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Abstract

There are four main procedures that an Autonomous car-like vehicle must perform in a real-time

dynamic complex environment: Perception and Modelling, Localization and Map Building,

Path Planning and Decision-Making, and Motion Control. The Motion Control procedure

translates the decision taken by the Path Planning and Decision-Making module to specific

commands for the different actuators of the vehicle. The Motion Control issue treated in this

Thesis is the Path Tracking problem.

The goal of this Thesis is to approach the problem in the simplest possible way whilst being

accurate and developing an intuitive design procedure. To achieve this goal, the bicycle-like

kinematic model and a switched state feedback LPV controller, which has been designed using

the polytopic transformation via nonlinear embedding and bounding box approach in order to

perform the control of the system in an integrated way (lateral and longitudinal control at the

once), have been chosen.

Consequently, two different controllers have been synthesized, compared and proven fully

adequate to confront the Path Tracking Problem. Both controllers show very good results and

seem very consistent in the non-conservative simulation tests performed.

The approach proposed in this Thesis is simple, intuitive and has produced successful sim-

ulation results.
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Chapter 1

Introduction

1.1 Context, motivation and objectives

Every day, we are becoming more familiar with autonomous vehicles. Autonomous drones or

cars are good examples of them and these driving systems have been a very active field of

research during the last decade. In particular, the interest of research institutions and car

manufacturers in the development of autonomous car-like robots has boomed since 2004, when

the DARPA agency held the Grand Challenges and the Urban Challenge. There are lots of

practical applications for this technology behind the interest. In the case of autonomous car-like

robots, which is the subject of the Thesis, the necessity of improving the security of pedestrians

and passengers, reducing the energy used or travelling with better comfort conditions exists.

These types of vehicles can also be used to get access into areas where humans are not able to

due to environmental conditions, or even to explore other planets.

Mainly, as a generalization, an autonomous car-like vehicle or robot must perform four fun-

damental procedures in a real-time dynamic complex environment [5]: Perception and Mod-

elling, Localization and Map building, Path Planning and Decision-Making, and Motion Con-

trol. They are shown schematically in Figure 8. The Perception and Modelling procedure is

responsible for describing the surroundings of the vehicle, thus obtaining a model of it. This

is done thanks to the set of sensors that the vehicle has. The Localization and Map Building

procedure is the one that interprets the information from the sensors and estimates the position

of the vehicle on a global map. The Path Planning and Decision-Making procedure is in charge

of deciding what the next desired position is, according to some behavioural rules like: goal

reaching, obstacle avoidance, safety, comfortability and others. Finally, the Motion Control
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procedure translates the decision taken by the path planning and Decision-Making module to

specific commands for the different actuators of the vehicle, for instance the steering wheel or

the throttle.

 

Localization and Map 

Building 

Path Planning and 

Decision Making 

Motion Control Environment Perception 

and Modelling REAL 

WORLD 

Global Map 

Path 

Environmental Model 

 and  

Local Map 

Figure 1.1: Basic modules of an autonomous car-like vehicle

Each one of these modules implies a different line of research and investigation, and there

are many ways of approaching them individually. This Thesis is focused on the Motion Control

one. As previously stated, Motion Control is a translator. The main goals of it are: to follow

the orders received from the Path Planning and Decision-Making module as well as possible,

to produce accurate and smooth trajectories within a range of reaction times, and, to provide

the level of required comfort. The motion orders give the next position the vehicle should be in

or, equivalently, the velocity and the angle of the steering wheel in order to get to the desired

next position. Therefore, two different controls are needed: a lateral motion control and a

longitudinal motion control. These controls can be computed separately or integrated into a

single one. Controllers that perform this kind of motion control are called path trackers. Path

tracking refers to a vehicle executing a globally defined geometric path by applying appropriate
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steering motions or angular velocity (lateral control) and speed or linear velocity (longitudinal

control) that guide the vehicle along the path [5]. This requires a feedback control of the error

position, which is the difference between the reference and the real position of the vehicle. There

are different parts in a feedback control system, namely: the reference path, the vehicle, sensors

and the controller. The reference path is the one given by the Path Planning and Decision-

Making module. The vehicle’s behaviour can be reduced to a model with the aim of easing

the computations. This model can be obtained basically from physical equations that describe

the behaviour of the vehicle or obtaining it from experimental data. Many different models

for a car are available: linear and nonlinear, kinematic and dynamic, simple ones (bicycle-like

vehicle) or much more complex. The complexity of the model does not ensure better results.

Sensors are needed in order to know the states and parameters of the vehicle necessary for the

design of the controller. The controller is in charge of determining the actions to be performed

by the vehicle actuators.

The design of the controller can be approached in many ways. It can be designed using

linear techniques in a linearized model. In this case, the nonlinearities of the real behaviour

of the vehicle are not taken into account, but, on the other hand, the very well-studied classic

control methods can be applied. Several nonlinear methods that solve specific problems exist.

The controller can also be designed by using them and, hence, taking into account a much more

accurate representation of the vehicle [1], [2]. Another design possibility would be the use of

linear like techniques (as e.g. the LPV approach) to address the nonlinear control problem.

This allows the combination of the well-studied classic control methods with the accuracy of

the representation of the nonlinear behaviour. Gain scheduling is a very popular approach

that follows this last scheme. It is a collection of methods that tries to solve the problem in a

divide and conquer manner [16]. It is based on the computation of a different control for each

operating point, using a linearized model of the system at that point, and then, schedule the set

of controllers depending on the operating point the system is at. The drawback of this approach

is that it does not capture the non-local behaviour in the transition from one operating point

to another. In order to overcome this problem, a Linear Parameter-Varying (LPV) approach

was first introduced in [17]. The Linear Parameter-Varying computes a controller capable of

automatically varying its gain, working with regions of operating points and addressing the

nonlinear control problem. However, since this method follows a parametric approach, the

complexity of the problem increases with the number of varying parameters. From the moment

this methodology appeared, it has become an increasing field for research [9]. All in all, the
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number of possible approaches is very high and depends, mainly, on the chosen model and the

applied technique.

In this Thesis, the goal is to approach the problem in the simplest possible way whilst being

accurate and developing an intuitive design procedure. To achieve this goal, the bicycle-like

kinematic model of the vehicle has been chosen because of its simplicity, and, the application

of linear-like control techniques to the integrated control (lateral and longitudinal), thanks

to its generality and wide range. Taking into account these two design decisions, the control

method developed in this Thesis is the LPV control theory. The combined use of the bicycle-like

model and the LPV technique has never been completely tried before. A very similar one was

developed in [3] using the Takagi-Sugeno approach but the obtained control was an average

of the controls that bound the area of operating points. This is the reason and motivation

for the development of the approach proposed in this Thesis, including all the steps from the

starting model, the bicycle-like model, to the control design, a switched LPV one. The proposed

approach has been validated in simulation using Simulink and obtained very promising results

in a wide range of reference variables.

1.2 Outline of the Thesis

This text is organized into six chapters. The outline of each chapter may be summarized as

follows:

1.2.1 Chapter 2: Background Theory

This Chapter provides the sufficient background regarding the LPV control theory to be able

to follow the rest of the Thesis development.

1.2.2 Chapter 3: Control-oriented model

The bicycle-like kinematic model of the vehicle and the error model are derived in this Chapter.

1.2.3 Chapter 4: Control Design

This Chapter shows the design of a switched state feedback LPV controller. The model for-

mulation approach is the polytopic transformation via nonlinear embedding and bounding box

approaches.



Switched LPV Control of an Autonomous car-like Vehicle 13

1.2.4 Chapter 5: Results

This Chapter presents and compares the results obtained during the simulation of the two

controllers. The results are compared and analysed.

1.2.5 Chapter 6: Sustainability: environmental, social and economic impact

This Chapter discusses the various impacts that the introduction of autonomous cars could

have on our lives.

1.2.6 Chapter 7: Conclusions and Future works

This Chapter states the most important outcome and the perspectives of this Thesis.

1.2.7 Chapter 8: Cost of the project

This Chapter presents the budget of the project costs.
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Chapter 2

Background Theory

In this chapter, a revision of the background theory on LPV systems is presented for complete-

ness. If the reader is familiar with the subject, this chapter could be omitted and be used only

in case it is needed. The intention is to provide a sufficient background of LPV theory in order

to be able to follow the rest of the Thesis.

2.1 Introduction

In practice, most of the existing systems that need to be controlled are nonlinear and they have

to work in different operating points. Standard linear models, known as linear time invariants

(LTI), are only valid around a given operating point. The extension to several operating points

lead to the LPV systems. Focusing on the difference, a clue to the main idea of LPV systems

is as follows: somehow an LPV system tries to convert nonlinear systems into linear parameter

varying ones. LPV theory allows the use of a formulation which is very similar to the linear

systems one, but it takes into account the nonlinearities. LPV was first introduced by [17] and

it has been proven to be suitable for managing some nonlinear systems.

2.2 What is a Linear Parameter Variant system. Definition and

Types.

Shamma made the distinction between LTI, LTV and LPV systems [17]. A particular type

of linear time varying systems are LPV systems. In LPV systems, the time-varying elements

depend on measurable parameters that can vary over time [16]. A more formal definition would
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be: an LPV system is a finite-dimensional LTV system whose state space matrices are fixed

functions of some vector of varying, measurable parameters, assumed to be unknown a priori,

but measured or estimated in real time [16].

A continuous state space LPV model is usually defined as:

ẋ(t) = A(ϑ(t))x(t) +B(ϑ(t))u(t) (2.1)

y(t) = C(ϑ(t))x(t) +D(ϑ(t))u(t) (2.2)

where x ∈ Rnx , u ∈ unu and y ∈ Rnx are the state, the input and the output vector. The

varying matrices are A(ϑ(t)), B(ϑ(t)), C(ϑ(t)) and D(ϑ(t)).

2.2.1 Types

LPV systems can be classified in two different categories: Pure LPV systems and Quasi-LPV

systems. The difference between them is the nature of the signal that is used to describe the

parameter variation.

Pure LPV: This is an LPV system where the varying parameters only depend on exogenous

signals, such as noise or disturbances.

Quasi-LPV: This is an LPV system where the varying parameters depend on some endoge-

nous signals, such as the states, inputs or outputs. Quasi-LPV systems have proven to be

appropriate for controlling nonlinear systems by embedding the nonlinearities in the varying

parameters.

2.3 What is not a Linear Parameter Variant system

The LPV control approach has some similarities with others.. It is as important to know what

an LPV system is as to know what it is not.

• Adaptive Control: LPV control is similar because both share the concept of having a

controller that adapts to the varying parameters of the system. However, adaptive control

requires a persistent excitation of the inputs to be able to adapt the parameters of the

controller while LPV does not.

• Classic Gain Scheduling: LPV control is similar because both techniques use different

controllers for each operating point of the system. The main difference is that, in classic
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Gain Scheduling, the control is designed for a finite number of operating points, while,

in the LPV approach, the control, is designed for a set of operating points guaranteeing

stability and performance.

• Robust Control: LPV control is different from robust control. A parameter in an LPV

system is measurable in real time while, in robust control, parametric uncertainty in an

uncertain system is not measurable. LPV can be used to design robust controllers if the

system with the uncertainty can be transformed into an LPV system with unmeasurable

parameters.

• Takagi-Sugeno : LPV systems and Takagi and Sugeno systems (TS) are equivalent. They

are equivalent approaches with different origins. While LPV comes from the field of

Control Systems, TS originates from the field of Artificial Intelligence.

2.4 Formulation of an LPV description

A model of the dynamical system is required in order to apply a model based technique. Two

main ways of obtaining such descriptions exist: analytical and experimental. The experimental

way is based on input/output data. The identification of the model is done carried out by

obtaining it from the data (an overview of different methods can be found in [4]). The analytical

way is based on equations which describe the behaviour of the system. The interest in obtaining

LPV models has constantly increased over recent years due to the popularity of LPV [9].

The same nonlinear system can be represented by an LPV model in more than one way.

Therefore, LPV representations are not unique. This is good and bad at the same time. The

LPV representation can be transformed to convenience until obtaining a shape that suits for

controller synthesis purposes. On the other hand, not every LPV description is appropriate for

control.

2.4.1 Properties of the LPV descriptions

LPV descriptions have some properties that could be summarized as follows, [16]:

1. Parameters and states are related in a way such that this relation is equal in the LPV

description and in the nonlinear system. Thus, trajectories of the nonlinear system are

also trajectories of the LPV description. The LPV description includes the trajectories

of the nonlinear system.
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2. The relation between parameters and states depends only on measured signals. This

property comes from the definition of LPV systems and ensures that the controller can

depend on the parameter. The variable parameters are assumed to be measurable or

depend only on measured signals.

3. The relation between parameters and states is known.

4. The LPV description includes the nonlinear system. This fact introduces some conser-

vativeness, the more similar the LPV description and the nonlinear system are, the less

conservativeness is introduced and a better performance can be obtained. LPV descrip-

tions that are conservative can be useful when robustness is a design requirement.

2.4.2 LPV model formulation approaches

Different approaches to formulate LPV models exist. In this section, only the main ones are

described, and the one used in this Thesis, nonlinear embedding plus polytopic transformation

using the bounding box approach, is hereby explained in more detail.

Polytopic transformation via nonlinear embedding and bounding box approach

The idea behind this approach is to embed the nonlinearities of the system in the varying

parameters. By doing this, the control of the system can be synthesized using an extension of

linear techniques.

The procedure to obtain a polytopic representation of an LPV, often referred to as bounding

box method, is described here:

• The nonlinearities must be embedded in ϑ(t).

• The variation range of each one of the parameters must be known or measurable. There-

fore, the variation bounds are the maximum and minimum value of each parameter ϑ(t).

• The polytope is defined by the variation bounds of the parameters and describes a simple

shape area, which contains the whole nonlinear system and, therefore, all its operating

points. Describing the system only with the vertex points of the polytope is very useful

at the time of performing different computations. Only the vertex points are computed,

which signifies a huge reduction of the number of points to compute or equivalently

the number of constraints. The infinite number of points of the nonlinear system have



Switched LPV Control of an Autonomous car-like Vehicle 19

been reduced to only the vertex points of the polytope. This procedure introduces some

conservativeness because the area of the bounding box contains other possible operating

points other than the nonlinear system ones. The application of the procedure becomes

more complicated as the number of varying parameters increases as well. The number of

vertex points is two to the power of the number of parameters. Another drawback is that

any singular points inside the polytope are not considered.

Formally, an LPV polytopic system is described by the following equations:

ẋ(t) =
N∑
i=1

µi(ϑ(t))(Aix(t) +Biu(t)) (2.3)

y(t) =

N∑
i=1

µi(ϑ(t))(Cix(t) +Diu(t)) (2.4)

where Ai, Bi, Ci and Di define the vertex systems. There is a LTI model for each vertex. µi
is the scheduling function or weights. The varying parameters and weights fulfill the following

condition:
N∑
i=1

µi(ϑ(t)) = 1, µi(ϑ(t)) ≥ 0, ∀i = 1, ..., N, ∀ϑ ∈ ϑ (2.5)

where ϑ is the polytope or bounding box.

Jacobian Linearization

Jacobian Linearization is the simplest methodology to formulate LPV models. It is useful for

nonlinear models that can be linearized around its equilibrium points of interest [13]. These

linearizations join together to form a family of linearized models. The resulting LPV model,

the whole family, is a local approximation of the dynamics of the nonlinear system around its

equilibrium points of interest. The approximation of the nonlinear system is computed using

Taylor-series, either first-order or higher. First order Taylor expansion could lead to a model

that might diverge from the behaviour of the nonlinear system [13], while higher-order Taylor

expansion could lead to impractical implementations [10].
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State transformation

This technique is only useful when the system has the following form:[
ż(t)

l̇(t)

]
= g(z(t)) +A(z(t))

[
z(t)

l(t)

]
+B(z(t))u(t) (2.6)

where z(t) ∈ Rnz are the scheduling states, and l(t) ∈ Rnh are the non-scheduling ones with

nz = nu.

In the state transformation approach, a coordinate change is searched for being able to re-

move the nonlinear part from some measured states. Any nonlinear term that is not dependent

on the scheduling parameters is aimed at being removed [18]. This approach applies a transfor-

mation and not an approximation as in the Jacobian Linearization one. The Quasi-LPV model

obtained exactly represents the original nonlinear system.

2.5 Synthesis of an LPV controller

Once the nonlinear system is described as an LPV one, the next step is to synthesize the

controller. As previously mentioned, the polytopic formulation has been the one chosen in this

Thesis. In summary, a polytopic representation approximates the parameter set by its vertices,

whose position depends on the varying parameter bounds, and contains all the operating points

of the nonlinear system.

Basically, two steps need to be performed: to compute a controller for each vertex of the

polytope and to map any operating point inside the bounding box with a weight for each vertex

controller. By doing this, a nonlinear controller for the whole bounding box is synthesized.

Controller for each vertex

The system is considered as an LTI in the bounding box vertices. Hence, extensions of linear

techniques can be applied there. A linear controller is computed for each vertex of the bounding

box taking into account all the constraints imposed by the system itself or design requirements

and decisions.

In this Thesis, the resulting nonlinear error model is brought to a Quasi-LPV form suitable

for designing an LPV controller by solving a system of linear matrix inequalities (LMIs), a prob-

lem for which efficient solvers are available [20], [11]. Many optimization problems in control

theory, system identification and signal processing can be formulated using LMIs. Therefore,
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LMIs are a very powerful mathematical tool. Basically, the system to control is translated, if

possible, into a set of LMIs that can be solved. The solution of an LMI can be interpreted as

the intersection of several inequalities, which could represent, for instance, design requirement

constraints, as placing the poles in a certain region or only allowing decay ratios higher than a

value.

Formally, an LMI has the form [6]:

F (x)
def
= F0(x) +

m∑
i=1

xiFi > 0 (2.7)

where x ∈ Rm is the variable and the symmetric matrices Fi = F Ti ∈ Rnxn, i = 0, ...,m, are

given and F (x) is positive definite.

Specific software that is capable of dealing with LMIs is available. YALMIP is the one used

to solve the different sets of LMIs in this Thesis. YALMIP is a modelling language for advanced

modelling and solution of convex and nonconvex optimization problems and it is available for

free at [12].

The LMIs used in this Thesis are the appropriate ones to solve for a state feedback control

with the decay ratio as a design parameter and using the polytopic transformation via nonlinear

embedding and bounding box approach. The use of the decay ratio as the design parameter

implies placing all the poles of the controlled system at the hyperplane defined on the left side

of a desired real value in the complex plane. The LMIs are the following:

(A(ϑ) +BK)P + P (A(ϑ) +BK)t + 2αP < 0 , P > 0 ∀ ϑP > 0 (2.8)

where A is the state matrix, B is the input matrix, ϑ are the varying parameters of the system,

α is the desired value that defines the right boundary of the hyperplane. K is the state feedback

controller that is computed for each edge of the bounding box. The bounding box is defined

by the boundaries of the parameter region of variation. And P is a Lyapunov function that, if

it exists, ensures feasibility.

Each LMI of the set of LMIs expressed in (2.8) should be solved for P and for K simulta-

neously. This is not possible because the problem is nonlinear. A variable change is made in

order to overcome this issue:

K = WP−1 (2.9)
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Therefore, the LMIs to solve have the following form:

A(ϑ)P +BW + PA(ϑ)t +W tBt + 2αP < 0 , P > 0 ∀ ϑP > 0 (2.10)

Mapping operating points with vertex controllers

Once the controller of each vertex has been obtained, the next step is to find a way of mapping

an operating point inside the bounding box with a controller. In order to do this, membership

functions are defined following an interpolation rule.

Membership functions express the degree of membership of each vertex controller with any

operating point inside the bounding box. The interpolation rule ensures that the controllers

obtained, as a result of applying the membership functions, are inside a bounding box of

controllers defined by all vertex controllers.

Membership functions are computed using the boundaries of each varying parameter of

the system. At least, there are as many functions as varying parameters. The value of a

membership function must be in the range [0 1]. An example of a membership function is as

follows:

µi(ϑi) =
ϑimax − ϑi

ϑimax − ϑimin

(2.11)

where i refers to the parameters and µ is the membership function. In the case of the example,

µi is 1 if ϑi = ϑimin .

The interpolation rule that constraints the membership functions is:

N∑
i=1

µi(ϑ(t)) = 1 (2.12)

2.6 Formulataion of the nonlinear controller

To summarize until here, the nonlinear system trajectories are contained in an LPV description.

In this Thesis, this description has been obtained by using the polytopic formulation. Then,

controllers for each vertex of the bounding box are computed using LMIs as a mathematical tool.

Finally, all operating points are mapped to a weighted controller, using the vertex controllers

and some membership function and a rule of interpolation.

The nonlinear controller is the one that commutes its gain according to the states and the

parameters of the nonlinear system. The final gain of this LPV controller is computed as the
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addition of the gain of each control vertex, taking into account its membership degree

K(ϑ(t)) =
N∑
i=1

µi(ϑ(t))Ki (2.13)

whereK is the nonlinear controller,Ki is the controller of the i-th vertex and µi is the scheduling

rule (named weights or membership degree, as well).

2.7 Switched LPV

When there are both continuous-valued and discrete-valued varying parameters, the resulting

system is referred to as a switching LPV [8], [15] .

Sometimes, singular points inside the bounding box appear when using the polytopic for-

mulation approach to reduce the number of constraints from infinite to finite. This causes

unfeasibility of the set of LMIs. In order to solve this problem, the system can be divided into

subsystems that do not contain the singular point and where the subsets of LMIs are feasible.

Thus, a virtual switching component does the job of changing between subsystems according

to the value of the switching variable. In this case, the system is referred to as switching LPV,

where there are both, continuous-valued and discrete-valued varying parameters [8].

Formally, this kind of control systems are expressed as follows:

ẋ(t) = Aσ(ϑ(t))x(t) +Bσ(ϑ(t))u(t) (2.14)

where σ is the discrete switching variable.

If the controller is a state feedback one, then it can be expressed as

u(t) = Kσ(ϑ(t))x(t) (2.15)
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Chapter 3

Control-oriented model

In this Chapter, the model of the vehicle is presented. The starting point is the kinematic

model of a bicycle, widely used in the design of controllers for autonomous systems. A complete

derivation of it is shown. Afterwards, its adaptation to a model that is suitable for solving the

trajectory tracking problem, which is the model of the error posture, is developed.

3.1 Model of the car

Several models for a car exist [7]. The car is considered as a rigid body on wheels that operates

on a horizontal plane. In the case of this Thesis, one of the goals is to have, as starting point,

the simplest possible model. Therefore, the kinematic model of a bicycle has been chosen. This

simplification of the model is a very common one. The kinematic model of the mechanical

structure of a car describes the motion with respect to a fixed reference Cartesian frame. The

causes of this motion, forces and moments, are ignored in the kinematic model.

In the kinematic model of a bicycle, it is assumed that the left and right wheels collapse

into only one wheel, leaving only the front and rear wheel. Three assumptions are made here

for the motion: wheels do not present lateral slip, only the front wheel is steerable and the

whole motion of the vehicle happens on a plane.

The equations that describe the kinematic system are:

ẋ = v cos(θ) (3.1)

ẏ = v sin(θ) (3.2)
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θ̇ =
v

L
tan(δ) = w (3.3)

where v is the linear velocity, x and y are the rear wheels position and θ is the the orientation

of the vehicle, all in the world (or global) frame.

ICR ICR

w1

a) b)

w2

Figure 3.1: From car, a), to bicycle model b)

3.2 Derivation of the kinematic model

The equations of motion for the kinematic bicycle model are derived here for completeness.

There are some simple geometric relationships between the different parts of the bicycle

model and the steering angle

tan(δ) =
L

R
(3.4)

where δ is the steering angle, L is the distance between front and rear wheel and R is the radius

of the turning curve. The geometric vehicle model is shown in the Figure 3.2.

All wheeled vehicles are subject to kinematic constraints. These constraints reduce the

mobility of the vehicle. In the bicycle model, the nonholonomic constraint equations for the

front and rear wheels are:

ẋf sin(θ + δ)− ẏf cos(θ + δ) = 0 (3.5)

ẋ sin(θ)− ẏ cos(θ) = 0 (3.6)
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L

R

Figure 3.2: Geometric vehicle model

where (xf , yf ) is the global coordinate of the front wheel. The kinematic model is shown in

Figure 3.1. As the front wheel is located at distance L from the rear wheel along the orientation

of the vehicle, (xf , yf ) may be expressed as:

xf = x+ L cos(θ) (3.7)

yf = x+ L sin(θ) (3.8)

L

(x,y)

y

x

(xf,yf)

v

δ

θ

Figure 3.3: Kinematic vehicle model
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3.2.1 Derivation of the Linear velocity equations

The linear velocity equations of the kinematic model, (3.1) and (3.2), have to fulfill the non-

holomonic constraints. The demonstration is very straightforward. The equations are obtained

just by looking at the kinematic model shown in Figure 3.3 and applying basic trigonometry.

The nonholomonic constraint for the rear wheel, (3.6), is satisfied when ẋ sin(θ) = ẏ cos(θ), and

also any scalar multiple thereof. This scalar corresponds to the longitudinal velocity in the car

frame. Therefore, (3.1) and (3.2) fulfill the imposed constraint.

3.2.2 Derivation of the Angular velocity equation

The angular velocity equation of the kinematic model is (3.3). It can be derived from the front

wheel equations, (3.7) and (3.8), the nonholomonic constraint for the front wheels, (3.5), and

the linear velocity equations of the kinematic model, (3.1) and (3.2).

The derivation is the following:

• xf and yf from (3.7) and (3.8) are replaced in (3.5):

0 =
∂(x+ L cos(θ))

∂t
sin(θ + δ)− ∂(x+ L sin(θ))

∂t
cos(θ + δ)

= (ẋ− θ̇L sin(θ) sin(θ + δ))− (ẏ + θ̇L cos(θ) cos(θ + δ))

= ẋ sin(θ + δ)− ẏ cos(θ + δ)− θ̇L sin(θ)(sin(θ) cos(δ) + cos(θ) sin(δ))

− θ̇L cos(θ)(cos(θ) cos(δ)− sin(θ) sin(δ))

= ẋ sin(θ + δ)− ẏ cos(θ + δ)− θ̇L sin2(θ) cos(δ)− θ̇L cos2(θ) cos(δ)

− θ̇L sin(θ) cos(θ) cos(δ) + θ̇L cos(θ) sin(θ) sin(δ)

= ẋ sin(θ + δ)− ẏ cos(θ + δ)− θ̇L(sin2(θ) + cos2(θ)) cos(δ)

= ẋ sin(θ + δ)− ẏ cos(θ + δ)− θ̇L cos(δ)

• Using the last equality, θ̇ is obtained.

θ̇ =
ẋ sin(θ + δ)− ẏ cos(θ + δ)

L cos(δ)

• ẋ and ẏ are substituted by (3.1) and (3.2). A short development, shown here, will lead

to the expected result (3.3).
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θ̇ =
ẋ sin(θ + δ)− ẏ cos(θ + δ)

L cos(δ)
=
v cos(θ) sin(θ + δ)− v sin(θ) cos(θ + δ)

L cos(δ)

=
v cos(θ)(sin(θ) cos(δ) + cos(θ) sin(δ)

L cos(δ))
− v sin(θ)(cos(θ) cos(δ)− sin(θ) sin(δ)

L cos(δ))

=
v(cos2(θ) + sin2(θ)) sin(δ)

L cos(δ))
=
v tan(δ)

L

The obtained result for the angular velocity is (3.3)

θ̇ =
v

L
tan(δ)

3.3 Error model

The error model expresses the dynamics of the difference between reference states and the

system model states, which is a posture error.

3.3.1 Error posture

Until here, only the equations of the model of the car have been derived. A reference model is

needed in order to be able to compute a control for tracking trajectories. The idea behind this

is to compare the posture of the real car with a virtual one and, then, obtain the error of the

posture. Figure 3.4 shows this idea.

The vehicle, in the world reference frame, has three degrees of freedom in its positioning

that represent a posture

posture =


x

y

θ


The heading direction θ is taken counterclockwise from the x − axis. A null posture, 0o,

will happen when (0, 0, nπ)t, where n is an integer. A set of feasible positions of x(t) and y(t)

provides a path trajectory. Therefore, if ẋ and ẏ exist, θ(t) is not independent anymore. This

is expressed as follows

θ(t) = tan−1
ẏ(t)

ẋ(t)
(3.9)

As previously mentioned, the real vehicle and a virtual one are used to obtain the posture

of the error. The equations of the real and virtual car can be expressed as follows:

– Reference or virtual car posture, pref = (xref , yref , θref )t:
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𝑣𝑐𝑢𝑟  

𝑣𝑟𝑒𝑓  
𝑦 𝑟𝑒𝑎𝑙 

𝑥 𝑟𝑒𝑎𝑙 

𝜃𝑒 

REAL 

Figure 3.4: Real and virtual car

ẋref = vref cos(θref ) (3.10)

ẏref = vref sin(θref ) (3.11)

θ̇ref =
vref
L

tan(δref ) = wref (3.12)

– Real car posture, pcur = (xcur, ycur, θcur)
t:

ẋcur = vcur cos(θcur) (3.13)

ẏcur = vcur sin(θcur) (3.14)

θ̇cur =
vcur
L

tan(δcur) = wcur (3.15)

The reference posture is the goal posture of the real vehicle. Therefore, the goal of the

control will be reducing the difference between the virtual and the real vehicle to zero. This

implies an error posture, pe = pref − pcur, and a control that will aim:

lim
t→∞

(pref (t)− pcur(t)) = 0

.

It is convenient to use the model of the error with respect to the real robot frame due to the

use of linear velocities with respect to the car. By doing so, subsequent computations simplify.
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It is necessary to change frames, from world to car. The rotation matrix is used to do this job.

pe =


xe

ye

θe

 =


cos(θcur) sin(θcur) 0

− sin(θcur) cos(θcur) 0

0 0 0

 (pref − pcur)

=


cos(θcur) sin(θcur) 0

− sin(θcur) cos(θcur) 0

0 0 0



xref − xcur
yref − ycur
θref − θcur


(3.16)

The error posture is obtained extending the previous matrix in equations for each state:

xe = (xref − xcur) cos(θcur) + (yref − ycur) sin(θcur) (3.17)

ye = −(xref − xcur) sin(θcur) + (yref − ycur) cos(θcur) (3.18)

θe = θref − θcur (3.19)

3.3.2 Derivation of the error model

The dynamics of the error posture are what is needed for the trajectory tracking problem.

Hence, (3.17), (3.18) and (3.19) need to be differentiated in order to obtain the error model.

The equations of motion for each state of the error model are derived here for completeness.

• Time derivative of xe.

The equation that need to be derived is (3.17).

ẋe = (ẋref − ẋcur) cos(θcur) + (ẏref − ẏcur) sin(θcur)

− (xref − xcur)θ̇cur sin(θcur) + (yref − ycur)θ̇cur cos(θcur)

= ẋref cos(θcur)− ẋcur cos(θcur) + ẏref sin(θcur)− ẏcur sin(θcur)

− (xref − xcur)θ̇cur sin(θcur) + (yref − ycur)θ̇cur cos(θcur)

It is known that θ̇cur = wcur from (3.15). Then

ẋe = ẋref cos(θcur)− ẋcur cos(θcur) + ẏref sin(θcur)− ẏcur sin(θcur)

− (xref − xcur)wcur sin(θcur) + (yref − ycur)wcur cos(θcur)
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From (3.18), we know that ye = −(xref − xcur) sin(θcur) + (yref − ycur) cos(θcur) which

appears in the previous equality. Hence

ẋe = ẋref cos(θcur)− ẋcur cos(θcur) + ẏref sin(θcur)− ẏcur sin(θcur) + wcurye

The negative terms of the previous equality, −ẋcur cos(θcur) and −ẏcur sin(θcur), can be

developed using the equations of the model of the car, (3.13), (3.14)

ẋcur cos(θcur) + ẏcur sin(θcur) = vcur cos(θcur) cos(θcur) + vcur sin(θcur) sin(θcur)

= vcur(sin
2(θcur) + cos2(θcur)) = vcur

Now, using this result

ẋe = ẋref cos(θcur)− vcur + ẏref sin(θcur) + wcurye

By definition: θe = θref − θcur, then θcur = θref − θe. Replacing θcur in ẋe

ẋe = ẋref cos(θref − θe)− vcur + ẏref sin(θref − θe) + wcurye

The trigonometric identities for cos(α− β) y sin(α− β) are used in the next step

ẋe = ẋref (cos(θref ) cos(θe) + sin(θref ) sin(θe))− vcur

+ ẏref (sin(θref ) cos(θe)− cos(θref ) sin(θe)) + wcurye

= wcurye − vcur + (ẋref cos(θref ) + ẏref sin(θref )) cos(θe)

+ (ẋref sin(θref )− ẏref cos(θref )) cos(θe)

The nonholomonic constraint for the real wheels is: ẋref sin(θref ) = ẏref cos(θref ), according

to (3.6). Therefore

ẋe = wcurye − vcur + (ẋref cos(θref ) + ẏref sin(θref )) cos(θe)

Following the same procedure that was used before, the terms inside the parenthesis become

ẋref cos(θref ) + ẏref sin(θref ) = vref cos(θref ) cos(θref ) + vref sin(θref ) sin(θref )

= vref (sin2(θref ) + cos2(θref )) = vref
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Finally, using the previous equality, the result for ẋe is

ẋe = wcurye − vcur + vref cos(θe) (3.20)

• Time derivative of ye.

The derivation of the ẏe is similar to the one used for ẋe. The equation that need to be derived

is (3.18).

ẏe = −(ẋref − ẋcur) sin(θcur) + (ẏref − ẏcur) cos(θcur)

− (xref − xcur)θ̇cur cos(θcur)− (yref − ycur)θ̇cur sin(θcur)

We had xe = (xref − xcur) cos(θcur) + (yref − ycur) sin(θcur) from (3.17) which appears in

the previous equality. We also had θ̇cur = wcur from (3.15). Hence

ẏe = −(ẋref − ẋcur) sin(θcur) + (ẏref − ẏcur) cos(θcur)− xewcur

= −xewcur + ẋcur sin(θcur)− ẏcur cos(θcur)− ẋref sin(θcur)− ẏref cos(θcur)

The nonholomonic constraints for the rear wheels is: ẋcur sin(θcur) = ẏcur cos(θcur). There-

fore

ẏe = −xewcur − ẋref sin(θcur)− ẏref cos(θcur)

The error in θ is θe = θref − θcur, then θcur = θref − θe. Replacing θcur in the previous

equation

ẏe = −xewcur − ẋref sin(θref − θe)− ẏref cos(θref − θe)

The trigonometric identities for cos(α− β) y sin(α− β) are used in the next step

ẏe = −ẋewcur − ẋref (sin(θref ) cos(θe)− cos(θref ) sin(θe))

− ẏref (cos(θref ) cos(θe)− sin(θref ) sin(θe))

= −ẋewcur + (ẋref cos(θref ) + ẏref sin(θref )) sin(θe)

+ (ẏref cos(θref )− ẋref sin(θref )) cos(θe)

The same nonholomonic constraint is fulfilled for the reference car: ẋref sin(θref ) = ẏref cos(θref ).
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Using this constraint in ẏe

ẏe = −xewcur + (ẋref cos(θref ) + ẏref sin(θref ) sin(θe)

Following the same procedure that was used before, the terms inside the parenthesis become

ẋref cos(θref ) + ẏref sin(θref ) = vref cos(θref ) cos(θref ) + vref sin(θref ) sin(θref )

= vref (sin2(θref ) + cos2(θref )) = vref

Finally, using the previous equality, the result for ẏe is

ẏe = −xewcur + vref sin(θe) (3.21)

• Time derivative of θe.

The last state that need to be derivated is θe. This one is straightforward, the equation to

differentiate is: θe = θref − θcur.
The result is:

θ̇e = θ̇ref − θ̇cur = wref − wcur (3.22)

3.3.3 Error model equations

The obtained results for the error model, equations (3.20), to (3.22), are shown here in matrix

form

ṗe =


ẋe

ẏe

θ̇e

 =


wcurye − vcur + vref cos(θe)

−wcurxe + vref sin(θe)

wref − wcur

 (3.23)

If it is understood that vcur and wcur depend on pe and qref , where pe y qref are the inputs

of the reference model. Thus, the model can be rewritten as

ṗe =


ẋe

ẏe

θ̇e

 =


w(pe, qref )ye − v(pe, qref ) + vref cos(θe)

−w(pe, qref )xe + vref sin(θe)

wref − w(pe, qref )

 (3.24)

where vcur and wcur are the inputs of the real car.
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Separating the inputs of the virtual car and the real one, the resulting matrix of the dynamics

of the error is

ṗe =


ẋe

ẏe

θ̇e

 =


cos(θe) 0

sin(θe) 0

0 1


[
vref

wref

]
+


−1 ye

0 −xe
0 −1


[
vcur

wcur

]

=


cos(θe) 0

sin(θe) 0

0 1


[
vref

wref

]
+


−1 ye

0 −xe
0 −1


[
v(pe, qref )

w(pe, qref )

] (3.25)

The inputs that will be used to control the system are the ones of the real car v(pe, qref )

and w(pe, qref ).
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Chapter 4

Control Design

In this Chapter, an LPV controller for the vehicle is designed. The starting point is the error

model obtained in the previous Chapter. A basic scheme of the whole system is shown. Using

the error model and the basic scheme of the system, equations will be shaped until they are

ready to apply the LPV control design approach.. Two LPV models are developed: the first

one is shaped from the starting error model, while two new states are introduced in the second

model. The polytopic transformation via nonlinear embedding and bounding box approach

has been applied to both models in order to obtain a state feedback control suitable for any

operating point inside the bounding box.

4.1 Starting point

The error model equations obtained in Chapter 3 are the starting point for the control design:

ṗe =


ẋe

ẏe

θ̇e

 =


cos(θe) 0

sin(θe) 0

0 1


[
vref

wref

]
+


−1 ye

0 −xe
0 −1


[
vcur

wcur

]
(4.1)

The aim of the controller is to perform a path tracking given a reference signal which changes

over time. It is assumed that the vehicle can only move forward and that the path is always

ahead. The control proposed in this Thesis is an LPV state feedback. Figure 4.1 shows the

basic scheme of the system including the controller. In this Figure, there are two differentiated

parts: feed forward (virtual vehicle) and feedback (system of the error). The feedback state is

the error posture (which is the error between the reference and the real car). The input control
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action is the addition of two different signals: one coming from the reference, uref , and the

other from the control, ub. Linear velocities of the reference (or virtual) and real vehicle are

one dimensional values. Therefore, they must be aligned to add them correctly. From Figure

3.4 of Chapter 3, now shown in this Chapter as Figure 4.2, this fact is easier to understand.

Equations (4.2) and (4.3) express the control signals resulting from this reasoning.

vcur = vref cos(θe) + vb = vref cos(θref − θcur) + vb (4.2)

wcur = wref + wb (4.3)
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Figure 4.1: Basic scheme of the system with the control
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Figure 4.2: Real and virtual car

4.2 First model

4.2.1 Error model with control actions

The whole system shown in the Figure 4.1 can be expressed in equations by just introducing

(4.2) and (4.3) into the dynamics of the system, (4.1) leading to:

ṗe =


ẋe

ẏe

θ̇e

 =


cos(θe) 0

sin(θe) 0

0 1


[
vref

wref

]
+


−1 ye

0 −xe
0 −1


[
vcur

wcur

]

=


cos(θe) 0

sin(θe) 0

0 1


[
vref

wref

]
+


−1 ye

0 −xe
0 −1


[
vref cos(θe) + vb

wref + wb

] (4.4)

The equations of the error model that include the control actions are obtained by operating

the matrices:

ẋe = vref cos(θe)− vref cos(θe)− vb + yewref + yewb = −vb + yewref + yewb (4.5)
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ẏe = vref sin(θe)− xewref − xewb (4.6)

θ̇e = wref − wref − wb = −wb (4.7)

where the control variables of this system are vb and wb and the states are xe, ye and θe. Hence,

the input control signals of the system vcur and wcur will be controlled just by controlling vb
and wb.

4.2.2 System in LPV form

The error model can be shaped into an LPV form as follows:
ẋe

ẏe

θ̇e

 =


0 wref 0

−wref 0
vref sin(θe)

θe

0 0 0



xe

ye

θe

 +


−1 ye

0 −xe
0 −1


[
vb

wb

]
(4.8)

According to [3] this error model has a problem: the transformation between the robot

posture and the error model is not bijective. The same robot posture is obtained if the vehicle

is rotated 360o (or an integer multiple of it). This would lead to errors in the orientation

and discontinuities of the angular velocity when the orientation error crosses ±π . In [3], it is

proposed a different model to solve this problem. Although the nature of the tracking problem

treated in this Thesis is not affected by this issue, both models are compared in order to analyse

their performance and characteristics.

4.3 Second model

4.3.1 New states

The proposed way of solving the problem of the model presented in the previous section is

to increase the order of the model according to [3]. In order to do this, the variable θ(t) is

substituted by two periodic variables: s(t) = sin(θ(t)) and c(t) = cos(θ(t)).

Their derivatives are

ṡ(t) = θ̇(t) cos(θ(t)) = c(t)w(t) (4.9)

ċ(t) = −θ̇(t) sin(θ(t)) = −s(t)w(t) (4.10)
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4.3.2 Error model

The kinematic equations of the vehicle for the second model results from introducing the new

states, (4.9) (4.10), in the bicycle-like model, (3.1) to (3.3), are

ṗ =


ẋ

ẏ

ṡ

ċ

 =


c 0

s 0

0 c

0 −s


[
v

w

]
(4.11)

The new error states are se(t) = sin(θref (t) − θcur(t)) and ce(t) = cos(θref (t) − θcur(t)).
Thus, the error posture with these new states can be written as follows

pe =


xe

ye

se

ce

 =


ccur scur 0 0

−scur ccur 0 0

0 0 1 0

0 0 0 1

 (pref − pcur) =


ccur scur 0 0

−scur ccur 0 0

0 0 1 0

0 0 0 1




xref − xcur
yref − ycur

sin(θref − θcur)
cos(θref − θcur)



=


c(xref − xcur) + s(yref − ycur)
−s(xref − xcur) + c(yref − ycur)

sin(θref − θcur)
cos(θref − θcur)

 =


cos(θcur)(xref − xcur) + sin(θcur)(yref − ycur)
− sin(θcur)(xref − xcur) + cos(θcur)(yref − ycur)

sin(θref ) cos(θcur)− cos(θref ) sin(θcur)

cos(θref ) cos(θcur) + sin(θref ) sin(θcur)


(4.12)

If the error posture model is differentiated and manipulated, following the same procedure

used in Chapter 3 when calculating time derivatives of the error states, the error model ends

up being

ẋe = vrefce − vcur + yewcur (4.13)

ẏe = vrefse − xewcur (4.14)

ṡe = wrefce − cewcur (4.15)

ċe = −wrefse + sewcur (4.16)
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The matrix equivalent form is

ṗe =


ẋe

ẏe

ṡe

ċe

 =


ce 0

se 0

0 ce

0 −se


[
vref

wref

]
+


−1 ye

0 −xe
0 −ce
0 se


[
vcur

wcur

]
(4.17)

4.3.3 Error model with control actions

The control actions for the second model are the same as the ones used for the first one.

Therefore, they are the following

vcur = vref cos(θe) + vb = vref cos(θref − θcur) + vb = vrefce + vb (4.18)

wcur = wref + wb (4.19)

Introducing them in ṗe, (4.17), the error model with the control actions is obtained

ẋe = vrefce − vcur + yewcur = −vb + yewref + yewb (4.20)

ẏe = vrefse − xewcur = vrefse − xewref − xewb (4.21)

ṡe = wrefce − cewcur = −cewb (4.22)

ċe = −wrefse + sewcur = sewb (4.23)

which in matrix form is

ṗe =


ẋe

ẏe

ṡe

ċe

 =


ce 0

se 0

0 ce

0 −se


[
vref

wref

]
+


−1 ye

0 −xe
0 −ce
0 se


[
vcur

wcur

]

=


0 wref 0 0

−wref 0 vref 0

0 0 0 0

0 0 0 0




xe

ye

se

ce

 +


−1 ye

0 −xe
0 −ce
0 se


[
vb

wb

] (4.24)
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4.3.4 System in LPV form

Looking at the (4.24), it is important to realize that it is impossible to bring these states to zero

in the steady state. When se is zero ce will be one and vice versa. Looking at the control signal

of the linear velocity vcur = vrefce + vb , when the error is zero, it means that vcur = vref , then

ce must be one. Hence, the appropriate state variable to compute the state feedback control is

se because it will go to zero on the steady state. Then, the second model system is split in two

parts

ṗe =


ẋe

ẏe

ṡe

 =


0 wref 0

−wref 0 vref

0 0 0



xe

ye

se

 +


−1 ye

0 −xe
0 −ce


[
vb

wb

]
(4.25)

ċe = sewb (4.26)

The first part is the one that will be used to design the control. As it can be seen, the parameters

of A will never be 0 unless wref or vref are zero. Thus, the system is controllable anywhere

else.

4.4 Apkarian Filter

An LPV system in general form can be expressed as follows

ẋ = A(ϑ)x+B(ϑ)u (4.27)

y = C(ϑ)x+D(ϑ)u (4.28)

The followed procedure has been applied to embed all the nonlinearities and variable parameters

in matrix A. The aim is to transform the LPV system until it presents the following shape:

ẋ = A(ϑ)x+Bu (4.29)

y = Cx (4.30)

The first model, (4.8), and the second model, (4.25), have been transformed with the goal of

avoiding the dependency on varying parameters of matrix B. Here, a little trick is needed: the

order of the system is increased by adding a filter [14]. This filter is expressed in state space

form. Its state variables and input signals are selected consciously. The output of the new state
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space (the filter) is chosen in order to be equal to the input of the system we had, ub. The

state space of the filter is:

ẋu = Auxu +Buunew (4.31)

yu = ub = Cuxu (4.32)

where unew is the new control signal.

Thus, the augmented state space model including the filter states can be expressed as

follows:

ṗe = A(ε)pe +B(ε)ub = A(ε)pe +B(ε)Cuxu (4.33)

ẋu = Auxu +Buunew (4.34)

y = ub = Cx (4.35)

where ε are the varying parameters of the error model.

The augmented system in matrix form is the following:[
ṗe

ẋu

]
=

[
A(ε) B(ε)Cu

02x3 Au

][
pe

xu

]
+

[
0

Bu

]
unew (4.36)

y = ub = Cx (4.37)

where in the case of the first model the system matrices are given by:

A(ε) =


0 wref 0

−wref 0
vref sin(θe)

θe

0 0 0

 (4.38)

B(ε) =


−1 ye

0 −xe
0 −1

 (4.39)

while for the second model:

A(ε) =


0 wref 0

−wref 0 vref

0 0 0

 (4.40)
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B(ε) =


−1 ye

0 −xe
0 −ce

 (4.41)

and Cu is the identity matrix to ease the computations. Au is chosen to present negligible poles

that will not affect the results, Au =

[
−100 0

0 −100

]
, unew =

[
unew1

unew2

]
because the dimensions

must agree and Bu =



0 0

0 0

0 0

1 0

0 1


because the control variables of the augmented control are vb

and wb. Then, the augmented model for the two considered models can be written as follows:

– Augmented first model[
ṗe

ẋu

]
=

[
A(ε) B(ε)Cu

02x3 Au

][
pe

xu

]
+

[
0

Bu

]
unew

=



0 wref 0 −1 ye

−wref 0
vref sin(θe)

θe
0 −xe

0 0 0 0 −1

0 0 0 −100 0

0 0 0 0 −100





xe

ye

θe

xu1

xu2


+



0 0

0 0

0 0

1 0

0 1


[
unew1

unew2

] (4.42)

– Augmented second model

[
ṗe

ẋu

]
=

[
A(ε) B(ε)Cu

02x3 Au

][
pe

xu

]
+

[
0

Bu

]
unew

=



0 wref 0 −1 ye

−wref 0 vref 0 −xe
0 0 0 0 −ce
0 0 0 −100 0

0 0 0 0 −100





xe

ye

se

xu1

xu2


+



0 0

0 0

0 0

1 0

0 1


[
unew1

unew2

] (4.43)
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In both models, the output of the augmented system are the states xu1 , xu2 , which are

related with the inputs as xu1 = vb and xu2 = wb. Thus, matrix C of the augmented system is

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


(4.44)

With these transformation, the goal of having all the varying parameters inside matrix A

of the system has been achieved. Therefore, the augmented system is in the desired shape

ẋ = A(ϑ)x+Bu (4.45)

y = Cx (4.46)

4.5 LPV parameters

The bounding box of each model is obtained by taking all possible combinations of the varying

parameters in the augmented system into account. The varying parameters, ϑ, are scheduled

considering their scheduling variables.

– First model

The augmented system of the first model, (4.42), has the following varying parameters:

ϑ1 = wref

ϑ2 = −wref = −ϑ1

ϑ3 =
vrefsin(θe)

θe

ϑ4 = ye

ϑ5 = xe

hence, xe, ye, θe, vref and wref are the scheduling variables.

– Second model
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The augmented system of the second model, (4.43), has the following varying parameters:

ϑ1 = wref

ϑ2 = −wref = −ϑ1

ϑ3 = vref

ϑ4 = ye

ϑ5 = xe

ϑ6 = −ce

hence, xe, ye, ce, vref and wref are the scheduling variables.

4.6 LPV Controller

The designed controller is a state feedback LPV one (u = K(ϑ)x) that considers the decay

ratio as design parameter. This implies placing all the poles of the controlled system at the

hyperplane defined on the left side of a desired real value on the complex plane. The LMIs

used for this kind of design, taking into account the shape of the augmented system, are:

(A(ϑ) +BK)P + P (A(ϑ) +BK)t + 2αP < 0 , P > 0 ∀ ϑP > 0 (4.47)

where α is the desired value that defines the right boundary of the hyperplane. K is a propor-

tional controller that is computed for each vertex of the bounding box. The bounding box is

defined by the boundaries of the parameters of the augmented system. And P is a Lyapunov

function that, if it exists, ensures stability with the pre-specified decay rate.

4.6.1 Boundaries

Each one of the models has five scheduling variables to define the varying parameters. These

variables give a total of 25 possible combinations. The combinations define the varying pa-

rameters and therefore, the vertex of the bounding box that contains all possible operating

points.

The boundaries of these variables have been chosen taking into account the specifications

of the real car considered as case of study in this Thesis (Tazzari Zero, model Classic, [19]) and
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are the following:

• vref ∈ [0.1, 50] , the minimum value is chosen different to zero because the car would not

move otherwise.

• wref ∈ [−11.25, 11.25] , these values are obtained from the limitation imposed by the

steering angle (maximum 24o) and computing the equation of the bicycle model θ̇ref =
vref
L tan(ϕref ) = wref .

• xe ∈ [−0.5, 0.5] and ye ∈ [−0.5, 0.5] are chosen with the intention of limiting the error

between those boundaries.

• Only for the first model: θe ∈ [−1.5567, 1.5567] , these values are chosen considering

the assumption that the car will always move forward, hence the angle will always be

inside the range −90o < θ < 90o.

• Only for the second model: ce ∈ [0.1, 1] , these values are chosen following the same

assumption. Taking into account this assumption the values of cos(θe) will vary between

90o and −90o, which is equivalent to saying that the values of ce will be between [0, 1].

The 0 point has been avoided and changed by 0.1.

4.6.2 Control

Angular velocities of the system can be either positive or negative. This fact produces in-

feasibility at the time of computing the LMIs for a bounding box which includes all positive

and negative values. In order to make the set of LMIs feasible, the system has been split

in two groups, each one with different bounds of angular velocity. One for positive values of

wref =
[
0.1 11.25

]
and the other for wref =

[
−11.25 −0.1

]
. This procedure leads to the

necessity of using a switch to swap between the subsystems.

Switched LPV Control

When solving the path tracking problem treated in this Thesis using the LPV approach, a

singular point inside the bounding box, wref = 0, appears preventing from finding a solution.

Alternatively, the polytopic LPV model is decomposed in two different regions to avoid this

singularity formulating a switched LPV model. This model includes both continuous-valued

and discrete-valued varying parameters.
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The LMIs which need to be solved include the switched LPV model as follows

(Aσ(ϑ) +BKσ)P + P (Aσ(ϑ) +BKσ)t + 2αP < 0 , P > 0 ∀ ϑP > 0 (4.48)

where σ is the variable that allows the switching between subsystems.

Each LMI of the set of LMIs expressed in (4.48) should be solved for P and for K simulta-

neously. This is not possible because the problem is nonlinear. A variable change is made in

order to overcome this issue

K = WP−1 (4.49)

leading to the following LMI

Aσ(ϑ)P +BWσ + PAσ(ϑ)t +W t
σB

t + 2αP < 0 , P > 0 ∀ ϑP > 0 (4.50)

The total set of LMIs to be solved are 25 for each subsystem, obtaining 25 different W ’s.

Then, 25 K’s for each subsystem are computed from the W ’s. These controllers must be

weighted according to all operating points inside the bounding box.

Weighted controls

An LPV polytopic system is formally described by the equations

ẋ(t) =

N∑
i=1

µi(ϑ(t))(Aix(t) +Biu(t)) (4.51)

y(t) =
N∑
i=1

µi(ϑ(t))(Cix(t) +Diu(t)) (4.52)

where Ai, Bi, Ci and Di define the vertex systems. µi is the scheduling function, or wheights.

The varying parameters and weights fulfill the following condition:

N∑
i=1

µi(ϑ(t)) = 1, µi(ϑ(t)) ≥ 0, ∀i = 1, ..., N, ∀ϑ ∈ Θ (4.53)

where Θ is the polytope, or bounding box.

The states of the system are the ones that define the operating point and, therefore the

controller to use. In order to have a varying control, a set of functions are needed. They allow

us to map any operating point inside the bounding box with a weight of the control of each
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vertex. These functions, which depend on the parameters, express the degree of membership

that each vertex control will have in the final control action.

Each vertex controller Ki will have a weight depending on the operating point. This weight

is obtained with the aforementioned functions µi(ϑ). Some examples of these functions for the

second model are shown here

µ1(ϑ1, ϑ3, ϑ4, ϑ5, ϑ6) = M1min(wref )M3min(vref )M4min(ye)M5min(xe)M6min(ce)

µ2(ϑ1, ϑ3, ϑ4, ϑ5, ϑ6) = M1min(wref )M3min(vref )M4min(ye)M5min(xe)M6max(ce)

...

µ31(ϑ1, ϑ3, ϑ4, ϑ5, ϑ6) = M1max(wref )M3max(vref )M4max(ye)M5max(xe)M6min(ce)

µ32(ϑ1, ϑ3, ϑ4, ϑ5, ϑ6) = M1max(wref )M3max(vref )M4max(ye)M5max(xe)M6max(ce)

(4.54)

Linear interpolation rules are used to obtain the weights µi. The following expressions have

been used

Mimin =
ϑi(t)− ϑimin

ϑimax − ϑimin

(4.55)

which is zero when the parameter ϑi = ϑimax , and Mimax = 1−Mimin .

In total there are 25 rules of interpolation and mapping functions for each subsystem. Each

one of the rules of interpolation must have values between zero and one because the resulting

controller must be inside the bounding box of controllers. To do so, the value of a state is

assigned to be its maximum when its current value is higher than it. In the lower case, the

minimum is assigned.

The unified final gain of the controller at any instance of time is obtained by adding all 32

weighted controllers of the active subsystem

K(ϑ(t)) =
32∑
i=1

µi(ϑ(t))Ki (4.56)

Control law

State feedback control law is applied once the gain of the unified control is obtained

unew = K(ϑ)x = (

32∑
i=1

µi(ϑ)Ki)x (4.57)

These control inputs in the augmented state space are unew1 and unew2 . These inputs are

transformed into vb and wb unfiltering with the same Apkarian filter ((4.31) and (4.32)) used
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to move the varying parameters in B to the A matrix. As it has been stated in Section 4.4, the

dynamics of the filter are fast enough to not influence the rest of the system. Therefore, inputs

before being filtered and after being unfiltered are the same. Hence, the control actions of the

real vehicle are the following:

vcur = vrefce + vb (4.58)

wcur = wref + wb (4.59)
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Chapter 5

Results

This Chapter shows the different results obtained in simulation from the application of the

proposed LPV controller for the autonomous vehicle. A description of the Simulink scheme

used for simulation is given. Results are presented in an order to help the reader to understand

the design procedure for the first and the second model, which are compared in each step.

5.1 Introduction

Results of both models are shown as the Chapter progresses and the main differences between

them are pointed out. The order the results are presented follows the design procedure chrono-

logically. First of all, the controllers described in Chapter 4 have been separately checked for

each group of LMIs, wref > 0 and wref < 0, with random trajectories as the input refer-

ence. Once both subsystems work, the switched LPV controller is applied to the whole system.

Finally, two different reference trajectories: a line and a circle are tested. Reference inputs,

trajectories of the virtual and real vehicle, states, control inputs and errors between the virtual

and real vehicle’s output are the results of interest shown.

5.2 Description of the Simulink scheme of the system

Figure 5.1 shows the Simulink schematic used to simulate the system.
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Figure 5.1: Simulink scheme.

A brief description of the main blocks is given before starting showing the simulation results.

• Blue blocks: They define the reference trajectory using velocities. The one above is the

linear velocity reference and the one below is the angular velocity reference. The Simulink

block used is the Uniform random number, in both cases. The parameters of this block

are: minimum value, maximum value, mean value and sample time. The minimum and

maximum value have been chosen according to the boundaries described in Section 4.6.1.

Their values are between 0.1 and 50 in the case of linear velocities and between 11.25 and

-11.25 for angular velocities. The obtained signals are a chain of pulses. An example of

both reference signals is shown in Figure 5.2 and the trajectory resulting from applying

them to the virtual vehicle is presented in Figure 5.3. This approach to the reference

trajectory is not at all conservative, car velocities can change between any value inside

the boundaries in an instant of time. A real car will never behave like this, changes in

linear and angular velocities will be smoother. Therefore, if the system works in these

conditions, it will work with less constrained ones as well.

• Purple and light green block: They are the models (bicycle model) of both vehicles, the

virtual and the real car. Inside the blocks, the only difference between them is that the
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real car has got both inputs, the linear and angular velocity, saturated according to the

limits of the real vehicle.

• Yellow block: This block is the one that changes from the world to the vehicle reference

frame. Its outputs are the states of the system. For the first model: xe, ye, θe and for the

second model: xe, ye, se

• Orange block: This is the switched LPV controller. It is computed using the amplified

system as previously shown in Section 4.4. Therefore, it is different for the first and

second model.

• Dark green block: This is an state space block of the Apkarian Filter applied (for a more

detailed description see Section 4.4).

• Grey block: This is a block only used in the second model and is the one that implements

the variable change explained in Section 4.3.1.

• Thicker line: This connection between the cos(θe) and the switched LPV controller and

is only needed in the second model, because ce is the one varying its parameters.
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Figure 5.2: Inputs from Path Planner to generate the trajectory
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Figure 5.3: Example of trajectory

5.3 Results

5.3.1 Checking subsystems

The first step is to check that both families of controllers, wref > 0 and wref < 0 work. The

input reference signal of angular velocity is either positive or negative but not both. The

controller is the one computed taking the angular velocity sign into account. Figure 5.4 shows

the performed tracking of the real vehicle in both cases. Here, it is only shown for the second

model and it can be seen that it works in both families.
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Figure 5.4: Trajectories generated using either positive or negative anglular velocities
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5.3.2 Switched LPV controller

The switched LPV controller is tested once it has been checked that both families of controllers

work. Figure 5.5 shows the resulting trajectories of the real vehicle compared to the reference

one. The first model reaches the reference trajectory faster than the second model but both

succeed in tracking the reference trajectory.
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Figure 5.5: Trajectories of the two models compared to the reference trajectory

The states xe and ye are inside the desired design values (±0.5) as shown in Figure 5.6

and 5.7 (Section 4.6.1). Although, in Figure 5.6, when the path is not yet reached, there

are values outside the boundaries due to the fact that the initial conditions are outside the

designed parameters. Both models are capable of tracking the trajectory despite having these

initial conditions, which could be a hint of the robustness of the whole system.
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Figure 5.6: First and second model states
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Figure 5.7: Zoom on first and second model states

The control actions that have generated the studied trajectories for both models are shown

in Figure 5.8. It can be seen that the first model signals are saturated more often compared to

the second model ones. This explains why the first model is rougher and the the fact that it

struggles more than the second model when keeping the error low.
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Figure 5.8: Control actions that generate the trajectories

Figure 5.9 compares the errors between the virtual and real car for both models and it

confirms that the second model is smoother, with lower error values and shorter time reaching

the reference trajectory.
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Figure 5.9: Errors comparison of the two models along the trajectory
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5.3.3 Other trajectories

Two additional trajectories have been checked: straight line and a pure circle.

Straight Line

A straight line is obtained when the reference angular velocity is 0. This is the singular point of

the system (view Section 4.6.2). It confirms that the first model is faster and rougher looking

at Figure 5.10. In both models the error is very close to zero in the steady state.
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Figure 5.10: Trajectories of first and second model following a straight line

Circle

In this case, the differences in the time to reach the reference trajectory between both models

are confirmed again. The first model is faster.
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Figure 5.11: Trajectories of Model 1 and 2 following a circular trajectory
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Chapter 6

Sustainability: environmental, social

and economic impact

Nowadays, mobility and transportation play a very important role in our society. Autonomous

vehicles could be the new paradigm for it. The way it will affect us in the long run is not

determined but some clues exist. It will have an impact on the environment, our society and

the economy.

Environmental impact

One of the main targets of the autonomous car developers is to reduce the energy used for

travelling and enhance the comfort conditions. Fuel economy will benefit from it due to the

ability of optimizing the fuel efficiency and avoiding inadequate driving style. It is expected

that autonomous cars would make the traffic flow better, for instance reducing congestion in

urban areas.

Social impact

In my opinion, the main social benefit of automated driving is the possible effect that it can

have on the number of deaths and injuries on road. This is a fact in our society that will

hopefully change drastically as autonomous cars become widespread. The majority of traffic

accidents are caused by human errors. This is the reason why the majority of the developing

projects in transportation are related to safety issues.

Autonomous vehicles will open new possibilities of using and saving travelling time, instead

of driving the focus can be on other matters and also the car could go to the car park by itself,
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for example. A driverless vehicle offers the possibility of “driving” to users that are not able to

drive at the present time, for instance blind people.

There is a cultural frame around cars, freedom or status are good examples of it. This

culture will evolve and change as ideas of approaching transportation vary.

Economic impact

Every single concept that has already been mentioned will have an economic impact. The

average fuel economy and the better treatment of vehicles will improve and therefore, their

energy and maintenance expenses. Every life lost and injuries as a result of a traffic accident

has a social but also a financial cost. The possibility of saving and having more free time due

to transportation can be used, for instance, to enhance people and businesses’ productivity.

Companies in the transportation sector have the opportunity of cutting costs by reducing

the number of drivers. This would surely cause a social impact due to job losses. Another

sector that should adapt to the new paradigm is the insurance one. Insurances will no longer

be about writing individual insurance policies. Some investments in infrastructures might be

necessary to adapt the roads to the new way of travelling. This could be costly but in the long

term more efficient, hence it is difficult to predict the economic impact because the solution

that will be adopted is unknown at the moment. There might be an impact on the government

accounts since there will be more active and alive people than without autonomous cars. A

new legislation will be developed and it will affect the collection of fines, for instance.

On the whole, there will be deep but probably gradual changes in many aspects of our

everyday lives that will produce environmental, social and economic impacts. Although, lot of

people are still sceptical, autonomous applications are being introduced more often in our cars.

It seems that the tendency towards fully autonomous vehicles is almost unstoppable.
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Chapter 7

Conclusions and Future work

This Thesis has presented a very simple way of approaching the Motion Control procedure to

solve the Path Tracking Problem for an autonomous car-like vehicle. The most basic model

to represent the nonlinear behaviour of the vehicle, the bicycle model, has been adapted to a

Quasi-LPV form. Only five parameters and a very simple and intuitive control law have been

enough to compute a switched state feedback LPV controller, which has been designed using

the polytopic transformation via nonlinear embedding and bounding box approach in order to

perform the control of the system in an integrated way (lateral and longitudinal). As a result,

two different synthesized controllers have been obtained, compared and proved suitable to tackle

the Path Tracking Problem. Both controllers show very good results and seem very consistent

in the non-conservative simulation tests performed. These promising results encourage the

continuation on this path and the testing of these controllers in depth.

As a generalization, the steps to follow until the controllers are ready to be applied to a

real car would be: first, transform the continuous system treated in this Thesis into a discrete

one; second, test the controllers in a more accurate simulator where the environment takes the

dynamics of the real car into account; and finally, implement the controllers in the real car.

Nowadays, there is a project called Elektra in which an autonomous car is being developed by

CVC (Computer Vision Center) - UAB (Universitat Autònoma de Barcelona) – UPC (Univer-

sitat Politècnica de Catalunya). They already have a good simulator (developed in Unity) and

different controllers have been tested. This could be a good platform to continue developing

the controllers proposed in this Thesis.

In addition to this, there are plenty of possibilities for further enhancement of the con-

trollers. Some developing lines for further improvements are given here: different tuning could



66 Chapter 7. CONCLUSIONS AND FUTURE WORK

be applied, other or more design parameters taken into account, an observer could be added,

the way they deal with uncertainty (robustness) studied, or even protect the system with a

fault diagnosis and fault tolerant approach.

All in all and in my opinion, the approach followed in this Thesis to solve the Motion

Control Path tracking problem for autonomous vehicles should be taken in consideration, due

to its simplicity, intuitiveness and the fine simulating results obtained.
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Chapter 8

Cost of the project

This budget considers the time invested, the used assets and miscellaneous expenses that have

been necessary for the development of this research project.

Criteria

Time invested

The cost of the time invested has been calculated taking into account an annual base salary

of 40.000e plus 30% of it that companies pay to the Social Security in Spain. The amount of

working hours in 2016 are around 1780. Therefore, the cost per hour is 29.21e . This value is

the cost, it is not what should be invoiced.

Assets

The main assets used in this project have been a computer and Matlab and Simulink software.

The cost of the computer is 600e, the Matlab individual licensing is 2.000e and the Simulink

one is 3.000e. In order to compute the associated cost, the amortization time considered has

been five years. The final cost is computed from the cost of the asset, the hours dedicated to

the project and the amortization time.

Other costs

This section includes miscellaneous expenses like: paper, ink, energy used, travel expenses and

meals when needed. This has been approximately computed due to my work base during the

project being my home which is not a rented office space.
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Cost breakdown

Staff costs

Hours € per hour Total € 

Formation 110,00 29,21 3.213,10 

Project development 420,00 29,21 12.268,20 

Memory 170,00 29,21 4.965,70 

20.447,00 

Assets costs

Price € 

% of a year 

worked Total € 

Computer 600,00 39,33% 47,19 

Matlab licensing 2.000,00 39,33% 157,30 

Simulink licensing 3.000,00 39,33% 235,96 

440,45 

Other costs

Total € 

Miscellaneous expenses 250,00 

Total Cost ..................................................................... 21.137.45e
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