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Resum 
Dia rere dia, la tecnologia i la tècnica avancen a un ritme vertiginós, fent possible l’abaratiment 
de molts processos i el que aquests comporten. És el cas de la genètica, on fa menys de dues 
dècades encara semblava impensable que la seqüenciació i genotipació del genoma humà 
arribés a ser una tècnica tan accessible i barata com ho és ara.  Aquest avenç ha permès un 
desenvolupament excepcional i un augment exponencial de la producció científica en aquest 
àmbit.  
El mètode que es tracta en aquest treball, conegut com “Genome Wide Association Study”, o el 
que és el mateix, estudi d’associació genètica considerant tot el genoma és conseqüència 
directa del que s’ha comentat en primer lloc.  Això és degut a que per portar-lo a terme es 
necessita disposar d’una enorme quantitat de marcadors genètics coneguts com a “SNPs”, que 
són petites variacions presents en el genoma que donen lloc a una certa variabilitat entre 
individus. L’objectiu del mètode al final consisteix a trobar una relació entre aquests marcadors i 
una malaltia complexa,  fent ús d’una sèrie de fenotips numèrics o bé de presència/absència de 
la malaltia. Per tal de realitzar aquesta associació hi ha diverses maneres de procedir, com ara 
la utilització de casos i controls amb individus no relacionats o bé l’estudi de famílies on hi ha 
una presència inusual de la malaltia. En aquest treball el disseny experimental coincideix amb la 
segona opció, complicant el procediment per portar a terme l’associació des d’un punt de vista 
estadístic. En concret, es fa ús de models lineals mixtos, els quals tenen una matemàtica 
considerablement més complicada que els models lineals als que estem acostumats.  
La implementació i desenvolupament del treball s’han realitzat majoritàriament en el llenguatge 
de programació estadística R, on a la vegada s’ha fet ús d’un software extern conegut com 
SOLAR especialitzat en estudis d’associació genètica en famílies. La malaltia objecte d’estudi 
ha estat l’Osteoporosi, per a la qual s’han intentat trobar possibles variacions genètiques que 
puguin explicar-ne la seva manifestació i desenvolupament. Si bé s’ha utilitzat a priori un 
mètode estàndard d’associació genètica, també s’ha proposat l’aplicació d’anàlisis de 
components principals amb l’objectiu d’incrementar-ne el poder estadístic. Tanmateix, s’ha fet 
un primer mapeig i valoració biològica dels resultats, deixant la porta oberta a futures 
investigacions amb els resultats obtinguts.  
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1. Introduction to the Genetic Analysis of 
Osteoporosis (GAO) project 
1.1. What are complex diseases? 
When we hear the word "disease", we tend to associate it with the most frequent causes, which 
include: bacteria, virus, cell mutation (cancer), or a very concrete genetic disorder (for instance 
the trisomy of chromosome 21). Although indeed these are some of the most frequent ones, 
there exists a group of diseases caused by multiple factors. This kind of diseases is called 
"complex diseases"[1], and their expression is influenced by both genetic and environmental 
factors. Its genetic basis is not easy though, because commonly many different loci[2] -a position 
or marker in the genome- are involved in the disease manifestation. Furthermore, in many 
occasions the genetic basis barely explains the disease or trait variability, which increases the 
importance of considering environmental factors. In fact, sometimes the latter get to explain 
rather more variability than genetics does. As a trait example for illustration we have the 
height[3]. Fifty four loci have been associated with this trait so far, and it's still a better predictive 
model for the offspring measuring parents' height. 

1.2. The disease object of study: Osteoporosis 
Overview 
Probably most of those who haven't studied any medical discipline know nothing or almost 
nothing about this disease, due to its low mortality. Although it's not a mortal disease, there are 
8.9 million bone fractures per year due to osteoporosis[4]. Despite nobody dies from 
osteoporosis itself, it's not that rare to die from fractures' complications. However, it's difficult to 
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find an accurate definition for this condition. It has no symptoms and typically the diagnosis 
comes after the first osteoporotic fracture. So, what is actually osteoporosis? The World Health 
Organization defines it as a bone density of 2.5 standard deviations below that of a young adult. 
This abnormal bone loss may weaken bones to the point that a break may occur with minor 
stress or even spontaneously. The most common osteoporotic fractures typically occur in the 
vertebral column, rib, hip and wrist[5]. 
 
Those occurred in the hip deserve special attention, because they are associated with a higher 
risk of mortality. 
Risk factors 
As we have described above, when we talked about the definition of complex diseases, 
Osteoporosis hasn't a unique cause or risk factor. Here are some environmental factors[4] that 
likely have influence in Osteoporosis expression. Most of them will be object of discussion later 
on, when choosing the covariates for the association study to maximize the traits' variability 
explained. 
- High alcohol consumption 
- Vitamin D deficiency 
- Smoking 
- Obesity 
- Drugs 

1.3. Motivation and scope of this study 
The main reason for carrying out the GAO project is to know more about Osteoporosis' genetic 
basis considering environmental factors. The dreamed scenario would be to find a strong 
association between any of the genetic markers that we have already genotyped and any of the 
different traits related with the disease. It would be fantastic to either find a new locus or 
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replicate any result of another GWAS of Osteoporosis -in recent GWAS studies replicating 
known results has become tougher than it was thought-. 
However, the size of GAO sample may affect the power of association's test and become an 
obstacle to find any significant association. This problem will lead to find new methods and ways 
to improve GWAS power, though nothing is a guaranty of finding any significant and trustable 
result. 
Typically, a Genome Wide Association Study consists of three different parts: genotyping and 
obtaining of phenotypes' data, (sometimes) imputation, and association. The GAO project was 
already running before this final degree's project was started, and therefore the first steps were 
done, which means that are out of the scope of this project. Thus, the initial objectives of this 
project were doing an imputation of the genotyped data and carrying out a genetic association 
afterwards. Nevertheless, two main limitations have arisen from the very beginning: my previous 
knowledge in the field and the project's deadline. Due to these reasons and the fact that 
imputation is a very technical procedure, often assumed as something known by all genetics 
research groups, this project is focused on the third part. 

1.4. Genome Wide Association Studies (GWAS) 
What are GWAS? 
Genome Wide Association Studies are a very young method in genetics (the first study 
considered to be a GWAS was published in 2005), that as it was mentioned in section 1.3 
searches the genome for any statistical significant association between a small variants of the 
genome called SNPs and a disease which is supposed to have a complex genetic basis[2]. 
Typically, there are two main ways for choosing the individuals participating in a GWAS. The 
former and most widely used are "cases and controls". Random individuals from the unaffected 
group (controls) and random individuals from the affected group (cases), as less related as 
possible between them, are selected for the study[6]. 
In the other hand, considering that often complex disorders cluster in families, the other 
possibility is recruiting directly extended families with several individuals affected. The latter is 
the way this project has been carried out, with 11 extended pedigree recruited. 
As explained above, in section 1.3, GWAS have one or even two important previous steps 
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before starting the association. The first step is genotyping the individuals participating in the 
study, which generally is done using a SNP array[7]. One of the keys for GWAS enhancement 
and development are the improvements of this kind of DNA microarrays. As long as genotyping 
techniques get better and the market becomes more competitive, the genotyping cost descends 
pretty fast, which allows research groups to increase sample sizes in GWAS. 
The other highly recommended step is imputation of the missing data[8]. Even though 
microarrays are getting better and cheaper quite fast, these microchips are designed to provide 
an entire coverage of the genome by genotyping just a subset of variants, due to linkage 
disequilibrium [3]. Imputation allows avoiding this lack of genotyped data and some limitations of 
non-imputed data too. In addition, it also increases the power of the study and the number of 
SNPs that can be tested for association[8]. Considering that we didn't impute the genotyped 
data in this study, the limitations commented before will be discussed later on. 

1.5. Software  
1.5.1. R  
R is an environment as well as programming language mainly used to carry out statistical 
analysis[9]. R has strong object-oriented programming facilities and is an interpreted language. 
Nevertheless, the most powerful feature of R are the user-created “packages”, which are built to 
deal with more specific statistical problems implementing complicated algorithms and 
techniques.  Concretely, in this study we are going to use a package called “solarius” recurrently, 
in order to perform all the modeling analysis. This package actually is an interface to use 
external software called SOLAR in R. Actually, when we refer to SOLAR in this study later on, 
we will be referring always to “solarius”, because the analysis is done in R. In the next section 
we explain what’s exactly SOLAR and its importance.  

1.5.2. SOLAR  
In order to define SOLAR, we have quoted the introduction that can be found in its web 
page[10]: 
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“SOLAR-Eclipse is an extensive, flexible software package for genetic variance components 
analysis, including linkage analysis, quantitative genetic analysis, SNP association analysis 
(QTN and QTLD), and covariate screening. Operations are included for calculation of marker-
specific or multipoint identity-by-descent (IBD) matrices in pedigrees of arbitrary size and 
complexity, and for linkage analysis of multiple quantitative traits and/or discrete traits which may 
involve multiple loci (oligogenic analysis), dominance effects, household effects, and 
interactions. Additional features include functionality for mega and meta-genetic analyses where 
data from diverse cohorts can be pooled to improve statistical significance.” 
Actually, this software is especially made to deal with related individuals, concretely with 
complex pedigrees, as it is in our case.  

1.5.2. PLINK 
PLINK is an open-source software made by Harvard researchers in bioinformatics used to 
perform genome statistical analysis[11]. It has a wide range of features especially conceived to 
deal with genetics data. Despite it has so many possibilities (a genetic association study can be 
completely carried out in PLINK) we are going to use it only to apply a quality control to our data. 
In fact, PLINK comes with several useful filters implemented that will be applied to our data, in 
order to increase the rigour and consistency of our final results. 

2. Genome structure and SNPs 
The aim of this section is to provide a basic genetic context to the reader, in order to facilitate the 
understanding of this project, as well as the objectives pursued. Primarily we are going to 
explain the genome’s structure and the basic functionalities of the elements integrated in it (as 
the protein encoding) emphasizing the SNPs’ role and the variability caused by them.  
The human genome is the complete sequence of DNA (deoxyribonucleic acid) contained in 23 
pairs of chromosomes (22 autosomal and 1 depending on the sex) in cell nuclei as well as a 
small DNA molecule present in the mithocondria (cellular organelles responsible of the energy 
obtain)[12].  All the necessary information that makes possible the correct development and 
functionality of a human individual is encoded in the DNA sequence. This information is mainly 
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the “proteome” which is the entire set of proteins that cover all the functions needed to live. In 
fact, proteins develop a wide range of functions; structural, enzymatic, metabolic, regulative, 
signaling, and so on, forming a highly complex interactive network. Nevertheless, the DNA 
sequence contains many elements that are not especially dedicated to protein-coding. In fact, 
we should split the sequence into two main types: intragenic and intergenic.  
Intragenic DNA 
In the one hand, the intragenic DNA contains the protein-coding genes, the RNA (ribonucleic 
acid) coding genes, regulation sequences and pseudogenes.  
There are about 20,000-25,000 human protein-coding genes, and surprisingly they are a small 
percentage of the overall sequence (1,5%). The protein-coding genes consist of two main parts: 
a promoter sequence that regulates its expression and a transcription sequence, integrated by 
UTR sequences (necessaries for the well translation and stability of the RNAm), exons (that 
codify) and introns (which are eliminated in the transcription process). 
Furthermore, the RNA coding genes are responsible of several types of RNA transcription. 
These types include: the transference RNA (RNAt), the ribosomal RNA (RNAr), the microRNA 
and other non-coding genes.  The first two ones are essential on the proteins transcription and 
ribosomes constitution, whereas the third one have demonstrated a main role in gene regulation 
expression.  
The regulation sequences are typically short sequences either near or within the genes. In case 
of those regulation sequences within the gene, they are typically placed in the introns. Actually, 
we barely know how these regions work, though it’s known that their importance is crucial. 
Finally, the pseudo genes are mutated versions of existing genes, that due to their level of 
mutation they can’t be transcribed. 
Intergenic DNA 
These non-coding regions represent the greatest part of the genome, and its function is mainly 
still unknown. Most of these sequences are composed by repetitive elements, though some of 
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them don’t have a clear and classification pattern. Nevertheless, their importance in gene 
expression and regulation has been proved.   

The SNPs 
So far, we have given an outline of the genome’s structure in order to arrive here and 
understand the importance and different types of existing SNPs.  
SNP means “single nucleotide polymorphism” and it’s exactly what they are, a variation of a 
single base. However, their importance resides in their high contribution to phenotypic variability 
among individuals. In fact the main source of variability in the human race is due to variations of 
a single nucleotide. Nevertheless, only those variations which their minor allele is present at 
least 1% within a population can be considered SNPs[13]. If the presence of the minor allele 
within a population is below this threshold, these variations are considered rare variants or 
mutations. 
Actually, we have presented the structure of the human genome just before this section to state 
that SNPs can be found in any region of the genome. This fact implies that there are two main 
types of SNPs: silent SNPs which are placed in non-coding regions and SNPs that may directly 
interfere with protein-coding. However, the importance of both types could be crucial, with the 
difference that those placed in the non-coding region would be difficult to interpret, and despite 
they may be hiding an underlying unknown effect. 
It’s important to keep in mind that SNPs have survived to natural selection in one way or another 
because they have still presence within the actual population. From the disease’s point of view, 
in general a single SNP rarely can affect lethally an individual, although they can have a 
moderately negative effect. 

3. Materials:  GAO Data 
3.1. Sample description 
The GAO project involved 367 individuals from eleven extended Spanish families.  To be 
considered “extended pedigree”, a family had to have at least ten living individuals distributed in 
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three or more generations[4]. The aim of having the individuals clustered in families is to 
enhance power of “rare variants”. In case there is any rare marker with high presence among the 
individuals of these families with high incidence of Osteoporosis, we are more likely to find an 
association with it. In fact, large pedigrees have comparably more power per sampled individual 
than smaller families, compensating for small sample sizes, as it is in this case[4]. 
FAM N of individuals Age (mean) Sex 
gao10 57 37,63 1:33 2:24 
gao11 91 39,47 1:33 2:58 
gao12 23 42,35 1:13 2:10 
gao13 34 49,53 1:17 2:17 
gao14 19 36,47 1:10 2:9 
gao15 31 35,97 1:12 2:19 
gao16 22 43,82 1:11 2:11 
gao17 15 50,4 1:7 2:8 
gao18 30 32,87 1:19 2:11 
gao19 30 50,3 1:13 2:17 
gao20 15 37,73 1:9 2:6 
Table 3.1. Basic description of the sample 

3.2. Genotyped data 
3.2.1. Blood collection and DNA extraction 
The DNA used to genotype the individuals was extracted from white blood cells using a standard 
salting out procedure after separating and storing the plasma for future biochemical assays.  The 
blood used for the DNA extraction was collected in samples of 35 ml of peripheral venous blood 
from all of the participants in[14]: 

1.  Citrate-containing tubes for DNA extraction,  
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2. PAXgene® Blood RNA Tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland) for 
storage and further RNA analysis 

3. Heparin-containing tubes for further whole blood assays.  

3.2.2. Genotyping  
In this study the SNPs were genotyped by Real-Time PCR, using the standard TaqMan® SNP 
genotyping assay protocol of Applied Biosystems for a total volume of 5 μl per well. 
Fluorescence intensity measurements of the final reaction product and data collection were 
carried out on an Applied Biosystems 7500/7500 Fast Real-Time PCR System[4]. 
The subset of SNPs chosen determines the coverage provided of the entire genome. In fact, 
genome-wide association studies rely on linkage disequilibrium and because of this the reported 
association variants are unlikely to be the actual causal variants. We would need a very dense 
coverage to find exactly the actual variant directly in the association study.  In this project we 
have 964.193 independent SNPs genotyped in the raw files, and since we are not going to 
impute the data the final number of SNPs used in the association will be below this amount of 
markers due to the further quality control. Actually, we are going to use only the SNPs from the 
autosomal chromosomes. A summary table can be found below these lines: 
Chromosome N of SNPs 
chr1 83456 
chr2 74455 
chr3 61332 
chr4 50299 
chr5 53103 
chr6 63077 
chr7 48878 
chr8 45627 
chr9 42781 
chr10 48287 
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chr11 51967 
chr12 47593 
chr13 31948 
chr14 30817 
chr15 29751 
chr16 32977 
chr17 33153 
chr18 25296 
chr19 29981 
chr20 24732 
chr21 12994 
chr22 15554 
Total 938058 
Table 3.2. Number of SNPs per chromosome 
The file encoding of the genotypes is explained in the appendix section A.1.1. 

3.3. The phenotypes 
3.3.1. Overview 
The tables of phenotype include three different types of traits, as well as additional variables that 
may be useful for further modeling analysis and a set of mandatory variables requested by the 
software used in this study.  
The different types of traits that we have are: plasma levels of bone metabolism markers related 
with Osteoporosis, densitometric traits (as Bone Mineral Density), and binary “affected” traits 
defined following different criteria.  
The additional variables contain relevant information about the environment and lifestyle of the 
individuals participating in the study.  
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The mandatory variables contain relevant information of the kinship relations among individuals, 
which is absolutely necessary considering that we are carrying out an association study with 
extended pedigree. These variables will be extendedly commented in methodology, concretely 
when we explain the kinship matrix. 

3.3.2. Bone metabolism markers 
The plasma levels of 12 bone metabolism markers have been obtained from the samples of 
35ml of blood contained in the heparin-containing tubes from the participants[14]. The analysis 
of each marker has been carried out in a different place and way. This is summarized below: 

1. Sclerostin  (Biomedica Medizinprodukte GmbH, Wien), IGF1 (Mediadiagnost, Reutlinger, 
Germany), Serum Crosslaps and OstaseBAP  (Immunodiagnostic Systems Ltd, Fountain 
Hills, AZ) were analyzed by ELISA 

2. 25-hydroxy vitamin D ( Immunodiagnostic Systems Ltd ) was analyzed by EIA 
3. Adiponectin, Leptin, TNFalpha, Osteoprotegerin, Osteocalcin, Osteopontin and 

Parathyroid hormone were analyzed in a Luminex using xMAP® technology (Millipore 
Corporation, Billerica, MA) following the manufacturer’s instructions. 

There are also 10 additional variables accounting for external factors of the individuals that are 
interesting from the modeling perspective. 
A summary table of the different variables and a brief description of each one is attached below 
these lines. Nevertheless, the biology of the markers included in the table is briefly described in 
the appendix section A.1.2. 
Variables NAs Mean Sd Frequency Units Description 
Age 0 4,082834e+0

1 
2,095938e+
01 

- Years Patient age (year 
of last update - 
year of birth) 

Sex 0 - - 1:177 
2:190 

- Patient gender 

MenopAge 307 4,821667e+0 4,621584e+ - Years Menopause age 
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1 00 for women 
Alcohol 8 - - 1:343 2:16 - Alcohol intake 

>30g/day (0=No, 
1=yes) 

Smoking 13 - - 1:215 
2:139 

- Smoking habit 
(0=Non-smoker; 
1=currently or 
previously a 
smoker) 

SolarExp 1 6,008197e+0
0 

6,496991e+
00 

- min/day Daily solar 
exposure 
(min/day) 

PosDrug 1 - - 1:319 2:47 - Drug 
administration 
with a positive 
effect on the 
development of 
osteoporosis 

NegDrug 1 - - 1:331 2:35 - Drug 
administration 
with a negative 
effect on the 
development of 
osteoporosis 

IPAQ 109 3,411711e+0
3 

4,297056e+
03 

- MET-
minutes/
week 

Total physical 
activity MET-
minutes/week = 
sum of Walking + 
Moderate + 
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Vigorous MET- 
minutes/week 
scores. 

Calcium 0 3,405995e+0
3 

2,076233e+
03 

- mg/wee
k 

Total calcium 
intake 

HydVitD 0 2,183161e+0
1 

1,020009e+
01 

- ng/mL Density of 25-
hydroxy vitamin D 

Sclerostin 0 3,032332e+0
1 

1,019868e+
01 

- pmol/L Concentration of 
sclerostin 

SerCrossLap
s 

1 3,415027e-
01 

3,834939e-
01 

- ng/mL Density of serum 
beta-crosslaps, a 
bone turnover 
marker 

OstaseBAP 0 2,564635e+0
1 

2,792830e+
01 

- ug/L Density of ostase 
bone-specific 
alkaline 
phosphatase 

IGF1 0 2,177134e+0
2 

1,165206e+
02 

- ng/mL Density of insulin-
like growth factor 
1 

Adiponectin 0 2,913246e+0
7 

3,910357e+
07 

- pg/mL Density of 
adiponectin 

Leptin 0 6,000868e+0
3 

7,243827e+
03 

- pg/mL Density of leptin 

Osteocalcin 0 1,668874e+0
4 

1,745401e+
04 

- pg/mL Density of 
osteocalcin 

Osteoproteg
erin 

0 2,414776e+0
2 

1,368011e+
02 

- pg/mL Density of 
osteoprotegerin 

Osteopontin 0 1,939970e+0
4 

1,536175e+
04 

- pg/mL Density of 
osteopontin 
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Parathyroid 0 2,649147e+0
1 

4,990015e+
01 

- pg/mL Density of 
parathyroid 
hormone 

TNFalpha 0 6,956676e-
01 

6,028639e-
01 

- pg/mL Density of tumor 
necrosis factor-
alpha 

Table 3.3. Summary of the bone metabolism markers’ table  

3.3.3. Densitometric and affected phenotypes 
In total we have 23 densitometric traits of high clinical interest and 4 binary “Affected” traits.  
However, there are 8 additional traits that are derived from the other 23. In fact, these 8 
phenotypes are the T and Z scores, which are measures that compare levels of bone mineral 
density of the patient with those of a healthy individual. Furthermore, we have additional 
variables that may be useful in further steps of this study.  
Densitometric phenotypes 
The densitometric traits of spine, femur and whole body for all participants were obtained using a 
Discovery DXA system (Dual X-ray absorptiometry technique) with the APEX v2.3 software 
(Hologic, Bedford, MA, USA), following the manufacturer’s recommendations[4].  Although the 
analysis is restricted to two dimensions, and the resolution of the structural dimensions is low, it 
seems an acceptable approach to analyze strength and geometrical properties, with the 
advantages of a relatively low cost and small radiation dose compared to quantitative computed 
tomography. 
In order to analyze strength and geometrical properties of the hip, was used the hip structural 
analysis (HSA) software included in APEX[4]. Scans were performed and reviewed by the same 
technician and physician respectively, both of them certified either by the International Society 
for Clinical Densitometry or by the manufacturer of the densitometer. 
The phenotypes include: 
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1. The bone mineral density (g/cm2) of  hip,  trochanteric line, intertrochanteric line,  
femoral neck, spine and whole body;  

2. Hip axis length (mm) 
3.  Femoral neck - femoral shaft angle (degrees)  
4. Measures of bone strength, as:  average cortical thickness (ACT; cm),  buckling ratio 

(BR; cm3), cross-sectional area (CSA; cm2), (iv) cross- sectional moment of inertia 
(CSMI; cm4) and section modulus (SM; cm3) of femoral shaft, narrow neck and 
intertrochanteric line.  

Affected phenotypes 
Considering that Osteoporosis is a complex disease difficult to define clearly, four different 
definitions[4] have been used to deal with this problem in this study, nevertheless isn’t still clear 
which one of them is the best approach for the disease. 
The summary table of the densitometric and affected traits, as well as the additional variables is 
attached below: 
Variables NAs Mean Sd Frequency Units Description 
Affected1 5 - - 0:292 1:70 - Osteoporosis, common definition: 

Older than 21 years old AND [T-
score < -2.5 (column, hip neck or 
total hip) OR atraumatic fracture 
OR treatment with 
bisphosphonates] 

Affected2 5 - - 0:338 1:24 - Atraumatic fracture 
Affected3 4 - - 0:157 1:206 - Osteoporotic traits (osteoporosis 

+ osteopenia, common definition): 
Older than 21 years old AND [T-
score < -1 (column, hip neck or 
total hip) OR atraumatic fracture 
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OR treatment with 
bisphosphonates] 

Affected4 5 - - 0:288 1:74 - Osteoporosis, children included: 
{Older than 21 years old AND [T-
score < -2.5 (column, hip neck or 
total hip) OR atraumatic fracture 
OR treatment with 
bisphosphonates]} AND {Younger 
than 21 years old AND [Z-score < 
-2.5 (column, hip neck or total hip) 
OR atraumatic fracture OR 
treatment with bisphosphonates]} 

AxisLen 3 107,10
372798 

10,6
7604
683 

- mm Hip axis length; distance from 
pelvic rim to outer margin of 
greater trochanter along neck axis 

FemShACT 4 0,6165
2124 

0,14
6352
73 

- cm Average cortical thickness of 
femoral shaft calculated as: 
(femoral shaft width - femoral 
shaft endocortical diameter)/2 

FemShBR 4 2,4277
9048 

0,61
8141
74 

- cm^3 Buckling ratio of femoral shaft, i.e. 
the relative thickness of femoral 
shaft cortex as an estimate of 
cortical stability in buckling 

FemShCSA 4 4,1643
6281 

1,05
9929
67 

- cm^2 Cross sectional area of femoral 
shaft 

FemShCS
MI 

4 3,1405
9947 

1,37
9289
18 

- cm^4 Cross sectional moment of inertia 
of femoral shaft; index of 
structural rigidity; reflects 
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distribution of mass about the 
center of a structural element 

FeShSMod 4 2,1215
9240 

0,72
3443
90 

- cm^3 Section modulus of femoral shaft; 
indicator of bending strength for 
maximum bending stress in the 
image plane 

HipNeckT 4 -
1,1198
3471 

1,06
4906
28 

- t 
score 

t-score of the bone mineral 
density of femoral neck (number 
of standard deviations above or 
below the mean for a healthy 30 
year old adult of the same sex 
and ethnicity as the patient) 

HipNeckZ 8 -
0,2818
9415 

0,95
5244
73 

- z-
score 

z-score of the bone mineral 
density of femoral neck (number 
of standard deviations above or 
below the mean for the age, sex 
and ethnicity of the patient) 

HipTotBMD 3 0,9104
9867 

0,14
3799
68 

- g/cm^
3 

Total bone mineral density of hip 

HipTotT 4 -
0,5647
3829 

1,00
2329
68 

- t-
score 

t-score of the bone mineral 
density of hip (number of standard 
deviations above or below the 
mean for a healthy 30 year old 
adult of the same sex and 
ethnicity as the patient) 

HipTotZ 8 0,1300
8357 

0,91
1219
79 

- z-
score 

z-score of the bone mineral 
density of hip (number of standard 
deviations above or below the 
mean for the age, sex and 
ethnicity of the patient) 
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InterBMD 3 1,0736
6305 

0,17
8070
56 

- g/cm^
3 

Bone mineral density of 
intertrochanteric area (g/cm^3) 

IntTrACT 4 0,4052
4260 

0,08
3239
56 

- cm Intertrochanteric average cortical 
thickness calculated as: 
(intertrochanteric width - 
intertrochanteric endocortical 
diameter)/2 

IntTrBR 4 7,7137
6937 

1,84
9273
71 

- cm^3 Intertrochanteric buckling ratio, 
i.e. the relative thickness of 
intertrochanteric cortex as an 
estimate of cortical stability in 
buckling 

IntTrCSA 4 4,6707
7525 

1,16
6120
25 

- cm^2 Intertrochanteric cross sectional 
area 

IntTrCSMI 4 12,091
69816 

5,03
0004
93 

- cm^4 Intertrochanteric cross sectional 
moment of inertia; index of 
structural rigidity; reflects 
distribution of mass about the 
center of a structural element 

IntTrSMod 4 3,8886
1587 

1,33
1292
82 

- cm^3 Intertrochanteric section modulus; 
indicator of bending strength for 
maximum bending stress in the 
image plane 

NeckBMD 3 0,7509
9010 

0,13
2235
58 

- g/cm^
3 

Bone mineral density of femoral 
neck (g/cm^3) 
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NNeckACT 4 0,1707
4681 

0,02
9849
83 

- cm Average cortical thickness of 
narrow neck calculated as: 
(narrow neck width - narrow neck 
endocortical diameter)/2 

NNeckBR 4 10,944
53652 

2,58
4777
53 

- cm^3 Buckling ratio of narrow neck, i.e. 
the relative thickness of narrow 
neck cortex as an estimate of 
cortical stability in buckling 

NNeckCSA 4 2,8030
8640 

0,61
5174
39 

- cm^2 Cross sectional area of narrow 
neck () 

NNeckCSM
I 

4 2,7879
6462 

1,12
4506
29 

- cm^4 Cross sectional moment of inertia 
of narrow neck; index of structural 
rigidity; reflects distribution of 
mass about the center of a 
structural element 

NNeckSMo
d 

4 1,4999
3516 

0,46
9344
30 

- cm^3 Section modulus of narrow neck; 
indicator of bending strength for 
maximum bending stress in the 
image plane 

ShaftNeck 4 126,04
709468 

5,63
1400
39 

- degre
es 

Femoral neck - shaft angle 

SpineT 3 -
1,6873
6264 

1,59
9106
04 

- t-
score 

t-score of the bone mineral 
density of spine (number of 
standard deviations above or 
below the mean for a healthy 30 
year old adult of the same sex 
and ethnicity as the patient) 

SpineZ 9 - 1,26 - z- z-score of the bone mineral 
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0,5916
2011 

7007
39 

score density of spine (number of 
standard deviations above or 
below the mean for the age, sex 
and ethnicity of the patient) 

TotBMD 2 0,8817
9108 

0,17
7021
61 

- g/cm^
3 

Total bone mineral density of 
spine 

TrochBMD 3 0,6526
7482 

0,10
5718
15 

- g/cm^
3 

Bone mineral density of 
trochanteric area 

WBTotBMD 2 1,0503
5345 

0,13
8909
82 

- g/cm^
3 

Total bone mineral density of the 
whole body () 

WhBodyT 4 -
1,1986
2259 

1,65
9485
80 

- t-
score 

t-score of the bone mineral 
density of the whole body 
(number of standard deviations 
above or below the mean for a 
healthy 30 year old adult of the 
same sex and ethnicity as the 
patient) 

WhBodyZ 24 -
0,3766
7638 

1,02
8843
40 

- z-
score 

z-score of the bone mineral 
density of the whole body 
(number of standard deviations 
above or below the mean for the 
age, sex and ethnicity of the 
patient) 

BMI 2 2,3945
67e+01 

4,48
0787
e+0

- Kg/m^
2 

Patient body mass index 
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0 
Coffee 10 - - 1:123 2:165 

3:54 4:15 
cups/
day 

Coffee intake 

Diabetes 2 - - 0:353 1:12 - Diabetes Mellitus comorbidity (0 = 
no; 1 = yes) 

ERT 2 - - 0:363 1:2 - Estrogen Replacement Therapy in 
female subjects (0 = no; 1 = yes) 

Height 2 1,6218
63e+02 

1,35
1166
e+0
1 

- cm Patient height 

Medication 2 - - -1:21 0: 311 
1:33 

- Drug administration with a 
positive (1) or negative (-1) effect 
on the development of 
osteoporosis. If a patient takes 
both types of medication, then 
their effects cancel (0) 

VitD 2 - - 0:342 1:23 - Vitamin D treatment (0 = no; 1 = 
yes) 

WBTotArea 2 1,8732
26e+03 

3,14
6674
e+0
2 

- cm^2 Total bone area of the whole body 

WBTotBMC 2 2,0015
17e+03 

5,39
4567
e+0
2 

- g Total bone mineral content of the 
whole body 

WBTotFat 2 1,8048
38e+04 

7,45
5101
e+0

- g Total fat content of the whole 
body 
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3 
WBTotLean 2 4,4520

18e+04 
1,24
0816
e+0
4 

- g Total lean content of the whole 
body () 

Weight 2 6,3921
37e+01 

1,66
6956
e+0
1 

- Kg Patient weight 

Table 3.4. Summary of the densitometric and affected phenotypes table  
The table of clinical phenotypes that has been summarized above was stored in the SQL 
database of the Biomedical’s Research Institute of the “Hospital de la Santa Creu i Sant Pau” 
and it was extracted using two scripts that can be found in the annex A.1.3. 

4.  Methodology  
4.1. Data pre-processing 
4.1.1. Overview 
The data pre-processing consisted in three main steps, which are: 

1. Preparation of the data for further quality control 
2. The quality control itself  
3.  Preparation of the data for the further association analysis.  

The first step was necessary in order to make possible some analysis done in the QC as well as 
guarantee that the QC is unbiased.  It was also important to enhance the QC performance in 
computational efficiency terms. 
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The quality control was also necessary especially from the genetics point of view. The final 
results obtained in this study have to be consistent with the genetics not just with mathematics. 
Thus, in order to guarantee its genetic consistency several filters have been applied to the data, 
which are: Minor Allele Frequency, Mendelian errors and Hardy Weinberg equilibrium. 
Furthermore, a missingness test has been also performed, to avoid bias in the association 
analysis.  
Finally, it was crucial to let the data prepared for the association analysis, especially from the 
computational point of view. We clustered the data in small batches to improve computation 
efficiency as well as transformed the genotypes into numeric data, to make possible the 
mathematical treatment of the data.  
These three steps have been performed using PLINK and R. We have attached a workflow 
diagram below, with the main operations and the software used in each case. 
 

 
 

0. Data set-up
•PYTHON: modif_ped.py

1. Convert ped files into bed 
•PLINK

2. MAF
•PLINK
•R

3. Mendelian errors
•PLINK
•R
•PYTHON

4. Missingness test
•PLINK

5. Hardy-Weinberg equilibrium
•PLINK

6. Chromosomes' clustering
•Bash + PLINK

7. Additive models
•Bash + PLINK 
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4.1.2. Data set-up for the QC 
4.1.2.1. Modification of ped file 

 
There are two basic points that have to be modified from this file in order to assure an unbiased 
and efficient quality control: 

1. There are some individuals in this file who actually don't belong to this study. Therefore, 
we have no phenotypic information for these individuals, and no association can be 
done. Thus, these individuals have to be removed from that file to guarantee that the 
QC is unbiased. The script compares the IDs in the pedigree file with those present in 
the table of phenotypes, and remove the unmatched individuals. 

2. On the other hand, as we introduced in section 3.2, there is an important lack of 
information about the pedigree, which is needed to perform some of the steps of this 
QC. Concretely, the fields “father” and “mother” in the genotypes are empty, and they 
are necessary to perform further Mendelian errors analysis. The python script solves 
this problem. 

The code in python of the script used as well as the explanation of how it actually works can be 
found in the annex A.2.1. 
4.1.2.2. Binary ped files (*.bed) 

 

Raw data
•Map and Ped files Python script

Data read y for the QC (ped & map files)
•Individuals removed
•Important information added

PLINK files: ped & map PLINK commands
PLINK BED files: *.bim, *.fam,*.bed
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Although map and ped files have a very clear structure and are quite easy to understand, 
working with them is actually very inefficient in PLINK. To save space and time, making a binary 
file is a highly recommended idea. This procedure splits the data into three different files: .bed, 
.fam and *.bim[15]. 
The first two files carry the information that was previously contained in the ped file. In the one 
hand, the bed file is a compressed file which contains the genotypes of every individual. On the 
other hand, the fam file contains the first six columns of the ped file. The third file is an extended 
map file, which means that apart from carrying the data of the map file, now it also carries 
information about the allele names, which would be otherwise be lost in the bed file. 
The commands used for this file conversion can be found in the appendix section A.2.1. 
 
4.1.3. Quality Control[16] 
4.1.3.1. Minor Allele Frequency (MAF) 

 
Following the SNP’s definition, they are variations in the genome that have to be present in at 
least 1% of individuals within a population. Variations with prevalence below this threshold are 
considered specific mutations instead of SNPs. Thus, considering that the minor allele frequency 
is the lowest allele frequency at a locus that is observed in a particular population[17], applying a 
MAF threshold prevents from including very rare markers in further association analysis. 
Considering that all markers are biallellic, the MAF is calculated as: 

ܨܣܯ ൌ ݏ݈݈݈݁݁ܣ ݎ݋݊݅݉ ݂݋ ݎܾ݁݉ݑܰ
2 ∗  ሺ4.1ሻ  ݏ݈ܽݑ݀݅ݒ݅݀݊݅ ݂݋ ݎܾ݁݉ݑܰ

In this case, we pruned those SNPs whose MAF was below 1%[18]. The total amount of SNPs 
pruned can be found in the summary table of the QC in the Results’ section. 
Implementation 

BED files: no filter applied yet
MAF filter
• PLINK
• R

BED files: filtered by MAF
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To filter by MAF we used both PLINK and R. With the first software we generated a file (*.frq) 
containing all minor allele frequencies for all SNPs[19] (its structure can be found in the 
appendix) and with R we pruned those markers which were below the chosen threshold. The 
names of the SNPs pruned have been imported to a file and removed from the original file using 
PLINK. The code can be found in the annex A.2.2. 
4.1.3.2. Mendelian errors 

 
A Mendelian error describes an allele in an individual which could not have been received from 
either of its biological parents by Mendelian inheritance[20]. There are different types of 
Mendelian errors, each one of them has its corresponding code in PLINK. 
Furthermore, there are two different ways to evaluate and filter by Mendelian errors. In the one 
hand, we can look at them from the SNPs perspective. From this point of view, we prune those 
SNPs in which the percentage of individuals who present a Mendelian error at that locus is 
above our threshold. 
In the other hand, we can look at the amount of Mendelian errors that each individual presents. 
This case is such more complicated and controverted, because we can start to discuss if beyond 
a certain number of Mendelian errors per individual we are not just facing a rare case fruit of 
randomness. What we are meaning with this, is that in one way or another familiar structure is 
wrong, and therefore it is easy to infer that either the supposed father or mother actually is not 
the biological parent.  
To carry out both analysis we have used the files: .*.lmendel, *.mendel, *.imendel and *.fmendel 
generated in PLINK with the command –mendel[21].  The structure of these files is detailed in 
the annex section A.2.2 

BED files: filtered by MAF

Analysis
•Per SNP
•Per individual
•Methods: PLINK+R+Python

BED files:
filtered by MAF and Mendelian errors 
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Analysis of Mendelian errors per SNP 
In the first place if we filter SNPs by Mendelian errors, the file of interest is.*.lmendel. This file 
contains the number of Mendelian errors per SNP, which is the same to say the number of 
individuals who present a Mendelian error at that locus. We have applied this filter using PLINK 
and R to compare both results, which have to be the same. 
The steps followed to filter by Mendelian errors in R have been: 

1. Convert the file of interest into the correct format (*.csv) through a python script. 
2. Apply a vectorized operation pruning those SNPs that are above the threshold we have 

chosen. In this case, the threshold has been set at 1%. Nevertheless, we have to 
consider that some individuals in the sample are founders, and therefore we can't 
calculate Mendelian errors for them. The consequence of this fact is that PLINK 
computes the proportion using only non-founders. So if we want to obtain the same 
results, we have to follow the same criteria in R. There are 281 non-founders, so 1% out 
of 281 would be 2.81 individuals presenting a Mendelian error. Due to the fact that the 
number of individuals is a discrete variable, those SNPs with more than 2 individuals 
presenting a Mendelian error at that locus will be pruned.  

Afterwards, we have performed the filtering operation using PLINK, in order to compare with the 
results obtained in R.  
An important observation that should be remarked is that we can apply this filter after pruning by 
MAF because we are focusing on SNPs. When we analyze the Mendelian errors per individual, 
it doesn't make sense to eliminate SNPs previously, since we might be eliminating potential 
discrepancies. 
 
Both PLINK and R command lines can be found in the annex section A.2.2 
 
Analysis of Mendelian errors per individual 
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To carry out this analysis the only possibility was doing it in R. In this case, we are interested in 
the files: *.mendel, *.imendel and *.fmendel (their structure is explained in the annex). The 
procedure has been the following one: 

1. Convert the files of interest into the correct format (*.csv) through a python script 
2. Through an R script written for this particular problem (code in the annex A.2.2.), we 

extracted the IDs of the offspring of the nuclear families that were in the *.fmendel file. 
Due to the fact that in this file we just had the parents' IDs, a file with complete pedigree 
information was needed. In total, we extracted 171 IDs. 

3. Using the same script, we obtained the Mendelian errors for each ID extracted before. 
Afterwards, we have plotted several distribution figures to identify possible outliers. The 
resultant plots are in the section Results. 

4. At last, we have analyzed some outliers in detail, using a script written in python for this 
occasion too (annex A.2.2.). The script, given an individual and one or more types of 
Mendelian errors, computes how many Mendelian errors of those types the individual 
present.  
We have attached a table with the different types of Mendelian errors and their 
corresponding codes [21]: 

 
 
 
 
 

Code Pat Mat Offspring 
1 AA AA AB 
2 BB BB AB 
3 BB ** AA 
4 ** BB AA 
5 BB BB AA 
6 AA ** BB 
7 ** AA BB 
8 AA AA BB 
9 ** AA BB 
10 ** BB AA 
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Finally, to analyze the different types of errors per individual, we have clustered some 
types of Mendelian errors[21]: 

- Errors 1 and 2 affect the whole trio  
- Errors 5 and 8 affect only the child 
- Errors 3 and 6 affect both child and father 
- Errors 4, 7, 9 and 10 affect both child and mother 
 

4.1.3.3. Missingness test 

 
The missingness test otherwise known as "call rate test" consists in identifying those loci whose 
number of missings is above the threshold established. If there are more individuals than 
allowed presenting a missing in the locus in question, that SNP is automatically pruned. In this 
case, we set the threshold to 2%, which considering our sample size of 367 individuals implies 
pruning those SNPs which have more than 7 missings. The procedure to apply this filter is 
almost the same we have been following so far in previous sections. 

1. First, we generate in PLINK two text files through the command –missing[22], one 
containing missingness per individual and the other containing missingness per SNP. 

BED files:
filtered by MAF and Mendelian errors 

PLINK commands
BED files: filtered by MAF, Mendelian errors and missings

Table 4.1. Types of mendelian errors and their codification. The asterisks mean that the 
Mendelian error is independent from the genotypes of that individual. 
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Since we are not interested in discarding individuals, we are going to focus only in 
the second one (*.lmiss). 

2. Before importing this file in R, we need to convert it to a suitable format (*.csv) 
3. Afterwards, we apply a vectorized filter setting the threshold to 7 missings per SNP, 

and we export those SNPs which failed the test to a text file. 
4. Finally, we extract from the original file the SNPs that failed the test using PLINK.  

The file structure and the code can be found in the annex A.2.2.. 
4.1.3.4. Hardy Weinberg equilibrium test 

 
First, before starting to explain the test itself, we need to define the Hardy Weinberg 
principle[23]. This law states that allele and genotype frequencies will remain constant from 
generation to generation if none of the following assumptions is violated:  
- Infinite population 
- Discrete generations 
- Random mating 
- No natural selection is taking place in the population 
- No migration (to avoid genetic flow, which is the transfer of alleles or genes from one 
population to another) 
- No mutation 
- Equal initial genotype frequencies in both sexes 

BED files:
filtered by MAF, Mendelian errors and missings 

PLINK commands
BED files: filtered by MAF, Mendelian errors, missings and HWE (Dataset ready)
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The equilibrium is reached after one generation of breeding under the assumptions from above. 
To put it in mathematical terms, let's consider a parametrical example. Given the frequencies u, 
v and w for the genotypes AA, Aa and aa respectively, we can directly deduce alleles 
frequencies, which are ܲሺܣሻ ൌ ݑ ൅ ሺ1/2ሻ ∗ and ܲሺܽሻ ݒ ൌ ݓ ൅ ሺ1/2ሻ ∗  Considering the different .ݒ
mating possibilities and with genotypes frequencies in hand, we can easily arrive to table 4.2. 
Parents 
genotypes 

Mating 
frequency 

Expected offspring 

AA x AA ݑଶ AA 
AA x Aa 2 ∗ ݑ ∗ ሺ1/2ሻ ݒ ∗ ܣܣ ൅ ሺ1/2ሻ ∗  ܽܣ
AA x aa 2 ∗ ݑ ∗  Aa ݓ
Aa x aa 2 ∗ ݒ ∗ ሺ1/2ሻ ݓ ∗ ܽܣ ൅ ሺ1/2ሻ ∗ ܽܽ 
Aa x Aa ݒଶ ሺ1/4ሻ ∗ ܣܣ ൅ ሺ1/2ሻ ∗ ܽܣ ൅ ሺ1/4ሻ

∗ ܽܽ 
aa x aa ݓଶ aa 
Table 4.2. Mating frequencies and expected offspring for the different genotypes combination 
From table 4.2. we can calculate the genotypes frequencies for the offspring, which will remain 
constant from now on. So a certain locus is in Hardy Weinberg equilibrium if the genotypes 
frequencies are the following ones: 
ܲሺܣܣሻ ൌ ሺݑ ൅ ሺ1/2ሻ ∗ ሻଶݒ ൌ ܲሺܣሻଶ 
ܲሺܽܣሻ ൌ 2 ∗ ሺݑ ൅ ሺ1/2ሻ ∗ ሻሺሺ1/2ሻݒ ∗ ݒ ൅ ሻݓ ൌ 2 ∗ ܲሺܣሻ ∗ ܲሺܽሻ 
ܲሺܽܽሻ ൌ ሺݓ ൅ ሺ1/2ሻ ∗ ሻଶݒ ൌ ܲሺܽሻଶ 
So far so good, but we need to apply these concepts to our data in order to prune those SNPs 
which are not in Hardy Weinberg equilibrium. As always in this QC, we are going to apply this 
filter using PLINK, which performs a Chi-Square goodness of fit test. The test statistic used for it 
is obtained using some of the concepts presented so far. To obtain the test statistic for a locus, 
we first need to construct the following table: 
Genotype Observed Expected 
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AA ஺ܰ஺ ܰ ∗  ଶ݌
Aa ஺ܰ௔ ܰ ∗ 2 ∗ ݌ ∗ ሺ1 െ  ሻ݌
aa ௔ܰ௔ ܰ ∗ ሺ1 െ  ሻଶ݌
Table 4.3. Observed vs expected number of genotypes 
Where: 
ܰ ൌ ஺ܰ஺ ൅ ஺ܰ௔ ൅ ௔ܰ௔ (total number of observations) 
݌ ൌ ሻܣሺ݌ ൌ ሺ ஺ܰ௔ ൅ 2 ∗ ஺ܰ஺ሻ/ሺ2 ∗ ܰሻ (allelle frequency of A) 
Once we have calculated the observed and the expected number of alleles, we can proceed to 
obtain the test statistic: 

ܺଶ ൌ ෍ ሺ
௚௘௡௢௧௬௣௘௦

݀݁ݒݎ݁ݏܾ݋ െ ݀݁ݐܿ݁݌ݔ݁/ሻଶ݀݁ݐܿ݁݌ݔ݁
ൌ ݊ ∗ ሺሺ4 ∗ ஺ܰ஺ ௔ܰ௔ െ ஺ܰ௔ଶ ሻ/ሺሺ2 ∗ ஺ܰ஺ ൅ ஺ܰ௔ሻ ∗ ሺ2 ∗ ௔ܰ௔ ൅ ஺ܰ௔ሻሻሻଶ 
At last, to obtain a p-value we have to consider that the test statistic under the null hypothesis 
 follows approximately a Chi-Square (଴ = the locus is in Hardy-Weinberg equilibriumܪ)
distribution with 1 degree of freedom. This implies that using an alpha of 0.05, those values for 
the test statistic above 3.84 happen to be significant and Hardy Weinberg equilibrium does not 
hold for that locus.  
However, filtering by a p-value of 0.05 in a Hardy-Weinberg equilibrium test could be excessively 
restrictive. Thus, we have set the threshold to filter p-values of the HWE test to 1e-3. 
The commands used in PLINK[24] to carry out this procedure can be found in section A.2.2. of 
the appendix. 
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4.1.4. Data set-up for association 
4.1.4.1. Clustering data by chromosome 

 
In order to improve computing performance (in terms of RAM and time) during further 
association, we need to split the data in smaller batches 
The suitable clusters in this case happened to be chromosomes so we used a bash script which 
calls PLINK to cluster data by chromosome[25], and that afterwards recodes the resultant .bed 
file into a .ped and *.map file, since they are the formats required for the association. At the end 
we should have 22 batches, corresponding to the 22 autosomal chromosomes. 
The bash script used to cluster SNPs by chromosome and recode every output file into ped and 
map format can be found in the appendix section A.2.2. 
 
4.1.4.2. Additive models 

 
Although we haven't talked yet about the methodology to carry out the association study, we can 
assume that it will be performed using linear mixed models. However, whereas traits and 
covariates are both numeric (either continuous or binary), the genotypes are still coded as 
letters. Obviously no statistical association can be done with genotypes coded as this, thus a 
numerical codification is required. The most commonly used way to input genotyped data in 
SOLAR is through an additive model. Basically, this way of recoding genotyped data consists in 
counting the number of minor alleles per person. So PLINK (this time wasn't going to be the 

BED files: filtered by MAF, Mendelian errors, missings and HWE (Dataset ready)

Clustering 
• Bash + PLINK. 
•Output format: BED

Recoding into map and ped files
•Bash + PLINK
•Output format: ped & map

22 Autosomoal chromosomes 
•BED files
•Map and ped files

22 Autosomoal chromosomes 
• BED files
• Map and ped files

Recoding into an additive model
• Bash+PLINK

Additive models for all 22 chromosomes
• Output format: *.raw
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exception) first obtains the allele frequency for each allele at a certain locus, and afterwards 
counts the number of alleles per person for that allele presenting the lowest frequency[26]. 
Here goes an example: 

SNP SNP_Additive 
A A 2 
A C 1 
C C 0 
C C 0 
0 0 NA 
Table 4.4. Example of file encoding transformation from a *.ped file to a *.raw file 
The bash script used to recode every file containing information of autosomal chromosomes can 
be found in the appendix section A.2.3. 

4.2. Analysis 
4.2.1. Analysis’ roadmap 
Before we start explaining how we have proceeded, as well as detail the algorithms, the 
concepts and the mathematics behind this project, it is a good idea to stop for a while and 
understand at least graphically the process that we have followed to obtain our results. 
In a “direct” association (i.e. associating with the traits given directly) we follow the procedure 
from below: 

 
In an indirect association we first obtain a model for the data, where we can even reduce the 
dimensionality of it, and afterwards we carry out the association. 

Polygenic models
•Select significant covariates
•Transform traits (eliminate outliers and abscence of normality)
•Response: given traits

Association models
•Obtaining of p-values for every SNP
•Heavy computing phase
•Use of polygenic models as "null" models,

Results' analysis
•Multiple test correction (Manhattan plots)
•Genomic inflation factor 
•QQ-plots
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However, considering that the basis of this project is linear mixed models (polygenic and 
association models are LMMs) we are going to introduce them first, giving the most important 
mathematical concepts and a practical example in order to provide some practical intuition to the 
reader. 

4.2.2. Linear mixed models 
4.2.2.1.. Overview 
Although probably everyone who is reading this text has ever heard about linear models, we 
definitely can't state the same for linear mixed models. The first ones are widely used; in fact 
they're strongly present in almost every science field. Conversely, the second ones are much 
less famous despite their flexibility and elegance. When we have clusters or groups in our data, 
and we suspect that the randomness of the observations could be affected by those groups or 
clusters, using a mixed model is a highly recommended option[27]. Historically, their presence 
and use have been restricted by computational limitations, due to the fact that their parameters 
estimation requires using complicated algorithms which demand high computational 
efficiency[28]. However, considering recent technological advances and the incredible 
improvement of computation power, they have become more popular - and even the unique 
solution to some problems -. Before starting to explain them in detail, we should go back and 
remember the assumptions needed for linear models, since for mixed models are exactly the 
same. 
The assumptions in linear models can be summarized in five main concepts[29]: linearity, 
constant variance, absence of colinearity, normality of residuals and independence. By far, the 
most important one is the latter, and its violation will definitely invalidate the model. 
Independence implies that the residual errors for the response variables are uncorrelated. As an 
example, if we have measured a certain trait several times from the same subject, and we have 

Principal component analysis
• Variables chosen 

Polygenic models
• Select significant covariates
• Transform traits (eliminate outliers and abscence of normality)
• Response: principal components obtained at first

Association models
• Obtaining of p-values for every SNP
• Heavy computing phase
• Use of polygenic models as "null" models,

Results' analysis
• Multiple test correction (Manhattan plots)
• Genomic inflation factor 
• QQ-plots
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done it among a group of individuals, our observations between individuals won't be totally 
independent. It turns out that the mean of observations of each particular subject is slightly 
different, so therefore the observations are not independent from subjects. It's precisely here 
where linear mixed models are an excellent solution. In fact, mixed models account for the 
variance due to two different kinds of variables or "effects": fixed effects and random effects. In 
the one hand, fixed effects are those ones which influence the variance in a highly systematic 
and predictable way. In the other hand, random effects tend to influence variance in a very non-
systematic and unpredictable manner, as the “by-subject” effect that we have commented as an 
example. So precisely because they account for both effects linear mixed models are called 
"mixed". 
4.2.2.2. The mathematics behind linear mixed models (LMM) 
In this section we are going to introduce from a mathematical and more formal perspective linear 
mixed models. Although LMM have their basis on very advanced mathematics, here we intend 
to give to the reader the main concepts as plain as possible, in order to facilitate their 
understanding as well as improve further comprehension of the methodology presented later on 
in this project. 
Mathematical basis 
If we express LMM in matrix form we have[30]:  

ݕ ൌ ߚ ݔ ܺ ൅ ݑ ݔ ܼ ൅  ሺ1ሻ            ߝ
Where X and Z are both known incidence or design matrices of n x p and n x q dimensions 
respectively. β is a p x 1 dimension vector that accounts for fixed effects (as Age or Sex) and u 
is a q x 1 dimension vector which accounts partly for random effects, jointly with ε. Nevertheless, 
Z x u gives some structure to random effects, in order to correct the model and let the 
assumptions of independence intact. We also need to define a covariance matrix for each 
random effect, one for vector u and another one for vector of residuals ε. 
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So consider that the covariance matrix for vector u is denoted by G and the covariance matrix for 
vector ε is denoted by R. The first matrix typically accounts for known random effects, and the 
second one for residual variance.  
The mathematical structure of the matrix G can be defined in different ways, depending on the 
implementation. The most generic way to define it is: 

ܩ ൌ  .ሺ2ሻ        ܣ௚ଶߪ
Where ߪ௚ଶ is the variance of the random effect to be estimated and ܣ is a generic matrix its 
structure depends on the prototype for matrix Z chosen. These concepts will be extendedly 
explained later on, when we comment the different implementations existing for linear mixed 
models. 
Assuming that residual errors have constant variance and are uncorrelated, the matrix R can be 
written as: 

ܴ ൌ ௘ଶߪ ∗  ,ሺ3ሻ       ܫ
Where I is the identity matrix and ߪ௘ଶ is the parameter to be estimated. However, we need to 
define a few more equations before presenting the final multivariate normal distribution of our 
trait vector ݕ. Considering that u and ε are both random effects, their expected values have to be 
equal to 0: 

ሻݑሺܧ ൌ 0       ሺ4ሻ 
and 

ሻߝሺܧ ൌ 0        ሺ5ሻ 
Conversely, the expected value for fixed effects has to be equal to ܺ ߚ ݔ. 
Furthermore, assuming that random effects ݑ and ߝ are uncorrelated, we can define the 
variance for vector y as: 

ሻݕሺݎܸܽ ൌ ܸ ൌ ்ܼ ݔ ܩ ݔ ܼ ൅ ܴ         ሺ6ሻ 
In the end, the distribution for vector ݕ is: 

்ܼ ݔ ܩ ݔ ܼ   ,ߚ ݔ ሺܺ  ~  ݕ ൅ ܴሻ        ሺ7ሻ 
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Summarizing, the elements that we know a priori are y, X and Z, and those that we have to 
estimate are β, u, G and R. The parameters that interest us the most are β and u, though to 
obtain them there is a previous step which consists in estimating both matrices G and R. 
Actually, estimating the matrices G and R is the most complicated step. We need to use 
complicated mathematic techniques and complex algorithms[31]. In fact, the procedures to 
obtain these parameters are based on maximum-likelihood estimation techniques, which consist 
in the iterative optimization of a log-likelihood function. These are functions of the parameters of 
a statistical model, and there are two of them which deserve a mention due to their importance: 
Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML). In order to optimize 
these functions there is a list of algorithms capable to do it, though Expectation-Maximization 
algorithm is the most widely used[32]. However, we are not going to dig deeper into these 
concepts, because they are out of the scope of this study. 
Nevertheless, we need to talk a bit more about mathematics of LMM, but now focusing on a 
question of high interest considering our purpose. The issue that should be discussed now is the 
significance of the parameters found when we fit a mixed model. Whereas in linear simple 
regression models we were used to check the significance of a set of parameters using test 
statistics and looking at the adjusted R-squared directly from the models, in linear mixed models 
this is not feasible. Thus, we need to find a way to discuss significance for LMM, and the solution 
is Likelihood Ratio Test (LRT)[31]. The basic working principle for these tests is to obtain a 
"relative" significance between two models. In fact, we are not going to obtain an overall p-value 
for a certain parameter when comparing two different models: the "null" model and the "full" 
model. As we can imagine, the full model will use more variables than the null one, concretely, it 
will include those variables that we want to test their significance. Therefore, the meaning of the 
p-value obtained, in case to be significant, is that the bunch of variables included in the full 
model is contributing to fit a better model. Although so far everything seems to work properly, we 
should read the last statement carefully, since it can be misunderstood. It turns out that not all 
the variables included in the full model which are not present in the null one, are significant and 
contribute to fit a better model. This is what we meant with the word "bunch", and implies that 
when we test two models and we include more than one different variable in the full model, we 
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can't know which of those variables are significant. In consequence, it’s highly recommended to 
focus on a single variable at the same time when testing mixed models. 
Illustrative example to give some intuition for LMM 
In this section we are going to give some practical intuition about linear mixed models through 
an example applied to the GAO data. However, all the results obtained here won’t be used later 
on. The aim of this section is just giving a clear idea of what linear mixed models are. The 
example presented here has been carried out using a package called “lme4” in R. 
Suppose we want to build a model where the response variable is a certain level of a protein (in 
this example: "Sclerostin"), and our covariates are 'Age' and 'Sex'. However, we know that our 
individuals are clustered in families, which might be affecting the independence of observations, 
since each family could have a slightly different "baseline" for this trait[27]. That is, we expect 
from each family to have a different average value for the trait in question. To be precise, we are 
referring now to the intercept term of the model, which will be different for each family if we have 
a look at the by-family coefficients after computing the model. In addition, the "overall" intercept 
term given by R is the mean of these by-family intercepts. 
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First, we have plotted a boxplot of the Sclerostin level against different families: 

 
Figure 4.1. Boxplots of Sclerostin levels per family 
 As we can see above in figure 4.1, as it was expected there are obvious differences between 
families for this protein level. Thus, it seems an unbeatable occasion to fit a linear mixed model. 
The notation for LMM with random intercepts in R is (1|"Clustering_variable"), where the 1 
indicates that the model only has to considerate different intercepts for each cluster. So in this 
case the formula for the mixed model in R will be something similar to this: Sclerostin ~ Age + 
Sex + (1|FAM) (actually we applied an inverse normal transformation to the response variable, 
though it will be explained and justified later on). Once we had the model fit in R, let's have a 
look at the table of coefficients by-family: 
FAM (Intercept)                 Age Sex 
gao10 0,24014312 0,007654035 -0,4008496 
gao11 0,26786011 0,007654035 -0,4008496 
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gao12 0,04526834 0,007654035 -0,4008496 
gao13 0,13284431 0,007654035 -0,4008496 
gao14 1,34367063 0,007654035 -0,4008496 
gao15 0,64053023 0,007654035 -0,4008496 
gao16 -0,80328248 0,007654035 -0,4008496 
gao17 1,20360548 0,007654035 -0,4008496 
gao18 0,40835251 0,007654035 -0,4008496 
gao19 0,21483031 0,007654035 -0,4008496 
gao20 0,03335406 0,007654035 -0,4008496 
Table 4.5. Coefficients of the linear mixed models calculated clustering by families and using a 
different intercept in each one 
However, the most interesting and powerful idea of LMM is yet to come. So far, we have 
assumed that the way that mixed models have to account for the differences between clusters is 
to fit a different intercept for each cluster. Actually, this is partially true because mixed models 
also can fit different coefficients for fixed effects. They are called "random slopes", and it has 
been demonstrated that they significantly reduce type I errors when they can be applied (not 
always makes sense to fit them)[27]. 
In our present example, we can guess that Age might be different for different families. Some of 
them will have either older or younger individuals than others, and therefore incorporating a 
random slope for Age doesn't seem a bad idea. In R notation, we would write it as: Sclerostin ~ 
Age + Sex +(1+ Age|FAM). 
Before to have a look at the new coefficients by-family for intercepts and slopes, let's see if age 
differences between families could be significant: 
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Fig. 4.2. Boxplots of age stratified by family 
In fact, we can see in the figure above that our assumption was correct and that makes sense to 
add a random slope for Age to the linear mixed model. Now it is the turn of coefficients, let's 
have a look on them. 
FAM (Intercept) Age Sex 
gao10 -0,00778901 0,014111344 -0,4090415 
gao11 0,35933799 0,005749535 -0,4090415 
gao12 0,10181807 0,006819606 -0,4090415 
gao13 -0,05711655 0,011517653 -0,4090415 
gao14 1,58249182 0,001773113 -0,4090415 
gao15 0,81552514 0,003503418 -0,4090415 
gao16 -0,95951546 0,011588629 -0,4090415 
gao17 1,38137812 0,004192465 -0,4090415 
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gao18 0,43926883 0,007060266 -0,4090415 
gao19 0,30787256 0,006178744 -0,4090415 
gao20 0,04119108 0,007894150 -0,4090415 
Table 4.6. Coefficients of the linear mixed models calculated clustering by families and using a 
different intercept and random slope for Age in each one 
Note that despite the coefficients for age vary, they are actually quite the same and always 
positive. This is because there is still consistency in how Age affects the response[27]. 

4.2.3. Polygenic models 
4.2.3.1. The kinship matrix 
Before we explain the specific mixed models that we are going to use in this study to carry out 
the association we need to introduce a new concept: the kinship matrix.  In fact, this matrix is 
going to be the main key of this project, since we will use it almost for everything. Thus, 
polygenic models won’t be understood if we don’t define the kinship matrix previously. 
The kinship matrix is actually a matrix of similarity between individuals. The coefficients of this 
matrix are known as kinship coefficients (Φij) and can be defined as follows: is the probability 
that a random gene from subject i is identical with a gene at the same locus from subject j[33]. In 
fact, this matrix is accounting for the proportion of the genome shared by individuals, or what is 
the same: the degree of relatedness. 
Algorithm 
First of all, there are some conditions that our pedigree has to satisfy[33]: 
-Any person should have either both or neither of their parents in the pedigree 
-The members in the pedigree have to be numbered in such a way that every parent has a lower 
number than his or her children 
The kinship coefficients between any two individuals in the pedigree are computed in a 
symmetric matrix from left top downwards recursively. Thus, there is only one coefficient that we 
need to know: the parent-offspring coefficient, which is equal to 1/4. From this datum we can 
trivially obtain another useful coefficient: the one for siblings, which is also equal to 1/4. The 
recursive instructions are[33]: 
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-For ߔ௜,௜: 
if i is a founder: 
௜,௜ߔ ൌ 1/2, 
else: 
௜,௜ߔ ൌ 1/2 ൅ ሺ1/2ሻ ∗  .௞,௟, where k and l are parents of iߔ
-For ߔ௜,௝, (i>j): 
if i is a founder: 
௜,௝ߔ ൌ 0, 
else: 
௜,௝ߔ ൌ ሺ1/2ሻ ∗ ௝,௞ߔ ൅ ሺ1/2ሻ ∗  .௝,௟, where k and l are parents of iߔ
Implementation 
When we compute both polygenic and association model through solarius, SOLAR itself 
estimates the double Kinship matrix based on the identifier fields that have to be present in the 
tables of phenotypes passed to R. These fields required by SOLAR [34] are: ID, SEX, FAM, FA 
and MO, as well as MZTWIN. Where FAM contains family information, FA father’s ID of the 
subject, MO mother’s ID of the subject and MZTWIN the ID of the monozygotic twin (only in case 
the subject has a monozygotic twin, obviously).  
Actually, there is a gap between the available phenotypic data and the number of IDs. In fact, 
these six fields contain information of 576 individuals whereas we only have phenotypic data of 
367 subjects. This difference is due to the presence of “ficticial” individuals that are necessary to 
complete the familiar structure and make SOLAR compute correctly the kinship matrix. These 
"ficticial" individuals either exist or have existed in real life (some of them may be dead), though 
they have never been part of the study. Before I set off this project and as I said in the 
introduction there were already people working on this project, and this completion of the familiar 
structure was one of their contributions.  
Finally, we can also estimate the double Kinship matrix through the function "solarKinship2", and 
obtain two interesting figures using “plotKinship2”. In fact, in the results section the reader can 
found the global kinship matrix for the eleven families and a histogram accounting for the kinship 
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coefficients frequencies.  The code used to obtain these figures, as well as the code used in the 
illustrative example explained right after this section can be found in the appendix section A.3.1. 
Illustrative example 
Finally, in order to have a better idea of how the algorithm to calculate kinship coefficients works 
we are going to present an example using the pedigree from the 11th family, which is the 
smallest one and therefore it doesn’t need so many recursive operations. However, before 
calculating any coefficient manually we have plotted the genealogical tree and the “double” 
kinship matrix (two times the matrix of kinship coefficients), to give an idea of the structure of the 
pedigree. 

 
Fig. 4.3. On the left genealogical tree of the 11th family. On the right, the kinship matrix sorted 
from the eldest individuals to the youngest ones.  
The kinship coefficient that we decided to calculate is the one below: 
ଶ଴ଷ଴଼,ଶ଴ଵ଴ଷߔ ൌ? 
Individuals 20213 and 20212 are both parents of 20308, so 20308 is the "i"" individual due to 
20308 > 20103. Thus, the j individual here is 20103. 
ଶ଴ଷ଴଼,ଶ଴ଵ଴ଷߔ ൌ ሺ1/2ሻ ∗ ଶ଴ଵ଴ଷ,ଶ଴ଶଵଷߔ ൅ ሺ1/2ሻ ∗  ଶ଴ଵ଴ଷ,ଶ଴ଶଵଶߔ
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The individual 20213 has neither mother nor father in the pedigree, so there is no relation 
between 20103 and 20213 
ଶ଴ଵ଴ଷ,ଶ଴ଶଵଷߔ ൌ 0 
 
ଶ଴ଵ଴ଷ,ଶ଴ଶଵଶߔ ൌ ሺ1/2ሻ ∗ ଶ଴ଵ଴ଷ,ଶ଴ଵ଴ସߔ ൅ ሺ1/2ሻ ∗  ଶ଴ଵ଴ଷ,ଶ଴ଵ଴଺ߔ
 
Individuals 20103 and 20104 are siblings, so the coefficient is equal to 1/4. 
ଶ଴ଵ଴ଷ,ଶ଴ଵ଴ସߔ ൌ 1/4 
 
Individuals 20103 and 20106 are both founders uncorrelated so they are actually unrelated.  
ଶ଴ଵ଴ଷ,ଶ଴ଵ଴଺ߔ ൌ 0 
 
If we substitute the values we have found so far into the first formula: 
ଶ଴ଷ଴଼,ଶ଴ଵ଴ଷߔ ൌ ሺ1/2ሻ ∗ 0 ൅ ሺ1/2ሻ ∗ ሺሺ1/2ሻ ∗ ሺ1/4ሻ ൅ ሺ1/2ሻ ∗ 0ሻ 
We obtain that the kinship coefficient is: 
ଶ଴ଷ଴଼,ଶ଴ଵ଴ଷߔ ൌ 1/16 
And finally the double kinship coefficient is equal to 1/8 (=0.125). 
We have checked if this value corresponds with the computed coefficient by SOLAR and in fact 
both values are the same. 
4.2.3.2. Linear mixed models into genetics' context 
Fitting and understanding polygenic models is the last step before starting the association study. 
In the previous sections we have introduced general linear mixed models, but we haven’t 
specified which random and fixed effects should be considered in our study. In fact, although a 



 
Genetic Association Study in Osteoporosis                                                             55 

                                                                                                                                                     

polygenic model is a mixed one, there are some differences between them. In matrix form we 
can write it as[30]: 

ݕ ൌ ߚ ݔ ܺ ൅ ݃ ൅ ܿ ൅  ሺ1ሻ    ߝ
Where β corresponds to fixed effects and the other three terms account for random effects: g for 
the additive genetic effect, c for the "household effect" and ε for the residuals. In our particular 
case, we don't have information for the household effect, which implies that our model will have 
only two random effects. In the one hand, we have the additive genetic effect that we haven't 
defined yet. This term gives structure to the random part of the model through individual 
relationships, also known as "kinship". Instead of clustering by families as we did in our first 
example when we presented mixed models, now we are giving to the model the full familiar 
structure, using the kinship matrix presented in section 4.2.3.1. In fact, the covariance matrix ܩ 
(defined in the previous section) for this random effect g can be written as ܸܽݎሺ݃ሻ ൌ ௚ଶߪ ∗  ,ܣ
where ܣ ൌ  Thus, this term accounts for the "proportion" of the .(two times the kinship matrix) ܭ2
genome that indviduals share between them. In consequence we can expect that those 
individuals who are closer in genetic terms present similar levels for the trait under study, which 
avoids a violation of independence between observations. 
In the other hand, we have the residual random effect ε whose variance can be expressed 
exactly as we explained in the previous section: ܸܽݎሺߝሻ ൌ ௘ଶߪ ∗  Hence, the multivriate normal .ܫ
distribution for trait ݕ finally is: 

,ߚ ݔ ൫ܺ  ~  ݕ ௚ଶߪ ∗ ܣ ൅ ௘ଶߪ ∗  ൯  ሺ2ሻܫ
. 
Implementation of polygenic models 
Polygenic models in SOLAR aren’t fitted exactly as LMM in R. In this section we have been 
insisting on the kinship matrix and its importance to calculate matrix G. Conversely, in the 
introduction of LMM we have just passed the formula to R, and we didn’t need any matrices to 
estimate matrix G a priori. That is because SOLAR and the package lme4 use different 
prototypes for matrices G and Z.  
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In the one hand, the package lme4 in R computes G as ߪଶ ∗  as the ߪ in this case we denote) ܫ
variance of a generic random effect) and Z is “free”. The meaning of “free” in this case is that 
matrix Z has no defined dimension or structure a priori. Therefore, matrix Z is calculated 
following the formula passed to R and the clustering data given (for instance the “FAM” field). 
On the other hand, SOLAR uses a prototype for matrix Z, setting it equal to the identity matrix I, 
and allows a much more complicated structure for matrix G using the kinship matrix: ܩ ൌ ௚ଶߪ ∗ 2 ∗
 So, in the particular case of the polygenic model in SOLAR, we can write the total .[35] ܭ
variance ݕ as: 

ሻݕሺݎܸܽ ൌ ܩ ൅ ܴ ൌ ௚ଶߪ ∗ 2 ∗ ܭ ൅ ௘ଶߪ ∗  .ሺ3ሻ ܫ

4.2.3.3. Utility of Polygenic models 
So far, we have given an outline of what are polygenic models and their main differences against 
general mixed models, though we have commented nothing about the possibilities they have 
and their usefulness. As we will see in section 4.2.4, when we explain associations models, 
polygenic models are basically their basis. Therefore, we will use them to prepare the land for 
the main purpose of this study, which is genetic association. Concretely, we will use them to 
choose the suitable covariates and estimate the heritability for each trait. In order to perform 
these tasks, two new and crucial concepts have to be explained, which are: the inverse normal 
transformation and heritability. Although the likelihood ratio test (LRT) it's also crucial, it has 
been already explained when we talked about the mathematical basis of LMM. 
The inverse normal transformation 
When we fit any model, we have to pay special attention to the distribution of the response 
variable. Extreme values or a clear absence of normality may lead to fit the wrong model, which 
will give us wrong results as well, converting our study into nonsense. However, historically 
outliers have always been a controverted and recurrent problem, and therefore so many 
techniques and procedures have been described and purposed in scientific literature so far to 
deal with them. However, for this particular study we have decided to use an "inverse normal 
transformation" due to their advantages and easy implementation [36]. 
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• The first main advantage that we can mention is that we don't have to worry about which 
distribution has the trait before transforming it: for sure its final distribution will be a normal 
one. This is especially useful in clinical and biological studies, where sometimes the 
distribution of some traits is far from being normally. 

• In second place, the standard deviation of the final distribution is known (equal to 1) and it 
is not considerably low, which prevents from calculus errors when fitting models. 
 

• We don't have to worry about outliers. Since what is kept is the rank of our data, it is almost 
impossible to have very extreme values in the final distribution. The logarithmic 
transformation also reduces differences between outliers and normal points but sometimes 
the standard deviation of the transformed distribution is too low, which leads to calculus 
errors. 

• Another advantage consequence of the last one is that the Kurtosis obtained when fitting a 
model is always very low. If there are not extreme values, obviously the shape of the 
normal distribution will be as an usual one, with a value for "tailedness" within normal 
range. 

Finally, the formula used in this case to carry out the transformation is the following one: 
 

௜ܻ௧ ൌ ௜ݎଵሺሺିߔ െ ܿሻ/ሺܰ െ 2 ∗ ܿ ൅ 1ሻሻ   ሺ1ሻ 
Where: 
 .ଵ: Inverse probit functionିߔ
 .௜: Rank for the ith observationݎ
N: Total number of observations which are not missings. 
c: A parameter to modify slightly the normal curve. Whereas in literature the common value for it 
is 3/8, we set it to 0. 
There is only one handicap to be considered in using this transformation: it reduces a bit the 
statistical power of the study.  
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In order to test that the inverse normal transformation calculated by SOLAR is the as the one we 
have presented here, we have implemented the code in R, which can be found in the appendix 
A section A.3.2. 
Heritability 
Heritability is a statistic that estimates how much variation in a phenotypic trait in a population is 
due to genetic variation among individuals in that population[37]. The concept of heritability 
applies only to traits that differ between individuals, because in case that the trait is the same 
from across all individuals, it might be inherited, but it is not heritable. Nevertheless, as higher is 
the percentage of heritability for a certain trait, as higher is the interest to study that trait from the 
genetics’ perspective. In mathematical terms, the heritability defined as the percentage of 
phenotypic variance due to the additive genetic effect: 

݄ଶ ൌ ܣሺݎܸܽ
 ሺܲሻ   ሺ2ሻݎܸܽ

Where Var(A) is the variance due to the additive genetic effect and Var(P) is the overall 
phenotypic variance.  
4.2.3.4. Polygenic models in GAO 
The procedure that we followed to fit polygenic models has been slightly different for each group 
of traits. In fact, we have used different covariates to fit a polygenic model for proteins, clinical 
phenotypes or affected phenotypes. In addition, the algorithm used by SOLAR to estimate 
parameters when traits are binary (as affected phenotypes) isn't exactly the same either. 
Nevertheless, all models obtained in this section have been fitted using the package "solarius" in 
R, that is an interface more user-friendly to run genetic analysis in SOLAR. Concretely in this 
section we basically use a single function, which is "solarPolygenic". An important detail about 
this function is that the p-values reported for covariates can be directly interpreted, because 
SOLAR automatically performs a Likelihood Ratio Test for each one of them. Furthermore, we 
take advantage from the fact that we are working in R whereby we can organize and deal with 
the data in a very flexible way.  
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All the polygenic models presented in this results’ section have been used as “null” models in the 
further association analysis. 
 
Polygenic models for bone metabolism markers 
Methods 
First of all, we should have a look at the covariates considered for this particular case. As we 
can see in the table 3.3, the possible covariates available in the table of bone metabolism 
makers are the following ones: Age, Sex, MenopAge, Alcohol, Smoking, SolarExp, PosDrug, 
NegDrug, IPAQ and Calcium. However, before using them to fit our models we should check the 
number of missing values for each one, since we can only consider those individuals who have 
information for all the covariates under consideration. Looking at the table 3.3 again we can 
rapidly conclude that covariates MenopAge and IPAQ contain an excessive number of missings 
and that they have to be discarded. In fact, using the data from 60 individuals to infer the 
parameters of our model instead of 367 may change the resultant model so much. Although the 
case for IPAQ is not that exaggerated 258 individuals in front of 367 is also a very significant 
difference. Once we have discarded both two problematic covariates, in order to find the suitable 
covariates for these traits and estimate their heritabilities, we have split the analysis in two steps. 
The first step has consisted in testing all the covariates considered jointly with a quadratic 
element for Age (Age2). Afterwards, we fitted a second model with those covariates that were 
significant in the first analysis. Nevertheless, in case that "Age" was significant and its quadratic 
element wasn't in the first attempt, we considered it again in the second try due to the fact that 
using a few more individuals may change the resultant model and covariates significance. Also, 
in case that "Age2" happened to be significant and "Age" didn't, we directly remove the covariate.  
In the other hand, it could seem that we are insisting very hard on using a quadratic element for 
Age. In fact we are, because the effect of age, as many other things in biology, rarely can be 
explained with a straight line. Finally, since all traits in this section are quantitative, we have 
applied the inverse normal transformation to all of them in order to deal with possible outliers 
and non-normal distributions. The summary table containing the models for each trait is the one 
below: 
Implementation 
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In order to follow the methods presented above we have used a script to fit the polygenic models 
that can be found in the appendix section 3.3. 
Considering that all the traits are quantitative in this section, SOLAR works as usual, using the 
algorithms commented in section 4.2.2 to optimize the likelihood cost function and estimate the 
parameters. 
At last but not least, apart from the script used to obtain a first approach of the models, we have 
dealt manually with some the models of some traits when we saw something strange in them. 
Concretely, for the Adiponectin model, in the first step we had a bunch of variables that seemed 
to be significant. However, when we fit the supposed final model using them, the sample size 
increased (the covariates remaining had less missings) and in consequence the covariate Age 
happened to be non-significant. The problem was that the covariate Age2 was apparently 
significant. Therefore, we removed them both. But it doesn't end here, when we did that, one 
covariate from the two remaining started to be non-significant. So finally, we ended fitting a 
model with just one covariate, that was sex and very significant. 
Polygenic models for clinical phenotypes 
Methods 
To fit the models for clinical phenotypes, instead of considering a bunch of covariates as we did 
in the case of proteins we have just used three of them: Age, Age^2 and Sex. The main reasons 
for choosing only these three variables have been the following ones: 
 - First, there were so many traits; therefore we would have needed a lot of time to fit a very 
accurate model for each trait. Despite accuracy it's important, in many occasions using 
covariates which are not Age, Age^2 and Sex barely increases the proportion of variance 
explained. Apart from this fact, if we look at the models fitted for proteins, just three models out 
of twelve use a covariate which is not among Age, Age^2 and Sex. Thus, we can save a lot of 
time fitting more basic models which at the same time explain a reasonable amount of variance. 
- Secondly, these three covariates don't have heritability which avoids interfering with the 
resultant model. For instance, when we use covariates as Body Mass Index (BMI) we have to be 
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very careful, because they have heritability and the estimation of random effects of the models 
may be affected leading to an inconsistent model. 
 - Finally, these variables are totally uncorrelated and can't be confounded between them. In 
fact, there are some covariates that can be confounded, resulting in a model sometimes difficult 
to interpret, as well as poorly fitted. 
Implementation 
The script used in this case (Annex A.3.3.) is similar to that one used to fit polygenic models for 
the bone metabolism markers. In this case, traits are still quantitative and therefore SOLAR 
works as usual too, optimizing the likelihood functions to estimate the parameters of the models 
through the common algorithms. 
Polygenic models for affected phenotypes 
Methods 
As we did in last case, we fitted models for the Affected traits using just three covariates, which 
are Age, Age2 and Sex. The main reason for that is the same we argued for clinical phenotypes. 
These three covariates can't be confounded between them, they don't present heritability and 
almost always they explain a considerable proportion of variance. In addition, these covariates 
present no missings, meaning that we have the whole sample available. Furthermore, in this 
section we are dealing with binary traits, so an abuse of controverted covariates is not 
recommended. 
Implementation 
The algorithm to estimate the parameters is not exactly the same used for quantitative traits. In 
fact, this algorithm has to perform a few more steps rather than the common algorithm does, 
demanding a huge amount of power computation and needing almost 2.5 more time to estimate 
the parameters. This is not a problem when we fit a small set of models, but it becomes 
problematic when we need to fit 650.000 models (for instance when we associate). About these 
new steps included in the algorithm, they don't convert the procedure into a logistic regression 
because the optimization is still carried out through the Maximum Likelihood method, though the 
probit function is used to transform quantitative predictions of the trait into binary ones. 
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The script used to fit the polygenic models for affected traits can be found in the appendix A.3.3. 

4.2.4. Association 
When we introduced polygenic models, the first thing we commented was that they were the 
basis of association models. In fact, the random and fixed effects considered to fit the polygenic 
model are also present in the association model. The only difference between both models is 
that in the association model we add a new fixed effect, which is the SNP object of study. 
Actually, there are hundreds of thousands of SNPs which are under study in a GWAS, though 
we add just one SNP at the same time, at least in this project. The PhD* of Dr. Helena Brunel 
precisely focus on a new kind of association models, where several SNPs are included in a 
single association model, though this new method is absolutely out of the scope of this study. In 
matrix form we can write the association model as[30]: 

ݕ ൌ ߚ ݔ ܺ ൅ ݌݊ݏ ݔ ௦௡௣ߚ ൅ ݑ ݔ ܼ ൅  ߝ
where the element ߚ௦௡௣ ݌݊ݏ ݔ accounts for the fixed effect produced by the SNP in question. 
Now, let's move back for a while to last section of the quality control, when we explained how to 
transform each genotype into an additive model. In fact, the second part of the product of the 
new fixed effect noted as "snp" is exactly what we calculated when we transformed each 
genotype from letters to numbers. However, the reader might be wondering how we can extract 
from this model the precious p-value to prove SNP significance, which is the main aim of this 
study. The answer for this question is again Likelihood Ratio Test (LRT). Essentially, what we 
are doing when we run an association is fitting two models and comparing them. In the one 
hand, we fit the "null" model, which actually corresponds to a polygenic model with their fixed 
and random effects (for instance age and the additive genetic effect respectively). In the other 
hand, the "full" model, including a new fixed effect that is actually the SNP. It’s important to 
mention that in all association models we have applied the inverse normal transformation to the 
response variables. Once both models are fitted, we apply a Likelihood Ratio Test extracting a 
p-value for the SNP tested.  
Nevertheless, this p-value can't be interpreted as usual do to determine significance. 
In this case, the threshold for the p-values is set using Bonferroni's correction for multiple 
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testing[38]. The motivation for applying this correction is that as we increase the number of 
hypothesis being tested, we also increase the probability of a rare event, and therefore the 
likelihood of incorrectly rejecting null hypothesis (type I error). The principle of multiple testing 
corrections is to set a threshold for the pvalues to avoid Type I error inflation. In this study we 
use a particular kind of Bonferroni's correction, that despite it's not the most widely used, it 
makes much sense in this scenario. Typically, Bonferroni's correction sets a new threshold for p-
values as follows: ߙ ൌ  ଴/݉, where m is the number of hypothesis being tested. For ourߙ
particular case, ݉ is equal to the total amount of independent SNPs found in genetics, instead of 
our number of SNPs being tested. In scientific literature*, ݉ has been approached to at least 1M 
of independent SNPs, which sets the threshold for p-values to 5e-08 (considering ߙ଴ ൌ 0.05). 
Implementation 
Now that we have defined how the association algorithm works, it seems a good idea to 
summarize in the table below the different standard associations that we carried out in this 
study. 
Phenotypes Covariates 

(Y/N) 
Covariates considered 

Bone metabolism 
markers (12) 

No - 

Bone metabolism 
markers (12) 

Yes Age, Age^2, Sex, Alcohol, Smoking, SolarExp, 
PosDrug, NegDrug, Calcium 

Densitometric traits 
(23+8) 

Yes Age, Age^2, Sex 

Affected (4) Yes Age, Age^2, Sex 
Table 4.7. Summary of the different associations carried out and the covariates considered in 
each case to fit the models  
It has to be remarked that covariates mentioned in the third column from the table above weren’t 
always used to fit the "null" association model. Precisely, the aim of fitting polygenic models was 
choosing those significant covariates among a group of candidate variables. 
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The scripts in R used to carry out the different association studies shown in the table 4.7 from 
above can be found in the appendix. Concretely, we can distinguish two main scripts: the first 
one used to apply the inverse normal transformation to the phenotypes and obtain transformed 
tables; the second one the script to carry out the association itself and export the results to files. 
They can be found in sections A.3.2. and A.3.4. respectively. 
As a general note for the association scripts, just mention that they have been performed using 
"parallel computation" in a server with RAM 128GB (64 CPU x 2,3GB) which has increased 
considerably calculation speed as well as reduced the proportion of RAM (even though we had a 
large amount of it, we should take care of this aspect, considering that actually we are sharing 
the server with the people from the research's department). 

4.2.5. PCAs 
4.2.5.1. Overview 
In this section we are not going to explain in detail what Principal Component Analysis are 
assuming that the reader is familiar with them. Nevertheless, the code written in R that can be 
found in the appendix is very clear and the steps followed to carry out the analysis can be easily 
understood. 
Before we continue, it is important to emphasize that all Principal Component Analysis in this 
study have been performed using only the densitometric traits (23+8) and two interesting 
covariates: WBTotArea and WBTotBMC, due to their high degree of correlation. So, we should 
explain why it makes sense to perform a PCA in this study and how are we going to use the 
results obtained. Actually, the association study that we explained previously has low power due 
to sample size. In fact, 367 individuals is a quite small sample size, considering that nowadays 
there are research groups performing GWAS with sample sizes of thousands of individuals. 
Although our sample is clustered in families, which can increase power in case there is a rare 
variant associated with osteoporosis with high presence within a family, the fact is that the 
average power is low. Thus, considering the low power and that the clinical phenotypes are 
highly correlated, an association with the resultant eigenvectors obtained in the PCA seemed to 
be a proper method to enhance power[39]. 
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4.2.5.2. PCA of the clinical phenotypes 
In the first PCA that has been performed in this study we haven't considered the familiar 
structure. We have just centered and scaled the matrix of phenotypes, in order to obtain a clear 
covariance matrix and avoid measuring the variance of the means of the different traits. 
Afterwards, we have obtained the eigenvalues and eigenvectors of the covariance matrix, where 
the eigenvalues account for the proportion of variance explained by principal components and 
the eigenvectors are the directions of principal components. The main drawback of this PCA is 
that whereas we are trying to find a "model" of the data that accounts for its internal structure, 
we might be overlooking or confounding the variance due to the degree of relatedness among 
individuals. Because of this fact, in the next section we will explain the correction by degree of 
relatedness that we have carried out, and why we decided to associate with the resultant 
principal components of the latter PCA. 
Finally, we should consider that the matrix of phenotypes contains 33 features, since the 4 
binary affected traits have been removed as well as the 3 continuous affected traits. The 
decision to exclude these phenotypes has its basis on the fact that their nature is so different 
from the other traits, especially the binary ones, which might lead to an incorrect model of the 
data. 
4.2.5.3. Correction of the PCA by the kinship matrix 
As we have mentioned several times in the last two sections, we have "hacked"" the PCA 
correcting by the degree of relatedness among individuals. To perform this correction we have 
used the kinship matrix one more time. Nevertheless, due to a dimensional problem we have 
had to slightly modify the kinship matrix. For a better understanding of this problem we need to 
know that the formula applied to obtain the "corrected" covariance matrix is: 

ߑ ൌ ൬ 1
ܰ െ 1൰ ∗  ሺ1ሻ      ܺ ݔଵିܥ ݔ்ܺ

Where: 
N: number of observations 
X: matrix of features, preferably centered and scaled 
C: kinship matrix 
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So the dimensional problem resides in the fact that the kinship matrix a priori was 608x608 and 
the matrix of phenotypes was 576x33. Concretely, when SOLAR computes the kinship matrix, it 
could consider more than the 576 IDs present in the matrix of phenotypes. That is, because 
there can be individuals whose mother or father are not among the IDs of the table of 
phenotypes. In this case, SOLAR includes these individuals in the kinship matrix, increasing its 
dimension and leading to the actual problem. In order to solve this problem, we have removed 
those columns and rows corresponding to those individuals who are not among the IDs of the 
table of phenotypes. Previously we have eliminated from the table of phenotypes those IDs 
presenting missings. 
The objective of carrying out the procedure commented so far is obtaining a better model of the 
internal structure of the data, more suitable to associate with the genotypes in order to enhance 
the overall power. Later on we will see if this proposal actually works, comparing both PCAs as 
well as applying this procedure to the GAIT (genetic association in idiopathic thrombophilia) 
data. 
Finally, just mention that this is not the only way that we could have followed in order to obtain a 
better internal model of the data. Another possibility would have been choosing a set of 
individuals unrelated from the different families, where the source of variance due to the familiar 
structure didn't exist. The problem of this alternative is that we would have ended with a very 
reduced set of individuals, as well as selecting them wouldn't have been easy at all, and quite 
ambiguous. 

4.2.5.4. Association with resultant Principal Components set of vectors 
After computing the corrected PCA, the last step is the association between the genotypes and 
the principal components. Whereas typically a principal component analysis is used to make a 
dimensionality reduction, which in our case would imply associating only with the principal 
components accounting for a high percentage of the variance, we are going to consider all of 
them in order to gain power. This power gain is primarily due to increased power to detect 
genetic variants with opposite effects on positively correlated traits and variants that are 
exclusively associated with a single trait[39].  Nevertheless, we should be careful because in 
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general the last principal components only account for noise, which leads to control the results 
by looking at the "loadings". The loadings are the weights that each feature has in each principal 
component, and generally are not easy to be interpreted. In this case we have just considered 
the loadings for the principal components where significant SNPs have been found, analyzing 
their absolute values. 
Finally, mention that in the association with Principal Components we have used the three main 
covariates of this study: Age, Age^2 and Sex. However, instead of using different covariates for 
each Principal Component, we have used all three of them. 
 

4.3. Main exploratory tools 
4.3.1. Manhattan plot 
This figure is probably the most famous and representative one in Genome Wide Association 
Studies. The logarithms base 10 of the p-values of a particular trait are plotted against their 
position in the genome. So it gives a first idea of where are the most significant SNPs and which 
places in the genome should be revised deeply. In order to split the SNPs into significant, 
suggestive and neither suggestive nor significant there are usually plotted two lines in the graph. 
These lines are plotted following Bonferroni theory which has been explained in section 5.3. The 
threshold for both significant and suggestive lines have been calculated considering that among 
all the SNPs known so far one million of them are independent, which means that they are not in 
linkage disequilibrium. For the significant line the type I error rate has been set to 0.05 and for 
the suggestive line it has been set to 0.1. However, in some Manhattan plots it appears an 
additional line which in this case is placed between the significant and the suggestive lines. This 
line corresponds to the threshold calculated following the classical Bonferroni expression, where 
the number of independent SNPs is not considered and the type I error rate is divided by the 
number of total SNPs tested in the study. 

4.3.2. Genomic inflation factor 
The genomic inflation factor is a parameter used to estimate how inflated the number of false 
positives is. Generally, a high inflation factor may be due to unknown familiar relationships, a 
poorly calibrated test statistic, systematic technical bias, or gross population stratification. 
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Nevertheless, none of these factors is present in our study, so an inflated distribution of p-values 
has to be due to other underlying effects. In fact, has been recently proved that in presence of 
polygenic inheritance (as we have in this association study) substantial genomic inflation is 
expected. Its magnitude depends on sample size, heritability, linkage disequilibrium and the 
number of causal variants[40]. The calculation of the inflation factor is performed comparing the 
median of the quantile chi-square with 1 degree of freedom transformation of the p-values 
against the median of a chi-square distribution with 1 degree of freedom.  
Finally, we should mention the thresholds chosen for the inflation factor. Actually, we have just 
followed the criteria usually used in scientific literature, which says that an inflation factor of 
1±0.1 is considered unacceptable and the results have to be discarded.  
The formula used by the function from the GenABEL package in R [41] to estimate the genomic 
inflation factor is the following one: 

݉݁݀݅ܽ݊൫ݍݏ݄݅ܿݍሺݎ݋ݐܿ݁ݒ݌, 1ሻ൯
ሺ0.5,1ሻݍݏ݄݅ܿݍ       ሺ1ሻ 
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Figure 4.4.Example:  Chi-square distribution of transformed p-values after applying a quintiles’ 
transformation. 

4.3.3. Q-Q plots 
Quantile - Quantile plots are actually highly related with the genomic inflation factor since they 
are another tool to visualize if the distribution of the data is correct or not. The distribution of p-
values itself has to follow a uniform distribution between 0 and 1, and it's exactly what the Q-Q 
plot shows. It plots a theoretical uniform distribution against the p-values obtained in the 
association study[42]. If the p-values are correct, they have to follow the straight line plotted of 
slope 1 and intercept 0. In case they are concentrated above this line, it means that they are 
inflated, and the analogous case if they are concentrated below the line.  

5. Results 
5.1. Quality control 
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5.1.1. Mendelian errors per individual 
 
From the individuals’ perspective, we are just going to present the results we have obtained, 
though we have decided not to exclude any individual since the results are not conclusive 
enough. 
Mendelian errors distribution per individual 
In order to analyse the distribution of Mendelian errors per individual we have plotted several 
figures that include: a boxplot, an histogram with all the data, a density histogram with two fitted 
density lines (those points considered outliers in the boxplot are now removed) and a frequency 
histogram with a normal curve of mean and standard deviation the same as the data (with 
outliers removed too). We plotted the last two histograms to show that errors seem to be 
normally distributed when outliers have been removed, which implies randomness. 
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Figure 5.1. Different plots showing the distribution of Mendelian errors in different scenarios. 
 
Mendelian errors outliers’ analysis per individual 
Here we present the results obtained after having analysed the most important outliers in detail. 

ID Errors 1 & 2 Errors 5 & 8 Errors 3 & 6 Errors 4,7,9 & 10 Total 
13301 889 2 70 85 1046 
13302 233 3 46 73 355 
13305 1654 1 116 92 1863 
13306 1 0 39 42 82 
Table 5.1 Analysis of the different types of mendelian errors of the most problematic individuals  
In the table above we have included both greatest outliers (positions 1 and 3), and their brothers 
(positions 2 and 4 respectively). Even though the first brother is also an outlier (355), it is still 
quite far from 1046. A peculiar observation is that the brother of the second outlier, who seems 
to have been well genotyped and whose number of Mendelian errors can easily be attributed to 
randomness, barely has errors of type 1 & 2, and the errors affecting just one of the parents, 
seem to be equally distributed. Although the following statement might seem very speculative, in 
the event that the offspring was not the child of both assumed parents, the most likely case is 
that the father was another person. Considering that, errors 1 and 2 have to be assumed as 
father's errors, which implies that as higher is the number of these errors as higher is the 
likelihood of a paternity problem. Nevertheless, we should keep in mind that the numbers in the 
table presented above are still very far away from being a significant proportion considering the 
total amount of SNPs genotyped per individual. So from the individual's point of view, no 
individuals are going to be discarded from the study. 
5.1.2. Overall filters 
Summary table of the filters applied  
In the table below we summarize the effects produced by each filter applied to the dataset.  
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Filter SNPs pruned SNPs remaining 
MAF 279.009 685.184 
Mendelian errors per SNP 3383 681.801 
Missingness test 14615 667.186 
HWE 2815 664.371 
Table 5.2. The different filters applied in the quality control and their effects on the dataset 
Table of SNPs per chromosome 
After performing the chromosome’s clustering, we obtained 110 files corresponding to 22 
autosomal chromosomes. The numbers of SNPs per chromosome are collected in the table 
below: 
Chromosome Num. of SNPs 
chr1 53750 
chr2 52541 
chr3 43154 
chr4 37227 
chr5 38933 
chr6 46295 
chr7 34965 
chr8 34107 
chr9 30404 
chr10 35351 
chr11 33917 
chr12 32490 
chr13 24777 
chr14 21324 
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chr15 19924 
chr16 21026 
chr17 18785 
chr18 19421 
chr19 14478 
chr20 16928 
chr21 9476 
chr22 9808 
Total 649081 
Table 5.3. Final distribution of SNPs per chromosome  
Note that there is a discrepancy between the final number of SNPs obtained after pruning, and 
the total amount of SNPs contained in the 22 autosomal chromosomes. That is because in the 
original file we had SNPs from the chromosomes of sex X and Y, as well as from the 
mitochondria.   

5.2. Kinship matrix 
In this section we present the global kinship matrix for the eleven families and a histogram 
accounting for the frequencies of the double kinship coefficients. The dimensions of the kinship 
matrix correspond with the number of individuals that have information of the 6 necessary 
identifier fields (576 subjects). Actually, the initial kinship matrix computed by default in SOLAR 
has greater dimensions, since there are individuals that just exist in the mother or father fields of 
other individuals and that SOLAR takes in consideration. Therefore, the initial dimensions for the 
kinship matrix were 608x608. 
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Figure 5.2. Global kinship matrix 
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Figure 5.3. Histogram showing the distribution of the kinship coefficients of the whole set of 
individuals 
5.3. Polygenic models 
For each different group of traits we report a summary table of: 
1. The significant covariates included in the model of each trait  
2. The number of individuals considered in each model 
3. The heritability of each trait and its significance 
4. Either the proportion of variance explained or the adjusted R-squared (for quantitative 

and binary traits respectively)  
All the polygenic models summarized in the tables of this section will be used in the association 
analysis as the “null” models, in order to test SNPs significance.  
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5.3.1. Polygenic models for bone metabolism markers 
The first table of resultant polygenic models doesn’t present any remarkable surprise. The 
heritabilities are moderately high in general whereas the average proportion of variance 
explained is rather low (actually as it was expected).   
Trait Covariates N of 

individuals 
considered 

Heritability 
݄ଶ േ  ݀ݐݏ

P-value 
heritability 

Proportion 
of variance 

HydVitD PosDrug 366 0,428 ± 
0,0776 

8,951e-12 0,0314 

Sclerostin Age, Age2, 
Sex 

367 0,517 ± 
0,0882 

2,912e-11 0,0683 

SerCrossLaps Age, Age2 366 0,299 ± 
0,0744 

2,00e-7 0,360 

OstaseBAP Age, Age2, 
Sex 

367 0,353 ± 
0,0703 

2,343e-12 0,377 

IGF1 Age, 
Alcohol, 
Calcium 

359 0,593 ± 
0,0843 

1,218e-15 0,251 

Adiponectin Sex 367 0,384 ± 
0,0953 

6,00e-7 0,170 

Leptin Age, Sex 367 0,230 ± 
0,0931 

0,00132 0,401 

Osteocalcin Age, Age2 367 0,258 ± 
0,0880 

6,240e-5 0,314 

Osteoprotegerin Age, Age2, 
Sex 

367 0.544 ± 
0,0773 

2,362e-18 0,406 

Osteopontin Age, Age2, 367 0,282 ± 1,080e-5 0,285 
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Sex 0,0885 
Parathyroid Age, Age2, 

PosDrug 
366 0,296 ± 

0,0790 
6,00e-7 0,0801 

TNFalpha Age, Age2, 
Sex 

367 0,712 ± 
0,0642 

2,954e-38 0,191 

Table 5.4. Resultant polygenic models obtained for bone metabolism markers  

5.3.2. Polygenic models for densitometric traits 
All the results obtained for these traits can be directly interpreted. In general, the heritabilities 
reported are quite high and most of them strongly significant. 
Trait Covariates N of individuals 

considered 
Heritability 
݄ଶ േ  ݀ݐݏ

P-value 
heritability 

AxisLen Age, Age^2, 
Sex 

364 0,383 ± 0,0794 7,016e-11 

FemShACT Age, Age^2, 
Sex 

363 0,376 ± 0,0918 7e-07 

FemShBR Age, Age^2, 
Sex 

363 0,535 ± 0,0895 3,229e-12 

FemShCSA Age, Age^2, 
Sex 

363 0,227 ± 0,0907 2,056e-03 

FemShCSMI Age, Age^2, 
Sex 

363 0,344 ± 0,0902 1,7e-06 

FemShSMod Age, Age^2, 
Sex 

363 0,282 ± 0,0907 1,017e-04 

HipNeckT Age, Age^2 363 0,486 ± 0,0992 1e-07 
HipNeckZ  359 0,686 ± 0,0864 5,887e-15 
HipTotBMD Sex 364 0,238 ± 0,0868 1,126e-03 
HipTotT Sex 363 0,260 ± 0,0864 3,217e-04 
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HipTotZ Age, Age^2 359 0,626 ± 0,0898 6,137e-14 
InterBMD Age, Age^2, 

Sex 
364 0,403 ± 0,0976 1,4e-06 

IntTrACT Age, Age^2, 
Sex 

363 0,490 ± 0,0907 1,655e-09 

IntTrBR Age, Sex 363 0,609 ± 0,0833 2,665e-14 
IntTrCSA Age, Age^2, 

Sex 
363 0,369 ± 0,0925 2,8e-06 

IntTrCSMI Age, Age^2, 
Sex 

363 0,310 ± 0,0905 2,03e-05 

IntTrSMod Age, Age^2, 
Sex 

363 0,345 ± 0,0952 1,27e-05 

NeckBMD Age, Age^2, 
Sex 

364 0,473 ± 0,0976 1e-07 

NNeckACT Age, Age^2, 
Sex 

363 0,451 ± 0,0988 3e-07 

NNeckBR Age, Sex 363 0,619 ± 0,0904 3,437e-12 
NNeckCSA Age, Age^2, 

Sex 
363 0,282 ± 0,0917 2,816e-04 

NNeckCSMI Age, Age^2, 
Sex 

363 0,292 ± 0,0888 1,204e-04 

NNeckSMod Age, Age^2, 
Sex 

363 0,243 ± 0,0874 1,009e-03 

ShaftNeck Age, Sex 363 0,509 ± 0,1090 1,51e-09 
SpineT Age, Age^2 364 0,451 ± 0,0991 1e-07 
SpineZ  358 0,680 ± 0,0858 5,205e-15 
TotBMD Age, Age^2, 365 0,465 ± 0,0968 4,591e-08 
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Sex 
TrochBMD Sex 364 0,360 ± 0,0952 1,34e-05 
WBTotBMD Age, Age^2, 

Sex 
365 0,295 ± 0,0875 6,92e-05 

WhBodyT Age, Age^2 363 0,313 ± 0,0921 3,96e-05 
WhBodyZ  343 0,761 ± 0,0855 1,56e-17 
Table 5.5. Resultant polygenic models obtained for densitometric traits  
 
5.3.3. Polygenic models for affected traits 
Now, if we look at the column of heritabilities we can note that the standard deviation has 
increased alarmingly for all traits. That is because the statistical power is significantly lower than 
in quantitative traits. In fact, our sample size is too small to determine accurately the heritability 
for each trait.  The variability for binary traits is substantially lower, and therefore the differences 
among individuals aren't evident. Thus, we need a greater sample to infer the parameters 
accurately (as always, but in this case it is even more necessary). 
Trait Covariates N of individuals 

considered 
Heritability 
݄ଶ േ  ݀ݐݏ

P-value 
heritability 

R-
squared 

Affected1 Age, Sex 362 0,494 ± 0,273 0,0264 0,249 
Affected2 Age 362 0,469 ± 0,389 0,103 0,123 
Affected3 Age, Age2 363 0,779 ± 0,196 5,10e-6 0,289 
Affected4 Age 362 0,568 ± 0,221 0,0042 0,178 
Table 5.6. Resultant polygenic models obtained for affected traits  
 
Furthermore, as we mentioned in the overview, now instead of "Proportion of variance", we have 
"R-squared". In fact, the feature to compute the proportion of variance is not available in SOLAR 
yet. In consequence, we should be careful with the R-squared since it has to be properly 
interpreted. Although the R-squared can be an indicator of how well fitted is our model, it always 
increases as more covariates we include in the model. Thus, if we obtain a high value for the R-
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squared but we are using a large bunch of covariates the indicator might lead to wrong 
conclusions. 

 
5.4. PCA comparison 
5.4.1. Non-corrected vs corrected PCA in GAIT 
Despite we are not going to work with the results of these PCAs obtained for the GAIT data, they 
are the perfect example to illustrate the difference between a common PCA and a "corrected" 
one by using the kinship matrix. In order to note the differences between them we have plotted a 
scoreplot of the two first principal components. In addition, we have given a different color to 
each family, for the purpose of visualizing how the individuals of each family are distributed. In 
fact, in the common PCA we can note that families are slightly clustered, because this source of 
non-random variance hasn't been modeled. As we can see in the first graph, families tend to be 
distributed along diagonal lines, instead of the second graph, where no patterns can be found. 
That is, applying the correction we are modelling accurately other internal sources of variance 
and eliminating non-randomness due to familiy clustering. 
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Figure 5.4. PCA non-corrected for the GAIT data. Each color corresponds to a different family. 
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Figure 5.5. PCA corrected by the kinship matrix for the GAIT data. Each color corresponds to a 
different family. 

5.4.2. Heat map for the densitometric traits 
In order to visualize graphically the correlations of the variables included in the PCA made for 
the GAO data we have plotted a heat map of the traits. As we can see, there are traits which are 
strongly correlated (as FemShBR and NNeckBR), and we would state that the average 
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correlation is moderately high, which is a positive thing for the PCA (more variance explained by 
the first principal components and therefore more power). 

 
Figure 5.6. Heat map showing the correlations existing among the densitometric traits included 
in the PCA. 

5.4.3. Non-corrected vs corrected PCA in GAO 
In this case the differences between the corrected PCA and the common one are not as evident 
as they were for the GAIT data. However, there are still differences between both PCAs, so the 
effect of correcting by the kinship matrix is also significant. 
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Figure 5.7. PCA non-corrected for the GAO data. Each color corresponds to a different family 
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Figure 5.8. PCA corrected by the kinship matrix for the GAO data. Each color corresponds to a 
different family. 
 
5.5. Results from associations 
5.5.1. Direct associations 
In this section we are going to present the results obtained in direct associations with the 
phenotypes. We are going to show mainly those associations where we have found significant 
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SNPs, nevertheless in some cases we haven't found anything significant, which leads to present 
the most interesting suggestive results. Typically the tables presented in this section contain the 
SNP with the lowest pvalue (significant) and a bunch of non-significant (generally suggestive) 
SNPs that are in high linkage disequilibrium with the significant SNP. Furthermore, we have 
attached a table with genomic inflation factors for the pvalues of the traits of interest. The 
manhattan and QQ plots used to find and verify significant SNPs are collected in the annex 
section A.4. 
Bone metabolism markers (no covariates) 
Leptin 
For this protein one SNP happened to be between the genome wide association line and the 
common Bonferroni line. 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP 

rs71496
2 

22 6,5027
e-08 

snp LOC1
05377
195 

C/T C T 0,499 29397
845 

rs37884
12 

22 3,352e
-06 

snp AP1B1 C/T T C 0,432 29354
196 

rs57529
07 

22 3,3252
e-06 

snp LOC1
05377
195 

C/T T C 0,441 29393
031 

rs23015
87 

22 4,8910
e-06 

snp AP1B1 C/T T C 0,149 29341
833 

Table 5.7. Top SNPs’ table of chromosome 22 for Leptin’s association  
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OstaseBAP 
Apart from the Leptin protein, we haven't found more significant SNPs associated with the 
proteins traits. Actually, these are probably the second most interesting results for these traits, 
despite they are suggestive. 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP 

rs265918
7 

5 2,272
2e-07 

snp  C/T C T 0,480 173857929 

rs359470 5 1,236
9e-06 

snp  C/T C T 0,452 173873683 

rs359467 5 8,647
4e-06 

snp CPEB
4 

A/G A G 0,448
1 

173889725 

Table 5.8. Top SNPs’ table of chromosome 5 for OstaseBAP’s association  
Genomic control 
Looking at the inflation factor of both traits, as well as the Q-Q plots, all is within normal 
parameters, validating the results presented before. 
Traits Inflation factor 
HydVitD 1,01872 
Sclerostin 1,046627 
SerCrossLaps 1,042657 
OstaseBAP 1,042691 
IGF1 1,014283 
Adiponectin 1,054512 
Leptin 1,010495 
Osteocalcin 1,040014 
Osteoprotegerin 1,041537 
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Osteopontin 1,034599 
Parathyroid 1,025272 
TNFalpha 1,029288 
Table 5.9. Genomic inflation factors of the pvalues obtained in the association without covariates 
for bone metabolism markers   

Bone metabolism markers (covariates) 
SerCrossLaps 
We haven’t found any significant SNP in the analysis with covariates. However, the most 
interesting suggestive SNPs that we found are presented here.  
Marker Chr p-value Class Gene Alleles Major Minor MAF BP 
 rs3217 4 7,6407e-07 snp ZNF5

18B 
C/T C T 0,218

3 
1044302
5 

rs442241 4 7,6407e-07 snp ZNF5
18B 

G/T T G 0,218
7 

1044175
9 

 
rs174672
73 

4 1,8701e-06 snp CLNK C/T T C 0,203
5 

1049880
6 

Table 5.10. Top SNPs’ table of chromosome 4 for SerCrossLaps association 
Genomic control 
And the inflation factor of the p-values obtained for this trait is: 
Traits Inflation 

factor 
SerCrossLaps 1,04562 
Table 5.11. Genomic inflation factor of SerCrossLaps trait 
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Densitometric traits 
FemShBR 
We have found a clear association for this trait. An indicator which shows that the association in 
this case is quite strong is the fact that there is a bunch of non-significant SNPs in linkage 
disequilibrium with the main SNP that are above the suggestive line. It should be commented as 
well that the main SNP found here also has a very small p-value for the trait FemShACT, which 
is a trait very similar to this one. In fact, the SNP rs11060592 happened to be significant almost 
twice, which validates its significance (unintentionally we have almost replicated the result 
obtained here). Considering that we have found a strong association for this trait, we have 
plotted the Manhattan plot, apart from attaching the top SNPs table. 
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Figure 5.9. Manhattan plot of FemShBR trait 
 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP 

rs11060
592 

12 1,5756
e-08 

snp TMEM
132D 

C/T T C 0,348 12986
4271 
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rs10847
960 

12 1,5989
e-06 

snp TMEM
132D 

A/G G A 0,188 12984
2878 

rs10847
961 

12 4,4347
e-06 

snp TMEM
132D 

A/G A G 0,356 12986
9803 

rs10847
963 

12 1,3000
e-05 

snp TMEM
132D 

C/T T C 0,201 12987
6987 

Table 5.12. Top SNPs’ table of chromosome 12 for FemShBR’s association  
 
NNeckBR 
For this trait we have found a single SNP with a p-value almost equal to the genome wide 
threshold but above the common Bonferroni line. However, this SNP will be difficult to interpret, 
since it is isolated and there are no suggestive SNPs in high linkage disequilibrium with it. 
Marker Chr p-value Class Gene Alleles Major Minor MAF BP 
rs11770631 7 5,0906e-

08 
snp  C/T T C 0,187 155864785 

rs12701863 7 7,8729e-
07 

snp LINC01
449 

C/T T C 0,439 41101669 

rs12701864 7 7,8729e-
07 

snp LINC01
449 

A/G A G 0,370 41103345 

Table 5.13. Top SNPs’ table of chromosome 7 for NNeckBR’s association  
Genomic control 
The inflation factors are very near to 1 for all traits and the qq-plots have a nice aspect. 
Phenotype Inflation factor 
FemShBR 1,022833 
FemShACT 1,0308015 
NNeckBR 1,0180046 
Table 5.14. Genomic inflation factors of the pvalues obtained in the association with covariates 
for densitometric traits   
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Phenotypes affected 
Affected3 
For the phenotypes "affected" no sihgnificant associations have been found, probably because 
our sample size is too reduced considering that they are binary traits. Nevertheless, as we 
pointed out at first, we should also report those suggestive SNPs that could be of interest. In this 
case, we have considered the snp rs3827306 of the Affected3 trait as the most interesting one, 
because the results found for the Affected2 phenotype are unacceptable due to their high 
inflation factor. 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP 

rs38273
06 

22 3,7243
e-07 

snp LL22N
C03-
63E9.
3 

A/G G A 0,1611 22561
382 

Table 5.15. Top SNPs’ table of chromosome 22 for Affectetd3’s association  
Genomic control 
As we can see, the results obtained from the association with the Affected2 trait are inflated and 
can't be considered. In consequence, we have to look for other suggestive interesting SNPs in 
the remaining associations. 
Phenotype Inflation 

factor 
Affected1 1,040944 
Affected2 1,147128 
Affected3 1,017010 
Affected4 1,040732 
Table 5.16. Genomic inflation factors of the pvalues obtained in the association with covariates 
for Affected traits   
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5.5.2. Association with Principal Components 
The results obtained in the otherwise known as “indirect association study” are presented in this 
section, nevertheless the most important thing that should be considered are the loadings of the 
Principal Components presenting significant SNPs, in order to interpret if we are facing noise or 
a signal actually. Apart from this, the tables shown in this section are the same that we reported 
for the direct associations results. The Manhattan plots and Q-Q plots used to explore these 
results are collected in the annex A.4. 
PC9 
The first principal component under analysis, PC9 seems to have reasonable loadings, where 
traits very related with bone structure rather than bone density play an important role. In fact, 
NNecKCSMI, FemShCSMI, NNecrBR, IntTrACT, FemShMod, NNeckSMod, FemShCSA... are 
all of them measures of bone structure, for instance: bulking ratio, section, moment of inertia, 
binding strength, and so on. Furthermore, the third greatest weight is NNeckBR, which is one of 
the traits where we had found significant SNPs when we associated with clinical phenotypes. 
Trait Weights PC9 
NNeckCSMI 0,338217849 
FemShCSMI 0,326602419 
NNeckBR 0,305341243 
IntTrACT 0,291263757 
FemShSMod 0,289369048 
WhBodyZ 0,285243416 
NNeckSMod 0,260604975 
FemShCSA 0,225532524 
HipTotT 0,224035789 
NNeckCSA 0,190987503 
InterBMD 0,186517061 
IntTrBR 0,176040543 
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HipTotZ 0,162602002 
FemShBR 0,137584142 
SpineT 0,132662124 
ShaftNeck 0,131395514 
AxisLen 0,124794969 
WBTotBMD 0,113769458 
NNeckACT 0,105832037 
NeckBMD 0,096597680 
HipTotBMD 0,088816483 
TrochBMD 0,078289102 
WBTotBMC 0,075928590 
SpineZ 0,062852295 
IntTrCSA 0,053255783 
TotBMD 0,052968488 
HipNeckZ 0,048648064 
WhBodyT 0,043527953 
IntTrCSMI 0,032938807 
WBTotArea 0,017912065 
IntTrSMod 0,010259006 
FemShACT 0,007758922 
HipNeckT 0,007567443 
Table 5.17. Sorted absolute values of loadings of the 9th Principal Component 
In fact, is for this component that we have found the strongest association of the whole study. 
Because of this, we have decided to plot the Manhattan plot as well, apart from attaching the 
table with the top associated SNPs. 
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Figure 5.10. Manhattan plot of the 9th Principal Component 
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Marker Chr p-
value 

Class Gene Alleles Major Minor MAF BP 

rs1713
9820 

5 2,2099
e-08 

snp SEMA
6A 

C/T C T 0,3003 11645
2715 

rs2660
2 

5 9,6752
e-08 

snp SEMA
6A 

A/G A G 0,3768 11645
2407 

rs2303
752 

5 5,7414
e-07 

snp SEMA
6A 

C/T C T 0,1721 11644
9815 

rs1713
9903 

5 1,4740
e-06 

snp SEMA
6A 

C/T C T 0,2432 11648
5518 

Table 5.18. Top SNPs’ table of chromosome 5 for PC9’s association  
 
PC12 
The loadings for this principal component aren't as clear as they were for component 9, 
nevertheless it seems that in this case Bone Mineral Density has an important role. In fact, T and 
Z measurements, which are scores of bone mineral density as well as Troch BMD hold 5 out of 
the first 8 greatest loadings. The snps that happen to be significant in this association might be 
more related with bone mineral density rather than the structure of bones. 
Trait Weights PC12 
HipNeckT 0,357463138 
NNeckBR 0,352246345 
AxisLen 0,347644031 
HipNeckZ 0,283301438 
HipTotT 0,270856207 
NNeckSMod 0,251393899 
TrochBMD 0,244458980 
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WhBodyT 0,227444453 
WBTotArea 0,222087318 
WBTotBMD 0,216416796 
NNeckACT 0,189471695 
IntTrBR 0,181925479 
SpineZ 0,156657468 
FemShACT 0,153828255 
NNeckCSA 0,151474785 
TotBMD 0,135789497 
SpineT 0,118593544 
HipTotZ 0,087830685 
NeckBMD 0,078114807 
NNeckCSMI 0,069784590 
FemShCSA 0,063335570 
HipTotBMD 0,055295171 
WhBodyZ 0,038988223 
IntTrSMod 0,032903758 
FemShBR 0,030837568 
FemShSMod 0,017813748 
IntTrACT 0,013005477 
IntTrCSMI 0,010855905 
IntTrCSA 0,010032353 
InterBMD 0,009861414 
FemShCSMI 0,005398266 
ShaftNeck 0,003722286 
WBTotBMC 0,003399836 
Table 5.19. Sorted absolute values of loadings of the 12th Principal Component 
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And the top SNPs table: 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP 

rs1177
0919 

7 9,0854
e-08 

snp MAGI2 A/G A G 0,0645 78283
558 

rs6993
32 

7 5,5483
e-06 

snp MAGI2 G/T T G 0,3017 78246
092 

rs1852
008 

7 3,2000
e-05 

snp MAGI2 A/C A C 0,1813 78237
393 

Table 5.20. Top SNPs’ table of chromosome 7 for PC12’s association 

PC29 
This is one of the last principal components and therefore it is a strong candidate to be capturing 
noise rather than a real signal. In fact, the loadings for this component are the most confusing 
ones, because two kinds of traits are strongly mixed. The greatest loadings in this case are bone 
mineral density indicators as well as structural traits, which implies that maybe the SNP found in 
the association with this component has a more overall effect in Osteoporosis. 
Trait Weights PC29 
FemShSMod 0,500219420 
FemShCSMI 0,448357811 
WBTotBMC 0,294602145 
TotBMD 0,250753808 
WhBodyT 0,248423402 
IntTrCSA 0,241072832 
IntTrACT 0,211662790 
SpineT 0,198085336 
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WBTotArea 0,188652553 
HipTotT 0,172509185 
FemShCSA 0,158568019 
IntTrSMod 0,157609897 
WBTotBMD 0,146318578 
HipTotBMD 0,110560657 
IntTrCSMI 0,106694295 
NNeckCSMI 0,103441389 
NNeckSMod 0,083551416 
HipNeckT 0,069289935 
NeckBMD 0,061930883 
NNeckACT 0,056618995 
NNeckCSA 0,037459990 
IntTrBR 0,037212340 
FemShACT 0,027802841 
TrochBMD 0,019111740 
InterBMD 0,017027120 
SpineZ 0,016847032 
AxisLen 0,016348641 
HipTotZ 0,014071812 
HipNeckZ 0,012454937 
WhBodyZ 0,011937685 
ShaftNeck 0,006088069 
FemShBR 0,005893771 
NNeckBR 0,003221282 
Table 5.21. Sorted absolute values of ladings of the 29th Principal Component 
The table of SNPs presenting the lowest pvalues: 
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Marker Chr p-value Class Gene Alleles Major Minor MAF BP 
rs4271
181 

1 8,3389
e-08 

snp  A/G G A 0,3776 22607
8327 

Table 5.22. Top SNPs’ table of chromosome 1 for PC29’s association 

Genomic Control 
The genomic control of these three associations is within the correct values, which validates the 
results. Although the inflation factor for the PC12 is a bit higher than usual (considering that the 
limit is on 1.1), is still far from the undesired 1.1. The Q-Q plots also have normal aspect, with 
the pvalues either concentrated over the straight line or near to it. 
Phenotype Inflation 

factor 
PC9 1,033591 
PC12 1,0748962 
PC29 1,0357043 
Table 5.23. Genomic inflation factors of the pvalues obtained in the association with covariates 
for the resultant Principal Components   

6. Discussion 
In this section we are going to discuss the results obtained in the association analysis from the 
biological point of view. Nevertheless, in some cases the results found despite their 
mathematical consistency don’t make sense in biologic terms.   
The markers that we are going to discuss are collected in the following table: 
Marker Chr p-

value 
Class Gene Alleles Major Minor MAF BP Trait 

rs7149 22 6,502 snp LOC1 C/T C T 0,49 29397 Leptin 
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62 7e-08 05377
195 

90 845 

rs1106
0592 

12 1,575
6e-08 

snp TME
M132
D 

C/T T C 0,34
78 

12986
4271 

FemS
hBR 

rs1177
0631 

7 5,090
6e-08 

snp NA C/T T C 0,18
69 

15586
4785 

NNec
kBR 

rs1713
9820 

5 2,209
9e-08 

snp SEMA
6A 

C/T C T 0,30
03 

11645
2715 

PC9 

rs1177
0919 

7 9,085
4e-08 

snp MAGI
2 

A/G A G 0,06
45 

78283
558 

PC12 

rs4271
181 

1 8,338
9e-08 

snp NA A/G G A 0,37
76 

22607
8327 

PC29 

Table 6.1. The most significant SNPs found in the whole set of analysis 
In order to find biological sense to the most significant SNPs found, we have first looked at the 
regions where the SNPs are placed, paying special attention at those ones which are placed in a 
coding region. In that case, we comment the function of the genes, we look for possible related 
pathways and we suggest a possible relation with Osteoporosis. However, if the SNP is not 
placed in a coding gene we comment the type of region where it is placed, and the role that this 
region may be performing (for instance regulation of gene’s expression). 
In the first place we have the snp rs17139820 (chromosome 5), which is placed within the gene 
SEMA6A. The transmembrane semaphorin SEMA6A is a protein-coding gene, expressed in 
development of neural tissue, concretely of the thalamocortical projection [43]. This gene is 
especially present during the embryo development, thus only small amounts of SEMA6A 
transcripts were detected in human adult tissues. This gene belongs to the axon guidance 
pathway and seems to have no relation with Osteoporosis. This is a typical case of mathematical 
consistency but biological inconsistency.  
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Figure 6.1. Axon guidance pathway of the SEMA6A. Image extracted from KEGG pathways 
(http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=hsa04360&keyword=SEMA6A) 
In the second place, we have the snp rs11770919 (chromosome 7), which is also placed within a 
coding gene, concretely the MAGI2. The proteins encoded by this gene, known as membrane-
associated guanylate kinase are essential for development and maintenance of synapses, 
including receptor endocytosis and postendocytotic trafficking. MAGI2 dependent endocytosis is 
also essential for ciliogenesis [44]. Cilioginesis is defined as the building of the cell's antenna 
(primary cilia) or extracellular fluid mediation mechanism (motile cilium). Cilia are important 
organelles of cells that are involved in numerous activities, as cell signaling, processing 
developmental signals, and directing the flow of fluids such as mucus over and around cells. 
Therefore, a dysfunction of the cilia may lead to problems of cell-adhesion and cell-junction 
formation. If we move to our context (Osteoporosis) we can suggest that bone related cells may 
be affected by these problems. That is, the bone cells may not be able to get stuck to the bone 
as they usually do. In fact, if we look at the related pathway of the MAGI2, we can see that the 
gene is near to the calcium signaling pathway. This one has been the most conclusive biological 
result that we have found in this study, 
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Figure 6.2. Part of the Rap1 signaling pathway. Image extracted from KEGG pathways 
(http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=hsa04015&keyword=MAGI2) 
 
In fact the rs11770631 (chromosome 7) and rs427181 (chromosome 1) are placed in intergenic 
regions, far away from any gene, thus no function could have been associated to them so far. 
The rs714962 (chromosome 22) is placed within LOC105377195, which is a RNA gene[45], that 
may have some regulatory effect, though it is unlikely to be related with Osteoporosis 
considering the zone of the genome where it is placed. Finally, despite the rs11060592 
(chromosome 12) is placed within a coding gene, concretely the TMEM132D, no relation with 
Osteoporosis has been found. Actually, this gene is related with the conformation of the cerebral 
cortex, primarily in the white matter formation[46].  
At last, just comment that we have compared our results with the actual State of the art in 
Osteoporosis through the GWAS catalog and there were no coincidences. 



          
104                                           Genetic Association Study in Osteoporosis 
 

 

 

7. Economic, environmental and social impact 
7.1. Economic analysis 
In this section we have made an approach of the overall cost of the project, making some 
assumptions about the prices of the elements involved. Also, we have considered that projected 
lasted 15 weeks. 

- The student work lasted for 7h, five days a week valued at 8€ per hour (if the student 
would have done an internship in an enterprise, the legal agreement rules that the 
maximum compensation could be 8€/h). 

- The supervisor work involved 2h per week due to project guidance and orientation. 
Every hour is worth 40€. 

- The personal computer was acquired for 750 € and have a 5 years lifespan 
- The computational cluster cost is 10.000€ and will be replaced after 5 years from its 

acquisition. 
- Office furniture was purchased at 150€ and will last for 15 years 
- Office material was bought for 40€ and will be consumed for 2 years. 
- The average energy consumption is estimated by 350W. It includes a barebone, one 

screen, and the proportional part of office lights, cluster processing units and cluster 
cooling system consumption. We assumed that 1kWh costs 0.13907 € after taxes. 
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Concept Lifespan 
[y] 

Acquisition 
cost [€] 

Fixed cost 
[€] 

Usage [h] Variable 
cost[€/h] 

Total 

Student work    525 8 4200 

Supervisor 
work 

   30 40 1200 

Personal 
computer 

5 750 43,3   43.3 

Cluster 5 10000 576,92   576.92 

Office 
furniture 

15 300 5.77   5.77 

Office 
material 

2 30 4,33   4.33 

Energy 
consumption 

   525 0,048674 25,55 

TOTAL      6055,87 
Table 7.1. Economic analysis estimation 

7.2. Environmental impact 
Considering that this project has been entirely developed using computer systems, its 
environmental impact is minimal. So for this case we only have to consider the CO2 emissions 
due to the production of our energy consumption (400W for 7h per day, 5 days per week and 15 
weeks in total).  
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Contaminant Energy 
Consumption 

Specific amounts  Total amounts 

Carbon dioxide 183,75 kWh 0,302kg/kWh 55,49 kg 

Radioactive waste 183,75 kWh 0,56mg/kWh 102,9 mg 
Table 7.2. Pollution analysis estimation. Specific amounts have been extracted from 
www.gencat.cat. 

7.3. Social impact 
This project does not directly create a negative impact on any sector or group. On the contrary, 
the results obtained in this project may help in the future to improve life’s quality of people 
suffering from Osteoporosis. Nevertheless, since this is a biomedical project with real data from 
different patients, we have to properly preserve their anonymity. Our procedures included safe 
programming environments as well as encrypted ssh connections in order to protect the data. 
This work meets the requirements for biomedical investigation in Spain.  

8. Conclusions 
8.1. Objectives reviewing 
In general terms, we can state that we have fulfilled the objectives presented in section 1.3. In 
fact, the methods applied to perform the Genome-Wide Association Study have succeeded in 
finding possible markers related with Osteoporosis. Despite we haven’t imputed the genotyped 
data, losing statistical power, we have overcome this problem. Actually, imputation is a highly 
technical procedure that has no interest itself, though it requires time and expertise to be 
performed correctly. In our case, we had neither of these things, and even though it was a bit 
daring to try an association with no imputation done, at last it has been worth the risk.  
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However, the path hasn’t been clear at all, and the most conclusive results have arrived when 
we embraced the Principal Component Analsys technique. Thus, this procedure has increased 
the statistical power of the analysis, which was quite limited considering our sample size. 
Furthermore, the results obtained apart from being consistent from the mathematical point of 
view, may make biological sense. Although they haven’t been overwhelming, they have 
presented credentials for a suggestive relation with Osteoporosis.  
In conclusion, all the procedures that we have followed and proposed in this project have led to 
interesting results that need further investigation and interpretation. 

8.2. Further work 
In this section we suggest possible ways to dig deeply in this study that may lead to new and 
exciting results. 

 The first and more obvious one is associating with imputed data 
 Association with more depurated polygenic models, using new covariates in order to 

capture the maximum amount of variance. 
 Association with the Principal Components obtained in a PCA where the densitometric 

traits and possible covariates were different from those chosen in this project. 
 Association with the Principal Components obtained in a PCA where only were 

considered the bone metabolism markers 
 Association with the Principal Components obtained in a mixed PCA (using bone 

metabolism markers and densitometric traits) 
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10. Appendix 
A.1. Materials 
A.1.1. File encoding of the genotypes 
Map files 
On the one hand, we have map files, which contain all information about SNPs. In these text 
files, the number of rows is equal to the amount of SNPs we have, and the number of columns is 
always equal to 4. These four fields give us information about which chromosome the SNP 
belongs to, the SNP identifier, the genetic distance (in morgans) and the base-pair position (bp 
units). Although the meaning of last two fields may seem a bit complicated, we are only 
interested in the last one, which just indicates the physical position of the SNP. Conversely, 
genetic distance is a quite more complicated concept, which accounts for genetic linkage and 
the probability of recombination for a certain loci. Even though, this field is out of the scope of 
this study, since it is widely used in linkage studies but rarely used in association studies. Finally, 
mention that fields are separated from each other using the tab space ‘\t’. This detail will be 
useful if we want to either import these files or make our own scripts to extract information. 
Here there is an example of a map file: 
1 exm-IND1-200449980  204.38440  202183358 
1 exm-IND1-85310248   109.70290  85537661 
10 exm-IND10-102817747  121.18120  102827757 
10 exm-IND10-18329639  42.83914  18289633 
10 exm-IND10-27476467  51.52821  27436462 
10 exm-IND10-27727540  51.78007  27687534 
Ped files 
On the other hand, we have ped files which contain the genotypes of the SNPs present in the 
map file. In this case, the number of rows is equal to the number of individuals, and the number 
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of columns is the sum of 6 mandatory columns and two times the number of SNPs, because all 
markers are biallelic (i.e. there are two copies for each genotype, one inherited from mother and 
the other one inherited from father). They can be any character, but in our case the genotypes 
are filled using A,C,G,T and I,D for insertions/deletions. The first five out of six mandatory 
columns bring information about the individual, and if wanted, the 6th column can bring 
information of a trait or phenotype. So the first six fields are the following ones: 
Family ID 
Individual ID 
Paternal ID (=0 if he is a founder) Maternal ID (=0 if she is a founder) Sex (1=male, 
2=female, other=unknown) 
Phenotype 
However, before ending this section with an example we should stop for a while to 
define the meaning of the characters used to fill the genotypes. The A,C,G,T are the four 
nucleotide bases of a DNA strand: adenine, cytosine, guanine and thymine as we 
already explained when we defined singular nucleotide polymorphisms. Finally, a very 
little portion of the global ped file of the GAO project looks as follows (notice that the 
rows have been chosen randomly): 
7 10210 0 0 1 0 A A 
101 11406 0  0  1 0 A G 
159 12302 0 0 1 0 A G 
206  13318 0 0 2 0 G G 
257  15320 0 0 2 0 G G 
312  18309 0  0 2 0 A G 
318  18316 0 0 2 0 A G 
321  18403 0 0 1 0 G G 
345 19208 0 0 1 0 G G 
359  19315 0 0 1 0 A A 
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As we can see, very important information of the pedigree is missing. To PLINK these 
individuals are unrelated: a priori we know nothing about the family, father and mother of 
each individual. Nevertheless we are not going to carry out the association using plink, 
we will need this information to perform the Quality Control. In section 4 is described 
how we obtained the appropriate *.ped file to perform a successful QC. 

A.1.2. Biology’s information of the bone metabolism 
markers 
 
25-hydroxy vitamin D:  the most stable and plentiful metabolite of vitamin D in human 
serum;  
Sclerostin: a glycoprotein secreted almost exclusively by osteocytes that decreases 
osteoblastogenesis and bone formation 
Osteocalcin:  important bone turnover markers for formation  
Serum beta-crosslaps: important bone turnover marker for resorption,  
Osteoprotegerin: a key inhibitor of bone resorption;  
Bone-specific alkaline phosphatase (OstaseBAP): an enzyme that plays an essential 
role in the regulation of tissue mineralization 
Leptin and insulin-like growth factor 1 (IGF1):  two markers with opposite effects on 
the stimulation of skeletal muscle, cartilage and bone growth, among other tissues;  
Adiponectin: a protein that potentially influences directly bone cell function;  
Osteopontin: a bone turnover marker that plays a key role in anchoring osteoclasts to 
the mineral matrix of bones 
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Parathyroid hormone: a polypeptide that increases the concentration of Ca2+ in the 
blood; and (xii)  
Tumor necrosis factor alpha (TNFalpha): a protein capable of regulating bone 
turnover, formation and resorption. 
A.1.3. Scripts to obtain the table of clinical phenotypes 
In this section there is the code used to extract the table of densitometric traits from a 
SQL database. 
R script 
library(RMySQL) con <- dbConnect(MySQL(), group = 'yamenaGao') phenotype <- dbReadTable(con, 'phenotype') f <- as.factor(phenotype$ph_trait) noms_fenotips <- levels(f) n <- 0 for(fenotipo in noms_fenotips){   tabla_fenotipo <- read.table(file= paste(fenotipo, '.csv', sep=''),header= TRUE, sep= ' ')   if(n==0){     attach(tabla_fenotipo)     daf <- data.frame(ID)     daf <- cbind(daf, tabla_fenotipo[[fenotipo]])     detach(tabla_fenotipo)   }   else{     attach(tabla_fenotipo)     daf <-cbind(daf, tabla_fenotipo[[fenotipo]])   }   n <- n+1 } names(daf)[2:length(daf)] <- noms_fenotips write.csv(daf, file='tabla_final_fenos.csv')  Python script 
 def fenotipos():     f= open('fenotipos_completo.csv','r')     f.readline()     lista_diccionarios=[] 
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    d={}     n=0     for linea in f:         linea=linea.strip()         lista_linea=linea.split(',')         if lista_linea[1] not in d.values():             if n>0:                 lista_diccionarios= lista_diccionarios+[d]             d={}             d['ID']=lista_linea[1]         d[lista_linea[2]]=lista_linea[3]         n=n+1     f.close()     return lista_diccionarios  def lista_todos_fenotipos(lista_diccionarios):     lista_fenos=[]     for individuo in lista_diccionarios:         for clave in individuo:             if clave not in lista_fenos:                 lista_fenos.append(clave)     return lista_fenos  def fenos_csv(lista_diccionarios):     lista_claves=lista_todos_fenotipos(lista_diccionarios)     lista_claves_reducidas=lista_claves[1:4]     for fenotipo in lista_claves:         f=open(fenotipo.replace('"','')+'.csv','w')         n=0         print fenotipo         for individuo in lista_diccionarios:             print n 
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A.2. Data pre-processing 
 
A.2.1. Data set-up for the Quality Control 
 
Modification of *.ped file 
In this annex we give a more detailed explanation of how the python script used in the data set-
up works.  
First of all, the script extracts the IDs from the initial .ped file and save them in a list. After that, 
the script looks into one of the tables of phenotypes and extracts the first six columns of those 
individuals whose IDs are in the list obtained before. This information is saved in a list of lists, 
where each sublist corresponds to one individual. However, before the sublist is appended to the 
global one, the sex field for each individual is recoded. The reason for this change is that PLINK 
identifies males as 1 and females as 2; conversely, in the table of phenotypes the gender is 
coded as 'M' for males and 'F' for females. Likewise, the scrpit permutes the order of first two 
columns: ID and FAM, to put it as PLINK's required structure: FAM and ID. 
Finally, the script merges this accurate data of individuals with the genotypes in the initial *.ped 
file. 
Below, the 'raw' data extracted from the table of phenotypes. Notice that now we have 
information about the father and mother of each individual. 
['10202', 'gao10', '10101', '10102', 'F']  
['10205', 'gao10', '0', '0', 'M'] ['10206', 'gao10', '10101', '10102', 'F'] 
['10207', 'gao10', '10101', '10102', 'M'] ['10208', 'gao10', '0', '0', 'F']  
['10209', 'gao10', '0', '0', 'F'] ... 
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And the data ready to be merged with the genotypes: 
['gao10', '10202', '10101', '10102', '2']  
['gao10', '10205', '0', '0', '1'] ['gao10', '10206', '10101', '10102', '2'] 
['gao10', '10207', '10101', '10102', '1'] ['gao10', '10208', '0', '0', '2']  
['gao10', '10209', '0', '0', '2'] ... 
Finally, the aspect of the new *.ped file: 
FAM ID FA MO SEX PHENOTYPE Marker 1 Marker 2 
gao10 10202 10101 10102 2 0 A A G G 
gao10 10205 0 0 1 0 A G G G 
gao10 10206 10101 10102 2 0 A A G G 
gao10 10207 10101 10102 1 0 A G G G 
gao10 10208 0 0 2 0 G G A G 
gao10 10209 0 0 2 0 G G G G 
 
The code in python to carry out this procedure is the following one: 
def datos_ind():     g=open('/home/gabriel/tabla_fenos/gao.proteins.csv')     f=open('/home/gabriel/plink/Todas.ped','r')     IDs=[] # Extracting the IDs from the ped file     for linia in f:         linia=linia.strip()         lista=linia.split('\t')         IDs.append(lista[1]) # Due to the fact that the tables of phenotypes bring more accurate information about the pedigreee, we have extracted the first six columns # of the table of proteins for each individual whose ID was in the ped file. Afterwards, we organised each indvidual's information in the ap # propiate PLINK order, which has been already explained in section 3.3.  # Although this is not the only change we have done below. The gender information in the table of phenotypes is coded differently from PLINK 
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# standards, therefore we have recoded this field before appending individuals into the global list.      info_ped=[]     i=0     for linia in g:         linia=linia.strip()         lista=linia.split(',')         ind=[lista[1]]+[lista[0]]+lista[2:5]         if i>=1 and ind[1] in IDs:             if ind[4]=='M':                 ind[4]='1'             elif ind[4]=='F':                 ind[4]='2'             print ind             info_ped.append(ind)         i=i+1     g.close()     f.close() # Finally, we rewrite the ped file joining the data contained in the list of lists with the genotyped data present in the ped file.      f=open('/home/gabriel/plink/Todas.ped','r')     t=open('/home/gabriel/prueba/Todas2.ped','w')     for linia in f:         linia=linia.strip()         lista=linia.split('\t')         #v='F'         for i in range(len(info_ped)):             if info_ped[i][1]==lista[1]:                 #v='T'                 t.write('\t'.join(info_ped[i])+'\t'+'0'+'\t'+'\t'.join(lista[6:])+'\n')         if v=='F':             t.write('\t'.join(lista)+'\n')     f.close()     t.close() 
Bed files 
bash_bed <- 'plink --file /home/gabriel/plink/Todas --make-bed --out Todas2' system(bash_bed) 
 
A.2.2. Quality Control 
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Minor Allelle Frequency 
In this section of the annex we show the aspect of the files obtained in PLINK through 
the command –freq as well as the code used to carry out the analsysis. 
First, the *.frq file used to filter by MAF looks like this: 
CHR SNP A1 A2 MAF NCHROBS 
0 exm-rs10862691 0 G 0.000000 768 
0 exm-rs11136341 G A 0.454300 744 
0 exm-rs1799853 A G 0.151000 768 
0 exm-rs2015062 A G 0.362000 768 
0 exm-rs7164335 A G 0.342500 762 
0 exm-rs9380254 G C 0.033940 766 
0 exm2216283 G A 0.067890 766 
0 exm2216291 0 G 0.000000 768 
0 exm2216292 G A 0.005208 768 
0 exm2226201 A C 0.001302 768 
 
Once we have the *.frq file, we enter in R and we import the data. Afterwards, we apply 
a vectorized operation and we export the resulting SNPs to a text file. In the end, we use 
PLINK again to extract those SNPs in the text file from the pedigree data. The code in R 
and the command lines in PLINK can be found below: 
#First we generate a text file with all snps' frequency information bash_frq <- 'plink --bfile /home/gabriel/plink/Todas --freq --out /home/gabriel/plink/Todas_freq' system(bash_frq) 
         #Vectorized operation freq <- read.table('Todas_freq.frq', header=T) lowMAFsnps <- as.vector(freq$SNP[freq$MAF < 0.01]) write.table(lowMAFsnps, '/home/gabriel/plink/lowMAFsnps.txt', quote=F, col.names=F, row.names=F) 
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#Extract those snps having a MAF below 1% (thus are also excluded monoallelic snps) bash_filter <-'plink --bfile /home/gabriel/plink/Todas --exclude /home/gabriel/plink/lowMAFsnps.txt --make-bed --out /home/gabriel/plink/filt_maf' system(bash_filter) 
 
Mendelian errors 
In this section we present the structure of the files obtained in PLINK through the command –
mendel as well as the code used to carry out the analysis. 
The aspect of the 4 files generated in PLINK through the –mendel command is presented below: 
The *.mendel file: 
 FID Family ID 
 KID Child individual ID 
 CHR Chromosome 
 SNP SNP ID 
 CODE A numerical code indicating the type of error 
 ERROR Description of the actual error 
The *.lmendel file: 
 CHR Chromosome 
 SNP SNP ID 
 N Number of Mendel errors for this SNP 
The *.imendel file: 
 FID Family ID 
 IID Individual ID 
 N Number of errors this individual was implicated in 
The *.fmendel file: 
 FID Family ID 
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 PAT Paternal individual ID 
 MAT Maternal individual ID 
 CHLD Number of offspring in this (nuclear) family 
 N Number of Mendel errors for this (nuclear) family 
Conversion to the appropriate format (.*.csv) 
The python script written to perform this conversion is the following one: 
def convert_to_csv():     mendel=open('Todas2.mendel','r')     lmendel=open('Todas2.lmendel','r')     imendel=open('Todas2.imendel','r')     fmendel=open('Todas2.fmendel','r')     n_mendel=open('mendel.csv','w')     n_lmendel=open('lmendel.csv','w')     n_imendel=open('imendel.csv','w')     n_fmendel=open('fmendel.csv','w')     m=0     for linia in mendel:         linia=linia.strip()         lista=linia.split(' ')         lista=[x for x in lista if x!='']         if m==0:             n_mendel.write(','.join(lista[:-1])+'\n')         elif m >0:              n_mendel.write(','.join(lista[:-5])+'\n')         m+=1     l=0     for linia in lmendel:         linia=linia.strip()         lista=linia.split(' ')         lista=[x for x in lista if x!='']         if l==0:             n_lmendel.write(','.join(lista)+'\n')         elif l >0:              n_lmendel.write(','.join(lista)+'\n')         l+=1     i=0     for linia in imendel:         linia=linia.strip()         lista=linia.split(' ') 
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        lista=[x for x in lista if x!='']         if i==0:             n_imendel.write(','.join(lista)+'\n')         elif i >0:              n_imendel.write(','.join(lista)+'\n')         i+=1     f=0     for linia in fmendel:         linia=linia.strip()         lista=linia.split(' ')         lista=[x for x in lista if x!='']         if f==0:             n_fmendel.write(','.join(lista)+'\n')         elif f >0:              n_fmendel.write(','.join(lista)+'\n')         f+=1  
Analysis of Mendelian errors per SNP 
The code in R to carry out the analysis of Mendelian errors per SNP: 
df_lmendel <- read.csv('/home/gabriel/prueba/mendel/lmendel.csv') SNPs_pruned_mendel <- df_lmendel$SNP[df_lmendel$N  > 2] length(SNPs_pruned) write.table(SNPs_pruned_mendel, '/home/gabriel/plink/SNPs_pruned_mendel.txt', quote=F, col.names=F, row.names=F) bash_filter <-'plink --bfile /home/gabriel/plink/filt_maf --exclude /home/gabriel/plink/SNPs_pruned_mendel.txt --make-bed --out /home/gabriel/plink/filt_maf_mendel' system(bash_filter) 
 
The code in PLINK to replicate the analysis done in R: 
bash_mendel <- 'plink --bfile /home/gabriel/plink/filt_maf --me 1 0.01 --make-bed --out /home/gabriel/plink/filt_maf_mendel' system(bash_mendel)   
 
Analysis of Mendelian errors per individual 
The script in R used to obtain the multichart plot of Mendelian errors distribution per 
individual is the following one: 
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library(lattice) df_familia <- read.csv('/home/gabriel/prueba/mendel/fmendel.csv') df_individuos <- read.csv('/home/gabriel/prueba/mendel/imendel.csv') df_info_ped <- read.table('/home/gabriel/plink/info_ped.csv', header=T) analysis_mendel <- function(df_fam, df_ind, df_ped){   errors <- c()   for(i in 1:dim(df_fam)[1]){     num_child <- df_fam[i,4]     ids_offspring <- df_ped$ID[df_ped$FA==df_fam[i,2] & df_ped$MO==df_fam[i,3]]     errors <- append(errors, df_ind$N[df_ind$IID %in% ids_offspring][1:num_child])   }   err_sorted <- sort(errors)   par(mfrow=c(2,2)) 
     box <- boxplot(err_sorted, ylab='Mendel errors', col='pink', main='Boxplot of mendel errors') 
     h1 <- hist(errors, xlab='Mendel errors' ,col='gray', main='Frequency histogram of Mendel errors') 
   
     err_no_outliers <- errors[-which(errors %in% box$out)]   cuts <- quantile(err_no_outliers, seq(0,1,0.1))   h2 <- hist(err_no_outliers,xlab='Mendel errors', breaks=cuts, col='grey', main='Density histogram without outliers')   lines(density(err_no_outliers), col="blue", lwd=2)   lines(density(err_no_outliers, adjust=2), lty="dotted", col="darkgreen", lwd=2)   h3 <- hist(err_no_outliers,xlab='Mendel errors', breaks=round(sqrt(length(err_no_outliers))), col='grey', main='Histogram without outliers and a normal curve')   xfit<-seq(min(err_no_outliers),max(err_no_outliers),length=40)    yfit<-dnorm(xfit,mean=mean(err_no_outliers),sd=sd(err_no_outliers))    yfit <- yfit*diff(h3$mids[1:2])*length(err_no_outliers)    lines(xfit, yfit, col="blue", lwd=2)   return(list(tots_errors=err_sorted, no_outliers = err_no_outliers)) } 
 
And the function in python to perform the outliers’ analysis of Mendelian errors per individual is 
the following one: 
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def mendel(ID, tipo_errores):     f=open('/home/gabriel/prueba/mendel/Todas2.mendel','r')     l_errores=[]     n=0     for linia in f:         linia=linia.strip()         lista=linia.split(' ')         lista=[x for x in lista if x !='']         l_errores.append(lista)     j=0     for error in l_errores:         if error[1]==ID:             if error[4] in  tipo_errores:                 n=n+1         j+=1     return n 
 
Missingness 
The fields contained in the file *.lmiss are the following ones: 
SNP: SNP identifier 
CHR: Chromosome number 
N_MISS: Number of individuals missing this SNP  
N_GENO: Number of non-obligatory missing genotypes  
F_MISS: Proportion of sample missing for this SNP 
 
And the code used to apply the filter to the data in R: 
 
df_lmiss <- read.csv('/home/gabriel/prueba/lmiss.csv') SNPs_removed_miss <- df_lmiss$SNP[df_lmiss$N_MISS > 7] length(SNPs_removed) 
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write.table(SNPs_removed_miss, '/home/gabriel/plink/SNPs_removed_miss.txt', quote=F, col.names=F, row.names=F) bash_filter <-'plink --bfile /home/gabriel/plink/filt_maf_mendel --exclude /home/gabriel/plink/SNPs_removed_miss.txt --make-bed --out /home/gabriel/plink/filt_maf_mendel_miss' system(bash_filter) 
 
Hard-Weinberg equilibrium 
Commands in plink used to apply the HWE filter 
bash_last_filter <- 'plink --bfile /home/gabriel/plink/filt_maf_mendel_miss --nonfounders  --hwe 1e-3 --make-bed --out /home/gabriel/plink/data_ready' system(bash_last_filter) 
 

A.2.3. Data set-up for association 
In this section of the annex we attach the code used in the operations performed to let the data 
ready for the association analysis, which are clustering by chromosome and transforming the 
genotypes into numeric data (additive models). 
Code used to cluster by chromosome 
bash_split <- 'for chr in $(seq 1 22); do  plink --bfile /home/gabriel/plink/data_ready --chr $chr --make-bed --out /home/gabriel/plink/datachr$chr; plink --bfile /home/gabriel/plink/datachr$chr --recode --out /home/gabriel/plink/datachr$chr; done' system(bash_split)   
Code used to transform the genotypes into numeric data (additive 
models) 
bash_additive <-  'for chr in $(seq 1 3); do 
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plink --bfile /home/gabriel/plink/datachr$chr --recodeA --out /home/gabriel/plink/datachr$chr; done' system(bash_additive) 

 
A.3. Analysis 
A.3.1. The kinship matrix 
In this section the reader can have a look at the code used to obtain the global kinship matrix, as 
well as the histogram of kinship coefficients and the procedure followed to obtain the Kinship 
matrix sorted of the 11th family.   
library(solarius) 
library(kinship2) 
df_fenos <- read.table('/home/gabriel/tabla_fenos/gao.proteins.csv', header=T
RUE, sep=',') 
 
#Estimation of the kinship matrix 
kinship_i <- solarKinship2(df_fenos) 
 
#We eliminate those individuals whose IDs are not in the table of phenotypes. 
Notice that we have done it deleting symmetrically the rows and columns of th
e unmatched individuals 
ids <- df_fenos[,'ID'] 
ids_kinship <- rownames(kinship_i) 
indices <- which(!(ids_kinship %in% ids)) 
kinship <- kinship_i[-indices,-indices] 
 
#Plotting the global kinship matrix 
plotKinship2(kinship, y='image') 
 
#Plotting an histogram which shows the frequencies for the different degrees 
of pairwise relation 
plotKinship2(kinship, y='hist') 
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#Extracting the subset of indices for the 11th family 
familia11 <- c() 
for(i in 1:576){ 
  if(substr(ids[i],start=0,stop=2)=='20'){ 
    familia11 <- append(familia11, ids[i]) 
  } 
} 
 
ind_fam11 <- which(ids_kinship %in% familia11) 
 
kinship_fam11 <- kinship_i[ind_fam11,ind_fam11] 
 
#Sorting the kinship matrix by ID, which implies that the older inviduals wil
l be the top rows and the younger ones will be the bottom rows 
kinship_sorted <- kinship_fam11[order(attr(kinship_fam11, 'dimnames')[[1]]), 
order(attr(kinship_fam11, 'dimnames')[[2]])] 
 
#Plotting the sorted kinship matrix of the 11th family  
plotKinship2(kinship_sorted, y='image') 
 
 
A.3.2. Traits’ transformations 
In this section we have attached our own implementation of the inverse normal 
transformation function and a full script that transforms a bunch of chosen traits from a 
table of phenotypes and builds a new table with the transformed traits. Although in 
polygenic models this transformation can be done automatically while fitting the model, 
in the association model the traits given have to be already transformed. 
The implementation of the inverse normal transformation: 
#When there is a tie, by default it computes the average. In SOLAR, the inorm
al transformation uses c=0 (despite the most common value is 3/8) and 'averag
e' for ties. 
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inormal <- function(trait, c, tie='average'){ 
  rk <- rank(trait, na.last='keep', ties.method = tie) 
  N=length(which(!is.na(trait))) 
  trait_in <- qnorm((rk-c)/(N-2*c+1)) 
  return(trait_in) 
} 
 
The script that transforms tables of phenotypes: transform.phenotypes <- function(df, traits, type='inormal', write=FALSE, path='/home/gabriel/Documentos/'){   library(solarius)   new_df <- df   nom_new <- c()   for(trait in traits){     transformed_trait <- transformTrait(df[,trait], type, mult= 1)     nom_new <- append(nom_new, paste(trait, '_',substr(type,1,2), sep=''))     new_df <- cbind(new_df, transformed_trait)   }   names(new_df)[length(names(new_df))-length(nom_new):length(names(new_df))] <- nom_new     if(write==TRUE){     wirte.csv(new_df, file(paste(path,'TABLA_converted_', type, '.csv',sep='')))   }   return(new_df) } 
 
A.3.3. Polygenic models 
The two main scripts that have been used in order to fit polygenic models for the two 
main types of traits are attached in this section. 
Models for bone metabolism markers 
lista_cf_mod1 <- list() lista_vcf_mod1 <- list() lista_cf_mod2 <- list() lista_vcf_mod2 <- list() list_signif_mod1 <- list() list_signif_mod2 <- list() for(element in fenos){   mod1 <- solarPolygenic(traits= element, covlist = append(covs, 'Age^2'), 
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transforms='inormal', covtest=T, data= proteins)   lista_cf_mod1 <- append(lista_cf_mod1, list(mod1$cf))   lista_vcf_mod1 <- append(lista_vcf_mod1, list(mod1$vcf))   significant <- as.character(mod1$cf$covariate[!is.na(mod1$cf$pval) & mod1$cf$pval <= 0.05 ])   list_signif_mod1 <- append(list_signif_mod1, list(significant))   if('Age' %in% significant){     if('Age^2' %in% significant){        mod2 <- solarPolygenic(traits = element, covlist = significant, transforms = 'inormal', covtest= T, data = proteins)     }     else{        mod2 <- solarPolygenic(traits = element, covlist = append(significant, 'Age^2'), transforms = 'inormal', covtest= T, data = proteins)     }   }   else{     if('Age^2' %in% significant){       ind <- which('Age^2'==significant)       significant <- significant[-ind]     }     mod2 <- solarPolygenic(traits = element, covlist = significant, transforms = 'inormal', covtest= T, data = proteins)   }   signif2 <- as.character(mod2$cf$covariate[!is.na(mod2$cf$pval) & mod2$cf$pval <= 0.05 ])   list_signif_mod2 <- append(list_signif_mod2, list(signif2))   lista_cf_mod2 <- append(lista_cf_mod2, list(mod2$cf))   lista_vcf_mod2 <- append(lista_vcf_mod2, list(mod2$vcf)) } 
Models for clinical phenotypes 
polygenic.models <- function(phenotypes, phenodata, covariates){   library(solarius)   no.missings <- apply(phenodata, 2, function(x){length(na.omit(x))})   df <- data.frame(t(c(0,0,0,0,0)))   names(df) <- c('Trait', 'Covariates', 'N indiv', 'Heritability', 'P-value')   for(phen in phenotypes){     mod1 <- solarPolygenic(traits=phen, covlist=covariates, transforms='inormal', covtest=T, data=phenodata) 
         cov.signif <-  as.character(mod1$cf$covariate[mod1$cf$pval < 0.05 & !is.na(mod1$cf$pval)]) 
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    if('Age^2' %in% cov.signif & !'Age' %in% cov.signif){       cov.signif <- cov.signif[-which(cov.signif=='Age^2')]     } 
         mod2 <- solarPolygenic(traits=phen, covlist=cov.signif, transforms='inormal', covtest=T, data=phenodata)     if(!is.null(cov.signif)){       cov.def <- as.character(mod2$cf$covariate[mod2$cf$pval < 0.05 & !is.na(mod2$cf$pval)])     } 
     
         if('Age^2' %in% cov.def & !'Age' %in% cov.def){       cov.def[-which(cov.def=='Age^2')]     } 
         names <- append(phen, cov.def)     print(names)     num.indiv <- min(na.omit(no.missings[names]))     heritability <- paste(substr(toString(mod2$vcf[1,'Var']),1,5), '±', substr(toString(mod2$vcf[1,'SE']),1,6), sep=' ')     pvalue <- format(mod2$vcf[1,'pval'], scientific=TRUE, digits=4)     covs <- toString(cov.def) 
         row <- c(phen, covs, num.indiv,  heritability, pvalue)     df <- rbind(df, row)   }   return(list(dat=df[-1,], covar=cov.def, N=num.indiv, h2r=heritability, pval= pvalue)) }  
 
A.3.4. Association models 
 
The function present in the code below was the main one to carry out the different 
associations in this study (nevertheless exactly this script was used to associate with the 
bone metabolism markers): 
library(solarius)  phenos <- read.csv('/home/gabriel/filtered data/tablas fenos/gao.proteins.inormal.csv') 
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 nombres <- names(phenos)[34:45]  file_path <- '/home/gabriel/filtered data/tablas fenos/'  load('/home/gabriel/filtered data/tablas fenos/covariates.RData')   association <- function(phenotypes, phenodata, path, list.covariates, CORES=64){ 
     n <- 1   for(phen in phenotypes){ 
         output.file=paste(phen, '.csv',sep='') 
         covariates <- list.covariates[[n]] 
         for(i in 1:22){ 
             # Genotyped data       num.chr <- toString(i)       chr.raw <- paste(num.chr,'.raw',sep='')       chr.map <- paste(num.chr,'.map', sep='')       plink.raw <- file.path('/home/gabriel/filtered data/plink_asociacion', chr.raw)       plink.map <- file.path('/home/gabriel/filtered data/plink_asociacion', chr.map) 
             # Association model       mod <- solarAssoc(traits=phen, covlist = covariates, covtest=T, data= phenodata, plink.raw= plink.raw, plink.map= plink.map, plink.raw.append= F, cores = CORES) 
             # Exporting data 
             if(i==1){         write.table(mod$snpf, file= paste(path, output.file, sep=''), append= F, col.names= T, row.names= F)       }       else{         write.table(mod$snpf, file= paste(path, output.file, sep=''), append= T, col.names = F, row.names = F) 
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      }     }     n <- n+1   } }  association(nombres, phenos, file_path, list.covariates=covariates, CORES=64) 
 
 
A.3.5. PCAs 
 
In this section we attach all the code that we have used in the principal components 
analysis. In first place there is the code of the PCAs correction by the kinship matrix, and 
afterwards the code of the PCAs comparison.  
Script for PCA correction 
 library(MASS) relprcomp <- function(X, center = TRUE, scale = FALSE, ncomp,   relmat) {   # testing code   # 1)   # X <- iris[1:10, -5]   # C <- diag(seq(0.5, 1, length = 10), 10)       # 2)   # X <- iris[, -5]   # C <- diag(seq(0.5, 1, length = nrow(X)), nrow(X))     
     ### arguments   if(missing(relmat)) { relmat <- diag(1, nrow(X)) }   if(missing(ncomp)) { ncomp <- ncol(X) }   
     ### data   X <- as.matrix(X)   C <- relmat 
     ### pre-processing   nobs <- nrow(X) 
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  Xmean <- apply(X, 2, mean)   Xscale <- apply(X, 2, sd)   
     if(center) { X <- sweep(X, 2, Xmean, "-") }   if(scale) { X <- sweep(X, 2, Xscale, "/") } 
       ### prepare matrix `R`   Cinv <- solve(C)   #Cinv <- ginv(C)   print(dim(Cinv))   R <- (1 / (nobs - 1)) * t(X) %*% Cinv %*% X   print(R)    ### SVD   # A = V Lmbd V^(-1), where Lmbd = diag(vectors)   out <- eigen(R)   d <- out$values   V <- out$vectors 
     S <- X %*% V 
     ### form output   out <- list(nobs = nobs, center = Xmean, scale = Xscale,      relmat = relmat,     sdev = sqrt(d), x = S, rotation = V) 
     oldClass(out) <- "relprcomp"   return(out) }  #--------------------- ### Class functions #---------------------  print.relprcomp <- function(x, ...) {   cat("Standard deviations:\n")   print(x$sdev)   cat("\n") 
     cat("Rotation:\n")   print(x$rotation) }  
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scores.relprcomp <- function(object, ...) object$x  loadings.relprcomp <- function(object, ...)  {   X <- object$x %*% t(object$rotation)   Cinv <- solve(object$relmat)   K <- (1 / (object$nobs - 1)) * t(X) %*% Cinv %*% object$x 
     R <- (1 / (object$nobs - 1)) * t(X) %*% Cinv %*% X   r <- diag(R)   d <- object$sdev   RD <- sapply(1:4, function(i) r[i] * d) 
     L <- K / sqrt(RD) 
     return(L) }  scoreplot.relprcomp <- function(object, comps = 1:2,    labels,   xlab, ylab, type = "p", ...) {   S <- scores(object)[, comps, drop = FALSE] 
     varlab <- compnames(object, comps, explvar = TRUE)   if(missing(xlab)) { xlab <- varlab[1] }   if(missing(ylab)) { ylab <- varlab[2] }    ### plot   plot(S, xlab = xlab, ylab = ylab, type = type, ...) 
     # labels   if(!missing(labels)) text(S[, 1], S[, 2], labels, ...) }  #--------------------- ### Support functions #---------------------  explvar <- function(object)  {   switch(class(object)[1],     relprcomp = object$sdev^2 / sum(object$sdev^2),     stop("error in explvar")) }  



          
136                                           Genetic Association Study in Osteoporosis 
 

 

 

compnames <- function(object, comps, explvar = TRUE) {   compnames <- paste("PC", comps, sep = "") 
     if(explvar) {     vars <- 100 * explvar(object)[comps]      compnames <- paste(compnames, " (", round(vars, 2), "%)", sep = "")   } 
     return(compnames) }  PCAs comparison 
library(solarius) library(pls) source('/home/gabriel/filtered data/scripts/multivar.lib.R') df.proteins <- read.csv('/home/gabriel/filtered data/gao.proteins.csv') df.clinical <- read.csv('/home/gabriel/filtered data/fenos_limpios_id.csv') load('/home/gabriel/filtered data/RData/K_gao.RData') load('/home/gabriel/filtered data/GAIT2-dat-platelets/K.RData') df.GAIT <- read.csv('/home/gabriel/filtered data/GAIT2-dat-platelets/14.04.09.MMTPEXTOK.csv')  PCA_comparativa <- function(fenos_df, K){ 
     #Removing missings   indices_NA <- as.numeric(attributes(na.omit(fenos_df))$na.action)   fenos_df <- fenos_df[-indices_NA,] 
     #Preparing matrix X and Kinship   X <- as.matrix(fenos_df[,-1])   ind <- rownames(K) %in% fenos_df[,1]   K <- K[ind,ind] 
     #PCAs   pca_corregido <- relprcomp(X, center=TRUE, scale=TRUE,relmat=K);   pca_normal <- prcomp(~.,data = as.data.frame(X),center=TRUE, scale=TRUE);   FAM <- as.factor(substr(fenos_df[,1], 1, 2)) 
     #Plotting   dev.new()   scoreplot(pca_normal, main='Non-corrected PCA', col=FAM) 
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  dev.new()   scoreplot.relprcomp(pca_corregido, main='Corrected PCA',col=FAM) 
     #Out   out <- list(pca_corregido = pca_corregido, pca_normal=pca_normal, FAM= FAM, K=K)   return(out) }   
A.3.6. Exploratory tools 
In this section of the annex the reader can have a look at two scripts used to analyse the 
results from the association studies. The first script gives a general idea of the results, 
computing the Manhattan plots, the Q-Q plots and calculating the genomic inflation 
factor. In addition, the second script digs a bit deeply on the results and for a given 
chromosome it returns a first approach of the mapped SNPs. 
Inflation factor and figures 
results.plot <- function(names, path, plot=FALSE){ 
  library(qqman) 
  library(GenABEL) 
  inflation.factor <- c() 
  for(element in names){ 
    df <- read.table(paste(path,element,'.csv',sep=''), header=TRUE, sep=' ') 
     
    #Computing inflation factor for each trait 
     
    inflation.factor <- append(inflation.factor, estlambda(data=df$pSNP, 
method='median')$estimate) 
     
    if(plot==TRUE){ 
       
      #Calculating Bonferroni common threshold  
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      log_line <- -log((0.05/length(df$SNP)), base=10) 
       
      #Plotting Manhattan and QQ plot 
     
      png(filename=paste(path,'manhattan_',element,'.png',sep=''), width= 
480, height= 480, bg = 'white', pointsize = 12) 
     
      manhattan(df, chr='chr', bp='pos',snp = 'SNP',p = 'pSNP', col = 
c('darkblue','darkgreen'), main=paste('Manhattan plot of ', element, sep='')) 
      abline(log_line, 0, col='yellow') 
      legend('topleft',bty='n',legend= c('GWAS line','Suggestive line'), 
col=c('red','blue'), lty= 1) 
     
      dev.off() 
     
      png(filename=paste(path,'qq_',element,'.png',sep=''), width= 480, 
height= 480, bg = 'white', pointsize = 12) 
     
      qq(pvector=df$pSNP, main=paste('QQ plot of ', element, sep='')) 
     
      dev.off() 
       
    } 
  } 
  #Building a data frame with inflation factors 
   
  df_inflation <- data.frame(names, inflation.factor) 
  names(df_inflation) <- c('Names', 'Inflation factor') 
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  return(df_inflation) 
} 
First mapping approach 
 
top.snps <- function(df, CHR, num=5){ 
  library(data.table) 
  library(rsnps) 
   
  #Conversion to a data table 
  dat.tab <- data.table(df) 
  setkey(dat.tab, pSNP) 
   
  #Top snps 
  snps <- as.character(dat.tab[chr==CHR]$SNP[1:num]) 
   
  #Filter rs snps 
  snps_rs <- c() 
  for(snp in snps){ 
    if(substr(snp,1,2)=='rs'){ 
      snps_rs <- append(snps_rs, snp) 
    } 
  } 
  #Query for mapping 
  tabla_NCBI <- NCBI_snp_query(snps_rs) 
   
  #Out 
  lista <- 
list(tabla_global=dat.tab[1:num,],tabla_chr=dat.tab[chr==CHR][1:num,], 
SNPs=snps, NCBI=tabla_NCBI) 
  return(lista) 
} 
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A.4. Results 
 
A.4.1. Manhattan plots 
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Figure A.4.1. Manhattan plots of the traits where significant or suggestive markers were found in 
the association study 
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A.4.2. Q-Q plots 
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Figure A.4.2. Q-Q plots of the traits where significant or suggestive markers were found in the 
association study 
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