57, 33, 58, 59, 60] curve the surface mesh boundary and apply local topological
operations, such as refinement, edge removal, or edge and face swapping, to adapt the mesh topology
to the curved surfaces. Then, edge nodes and inner face nodes are relocated. For instance, reference
[57] deals with quadratic elements, and proposes to relocate the mid-edge nodes to enforce that the
tangent vectors at the vertices of the boundary tetrahedral faces verify a geometrical criterion. Later,
references [33, 58] extended to higher polynomial degrees the topology modification techniques,
and proposed a method to curve the inner edges of the surface mesh according to their distance
to the geometry curves. A similar approach based on topological operations and node relocation is
also used in references [59, 60]. The goal of these works is to generate a curved high-order surface
mesh when the exact CAD representation is not available and the geometry is approximated by a
triangulation.

The second group of methods curves the initial linear mesh using an elasticity analogy. For
instance, in reference [35] the surface parameterization is used to write the elasticity problem in
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terms of the parametric coordinates of the surface nodes, leading to a non-linear minimization
problem.

The third group of methods presents two alternatives to generate surface meshes by means of
optimization procedures. On the one hand, reference [37] formulates a local optimization approach
that uses the surface geodesics to compute the location of the surface nodes. The proposed
algorithm requires an additional projection step to ensure that the inner face nodes lie on the exact
physical surface. On the other hand, references [61, 38] propose a global optimization method
for high-order tetrahedral meshes that constrains the displacements of the surface nodes using the
surface parameterization. In order to avoid tangled elements a log-barrier approach [62] is used
to penalize small values of the determinant of the Jacobian. Our approach belongs to this third
group. We propose a global non-linear least-squares optimization based on the minimization of a
distortion measure. However, to untangle invalid configurations we regularize the distortion measure
according to [63, 56].

3. PROBLEM STATEMENT AND METHODOLOGY

3.1. Input and output

Our input data is a linear mesh M1
x composed by elements with the nodes on a parameterized

surface. We assume that the input linear mesh is valid and that it has elements of the desired shape
and size. We also assume that the surface Σ is parameterized by a continuously differentiable and
invertible mapping (diffeomorphism)

ϕ : V ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ x = ϕ(u),
(1)

where V is the parametric space of the surface. In this work, we use the OpenCASCADE library
[64] to retrieve the parameterization of the surfaces of a CAD model.

The output data is a high-order mesh Mp
x of polynomial degree p with all the nodes on the

parameterized surface, and composed by valid elements (non-null and positively oriented normal of
the representation mapping) that have a shape close to the initial straight-sided linear elements.

3.2. Methodology

The proposed approach is composed by the following four steps.

1. Generate a linear mesh on the parameterized surface.
Using any established linear surface mesh generator we create a mesh with elements of
the desired size and shape. Our approach requires to know both the physical, M1

x , and the
parametric, M1

u , coordinates of the nodes of the initial linear surface mesh. There are two
strategies to retrieve the parametric coordinates of the nodes. On the one hand, we can require
that the linear mesh generator stores the parametric coordinates, see [65, 66]. On the other
hand, we can solve a non-linear problem to obtain the parametric coordinates of the closest
point on the surface to each of the mesh nodes, see [67]. In Figure 1(a) we show the linear
mesh generated on a propeller. We have colored the mesh elements according to their shape
quality taking as ideal element the equilateral triangle.

2. Set the ideal mesh.
We increase the polynomial degree of the mesh on the physical space and we set this straight-
sided high-order mesh as the ideal configuration in our optimization procedure. Note that this
mesh is of the desired polynomial degree and, at the same time, has elements of the desired
size and shape. It is important to highlight that the coordinates of the ideal mesh nodes will
be fixed during the optimization procedure.

3. Set the initial curved high-order mesh and a valid curved mesh boundary.
We define a distribution of nodes of degree p on the straight-sided elements on the parametric
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(a)

(b)

(c)

Figure 1. Process of the generation of a high-order mesh on a propeller: (a) linear mesh, (b) initial (invalid)
curved mesh of polynomial degree five, and (c) optimized (valid) mesh of polynomial degree five.

space. For elements adjacent to the surface boundary, we blend the boundary edges to match
the corresponding geometry curve. Next, we define a Legendre-Gauss-Lobatto distribution of
the nodes [68] along the edge using the arc parameter of the curve. Then, the inner nodes of
the elements are redistributed by means of the blending presented in [68]. We denote the mesh
with the nodes on the parametric space as the initial parametric mesh,Mp,0

u . Afterwards, we
mapMp,0

u to the surface, obtaining an initial high-order physical mesh,Mp,0
x , see details in

[65, 66].

The high-order meshes obtained after these steps can contain tangled elements. For instance,
Figure 1(b) shows a detail of the mesh of interpolation degree five for the propeller with
a tangled element colored in blue. These inverted elements appear due to two main issues.
First, the a posteriori curving of the boundary edges to match the geometry curves can
lead to intersections between two element edges, see Figure 2(a). Second, a valid high-order
distribution on the parametric space can be invalid once mapped onto the surface due to a
low-quality parameterization, see Figure 2(b).

4. Obtain a valid curved configuration of the high-order mesh.
We optimize (smooth and untangle) the location of all the nodes that are not on the boundary
of the domain. Specifically, we modify their location in the parametric space to repair the
existent inversions and to improve the quality of the high-order elements on the surface.
In this manner, we obtain a mesh Mp

u on the parametric space that leads to a high-quality
mesh on the physical surface. Next, by means of the surface parameterization ϕ, we map the
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(a)

(b)

Figure 2. Possible tangling issues in the curving procedure: (a) element edge curving to fit the boundary
geometry that creates an auto-intersection with an inner edge, and (b) anisometric parameterization that

produces an invalid element on the physical space.

parametric mesh to the surface, Mp
x = ϕ(Mp

u). Comparing the initial linear mesh, Figure
1(a), and the final mesh, Figure 1(c), we realize that we have been able to obtain a valid and
high-quality high-order mesh such that the shape of its elements resembles the shape of the
elements in the initial linear mesh.

We point out that this work is devoted to the fourth step of the presented process. Specifically,
we define a distortion measure to determine the validity of a high-order element with the nodes on
a parameterized surface, see Sec. 4.3, and we derive an optimization (smoothing and untangling)
process in terms of the parametric coordinates of the nodes to improve the quality of the initial mesh,
see Sec. 5.3. Note that we are focused on the generation of nodal high-order triangular elements
of degree p. Nevertheless, changing the element shape functions in Sec. A, the same approach is
applicable to high-order quadrilateral surface meshes.

4. POINT-WISE DISTORTION MEASURES FOR SURFACES

In this section, we present a technique to define a point-wise measure of the distortion of a mapping
between surfaces in R3. To this end, we first review the standard distortion measures for linear
elements, Sec. 4.1. Next, in Sec. 4.2, we propose a technique to extend this measures to quantify
the distortion of mappings between pairs of vectors in R3. Finally, in Sec. 4.3, we use the measures
presented in Sec. 4.2 to define a point-wise distortion measure for mappings between surfaces.

4.1. Distortion measures for linear elements

In this work, we use the Jacobian-based distortion measures framework for linear elements presented
in [54, 55]. In order to define the distortion of a linear triangle in the physical space,EP , we consider
the ideal triangle, EI , that represents the desired geometrical properties (shape, size, stretching...).
To measure the deviation between these two elements, we consider the unique affine mapping, φE ,
from EI to EP , see Fig. 3. To compute φE , we consider the master element, EM , and we introduce
two additional affine mappings: φP , between the master and the physical elements, and φI , between
the master and the ideal elements. Thus, φE is determined by the composition

φE : EI
φ−1

I−→ EM
φP−→ EP .
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meshes lead to planar elements immersed in R3 and therefore, distortion measures have to be defined
in terms of a linear mapping between pairs of vectors in R3. Hence, the expression of the distortion
measure for linear planar elements cannot be applied directly. To address this issue, in this section
we determine a 2× 2 matrix J̄ in planar cartesian coordinates that features the same distortion of J.

Let Πa,Πb ⊂ R3 be two planes on R3, determined by two pairs of vectors a1,a2 ∈ Πa and
b1,b2 ∈ Πb, respectively. Let J : Πa ⊂ R3 → Πb ⊂ R3 be a linear mapping such that

bi = J(ai), i = 1, 2.

First, we obtain an orthonormal basis for Πa by means of the Gram-Schmidt procedure.
Specifically, we define

ã1 :=
a1

‖a1‖
,

ã2 := γ
a2 − (aT2 ã1) ã1

‖a2 − (aT2 ã1) ã1‖
,

as the two orthonormal vectors of the new basis, where γ is defined to ensure a well oriented
orthonormal basis. In particular, we set γ equal to 1 or −1 for counter-clockwise or clockwise
oriented vectors, respectively.

Note that the 2× 3 matrix ÃT , where Ã = [ã1 ã2], expresses ai in the orthonormal basis
ãi. Analogously, we denote by b̃1 and b̃2 the two vectors of the orthonormal basis of Πb, and
B̃ := [b̃1 b̃2]. Therefore, B̃T expresses bi in the orthonormal basis b̃i.

Finally, we define the vectors

āi := ÃTai, i = 1, 2 (6)

and

b̄i := B̃Tbi, i = 1, 2 (7)

to determine in planar cartesian coordinates a linear mapping J̄ such that

b̄i = J̄āi, i = 1, 2. (8)

Note that J̄ has the same distortion measure value as J, since ηδ, see Equation (5), is invariant under
rotation. To obtain the expression of the matrix J̄, we substitute Equations (6) and (7) in Equation
(8):

B̃Tbi = J̄ ÃTai.

In particular, defining A := [a1 a2], and B := [b1 b2], we have that

B̃TB = J̄ ÃTA.

Since a1 and a2 determine a plane Πa, they are linearly independent. Thus, they determine two
linearly independent vectors ã1 and ã2. Consequently, ÃTA is a 2× 2 invertible matrix and
therefore, we have that matrix J̄ can be computed from A and B as

J̄(A,B) := B̃TB (ÃTA)−1, i = 1, 2. (9)

Finally, we can define the distortion of the linear map J in terms of the matrix J̄ and of the
regularized distortion measure ηδ for linear elements as ηδ(J̄).

4.3. Point-wise distortion measure for mappings between surfaces

In this section, we define a measure of the distortion of a mapping between two surfaces. We assume
that we have an ideal surface ΣI ⊂ R3 and a physical surface ΣP ⊂ R3, that are diffeomorphic to
the same planar domain ΣR ⊂ R2. In particular, ΣI and ΣP are also diffeomorphic and therefore,
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Figure 4. Mappings between the physical, ideal and reference surfaces.

Figure 5. Mappings between the tangent spaces of the surfaces.

the physical surface can be defined as the image of a diffeomorphism φ from ΣI to ΣP , see Fig. 4.
To define the distortion measure Mφ for mappings φ between surfaces, we will pose M in terms of
a given distortion measure for linear elements ηδ.

We consider two diffeomorphisms between the reference surface, and the physical and ideal
surfaces:

φI : ΣR ⊂ R2 −→ ΣI ⊂ R3,

φP : ΣR ⊂ R2 −→ ΣP ⊂ R3.

Then, the diffeomorphism φ between the ideal and physical surfaces can be expressed as φ =
φP ◦ φ−1I . In particular, φ is a mapping which Jacobian J(y) := Dφ(y) defines a linear mapping
between the tangent space at a point y in ΣI , and the tangent space at a point x = φ(y) in ΣP , see
Figure 5. Next, using the applications

DφI : TξΣR −→ TyΣI ,

DφP : TξΣR −→ TxΣP ,

we compute the expression of J on cartesian coordinates, J̄(DφI ,DφP ), presented in Eq. (9).
In this manner, we can define the point-wise distortion for the mapping φ at a point y on ΣI as:

Mφ := ηδ(J̄(DφI ,DφP )). (10)

Note that the distortion M for the mapping φ is casted to evaluate a distortion measure ηδ for linear
mappings, see Eq. (5). Therefore, it is well defined since J̄(DφI ,DφP ) defines a linear mapping for
any y on ΣI .

5. GENERATION OF NODAL HIGH-ORDER MESHES ON PARAMETERIZED SURFACES

In this section, we formulate an optimization problem to generate a valid curved high-order
mesh by means of an a posteriori approach. First, we characterize the best diffeomorphism
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(a)

(b)

Figure 6. (a) Mapping between the ideal and physical surfaces. (b) Mapping between the ideal and physical
meshes.

between two surfaces, Sec. 5.1. Next, we discretize the continuous characterization for the
desired diffeomorphism, Sec. 5.2. Since our objective is to generate nodal high-order meshes on
parameterized surfaces, in Section 5.3 we present the resulting optimization problem posed in
terms of the parametric coordinates of the mesh nodes. Finally, in Sec. 5.4, we prove that the
proposed distortion measure and the obtained objective function are independent of the surface
parameterization.

5.1. Curving: globally defined smooth mapping

Fixed an ideal surface ΣI and the boundary of the physical surface, ∂ΣP , our goal is to find the best
mapping, φ∗ in C1(ΣI ,ΣP ), between both surfaces according to the distortion measure M, see Eq.
(10). Specifically, the ideal mapping φ∗, see Figure 6(a), would be a local diffeomorphism such that

Mφ∗ = 1, in ΣI , (11)
φ∗ = g, on ∂ΣI , (12)

where the boundary ∂ΣP is known and determined by the mapping g from ∂ΣI to ∂ΣP .

5.2. Curving: element-wise defined smooth mapping

Our goal is to a curve a straight-sided ideal meshMI , that approximates the surface ΣI , to obtain
a curved high-order mesh MP that matches the surface ΣI . To this end, we seek a mapping φ∗h,
see Fig. 6(b), such that it is an element-wise local diffeomorphism for all EI in MI and it has
an ideal distortion measure Mφ∗h. This ideal mapping φ∗h can be characterized as the element-wise
polynomial diffeomorphism such that

Mφ∗h = 1, inMI , (13)
φ∗h = gh, on ∂MI , (14)

where the curved boundary mesh ∂MP is known and determined by the mapping gh from ∂MI to
∂MP .

To ensure that the obtained curved mesh matches the physical surface, we consider a mesh
representation that constrains the element nodes to be on the parameterized surface. Specifically,
for a meshMI composed by the union of nE ideal elements EIe , e = 1, · · · , nE , we enforce that φ∗h
is in the set of continuous vector functions in the ideal mesh

W :=
{
w ∈

[
C0 (M)

]3 |
w|EI

∈WEI , ∀EI ∈MI

}
,

(15)
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where

WEI :=

{
w ∈

[
Pp(EI)

]3 ∣∣∣ w =

np∑
i=1

ϕ(ui)Ni(y)

for u1, . . . ,unp ∈ V
} (16)

is a set functions in the ideal element, and Pp(EI) is the space of polynomials of degree p on
the element EI , {Ni}i=1,...,np are polynomial interpolative shape functions of degree p, and np
is the number of element nodes. Hence, the physical nodes of an element, xi in ΣP , can be
expressed in terms of their parametric coordinates as xi = ϕ(ui), where ui in V , and ϕ is the
surface parameterization in Eq. (1), see details in Appendix A. In this manner, if we modify the
parametric coordinates of a node ui, its physical location will always be on the surface.

Note that fixedMI and determined ∂MP in Eq. (14), a mapping φ∗h such that Eq. (13) is verified
may be, in general, not achievable. Therefore, this condition is imposed in a least-squares sense.
That is, we seek φ∗h in WD such that

φ∗h = argmin
φh∈WD

‖Mφh − 1‖2MI
, (17)

where

WD := {φh ∈W | (Mφh − 1) ∈ L2(MI),

and φh = gh on ∂MI}.

In Eq. (17), we define the norms

‖f‖MI
:=

√
〈f, f〉MI

, (18)

‖f‖EI :=
√
〈f, f〉EI , (19)

in terms of the inner product of two scalar functions onMI as

〈f, g〉MI
:=

nE∑
e=1

〈f|
EI

e

, g|
EI

e

〉EI
e
, (20)

〈f, g〉EI :=

∫
EI

f(y) g(y) dy. (21)

Once φ∗h is determined, we define the meshMP of the physical surface ΣP as the image ofMI

by φ∗h. To this end, each physical element is obtained as:

EPe = φ∗h(EIe ) (22)

and then the physical mesh is obtained as the union of the elements EPe , for e = 1, · · · , nE .

5.3. Curving: nodal high-order mesh optimization on parametric coordinates

The minimization problem stated in Eq. (17) can be rewritten in terms of elemental contributions.
In particular, according to Eq. (18) and (20) we seek φ∗h in WD such that :

φ∗h = argmin
φh∈WD

‖Mφh − 1‖2MI

= argmin
φh∈WD

nE∑
e=1

‖Mφh|
EI

e

− 1‖2EI
e

= argmin
φh∈WD

nE∑
e=1

‖MφEe
− 1‖2EI

e
.

(23)



12 A. GARGALLO-PEIRÓ, X. ROCA, J. PERAIRE AND J. SARRATE

where φEe
:= φh|

EI
e

is the mapping between the ideal EIe and physical element EPe , see Eq. (38) in

Appendix A, as:

φEe
(y; ue,1, . . . ,ue,np

) =

np∑
i=1

ϕ(ui)Ni(y),

being ue,1, . . . ,ue,np
the parametric coordinates of the nodes of element EPe . Thus, the distortion

measure at a point y of an element EIe ofMI can be written as:

MφEe
(y) = MφEe

(y; ue,1, . . . ,ue,np
), (24)

where the pairs (e, j) in ue,j identify the local j-th node of element e with their global mesh number
i. That is, for nodal high-order elements, determining φ∗h in the minimization presented in Eq. (23),
is equivalent to determining the configuration of the nodes of the high-order mesh. Moreover, the
element contribution to the objective function only depends on the nodes of that element.

According to the reasoning above, the optimization problem presented in Eq. (23) can be
expressed in such a manner that the nodal parametric coordinates are the unknowns of the problem
(free nodes). To this end, we reorder the coordinates of the nodes, ui, selecting i = 1, . . . , nF as the
indexes corresponding to the inner nodes, and i = nF + 1, . . . , nN as the indexes corresponding to
the fixed nodes (nodes on the curves of the CAD surfaces). Note that the coordinates of the fixed
nodes are determined by the function gh, and have been computed using the arc-parameter of the
corresponding curve of the CAD geometry. Defining

f(u1, . . . ,unF
; unF+1, . . . ,unN

) :=
1

2
‖Mφh − 1‖2MI

, (25)

we can formulate the mesh optimization problem as finding {u∗1, . . . ,u∗nF
} in V ⊂ R2 such that:

{u∗1, . . . ,u∗nF
} = argmin

u1,...,unF
∈R3

f(u1, . . . ,unF
;

unF+1, . . . ,unN
),

(26)

where ui = ϕ−1(gh(yi)) for i = nF + 1, . . . , nN . In Appendix B, we detail a local approach to
solve the global minimization problem stated in Eq. (26).

Note that the optimal configuration is found between the candidates for the minimization
presented in Eq. (26). The candidates are the critical coordinates (u1, . . . ,unF

) of f , characterized
by

∂f

∂ui
(u1, . . . ,unF

; unF+1, . . . ,unN
) = 0, i = 1, . . . , nF . (27)

5.4. Independence on the surface parameterization

In this section, we first prove that the defined point-wise measure is independent of the surface
parameterization.

Proposition 1 (Independence on the parameterization)
Let ϕ1 : V1 → ΣP and ϕ2 : V2 → ΣP be two different diffeomorphic parameterizations of ΣP . Let
M be a mesh on ΣP , and EP an element with the nodes on the surface. Then, the point-wise
distortion measure M, presented in Eq. (10), is independent of the surface parameterization.

Proof
Each parameterization ϕj with j = 1, 2 defines a different function set Wj , see Eq. (15). In
particular, for each one of these parameterizations, there exists a set of nodal parametric coordinates
uji=1,...,np

in Vj , according to Eq. (38), such that we can write two different mappings φjE in Wj
EI ,

see Eq. (16):

φjE(y) =

np∑
i=1

ϕj(u
j
i )Ni(y), y ∈ EI , j = 1, 2.
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Since both parameterizations are diffeomorphisms, we can write the element nodes x1, . . . ,xnp
of

an element EP as

xi = ϕ1(u1
i ) = ϕ2(u2

i )

for unique uji in Vj , j = 1, 2, i = 1, . . . , np. Moreover, at any point y in EI :

φ1
E(y) =

np∑
i=1

ϕ1(u1
i )Ni(y)

=

np∑
i=1

xiNi(y)

=

np∑
i=1

ϕ2(u2
i )Ni(y) = φ2

E(y).

(28)

Note that φjE is φjP ◦ (φjI)
−1, see Appendix A. Analogously to Eq. (28), the mappings φjI and φjP

(between the master and the ideal and physical triangles, respectively) are independent of the CAD
parameterization. Next, we denote by Mj the point-wise distortion measure defined using the set
Wj
EI . Note that Mj in Eq. (10) is strictly determined from DφjI and DφjP . Moreover, since φjI and

φjP are independent on the parameterization, so their Jacobians are. Therefore, from Eqs. (10) and
(24),

M1φ
1
E(y; u1

1, . . . ,u
1
np

) = M2φ
2
E(y; u2

1, . . . ,u
2
np

).

Thus, the distortion at a point y in EI is independent of the selected surface parameterization.

Second, since the conditions imposed for the optimization procedure in Eq. (27) are expressed
in terms of M, which is independent of the surface parameterization, we can prove the following
result:

Proposition 2
According to the objective function f , defined in Eq. (26), the optimal location for the mesh nodes
xi = ϕ(ui) in Σ, i = 1, . . . , nF , is independent of the surface parameterization.

Proof
The conditions for the critical points of f are expressed in terms of M and its derivatives, Eq.
(27). Since M is independent of the surface parameterization, Proposition 1, the critical points of f
are also independent of the surface mesh parameterization. To finalize, the optimal configurations
are also independent of the surface parameterization, since they are found between the candidate
configurations.

Remark 1
In Proposition 2, we have proved that the candidate configurations are independent of the surface
parameterization. In particular, the candidate configurations have to be the same for high (smooth
Jacobian) and low (highly varying Jacobian) quality surface parameterizations. Therefore, the
proposed method is well-suited to obtain candidate mesh configurations even on CAD surfaces
represented by low-quality parameterizations.

Remark 2
The goal of the proposed method is to obtain the critical points independently of the surface
parameterization. However, there are meshes that cannot be untangled by the proposed method,
such as when the boundary edges of the mesh present self-intersections. Nevertheless, the
proposed method has properly smoothed and untangled all the tested meshes with valid boundary
configurations.
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6. DISTORTION AND QUALITY MEASURES FOR HIGH-ORDER ELEMENTS ON
SURFACES

To validate the suitability of a given surface mesh for numerical simulation, in this section, we use
the point-wise distortion measure presented in Eq. (10) to propose a definition of distortion (quality)
for high-order elements.

Definition 1
The distortion measure for a high-order surface element is

ηEV :=
‖MφE‖EI

‖1‖EI

, (29)

where ηEV is a function of the parametric coordinates of the element nodes u1, . . . ,unp
, since MφE

is. Note that ‖1‖EI is the area of the ideal element.

Definition 2
The quality measure for a high-order surface element is

qE
V

:=
1

ηEV
. (30)

Remark 3
Since ηEV is defined in terms of MφE , it is also independent of the selected surface parameterization.
Analogously, the corresponding quality measure qE

V
is also independent.

To check that the mesh is valid to perform a numerical simulation, a quality measure has to
properly detect if an element it is non-valid (and assign 0 value). Moreover, the measure has to
penalize the deviation of the element with respect to the target ideal (and assign value 1 to the
ideal).

Herein, when we validate a given curved high-order surface mesh, we disable the regularization
of the distortion measure, introduced in Eq. (5), by setting δ to 0 in Eq. (10). Therefore, if there is
a region where the Jacobian is non-positive (σ ≤ 0), then ηE , Eq. (29), is divergent and the quality
qE
V

is 0. Conversely, if the physical element is the ideal, φE is the identity. Then, the point-wise
distortion MφE(y) is 1 for all y ∈ EI . Thus, by Definition 1, the element distortion ηE is also 1.
Summarizing, we state the following remark:

Remark 4
The distortion measure ηEV for high-order surface elements has image [1,∞), where 1 corresponds
to the ideal configuration and ∞ to a non-valid one. Hence, by Definition 2, qE

V
has image [0, 1],

where 0 corresponds to an invalid element, and 1 to the ideal one.

7. EXAMPLES

This section is divided in two parts. First, we present three examples to demonstrate the properties
of the proposed smoothing and untangling procedure for nodal high-order meshes with the nodes
on CAD geometries. Second, we present three additional examples to illustrate the proposed a
posteriori approach for generating high-order meshes on CAD surfaces.

We highlight that, in all the figures, the mesh elements are colored according to the quality
measure presented in Definition 2. Moreover, for all the examples we present a table summarizing
the quality statistics of the mesh elements. Specifically, we provide: the minimum, the maximum,
the mean and the standard deviation (SD) of the mesh quality, and the number of tangled elements.
In all cases, the smoothed mesh increases the minimum and mean values of the mesh quality and
decreases its standard deviation. In all the examples, the resulting high-order elements are valid and
curved, and we ensure that the nodes lie on the exact CAD geometry.
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(a)

(b)

Figure 7. Optimization of a planar mesh of degree 3 for a component of a motorbike brake using: (a) the
planar technique, and (b) the surface technique.

Mesh Min Max Mean SD Tang.
Initial 0.00 1.00 0.98 0.11 6

Fig. 7(a) 0.96 1.00 0.99 0.01 0
Fig. 7(b) 0.96 1.00 0.99 0.01 0

Table I. Shape quality statistics for the high-order meshes on a component of a motorbike brake, presented
in Figure 7.

7.1. Properties

In this section, we present three examples to illustrate the main properties of the defined quality
measure and the derived optimization process, namely: consistency, independence on the surface
parameterization, and robustness of the untangling procedure.
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Srf. Fig. Min.Q. Max.Q. Mean Q. SD Tang.

ϕ1
Σ1

8(b) 0.29 0.96 0.67 0.18 0
8(d) 1.00 1.00 1.00 0.00 0

ϕ1
Σ2

8(f) 0.43 1.00 0.65 0.16 0
8(h) 1.00 1.00 1.00 0.00 0

ϕ1
Σ2

8(j) 0.16 0.93 0.57 0.22 0
8(l) 0.91 1.00 0.97 0.02 0

ϕ2
Σ2

8(n) 0.34 0.96 0.63 0.16 0
8(p) 0.91 1.00 0.97 0.02 0

Table II. Shape quality statistics of the meshes on Σ1 and Σ2, presented in Figure 8.

7.1.1. Consistency The goal of this example is to illustrate that the point-wise distortion measure
for high-order meshes on parameterized surfaces presented in Eq. (10), ηδ(J̄(DφI ,DφP )), when
applied to planar surfaces is equivalent to the point-wise distortion measure for high-order planar
meshes presented in [51], ηδ(Dφ), being Dφ a 2× 2 matrix. It is important to point out that this is
true by construction. If the considered surface is planar, the matrix J̄, Eq. (9), required to compute
the value of the quality measure, corresponds to the matrix J except by a rotation. Note that we
define the high-order measures in terms of Jacobian distortion measures that are invariant under rigid
body motions (such as the shape measure, see details in [54]). Therefore, the distortion for surface
elements ηδ(J̄(DφI ,DφP )) is equal to the planar distortion measure ηδ(J(DφI ,DφP )) = ηδ(Dφ).

To illustrate the consistency, we consider a planar CAD model of a component of a motorbike
brake, see Figure 7. First, we generate a mesh composed by 643 elements of degree 3 and 5608
nodes. When the mesh is curved to match the boundary geometry, 8 tangled elements appear. Then,
we optimize it using the planar, Figure 7(a), and the surface, Figure 7(b), distortion measures. Note
that the ideal triangle for each element has been selected as the corresponding straight-sided high-
order element in the initial configuration. To check that we obtain equivalent meshes, we compute

E = max
i=1,...,nF

‖x1
i − x2

i ‖
L

(31)

where L is the minimum edge length in the mesh, and x1
i and x2

i are the coordinates of the free
nodes obtained by the planar and the surface measures, respectively. We obtain that E = 1.3 · 10−4

and hence, the meshes are equal up to minimization tolerance. Moreover, according to Table I, we
obtain the same quality statistics for both meshes.

7.1.2. Independence on the parameterization The aim of this example is to show that the
proposed quality measure and the derived optimization procedure are independent of the surface
parameterization, see Sec. 5.4. To illustrate this property, we consider two surfaces, and for each one
we define two different parameterizations. For both surfaces, Figure 8 presents the meshes on the
parametric space (first and third columns) and on the physical space (second and fourth columns).
We generate the same parametric mesh for all surfaces and parameterizations. The mesh is structured
and composed by 128 elements of degree 3 and 625 nodes. Since we are using structured meshes, we
select as the ideal element an isosceles right triangle. All meshes in Figure 8 are colored according
to the shape quality of the elements on the physical space.

Surface 1 Given the parameterization

ϕ
Σ1

: V
Σ1

= [−1, 1]2 ⊂ R2 −→ R3

(u, v) −→ (u, v, 0),

we define the surface Σ1 as ϕ
Σ1

(V
Σ1

). Note that this parameterization has a constant Jacobian. We
define two different parameterizations for Σ1:

ϕ1
Σ1

: V1
Σ1

= [−1, 1]2 −→ Σ1 ⊂ R3

(u, v) −→ (u, v ε(u, v), 0),
(32)
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Initial Smoothed
V Σ V Σ

ϕ1
Σ1

(a) (b) (c) (d)

ϕ2
Σ1

(e) (f) (g) (h)

ϕ1
Σ2

(i) (j) (k) (l)

ϕ2
Σ2

(m) (n) (o) (p)

Figure 8. Independence of the optimization procedure on the surface parameterization. Degree three meshes
on Σ1 parameterized by ϕ1

Σ1
: (a,b) initial meshes on V1

Σ1
and on Σ1; (c,d) smoothed meshes on V1

Σ1
and on

Σ1. Degree three meshes on Σ1 parameterized by ϕ2
Σ1

: (e,f) initial meshes; (g,h) smoothed meshes. Degree
three meshes on Σ2 parameterized by ϕ1

Σ2
: (i,j) initial meshes; (k,l) smoothed meshes. Degree three meshes

on Σ2 parameterized by ϕ2
Σ2

: (m,n) initial meshes; (o,p) smoothed meshes.

and

ϕ2
Σ1

: V2
Σ1

= [−1, 1]2 −→ Σ1 ⊂ R3

(u, v) −→ (u ε(u, v), v ε(u, v), 0),
(33)

where ε(u, v) := e−2(1−u
2)(1−v2). Note that these parameterizations have a non-constant Jacobian.

The elements of the initial mesh on the parametric space are isosceles right triangles (see
Figures 8(a) and 8(e)). These meshes are mapped to the physical space according to ϕ1

Σ1
and

ϕ2
Σ1

respectively, see Figures 8(b) and 8(f). Therefore, the initial meshes on the physical space
follow approximately the isolines of the corresponding parameterization. Note that both meshes
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(a)

(b)

(c)

(d) (e) (f)

Figure 9. High-order meshes of polynomial degree five colored according to the shape quality measure for a
propeller: (a,d) initial curved mesh, (b,e) tangled mesh, and (c,f) smoothed and untangled mesh.

contain low-quality elements due to the use of parameterizations with varying Jacobian matrices.
Figures 8(c) and 8(g) show the optimized meshes in the parametric domain, and Figures 8(d) and
8(h) show the optimized meshes on the surface. The distance between both optimized meshes is
E = 1.01 · 10−4, see Eq. (31). Hence, both meshes are equal up to minimization tolerance.

Surface 2 Given the parameterization

ϕ
Σ2

: V
Σ2

= [−1, 1]2 ⊂ R2 −→ R3

(u, v) −→ (u, v, sin(πu) cos(πu)).

we define the surface Σ2 as ϕ
Σ2

(V
Σ2

). We define two different parameterizations for Σ2:

ϕ1
Σ2

(u, v) := (u, v ε(u, v), sin(πu) cos(πv ε(u, v))) ,

and

ϕ2
Σ2

(u, v) := (u ε(u, v), v ε(u, v),

sin(πu ε(u, v)) cos(πv ε(u, v))).

In Figures 8(i) and 8(m) we present the structured parametric meshes. The image of these meshes
on the surface is presented in Figures 8(j) and 8(n). Again, the parameterizations lead to low quality
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Fig. Min Max Mean SD Tang.
9(a) 0.00 1.00 1.00 0.04 2
9(b) 0.00 0.23 0.00 0.01 1372
9(c) 0.83 1.00 1.00 0.01 0

Table III. Shape quality statistics of the high-order meshes on a propeller, presented in Figure 9.

meshes on the physical surface. The optimized meshes on the parametric surface are shown in
Figures 8(k) and 8(o), and on the physical surface in Figures 8(l) and 8(p). Although in this case we
have a non-planar surface, the smoothing-untangling procedure also provides the same meshes up
to minimization tolerance with E = 5.7 · 10−4.

Table II presents the quality statistics for both surface meshes. The optimization procedure can
smooth the initial meshes and obtain a high-quality mesh, increasing significantly in both cases the
minimum value of the quality.

7.1.3. Robustness of the smoothing and untangling procedure The goal of this example is to
illustrate the capability of the developed procedure to simultaneously untangle and smooth a high-
order mesh with a large number of tangled elements. We consider a CAD geometry of a propeller
and, according to Sec. 3, we generate an initial mesh of polynomial degree five composed by 1374
elements and 18343 nodes. This non-smoothed mesh contains 2 tangled elements and therefore, is
not valid for computational purposes. Figures 9(a) shows a general view of the initial curved high-
order mesh, and Figure 9(d) shows a zoom where a tangled element appears. Recall that using the
a posteriori curving approach detailed in Sec. 3, we normally obtain meshes with several tangled
elements when the boundary is curved to match the geometry. These elements are usually located
on the boundaries of the surface and therefore, the number of tangled elements is small compared
to the total number of elements.

To check the robustness of the untangling capability of the proposed method, we increase the
number of tangled elements by applying a random perturbation to the location of the inner nodes
of the surface. The resulting mesh contains 1372 tangled elements, see Figures 9(b) and 9(e). After
applying the optimization procedure we obtain a high-quality mesh without tangled elements, see
Figures 9(c) and 9(f). The ideal triangle for each element is the corresponding straight-sided element
in the initial configuration. Table III summarizes the quality statistics of the three high-order meshes.
We highlight that the smoothed mesh increases the values of the minimum quality of the initial and
randomized meshes.

In addition, we have also smoothed the initial mesh (the mesh with only two tangled elements) and
we obtain the same smoothed mesh up to minimization tolerance. Specifically, the relative distances
between the smoothed meshes is E = 1 · 10−10, see Eq. (31).

7.2. High-order curved meshing

In this section, we analyze several aspects of the proposed a posteriori approach to generate high-
order meshes on parameterized surfaces, see Sec. 3. First, we illustrate the complete procedure
to generate a final valid high-order mesh on a CAD geometry. Next, we show that the proposed
methodology is able to generate meshes of low and high polynomial degrees for a given geometry.
Finally, we analyze the quality of the obtained meshes in terms of the scaled Jacobian measure, that
is a standard measure of the smoothness of the element representation mapping, see [57, 35, 36, 37].

7.2.1. High-order mesh generation on a CAD geometry The objective of this example is to illustrate
the complete process for the generation of a high-order mesh on a CAD geometry. We consider a
CAD model of a Falcon aircraft and we generate a valid mesh of polynomial degree five. Figure 10
shows each one of the required steps. In the first column, the elements are colored according to the
quality that results from considering an equilateral triangle as an ideal element. This corresponds
to an absolute value of the quality, since it uses the same ideal for all the elements. In the second
column, the elements are colored according to the quality measure that results from considering the
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Snap-shots of the meshes involved in the generation of a high-order mesh for a Falcon aircraft:
(a,b) initial linear mesh; (c,d) initial curved mesh of polynomial degree five, and (e,f) optimized mesh of
polynomial degree five. Figures (a,c,e) are colored taking the ideal as the equilateral triangle. Figures (b,d,f)

are colored taking the ideal as the corresponding element in the straight-sided mesh.

p Fig. Min Max Mean SD Tang.
1 10(b) 1.00 1.00 1.00 0.00 0
1 10(a) 0.21 1.00 0.93 0.09 0
5 10(d) 0.00 1.00 0.97 0.14 45
5 10(c) 0.00 1.00 0.91 0.16 45
5 10(f) 0.69 1.00 0.99 0.01 0
5 10(e) 0.24 1.00 0.93 0.09 0

Table IV. Shape quality statistics of the high-order meshes on a Falcon aircraft, presented in Figure 10.

initial straigth-sided high-order elements as ideal elements. This corresponds to a relative value of
the quality, since it allows comparing each element to a different ideal triangle determined by the
corresponding element in the initial linear mesh.

First, we generate an initial linear mesh using any established mesh generator that provides
control over the size and shape of the generated elements, see Figures 10(a) and 10(b). Note
that these mesh characteristics will be inherited by the final high-order mesh. Second, we set the
ideal mesh increasing the order of the initial straight-sided linear mesh. Thus, for the optimization
procedure, the ideal triangle for each element is the corresponding high-order straight-sided triangle
in the initial configuration. Third, we get the parametric coordinates of the linear mesh. If we do
not have access to them, we use the projection technique presented in [67] to compute them. Next,
we increase the polynomial degree of the mesh in the parametric space, and we map it to the CAD
surface according to its parameterization, see Figure 10(c) and 10(d). Note that several tangled
elements appear. Then, we optimize this mesh on the parametric space, and we map it to the surface.
To assess that we obtain a valid high-order mesh composed by elements that preserve the shape of
the initial linear mesh we present the optimized mesh in Figures 10(e) and 10(f).

From Figures 10(e) and 10(f), we realize that the quality distribution is similar to the quality
distribution of the initial linear mesh. Thus, the mesh does not present the inverted elements of
Figure 10(d) and is a valid high-order mesh that preserves, whenever is possible, the shape of the
elements of the initial straight-sided high-order mesh.
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(a)

(b)

(c)

Figure 11. Process of the generation of a high-order mesh on the horizontal stabilizer of a falcon aircraft,
colored taking the ideal as the equilateral triangle: (a) linear mesh, (b) initial (invalid) curved mesh of

polynomial degree four, and (c) optimized (valid) mesh of polynomial degree four.

Figure 11 illustrates the mesh generation process around the horizontal stabilizer. Figure 11(a)
shows the initial linear mesh. Next, Figure 11(b) presents the initial curved mesh of polynomial
degree 4 that presents both types of tangling issues illustrated in Figure 2. Finally, Figure 11(c)
shows the final mesh resulting from the optimization procedure.

Table IV summarizes the quality values of the meshes presented in this example. Note that the
optimized mesh does not include tangled elements. Note that the mean value of the shape quality is
0.99 with a standard deviation of 0.01 when the ideal is selected as the initial linear mesh.

7.2.2. High polynomial degree The aim of this example is to show the capability of the presented
methodology to generate valid and high-quality meshes for high polynomial degree. To this end, we
first generate an initial linear mesh composed by 832 elements of the CAD geometry of a component
of a gear box. Then, we increase the polynomial degree of the initial mesh to degree 3, 5, 8 and 10.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. High-order meshes of polynomial degrees 3, 5, 8 and 10 for a component of a gear box. (a,c,e,g)
Initial curved meshes. (b,d,f,h) Optimized meshes.

As expected, these meshes contain tangled elements. In the first column of Figure 12, we present
the initial high-order meshes. We observe that the number of tangled elements changes depending
on the polynomial degree (from 10 tangled elements for degree 3 to 130 tangled elements for degree
10). The number of tangled element increases with the polynomial degree since the feasible region
of the nodes of the higher degree elements is smaller. Then, we apply the proposed optimization
procedure to each initial high-order mesh, selecting the ideal for each element as the corresponding
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p Fig. Min Max Mean SD Tang.
3 12(a) 0.00 1.00 0.98 0.11 10
3 12(b) 0.98 1.00 1.00 0.00 0
5 12(c) 0.00 1.00 0.95 0.19 30
5 12(d) 0.98 1.00 1.00 0.00 0
8 12(e) 0.00 1.00 0.86 0.34 110
8 12(f) 0.98 1.00 1.00 0.00 0
10 12(g) 0.00 1.00 0.83 0.36 130
10 12(h) 0.98 1.00 1.00 0.00 0

Table V. Shape quality statistics of the high-order meshes on a component of a gear box, presented in Figure
12 .

(a) (b)

(c) (d)

(e) (f)

Figure 13. Initial and optimized high-order meshes colored according to the scaled Jacobian quality measure
for the examples presented in Sec. 7.2: (a,b) degree 5 meshes on a propeller, (c,d) degree 5 meshes on a

Falcon aircraft, and (e,f) degree 10 meshes on a component of a gear box.

element in the initial straight-sided high-order mesh. In the second column of Figure 12 we present
the optimized high-order meshes.

Table V details the shape quality statistics of the presented meshes. For any of the tested degrees,
the proposed procedure provides a valid and high-quality mesh, obtaining a valid configuration from
an invalid initial one.

7.2.3. Validation of the smoothness of the representation mapping In this section, we present an
analysis of the scaled Jacobian measure for the degree 5 meshes generated in Secs. 7.1.3 and 7.2.1,
and for the degree 10 mesh generated in Sec. 7.2.2. The scaled Jacobian element quality measure

J =
miny∈EI det J̄(DφI ,DφP )

maxy∈EI det J̄(DφI ,DφP )
(34)
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Mesh Fig. Min Max Mean Std.Dev. Tang.
Initial 13(a) -2.93 1.00 0.89 0.18 2

Smoothed 13(b) 0.18 1.00 0.95 0.08 0
Initial 13(c) -0.75 1.00 0.85 0.25 50

Smoothed 13(d) 0.09 1.00 0.92 0.11 0
Initial 13(e) -5.55 1.00 0.36 1.06 130

Smoothed 13(f) 0.26 1.00 0.81 0.16 0
Table VI. Scaled Jacobian element quality statistics of the high-order meshes presented on Figure 13.

is widely used to assess the validity of the high-order mesh elements [57, 35, 36, 37], and it
quantifies the variation of the Jacobian of the representation mapping. In fact, it quantifies the
linearity of the representation mapping, being 1 only for constant Jacobian matrices, that is, for
linear elements.

It is important to point out that we expect an improvement on the scaled Jacobian quality measure
of the meshes obtained with the proposed optimization procedure. On the one hand, from Eq. (34)
we realize that the scaled Jacobian measure is constant for linear elements, and penalizes elements
with non-constant Jacobian. On the other hand, we highlight that our approach considers as ideal
the initial straight-sided high-order element. Thus, it tries to transform the physical curved element
into a high-order element with similar shape to the initial straight-sided one, while it maintains the
nodes on the surface.

In Figure 13, we color the meshes presented in the previous examples using the scaled Jacobian
quality measure. In the first and second columns of Figure 13 we show the initial and optimized
high-order meshes, respectively. In Table VI we display the scaled Jacobian quality statistics for the
meshes presented in Figure 13. As expected, using the proposed approach we improve the minimum
and the mean values of the scaled Jacobian quality measure in all the cases. Hence, we obtain valid
and high-order meshes with a fairly smooth Jacobian of the representation mapping.

8. CONCLUDING REMARKS

The main goal of this work is to validate and generate curved meshes of any polynomial degree
on parameterized CAD surfaces. First, we detail a new technique to extend any Jacobian-based
distortion (quality) measure defined for planar triangles to high-order elements on parameterized
surfaces. The proposed measure is expressed in terms of the parametric coordinates of the mesh
nodes, and we prove that it is independent of the surface parameterization.

Second, we develop a continuous optimization procedure to smooth and untangle high-order
meshes on parameterized surfaces. Specifically, we propose a non-linear least-squares formulation
to enforce in a weak form that the distortion of the mesh is minimal. The optimization procedure is
formulated in terms of the parametric coordinates. Thus, it ensures that the nodes always lie on the
exact CAD geometry. Moreover, the distortion measure is regularized to allow untangling inverted
elements. In particular, the presented regularization technique avoids that a valid element becomes
invalid and is capable of untangling meshes composed by a large number of inverted elements.

In addition, we prove that the optimization procedure is independent of the surface
parameterization. That is, given two diffeomorphic parameterizations of the surface, the physical
candidate locations are the same for both parameterizations. Therefore, this technique is
particularly suited to generate high-order meshes on CAD geometries represented by low-quality
parameterizations.

Third, we present an a posteriori mesh generation procedure for CAD geometries. Specifically,
given a linear mesh, we increase the polynomial degree of the elements on the parametric space, and
then we improve the quality of the resulting mesh by means of the proposed optimization procedure.
Note that it is of the major importance that the optimization procedure allows untangling, since
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(a)

Figure 14. Mappings between the master, the ideal and the physical high-order elements. Application to
nodal high-order triangles.

when the polynomial degree of the elements is increased, more inverted elements appear close to
the boundary curves.

To conclude, we have included several examples to show the properties of the presented
procedure, and to illustrate the a posteriori approach to generate high-order meshes. We present two
sets of examples. First, we demonstrate the properties of the presented technique the: consistence,
independence of the surface parameterization, and robustness of the untangling technique. Second,
we analyze the mesh generation process for CAD geometries. We show a detailed decomposition
of the mesh generation process, the capability to generate low and high-order meshes up to degree
ten, and a detailed analysis of the meshes obtained on three different CAD models.

Regarding the computational cost of the proposed optimization procedure, the presented method
is in general terms more expensive than standard smoothing approaches (without untangling). For
instance, the proposed implementation of our method is more expensive than standard node-by-
node Laplacian smoothing. That is, the cost of moving a node is also proportional to the number of
neighbors, but there are more floating operations involved. Nevertheless, our implementation scales
as the node-by-node Laplacian method up to an implementation constant. We highlight that the
overhead of our method pays off in those applications where a valid curved high-order surface mesh
cannot be obtained with a standard smoothing method that does not feature untangling capabilities.
In the near future, we will perform an study of the cost of the optimization, analyzing the number
of iterations to converge and the scalability of the solver in terms of the number of elements.

A. NODAL HIGH-ORDER ELEMENTS ON PARAMETERIZED SURFACES

In this section, we detail the selected element representation in W, see Eq. (15). Let EP in MP

be a nodal high-order element of polynomial degree p determined by np nodes with coordinates
xi in ΣP ⊂ R3, for i = 1, . . . , np. Note that for triangular elements the number of nodes np is
1
2 (p+ 1)(p+ 2). In addition, to improve the interpolation properties of the obtained high-order
elements, we use a node distribution that provides a quasi-optimal Lebesgue constant [4]. Given
a master element EM with nodes ξj in R2, being j = 1, . . . , np, we consider the basis {N̄i}i=1,...,np

of nodal interpolative shape functions (Lagrange interpolation) of degree p. Then, the high-order
representation mapping from EM to EP , see Figure 14, can be expressed as:

φP : EM ⊂ R2 −→ EP ⊂ R3

ξ 7−→ x = φP (ξ) =

np∑
i=1

xiN̄i(ξ).
(35)
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Note that φP (ξ) can be written as φP (ξ; x1, . . . ,xnp), since it also depends on the node coordinates
x1, . . . ,xnp

. Moreover, recall that the shape functions {N̄i}i=1,...,np depend on the selection of ξj ,
for j = 1, . . . , np. In addition, they form a partition of the unity on EM , and hold that N̄i(ξj) = δij ,
for i, j = 1, . . . , np.

Analogously, the mapping φI between the master and the ideal elements is also determined using
nodal high-order shape functions. Recall that, in this work, we set the elements of the ideal mesh to
be high-order, and straight-sided. Hence, we can write φI as:

φI : EM ⊂ R2 −→ EI ⊂ R3

ξ 7−→ y = φI(ξ) =

np∑
i=1

yiN̄i(ξ).
(36)

Note that, since EI is straight-sided, φI is an affine mapping with a constant Jacobian matrix.
Finally, the mapping between the ideal and physical elements can be written as:

φE : EI ⊂ R3 −→EP ⊂ R3

y 7−→x = φE(y) = φP ◦ φ
−1
I (y)

=

np∑
i=1

xiN̄i(φ
−1
I (y)) =

np∑
i=1

xiNi(y).

(37)

whereNi(y) := N̄i(φ
−1
I (y)), is an interpolative shape function of polynomial degree p onEI , since

φI is an affine mapping.
Note that φE(y) can be written as φE(y; x1, . . . ,xnp

), since it also depends on the node
coordinates x1, . . . ,xnp

. Moreover, the nodes on the surface can be expressed in terms of the
parametric coordinates by means of the surface parameterizationϕ, see Eq. (1). Hence, for a surface
element, the mappingφE can also be expressed in terms of the parametric coordinates of the element
nodes as

φE(y; x1, . . . ,xnp) = φE(y;ϕ(u1), . . . ,ϕ(unp)).

In this manner, for optimization purposes, the nodes can be moved on the parametric space keeping
the physical location always on the surface. Specifically, the mapping between the ideal and physical
elements can be rewritten as:

φE : EI ⊂ R3 −→EP ⊂ R3

y 7−→x =

np∑
i=1

ϕ(ui)Ni(y),
(38)

It is important to point out thatφE is in WEI , see Eq. (16). Specifically, we express φh element-wise
as φh|EP = φE . Hence, the polynomial mesh representation φh is in W .

Remark 5
We chooseEI as a valid straight-sided high-order triangle. That is,φI is an invertible affine mapping
and therefore, a global diffeomorphism. In this way, we can use the change of variable determined
by φI to compute the inner product, Eq. (21), as:

〈f, g〉EI :=

∫
EM

f(φI(ξ)) g(φI(ξ))

∣∣∣∣∣∣∣∣∂φI∂ξ1
× ∂φI
∂ξ2

∣∣∣∣∣∣∣∣ . (39)

To compute this integral, we have to use a numerical quadrature that ensures that polynomials of
degree 6p− 3 are integrated exactly. Specifically, the quadrature uses (q + 1)(q + 2)/2 integration
points, where q = 3p− 2, as specified in [13, 14].
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B. IMPLEMENTATION: SUBMESH DISTORTION

To solve the optimization problem in Eq. (26), we have to find the optimum between the candidate
configurations. These configurations are characterized by the global non-linear constraints in Eq.
(27). To solve these constraints, we choose a non-linear iterative method that: exploits the locality
of the problem, avoids solving large linear systems, and is well suited for parallelization (by coloring
the mesh nodes). Specifically, we use a non-linear iterative Gauss-Seidel method determined by the
iteration

uk+1
i = uki − αki [∇2

iif(wk
i )]−1 ∇if(wk

i ) i = 1, . . . , nF , (40)

where αki is the step length, and

wk
i = (uk+1

1 , . . . ,uk+1
i−1 ,u

k
i ,u

k
i+1, . . . ,u

k
nF

; u0
nF+1, . . . ,u

0
nN

)

is the vector of updated node locations for the i− 1 first nodes. Note that ∇i and ∇2
ii denote the

gradient and the Hessian with respect to the coordinates ui of node i.
To implement this iterative non-linear solver, we have to compute the gradient ∇if , the Hessian

∇2
iif , and the step length, αki . We first observe that the computation of the gradient

∇if(u1, . . . ,unF
;unF+1, . . . ,unN

) =

∂

∂ui

nE∑
j=1

fEj
(uj,1, . . . ,uj,np

),

can be simplified. That is, fEj
only depends on the coordinates of the nodes of the element Ej .

Therefore, we have that ∂
∂ui

fEj
= 0 for all the elements j that do not contain the node i. Thus, the

gradient can be evaluated as

∇if(u1, . . . ,unF
;unF+1, . . . ,unN

) =∑
j∼i

∂

∂ui
fEj

(uj,1, . . . ,uj,np
),

where j ∼ i denotes that the summation is performed only for the elements that contain the node i.
Therefore, if we define

f̂(ui) :=
∑
j∼i

fEj
(uj,1, . . . ,uj,np

), (41)

we have that
∇if(u1, . . . ,unF

; unF+1, . . . ,unN
) = ∇if̂(ui) (42)

Moreover, using a similar reasoning the Hessian can be computed as

∇2
iif(u1, . . . ,unF

; unF+1, . . . ,unN
) = ∇2

iif̂(ui) (43)

Finally, we have to compute the step length αki . To this end, we use the Backtracking Line Search
algorithm [70] detailed in Algorithm 1, where we set: α = 1, ρ = 0.5 and c = 10−4. Note that in this
algorithm, we have to evaluate the global objective function f and its gradient to check the sufficient
decrease condition in Line 4. By Eq. (42), the sufficient decrease condition is equivalent to

f(w
α
i ) > f(wk

i ) + cα[∇if̂(uki )]Tpki ,

where wα
i is defined in Line 3 of Algorithm 1. Moreover, we have that

f(w
α
i )− f(wk

i ) = f̂(u
α
i )− f̂(uki ),



28 A. GARGALLO-PEIRÓ, X. ROCA, J. PERAIRE AND J. SARRATE

Algorithm 1 Backtracking Line Search

1: function BACKLINESEARCH(Vector wk
i , Vector pki )

2: Set α > 0, ρ ∈ (0, 1), c ∈ (0, 1);
3: w

α
i ← wk

i + (0, . . . ,0, αpki ,0, . . . ,0);
4: while f(w

α
i ) > f(wk

i ) + cα[∇if(wk
i )]Tpki do

5: α← ρα;
6: w

α
i ← wk

i + (0, . . . ,0, αpki ,0, . . . ,0);
7: end while
8: return α;
9: end function

since the contributions of the elements that do not depend on the free node are mutually cancelled,
being uαi = uki + αpki . Therefore, the sufficient decrease condition is equivalent to

f̂(u
α
i ) > f̂(uki ) + cα[∇if̂(uki )]Tpki . (44)

Taking into account Eqs. (42), (43), and (44), we conclude that in the implementation we only need
to compute the gradients, the Hessian, and the value of the local function f̂ introduced in Eq. (41).

In our implementation, we exploit the computational reduction associated with the evaluation of
the function f̂ . To this end, we denote by Mu the elements that contain a free node u. The set
of elements Mu is referred as the submesh associated with node u. In the following remark, we
use this notation to reinterpret the local function f̂ as a measure of the deviation of the submesh
distortion respect an ideal configuration. In addition, we state the optimized implementation for the
non-linear iterative method.

Remark 6
Let uki be the coordinates of node i at step k, and letMuk

i
be the corresponding associated submesh

composed by mi elements. We say that f̂(ui), defined in Eq. (41), is a local merit function that
measures the deviation respect an ideal configuration of the submesh distortion associated with ui.
According to this merit function, and to Eqs. (42), (43), and (44), we can implement the iteration
k + 1 for node i of the proposed non-linear method, Eq. (40), as

uk+1
i = uki − αki [∇2

iif̂(uki )]−1 ∇if̂(uki ) i = 1, . . . , nF . (45)
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in: Proc. 11th Int. Meshing Roundtable, Springer Berlin Heidelberg, 2002, pp. 343–354.
33. X. Luo, M. S. Shephard, R. O’Bara, R. Nastasia, M. Beall, Automatic p-version mesh generation for curved

domains, Eng. Comput. 20 (3) (2004) 273–285.
34. M. S. Shephard, J. E. Flaherty, K. Jansen, X. Li, X. Luo, N. Chevaugeon, J.-F. Remacle, M. Beall, R. O’Bara,

Adaptive mesh generation for curved domains, Appl. Numer. Math. 52 (2-3) (2005) 251–271.
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