Abstract

This project consists of the development and validation of a numerical model to simulate transient responses of the ALBA's synchrotron cooling system. In particular, the work aims at studying the pumping system start-up and stop in order to detect possible problems that can lead to piping failures.

The project focus on the hydrodynamic response of the cooling system, which is part of the activities integrated in a stability and reliability plan promoted by CELLS (Consortium for the Exploitation of the Synchrotron Light Laboratory).

Flowmaster® is the 1D thermo-fluid simulation software that has been used to model the cooling system to detect dangerous pressure peaks and flow oscillations when operation conditions of the pumping stations are suddenly changed.

The first part of this project has been involved in learning and familiarizing with Flowmaster® program in order to perform correctly the simulations. Simple models have been designed to understand and learn the properties and the response influence of the components and model set-up.

The second part has involved the simulations of the actual cooling system. A model available from preliminary studies has been modified to take into account compressibility effects by replacing and adding the adequate components. In addition, it has also been necessary to create scripts and to introduce and make changes in the PID controllers in order to simulate the real ALBA synchrotron pumping system startup/stop procedures.

The normal start-up maneuver of the pumping system has been simulated and the fluid dynamic response has been analyzed. The results indicate the generation of significant pressure rises. To mitigate them, changes to the PID controller parameters have been proposed that improve the transient behavior reducing such peaks.

The simulation and analysis of pumps' shutdowns due to unexpected failures has served to identify the consequences on the system behavior and to prevent possible life-reduction conditions. The calculations have been carried out without and with simultaneous thermal regulation. For example, the results indicate that when the thermal regulation is on the consequences of the simultaneous shut-down of all pumps are mitigated.

Finally, the effect of air in the pipes has been analyzed during a pump shut-down and it has been confirmed that the transient pressure fluctuations predicted in the system are modified.

Summary

ABSTRACT		1
SUMMARY		3
A. GLOSS	SARI	5
B. ALBA B	BEAM LINES	7
C. TECHN	IICAL DATA SHEET	8
C.1. Pump	os data sheet	8
C.1.1. P	07 (EA)	8
C.1.2. P	08 (SR)	9
C.1.3. P	09 (BO)	10
C.1.4. P	10 (SA)	11
C.1.5. P	11 (common line)	12
C.1.6. N	laximum torque calculations	13
D. PIPE D	ATA	14
E. VERIFI	CATION OF FLOWMASTER SOFTWARE	15
F. INITIAL	SIMULATION MODEL	17
F.1. P07		 17
F.2. P08		
F.3. P09.		
F.4. P10.		
F.5. P11.		
G. TILTIN	G DISC CHECK VALVE	22
H. TRANS	SIENT SIMULATIONS WITH THE ADJUSTED MODEL	25
H.1. Start-	up and effect of pumps P07, P08, P09 and P10	
H.1.1. S	tart-up of P07 pump	
H.1.2. S	tart-up of P08 pumps	
H.1.3. S	tart-up of P09 pump	27
H.1.4. S	tart-up of P10 pumps	28
H.2. Shut-	down of P07 pump	
H.2.1. P	erturbations in P07 pumping line	30
H.2.2. P	erturbations in P08 pumping line	31
H.2.3. P	erturbations in P09 pumping line	32

H.2.4.	Perturbations in P10 pumping line	33
H.2.5.	Perturbations in P11 pumping line	34
H.3. Sh	nut-down of P08 pumps (both two pumps simultaneously)	35
H.3.1.	Perturbations in P07 pumping line	35
H.3.2.	Perturbations in P09 pumping line	36
H.3.3.	Perturbations in P10 pumping line	37
H.4. Sh	nut-down of P09 pump	38
H.4.1.	Perturbations in P09 pumping line	38
H.4.2.	Perturbations in P07 pumping line	39
H.4.3.	Perturbations in P08 pumping line	40
H.4.4.	Perturbations in P10 pumping line	41
H.4.5.	Perturbations in P11 pumping line	42
H.5. Sh	nut-down of P10 pump (both two pumps simultaneously)	43
H.5.1.	Perturbations in P10 pumping line	43
H.5.2.	Perturbations in P07 pumping line	44
H.5.3.	Perturbations in P08 pumping line	45
H.5.4.	Perturbations in P09 pumping line	46
H.5.5.	Perturbations in P11 pumping line	47
I. CON	ISTRUCTION DRAWING	48

A. Glossari

- BL: Beam Lines o línies experimentals.
- BO: Booster Ring o accelerador circular.
- CELLS: Consortium for the Exploitation of the Synchrotron Light Laboratory.
- CFD: Computational Fluid Dynamics
- D02: Accumulator.
- D03: Pneumatex
- EA: Experimental Area
- EX07: Heat exchanger
- PID: Proportional-integrative-derivative controller
- P07: Experimental Area pumping system
- P08: Storage Ring pumping system
- P09: Booster Ring pumping system.
- P10: Service Area pumping system.
- P11: Pumping system that bring the heated water to the heat exchangers.
- PEM: It is the Budget of Material Execution. In Catalan, stand for "*Pressupost d'Execució Material*".
- PEC: It is the Contracted Operation Budget. In Catalan, stands for "*Pressupost d'Execució per contracte*".
- SA: Service Area
- SR: Storage Ring.
- $V3V_{D02}$: Three-way valve connected to the accumulator.
- $V3V_{P07}$: Three way valves of the pumping ring P07
- $V3V_{\text{P08}}$: Three way valves of the pumping ring P08
- $V3V_{P09}$: Three way valves of the pumping ring P09
- $V3V_{P10}$: Three way valves of the pumping ring P10

B. ALBA beam lines

The beam lines are made of steel and once the light arrives in the line, the wavelength must be selected in order to proceed with the testing and experimentation. The beam lines that are operating in ALBA synchrotron are explained below.

- BL04 MSPD: The Materials Science and Powder Diffraction Beamline is devoted to high-resolution powder diffraction and high pressure powder diffraction using diamond anvil cells.
- BL09 Mistral soft x-ray microscopy: The full-field Transmission X-ray Microscopy beamline MISTRAL is devoted to cryo Nano-tomography in the water window and for biological applications.
- BL11 NCD non-crystalline diffraction: The experiments provide structural and dynamic information of large molecular assemblies like polymers, colloids, proteins and fibers.
- BL13 XALOC macromolecular crystallography: It aims to provide the present and future structural biology groups with a flexible and reliable tool to help in finding solutions for structures of macromolecules and complexes.
- BL22 CLÆSS core level absorption & emission spectroscopies: The beamline will provide a simultaneous and unified access to two complementary techniques; absorption and emission spectroscopes.
- BL24-CIRCE photoemission spectroscopy and microscopy: The beamline is dedicated to advanced photoemission experiments.
- BL29 BOREAS resonant absorption and scattering: It is a soft X-ray beamline dedicated to polarization spectroscopic investigations of advanced materials, as well as, applied interest.

CELLS is broaden the number of beam lines with two more, which are in construction.

C. Technical data sheet

C.1. Pumps data sheet

C.1.1. P07 (EA)

Figure C.1 P07 pump technical description

C.1.2. P08 (SR)

Figure C.2 P08 pump technical description

C.1.3. P09 (BO)

Figure C.3 P09 pump technical description

C.1.4. P10 (SA)

Figure C.4 P10 pump technical description

C.1.5. P11 (common line)

Figure C.5 P11 pump technical description

C.1.6. Maximum torque calculations

	P07	P08	P09	P10	P11
Max Power (W)	56550	97450	41800	66150	59050
Max Rotational Speed (rad/s)	314.16	314.16	314.16	314.16	157.08
Max Torque (N⋅m)	180.0038	310.1923	133.0532	210.5615	375.9231

The formula to calculate the maximum torque is the following:

$$\Gamma \max = \frac{Pmax}{\omega max}$$

(Eq C.1)

D. Pipe data

Last column, water speed (a) has been calculated according the formula presented in the chapter 6.2 of this project, which is the following:

$$a = \sqrt{\frac{1}{\rho(\frac{1}{k} + \frac{d}{tE})}}$$

(Eq. D.1)

Table D.1 Geometrical information of the pipes

nominal	OUTSIDE	WALL	Inner	Inner	speed of
	DIAMETRE	THICKNESS	diametre	diametre	sound in
SIZE/DIN	(mm)	(mm)	(m)	(mm)	water (a)
0.125/6	10,287	1,2446	0,008	7,7978	1434
0.25/8	13,716	1,651	0,010	10,414	1434
0.375/10	17,145	1,651	0,014	13,843	1418
0.5/15	21,336	2,1082	0,017	17,1196	1420
0.75/20	26,67	2,1082	0,022	22,4536	1402
1/25	33,401	2,7686	0,028	27,8638	1406
1.25/32	42,164	2,7686	0,037	36,6268	1384
1.5/40	48,26	2,7686	0,043	42,7228	1369
2/50	60,325	2,7686	0,055	54,7878	1341
2.5/65	73,025	3,048	0,067	66,929	1328
3/80	88,9	3,048	0,083	82,804	1297
3.5/90	101,5999	3,048	0,096	95,5039	1274
4/100	114,2999	3,048	0,108	108,2039	1253
5/125	141,3001	3,4036	0,134	134,4929	1233
6/150	168,2749	3,4036	0,161	161,4677	1196
8/200	219,0749	3,7592	0,212	211,5565	1159
10/250	273,0498	4,191	0,265	264,6678	1132
12/300	323,8498	4,572	0,315	314,7058	1111
14/350	355,5998	6,35	0,343	342,8998	1168
16/400	406,3998	6,35	0,394	393,6998	1136
18/450	457,1998	6,35	0,444	444,4998	1107
20/500	507,9997	6,35	0,495	495,2997	1080
22/550	558,7997	6,35	0,546	546,0997	1055
24/600	609,5997	6,35	0,597	596,8997	1032
26/650	660,3996	7,9248	0,645	644,55	1070
28/700	711,1996	7,9248	0,695	695,35	1050
30/750	761,9996	7,9248	0,746	746,15	1031
32/800	812,7996	7,9248	0,797	796,95	1013
34/850	863,5995	7,9248	0,848	847,7499	997

E. Verification of Flowmaster software

The system that will be studied is composed by two reservoirs, an elastic pipe, a valve controller and a valve that closes very fast. The simulation will consist of a valve closing its gates very fast, within 0,01 second.

Figure E.1 Model used to verify Flowmaster software

In order to check if the closure of valve generates water hammer, it is check the pressure variation in 2nd node. It is the following:

Figure E.2 Water hammer phenomenon

Water hammer can be seen. A peak pressure of $1,073 \cdot 10^6$ Pa is generated and the pressure reaches $2,15 \cdot 10^6$ Pa before the wave pressure goes back and counteract the pressure generated by itself.

The calculation used by Joukowsky equation is the following:

ho = 1000 kg/m³ a = 1000 m/s Δv = 1,075 m/s

 $\Delta p = 1000 \text{ x } 1000 \text{ x } 1,075 = 1,075 \cdot 10^{6} \text{ Pa}$

The theorical result and by simulation are almost the same. It is this way because the valve is closed in 0,01 seconds. As the closure is slower, the calculated values would be more different as in Joukowsky calculation, the closing is instantaneously.

Flomaster software is verified to provide plausible results.

F. Initial simulation model

F.1. P07

Figure F.1 Pumping P07 ring

F.2. P08

Figure F.2 Pumping P08 ring

F.4. P10

F.5. P11

Figure F.5 Pumping P11 ring

G. Tilting disc check valve

Other flange connections are available on request. Face to face dimensions are according to EN 558-1 (Serie 16) The RM check valve is according to PED 97/23/CE Directive Categorie I Module A Fluid Group 2(b). Under request are also available Categorie II/III.

DIR 94/9/CE (ATEX) Please contact Orbinox for information and availability of categories and zones. All valves are tested prior to shipping in accordance with the standard developed by the Quality Control Department at ORBINOX.

STANDARD PARTS LIST			
Part:	Stainless steel:		
1- Body	CF8M		
2- Disc	CF8M		
3- Shaft	AJSI 316		
4- Cover	AISI 316		

R Z	Reserves the right to change spectRoations without notice ORBINOX S.A. Pol. Ind. s/n-20270 ANOETA (Spein) Tel.: +34 943 698030 - Fax: +34 943 65	OBX 09/09 8th EDITION RM-1 3066 e-mail:orbinox@orbinox.com
Alter and Alter	OBEINOX CAMADA, ORBINOX USA, ORSINOX COMERCIAL, ORBINOX UK, ORBINOX FRANCE, ORBINOX GERMANT, ORBINO	X INDIA, OBSINGX CHINA, OBSINGX S.E.A.
B (27)	www.orbinox.com	

Figure G.1 Technical description of the non-return valves

DESIGN FEATURES

BODY:

Wafer style cast **monoblock.** Cast-in lift eye starting from DN 200 for easier installation.

DISC:

Cast circular, of lightweight designed for maximum strength and low inertia shape.

SHAFT:

Stainless steel heavy stub shafts are positioned to give maximum strength and accurate guiding to the tilting disc. One-piece design for diameters up to DN 200, two piece for diameters over DN 250.

Seal welded covers on the exterior of the valve body.

OTHER OPTIONS

Accelerates the speed of closing.

OTHER MATERIALS OF CONSTRUCTION Special alloys such as AISI 317, 254SMO, Hastelloys, Titanium

FABRICATED VALVES:

AUXILIARY SPRING

ORBINOX is equipped for in house fabrication of special valves. Depending on the design, diameter, pressures, material of construction,...

COUNTERWEIGHT WITH OR WITHOUT HYDRAULIC DAMPER

It is normally used in pumping stations to reduce the water harmer effect. Application of these systems requires previous study of the installation characteristics. In theses cases contact technical department is recommended.

SEAT TYPE

METAL / METAL (standard)

The sealing is effected by precision machined seats in the body and the disc edge.

Reserves the right to change specifications without notice	OBX 09/09 Sth EDITION
ORBINOX S.A. Pol. Ind. s/n-20270 ANOETA (Spath) Tel.: +34 943 698030 - Fax: +34 943 653066 e-mati:orbinox@orbinox.com	RM-2
ORBINOX CANADA, ORBINOX USA, ORBINOX COMERCIAL, ORBINOX UK, ORBINOX FRANCE, ORBINOX GERMANY, ORBINOX INDIA, ORBI	NOX CHINA, ORBINOX S.E.A.
www.orbinoz.com	

Figure G.2 Technical description of the non-return valves

DN	A	В	Ø (PN10/16/25/40-ANSI150)	ØD	E	Weight (kg.)
40	33	45	84	34	823	0,8
50	43	54	102,5	44	62	1
65	46	64	121,5	58	0.75	2
80	64	85	134,5	72	31 3 3	3
100	64	98	162	90	(1 7)	4,5
125	70	116,5	192	112	39 8 3	6,5
150	76	136	219	135	12	7,5
200	89	222,5	273	180	155	15
250	114	221	329	225	182,5	26,5
300	114	251	378	270	210	33,5
350	127	294	438	315	240	54
400	140	340	489	365	275	65,5
450	152	370	540	410	300	92
500	152	405	594	460	325	110
600	178	497	696	555	390	178
700	229	616	800	650	460	245
750	229	613	880	650	485	310
800	241	675	917	745	515	385
900	241	750	1012	835	562	445

Reserves the right to change specifications without notice
ORBINOX S.A. Pol. Ind. s/x20270 ANCETA (Span) Tel.: +34 943 698030 - Fax: +34 943 653066 emotiorbinex@orbinex.com
RM-3
ORBINOX CANADA, ORBINOX USA, ORBINOX COMERCIAL, ORBINOX FRANCE, ORBINOX GREANT, ORBINOX INDIA, ORBINOX S.E.A.
www.erbinox.com

Figure G.3 Technical description of the non-return valves

H. Transient simulations with the adjusted model

H.1. Start-up and effect of pumps P07, P08, P09 and P10

Analyzing the simulations, it has been verified that the start of the pumps don't generate significant perturbations in the other pumping lines. As a consequence, the following figures will only be related to the pumping rings when their pumps are started.

H.1.1. Start-up of P07 pump

Figure H.1 Evolution during P07 pump start-up

Figure H.2 Evolution during P07 pump start-up

Figure H.3 Evolution during P08 pump start-up

Figure H.4 Evolution during P08 pump start-up

H.1.3. Start-up of P09 pump

Figure H.5 Evolution during P09 pump start-up

Figure H.6 Evolution during P09 pump start-up

H.1.4. Start-up of P10 pumps

Figure H.7 Evolution during P10 pump start-up

Figure H.8 Evolution during P10 pump start-up

H.2. Shut-down of P07 pump

Figure H.9 Evolution during P07 pump start-up

Figure H.10 Evolution during P07 pump start-up

H.2.2. Perturbations in P08 pumping line

Figure H.11 Evolution during P07 pump start-up

Figure H.12 Evolution during P07 pump start-up

H.2.3. Perturbations in P09 pumping line

Figure H.13 Evolution during P07 pump start-up

Figure H.14 Evolution during P07 pump start-up

H.2.4. Perturbations in P10 pumping line

Figure H.15 Evolution during P07 pump start-up

Figure H.16 Evolution during P07 pump start-up

H.2.5. Perturbations in P11 pumping line

Figure H.17 Evolution during P07 pump start-up

H.3. Shut-down of P08 pumps (both two pumps simultaneously)

The stop of P08 pumps produce perturbations in the other pumping lines.

H.3.1. Perturbations in P07 pumping line

Figure H.18 Evolution during P08 pumps start-up

Figure H.19 Evolution during P08 pumps start-up

H.3.2. Perturbations in P09 pumping line

Figure H.20 Evolution during P08 pumps start-up

Figure H.21 Evolution during P08 pumps start-up

H.3.3. Perturbations in P10 pumping line

Figure H.22 Evolution during P08 pumps start-up

Figure H.23 Evolution during P08 pumps start-up

H.4. Shut-down of P09 pump

H.4.1. Perturbations in P09 pumping line

Figure H.24 Evolution during P09 pump start-up

Figure H.25 Evolution during P09 pump start-up

H.4.2. Perturbations in P07 pumping line

Figure H.26 Evolution during P09 pump start-up

Figure H.27 Evolution during P09 pump start-up

H.4.3. Perturbations in P08 pumping line

Figure H.28 Evolution during P09 pump start-up

Figure H.29 Evolution during P09 pump start-up

H.4.4. Perturbations in P10 pumping line

Figure H.30 Evolution during P09 pump start-up

Figure H.31 Evolution during P09 pump start-up

H.4.5. Perturbations in P11 pumping line

Figure H.32 Evolution during P09 pump start-up

Figure H.33 Evolution during P09 pump start-up

H.5. Shut-down of P10 pump (both two pumps simultaneously)

H.5.1. Perturbations in P10 pumping line

Figure H.34 Evolution during P10 pumps start-up

Figure H.35 Evolution during P10 pumps start-up

H.5.2. Perturbations in P07 pumping line

Figure H.36 Evolution during P10 pumps start-up

Figure H.37 Evolution during P10 pumps start-up

H.5.3. Perturbations in P08 pumping line

Figure H.38 Evolution during P10 pumps start-up

Figure H.39 Evolution during P10 pumps start-up

H.5.4. Perturbations in P09 pumping line

Figure H.40 Evolution during P10 pumps start-up

Figure H.41 Evolution during P10 pumps start-up

H.5.5. Perturbations in P11 pumping line

Figure H.42 Evolution during P10 pumps start-up

Figure H.43 Evolution during P10 pumps start-up

I. Construction drawing

The following construction drawings has been helpful to adjust the Flowmaster model.

