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Abstract

In this thesis, a Takagi-Sugeno model for an Attitude/Altitude model of a quadrotor

system is developed. With this Takagi-Sugeno model, a gain-scheduling state-feedback

controller, as well as a state observer, have been designed for altitude and orientation

control. Then, two different control schemes are analyzed in order to have a good perfor-

mance on tracking changing references in the Attitude/Altitude control. Then an Integral

Backstepping controller has been designed for the control of horizontal position. The sta-

bility of the whole control system has been studied, and finally the models and controllers

have been tested in a simulation environment.
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Chapter 1

Introduction

1.1 Motivation

Linear control theory provides powerful tools for analysis and design of controllers. How-

ever, in the case of non-linear systems the control techniques are often not systematic and

hardly generalizable. The design of gain scheduled linear controllers at different operat-

ing points allows the application of all the tools from linear control theory to non-linear

systems conveniently extended.

One popular approach for gain-scheduling control is based on the Linear Parameter Vary-

ing (LPV) paradigm. LPV models has been applied in a widely range of systems [1,

p. 10], including Unmanned Aerial Vehicles (UAVs). Takagi-Sugeno (TS) paradigm is an

alternative approach that has been proven to be equivalent to LPV paradigm [1]. Due

to this equivalency between LPV and TS models, it would be interesting to explore the

application of TS framework to a quadrotor system, that has been typically controlled

applying the LPV paradigm.

1.2 Objectives

The main goal of this thesis is the design of a gain-scheduling controller for a quadrotor

system using the Takagi-Sugeno paradigm. The specific objectives are the following:

1



2 Chapter 1. Introduction

• To develop a Takagi-Sugeno model from the Attitude/Altitude (AA) model of the

quadrotor system.

• To design a state feedback controller for altitude and orientation control using the

previous TS model.

• To design a controller for tracking of 3D trajectories, using the previous control and

a new control for horizontal position.

• To test the resulting controllers in a simulation environment.

1.3 Outline of the thesis

This thesis has been structured as follows:

Chapter 2: This chapter reviews general concepts about the quadrotor system. The fun-

damentals of Takagi-Sugeno fuzzy models and Parallel Distributed Compensation tech-

nique are explained. Finally the basic concepts of quadratic stability and pole placement

using LMI’s are explained.

Chapter 3: This chapter has been dedicated to the derivation of two Altitude/Atti-

tude quadrotor models: the simulation AA model, which will represent the real system

in simulation; and the Takagi-Sugeno (TS) control model used for the design of the Alti-

tude/Attitude controller. Two Takagi-Sugeno models has been derived: the first one (TS)

is obtained directly from the AA model whereas the second one (TS-LIA) is obtained from

the AA model considering a linear approximation in the input. Finally, the simulation

model and the TS models has been simulated, compared and validated.

Chapter 4: In this chapter, the theoretical concepts about the control of altitude and

orientation has been derived. In the first part, a state feedback controller and a state

observer are developed. In the second part, two different control schemes for tracking of

variable references are computed: the FeedForward (FF) control scheme and the Reference

Model based FeedForward (RM-FF) control scheme.
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Chapter 5: This chapter shows the development of an Integral Backstepping (IB) con-

troller that, combined with the Altitude/Attitude controller, provides the tracking control

of trajectories in 3D space. The general control scheme for path following requires the

computation of references for roll and pitch orientations. The formulas for these compu-

tations are derived, and finally the stability of the global system is analysed.

Chapter 6: In this chapter, some examples of controllers has been tested in simulation.

First, three different state feedback controllers and a state observer have been designed.

Then, the RM-FF control scheme for reference tracking is implemented and simulated.

Finally, some examples of 3D trajectory tracking are simulated.

Chapter 7: In this final chapter, the conclusions and further work are discussed.

Appendix A: The contents of the appendix are the following: In the first section, the

Newton-Euler model of the quadrotor system is explained in detail. The second section

summarizes the values of constants and parameters used in the models. The third section

explains some generalities about Takagi-Sugeno models and how to reduce the number of

rules. The last section shows how the membership functions are obtained for the case of

triangular and rectangular polytopes.

Appendix B: Costs and sustainability.





Chapter 2

Background

In the first section of this chapter the basic concepts about the quadrotor system are

explained. In the next sections, the fundamentals about Takagi-Sugeno models and Par-

allel distributed Compensation approach is presented. Finally, the problem of designing

a state-feedback controller using LMIs is explained.

2.1 Quadrotor system

A quadrotor helicopter is an Unmanned Aerial Vehicle (UAV) with four propellers dis-

tributed as it is shown in the scheme of Figure 2.1. In that scheme, the quadrotor is seen

from "above", being the "front" direction the one indicated with an arrow in the propeller

named as ’1’.

The quadrotor system can fly vertically or stay stationary in the air, just like any other

VTOL (Vertical Take-Off and Landing) vehicle. However, one particularity of this kind of

VTOL (unlike the traditional helicopter configuration of rotors) is that all the propellers

are on the same plane. In a helicopter, a tail rotor (orthogonal to the main rotor) is

needed to produce a ’yaw’ rotation (a rotation with respect the axis orthogonal to the

picture of Figure 2.1). In order to produce the yaw rotation in the quadrotor, the front

and rear propellers (1 and 3) rotate in one direction, and the other pair of propellers (2

and 4) rotates in the opposite direction, just as it is indicated with arrows in the scheme.

5



6 Chapter 2. Background

Figure 2.1: Scheme of the quadrotor system

The propellers rotating in the direction shown in Figure 2.1 always generate a force on

the quadrotor pointing upwards. When all the propellers have the same angular speed,

and the force generated compensates gravity, then the quadrotor is in hovering condition.

In that state there are no rotations nor translations, so the quadrotor stays stationary in

the air.

By changing some of the propellers speed from the hovering value, the following four basic

movements can be developed:

• Vertical acceleration: If all four propellers rotates at the same angular speed,

but the lift force is bigger (or lower) than the one due to gravity, then the quadrotor

accelerates vertically upwards (or downwards). When the plane of the quadrotor is

not orthogonal to gravity acceleration vector, the quadrotor also has an horizontal

component in its acceleration vector.

• Roll: When propellers 1 and 3 rotates at same speed but speed of 2 and 4 are

different from each other, an angular acceleration is generated in the direction of

the vertical axis shown in Figure 2.1.

• Pitch: When propellers 2 and 4 rotates at same speed but speed of 1 and 3 are

different, an angular acceleration is generated in the direction of the horizontal axis
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shown in Figure 2.1. Due to the symmetry of the system the dynamics regarding

this movement will be similar to the roll rotation.

• Yaw: Finally, let us imagine that the four propellers generates a force that com-

pensates gravity, but they do not have all the same angular speed. Instead of that,

propellers 1 and 3 rotates at one speed and propellers 2 and 4 rotates at other dif-

ferent speed. As a result, the counter-torque between each pair of propellers is not

compensated anymore [2]. The consequence is an angular acceleration, known as

yaw, with respect the axis orthogonal to the plane of the quadrotor.

In Figure 2.2, it is shown the relation between the basic movements explained above and

the angular speed of the propellers.

(a) Lift (b) Roll

(c) Pitch (d) Yaw

Figure 2.2: Scheme of basic movements when propellers rotate at higher (green lines),
lower (red lines) or at equal (black lines) speed than the hovering value.
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2.2 Takagi-Sugeno fuzzy models

This section will introduce some basic concepts about the construction of Takagi-Sugeno

(TS) fuzzy models.

A TS fuzzy model allows the representation of a non-linear model as a set of local LTI (Lin-

ear Time Invariant) models [1, p. 10], each one called subsystem. A subsystem is the local

representation of the system in the space of premise variables z(t) = [z1(t) z2(t) . . . zp(t)],

which are known and could depend on the state variables and input variables. Each sub-

system ẋ(t) = Ai x(t) + Bi u(t) has a fuzzy rule associated with the following form

[3]:

IF z1(t) is Mi1 and z2(t) is Mi2 . . . and zp(t) is Mip,

THEN ẋ(t) = Ai x(t) +Bi u(t), i = 1, 2, . . . , r.
(2.1)

There are r fuzzy rules, as many as subsystems. The i-th rule (2.1) of the TS model

can be read as follows: if the premise variable z1(t) belongs to the fuzzy set Mi1 up to

some degree, and z2(t) belongs to the fuzzy set Mi2 up to some degree, and the same

for the other premise variables and fuzzy sets, then the TS fuzzy model is equivalent to

subsystem ẋ(t) = Ai x(t) + Bi u(t) up to some degree. In the especial case where all

the premise variables totally belongs to the corresponding fuzzy sets, then the TS model

is exactly the i-th subsystem.

The fuzzy sets can be seen as labels that does not represent a concrete value of the premise

variables, but a subjective value instead. In (2.1), the IF condition labels the premise

variables with the meaning associated with the fuzzy set. For example, the meaning of

Mi1 could be that z1(t) is “big” or “positive” or “non-negative”, etc. In order to compute

the degree of membership of a premise variable to a fuzzy set, a membership function is

needed. The process of mapping the premise variables into the subjective values is known

as fuzzification [4].

The next step after the fuzzification is the inference of the model from the values of the

membership functions. In this step, the output of each rule is computed, which in the
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case of a TS model is just the non-linear model evaluated at one operating point (i.e. the

subsystems matrices Ai and Bi).

Remark 2.1. In this work, the fuzzy sets are based on the bounds of the premise variables.

Therefore each premise variable has two membership functions: the one related with the

lower bound and the one related with the upper bound.

The last step is the defuzzification, where a mapping between the fuzzy output (i-th

subsystem) and a particular linear model is done [4]. Given the input and state vectors

(u(t),x(t)), and the premise variables z(t), the output model is computed as follows [3]:

ẋ =
r
∑

i=1

hi(z(t)) {Ai x(t) +Bi u(t)} =

(

r
∑

i=1

hiAi

)

x(t) +

(

r
∑

i=1

hiBi

)

u(t) (2.2)

Where the activation function hi is:

hi(z(t)) =
wi(z(t))

∑r

i=1wi(z(t))
, wi(z(t)) =

p
∏

j=1

Mij(z(t)) (2.3)

The weight wi measures the degree of membership of all the premise variables in the

related fuzzy set of the i-th rule. The activation function is the normalization of these

weights, so that the sum of activation functions is one.

Remark 2.2. As it is shown in (2.3), the normalization is done after the product of mem-

bership functions. However, in this work an equivalent procedure is applied, where the

membership functions maps the premise variables to values between 0 and 1, and then the

activation function is computed as the product of membership functions. Let consider a

simple case of two bounded premise variables z1(t) and z2(t) where the difference between

the upper and lower bound is L1 and L2, respectively. The membership functions are the

distances to the bounds, such that a bigger value means a higher degree of membership

to the fuzzy set. For example, the degree of membership to the fuzzy set “small” in the

case of z1(t) would be measured by the distance from z1(t) to the upper bound of z1(t).
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Then, the fuzzy sets that appear in each rule are:

R1: M11 = “small” , M12 = “small”

R2: M21 =M11 = “small” ,M22 = L2 −M12 = “big”

R3: M31 = L1 −M11 = “big” ,M32 =M12 = “small”

R4: M41 = L1 −M11 = “big” ,M42 = L2 −M12 = “big”

The sum of weights is:

4
∑

i=1

wi(z(t)) =
4
∑

i=1

(

2
∏

j=1

Mij

)

=M11M12 +M21M22 +M31M32 +M41M42 =

=M11M12 +M11(L2 −M12) + (L1 −M11)M12 + (L1 −M11)(L2 −M12) =

= L1L2

The activation function of rule i can be written as the product of normalized membership

functions M̄i1, M̄i2:

hi(z(t)) =
wi(z(t))

∑4
i=1wi(z(t))

=
Mi1Mi2

L1L2

= M̄i1M̄i2, M̄i1 =
Mi1

L1

, M̄i2 =
Mi2

L2

TS fuzzy models are universal approximators [4], which means that any non-linear model

can be expressed with any arbitrary accuracy by a set of rules and LTI subsystems as

shown in (2.1) and (2.2). However, in general the accuracy of the model will depend on

the number of fuzzy rules, i.e. the number of subsystems considered [4]. In the example

shown in Remark 2.2, there are two premise variables and two membership functions for

each variable, so there are 22 = 4 rules.

In general, if there are two membership functions for each premise variable and all the

combinations of fuzzy sets are considered, for k premise variables there are 2k rules and

subsystems. This could lead into a problem regarding the computational time in the design

of the controller and the performance of the simulations. Therefore there is a trade-off
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between accuracy and dimensionality that could make difficult to find an appropriate TS

model.

About the construction of the fuzzy model, there are two different approaches to the

problem of obtaining the set of LTI systems from the non-linear model: one is the local

sector non-linearity and the other one is the local approximation of fuzzy partition spaces

[3].

Let consider a simple non-linear first-order differential equation ẋ(t) = f(x(t)), defined in

some interval of x around zero. The idea of local sector non-linearity is to find two linear

differential equations a1x(t) and a2x(t) that bounds the function f(x(t)) in the interval.

An advantage of this approach is that the fuzzy model is not an approximation of the

non-linear model, and the non-linearity is embedded in the premise variables so the model

exactly represents the non-linear system in the local region [3].

In the local approximation approach, the linear subsystems are found by approximating

the non-linear terms to linear expressions. An example of this approach can be seen in

[5], where the whole non-linear model is linearized using Taylor series expansion around

three different operating points. The main advantage of this method is the reduction of

the number of rules.

In this work, two different Takagi-Sugeno models has been derived: the first one is based

on the sector non-linearity approach (see Section 3.2), whereas the second one is obtained

by a combination of both approaches (see Section 3.3).

2.3 Parallel Distributed Compensation

Given a TS fuzzy model, a gain-scheduled controller can be design using the Parallel

Distributed Compensation (PDC) approach [3]. In this approach a fuzzy controller is

constructed with the same number of fuzzy rules than subsystems of the TS fuzzy model.

For each subsystem of the fuzzy TS model, a state feedback controller is designed. Note

that a linear controller can be designed since the subsystems are LTI systems. The i-th
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rule of the fuzzy controller is shown in (2.4). Note also that the condition is equivalent

to rule i-th of the fuzzy model (2.1).

IF z1(t) is Mi1 and z2(t) is Mi2 . . . and zp(t) is Mip,

THEN u(t) = Ki x(t), i = 1, 2, . . . , r.
(2.4)

The rule of a fuzzy controller can be read in a similar way than a rule of the TS model:

if the premise variable z1(t) belongs to the fuzzy set Mi1 up to some degree, and z2(t)

belongs to the fuzzy set Mi2 up to some degree, and the same for the other premise

variables and fuzzy sets, then the controller gain is Ki up to some degree.

The defuzzification of the controller (2.5) is performed by computing a linear combination

of the controllers for each subsystem Ki and using the same activation functions (2.3)

than in the defuzzification of the TS model.

u(t) =
r
∑

i=1

hi(z(t)) Ki x(t) (2.5)

By substituting (2.5) into (2.2), the closed loop system (2.6) is obtained.

ẋ =
r
∑

i=1

r
∑

j=1

hi(z(t))hj(z(t)) {Ai +Bi Kj} x(t) (2.6)

2.4 Controller design based on LMI’s

In this section, it will be explained how to compute the set of controllers Ki shown in

(2.5) so that the closed-loop system (2.6) is stable. First, let define some concepts about

Lyapunov stability, quadratic stability and D-Stability in a LMI region D.
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2.4.1 Quadratic stability

Let consider an autonomous system ẋ = Ax with A being a constant matrix. If we define

the Lyapunov function V (x) = xTPx, then the system is stable if there exist P > 0 such

that condition (2.7) is satisfied [6, p. 96].

ATP + PA < 0 (2.7)

If we have a family of matrices A(δ(t)) (where δ(t) is a parameter that is bounded by a

polytope ∆) instead of a single matrix A, then the system equation becomes ẋ = A(δ(t))x

and condition (2.7) should be satisfied for all possible values of δ(t). If exists P > 0 such

that (2.8) is satisfied then the system is quadratically stable [1, p. 24].

A(δ(t))TP + PA(δ(t)) < 0 ∀δ(t) ∈ ∆ (2.8)

Since there are an infinite number of matrices A(δ(t)) there is also an infinite number of

constraints like (2.8) that should be fulfilled. From a practical point of view this makes

the problem impossible to be solved. Let consider now that the system ẋ = A(δ(t))x

can be written in a polytopic form (2.9) as a Takagi-Sugeno (TS) polytopic system with

premise variables z(t) and a set of r subsystems Ai for i = {1, . . . , r}.

ẋ(t) =
r
∑

i=1

hi(z(t)) Ai x(t) (2.9)

It can be proven [1, p. 31] that a polytopic autonomous system (2.9) is quadratically

stable if condition (2.8) is satisfied in the vertices (subsystems) of the polytope (2.10).

Therefore there is no need to check stability in an infinite number of matrices, but only

in subsystems matrices Ai.

AT
i P + PAi < 0 ∀i = 1, . . . , r (2.10)
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Note that the closed-loop system in (2.6) is an autonomous TS polytopic system. As it

is shown in [3, p. 51], stability conditions (2.10) can be applied to the closed-loop system

(2.6) and the following set of conditions are obtained

GT
ii P + P Gii < 0 ∀i = 1, . . . , r

(

Gij +Gji

2

)T

P + P

(

Gij +Gji

2

)

≤ 0 ∀i, j ∈ {1, . . . , r}, i < j
(2.11)

where Gij = Ai +BiKj and hi(z(t))hj(z(t)) 6= 0.

In the special case where matrices Bi are constant (i.e. Bi = B), the first set of in-

equalities in (2.11) are enough to prove stability. Therefore, assuming constant B for all

the subsystems, if there exist P > 0 such that conditions (2.12) are fulfilled, then the

polytopic TS model (2.2) with state feedback control (2.5) is quadratically stable inside

the polytope.

(Ai +BKi)
T P + P (Ai +BKi) < 0 ∀i = 1, . . . , r (2.12)

Remark 2.3. The assumption of constant B can be achieve using a prefiltering of the

input [1, p. 44]. This change is not restrictive and the main consequence is the addition

of some new state variables (the ones from the filter) to the TS model.

The design of the controller that stabilizes the closed-loop system boils down to solve the

Linear Matrix Inequality (LMI) problem of finding a positive definite matrix P and a set

of matrices Ki such that conditions (2.12) are fulfilled. However, since the constraints

should be linear combinations of the unknown variable, the following change of variables

is applied: Wi = KiQ where Q = P−1. The solution of the LMI problem is the set of

matrices Wi such that conditions (2.13) are fulfilled.







Q > 0

AiQ+QAT
i +BWi +W T

i B
T < 0 ∀i = 1, . . . , r

(2.13)

The i-th controller is computed from the solution as Ki = WiQ
−1.
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2.4.2 Pole placement

We may want not only ensure stability to the closed-loop system but also impose some

conditions regarding the performance. This is done by placing the complex poles of the

system in a particular LMI region inside the complex plane.

A region D in the complex plane is an LMI region if it can be defined by (2.14) for some

symmetric matrix L and matrix M . An LMI region is always convex and symmetric

about the real axis [6, p. 103].

D =
{

s| s ∈ C, L+ sM + s̄MT < 0
}

(2.14)

Let consider again the polytopic autonomous system (2.9). The system is quadratically

D-stable if the poles are in the LMI region D. The required condition for D-stability is

shown in (2.15), where operator ⊗ represents the Kronecker product [1, p. 32].

L⊗ P +M ⊗ PAi +MT ⊗AT
i P < 0 ∀i = 1, . . . , r (2.15)

If we assume constant matrices B, condition (2.15) applied to the closed-loop system (2.6)

produces a condition equivalent to (2.12) in the quadratic stabilization problem, where

matrices Ai in (2.15) are substituted by matrices Gii = Ai +BiKi

L⊗ P +M ⊗ P (Ai +BKi) +MT ⊗ (Ai +BKi)
TP < 0 ∀i = 1, . . . , r (2.16)

The design of the controller that sets the poles in the LMI region D involves solving the

Linear Matrix Inequality (LMI) problem of finding a positive definite matrix P and a set

of matrices Ki, as in the quadratic stabilization problem.





Chapter 3

Quadrotor models

In the first section of this chapter, the dynamic model of the quadrotor system is pre-

sented. This model will represent the real system in the simulations, and is needed for the

generation of the Takagi-Sugeno models. The modelling part is based mainly on the work

of Bresciani [7], who applies the Newton-Euler formalism in order to derive the differential

equations of the model. The Attitude/Altitude (AA) model is obtained in state space

form and the equilibrium points are computed.

In the following sections, two Takagi-Sugeno models from the AA model of the quadrotor

has been derived. The first TS model is obtained by applying the sector non-linearity

approach. In order to reduce the number of premise variables, a second TS-LIA model has

been derived by a combination of sector non-linearity and local approximation approaches.

Finally, both TS models has been simulated and validated.

3.1 Quadrotor non-linear model

In order to design an appropriate controller for the quadrotor system, we need first and

appropriate mathematical description of the system. This (the dynamical model) will

consist of six second-order non-linear differential equations, each one for one degree of

freedom of the system (three translations and three rotations). These equations will

explain how the position and orientation of the quadrotor (kinematics) is affected by the

17
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forces and torques generated by the propellers (dynamics). A complete derivation of this

equations is given in [7], where the Newton-Euler formalism is applied. Here, a brief

description of that procedure will be explained, following the same notation as much as

possible.

Each one of the basic movements described in Section 2.1 is directly related with a force

or a torque in a principal direction of the quadrotor (the two axes where the propellers

are attached and the axis orthogonal to the picture in Figure 2.1). Although it seems

natural to define the position and orientation in an Earth inertial reference frame, it is

easier to formulate the dynamic equations in a body fixed frame where the axes are the

principal directions just mentioned.

In Figure 3.1, both Earth inertial reference frame (E-frame) and quadrotor body-fixed

reference frame (B-frame) are shown. Each reference frame is defined by an origin point

and three orthogonal vectors. The E-frame has an arbitrary origin in OE, and ZE is

pointing upwards. The body-fixed reference frame has the origin OB attached center of

the quadrotor, and the axes are such that XB points to propeller 1, YB points to propeller

4, and ZB is orthogonal to both XB and YB.

Figure 3.1: Earth reference frame (E-frame) and quadrotor reference frame (B-frame).

Let define the generalized position vector ξ, which includes the coordinates of OB in

E-frame (named as Γ = [X Y Z]T , also shown in Figure 3.1) and the angular position

Θ = [ϕ θ ψ]T , in Euler angles:

ξ =
[

Γ Θ

]T

=
[

X Y Z ϕ θ ψ
]T

(3.1)
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The generalized position vector defines the position and orientation of B-frame with re-

spect E-frame. To obtain B-frame from E-frame, we should translate the reference as

indicates Γ, and then first rotate an angle ψ about ZE axis (named yaw), then rotate θ

about the new (after yaw rotation) YE axis (named pitch), and finally rotate ϕ about the

new (after yaw and pitch rotations) XE axis (named roll).

The derivative of the generalized position vector ξ is the generalized velocity vector ξ̇,

which includes the linear velocity of the quadrotor in E-frame Γ̇ = [Ẋ Ẏ Ż]T , and the

rate of change of Euler angles Θ̇ = [ϕ̇ θ̇ ψ̇]T

ξ̇ =
[

Γ̇ Θ̇

]T

=
[

Ẋ Ẏ Ż ϕ̇ θ̇ ψ̇
]T

(3.2)

We want the velocity (and also the acceleration) vector to be expressed in B-frame because

the dynamic equations will be derived on that reference frame. Therefore, we can also

define the generalized velocity vector in B-frame as ν, which includes the linear velocity

of the quadrotor in B-frame V = [u v w]T and the angular velocity of the quadrotor in

B-frame ω = [p q r]T

ν =
[

V ω

]T

=
[

u v w p q r
]T

(3.3)

Linear and angular velocity vectors in both frames are related by the following formulas:

Γ̇ = R(Θ) · V , Θ̇ = T (Θ) · ω (3.4)

where R(Θ) is the rotation matrix and T (Θ) is the Euler matrix. Those matrices are

defined as follows (considering ck = cos(k), sk = sin(k) and tk = tan(k)):

R(Θ) =











cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψsθcϕ

sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψsθcϕ

−sθ cθsϕ cθcϕ











(3.5)
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T (Θ) =











1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ/ cos θ cosϕ/ cos θ











(3.6)

Remark 3.1. The angular velocity vector ω is not equal to the rate of change of Euler

angles Θ̇. They are equivalent only if matrix T (Θ) is diagonal, i.e. if the quadrotor is in

hovering condition (θ = ϕ = 0).

Summarizing, up to now the following vectors have been defined: the linear and angular

positions in E-frame (ξ), linear and angular velocities in E-frame (ξ̇), and linear and

angular velocities in B-frame (ν). Now an hybrid frame will be considered, such that

the linear velocities and accelerations will be referred to E-frame, whereas the angular

velocities and accelerations will be referred to B-frame. Therefore a new generalized

velocity vector ζ must be defined, which combines the linear part of ξ̇ with the angular

part of ν

ζ =
[

Γ̇ ω

]T

=
[

Ẋ Ẏ Ż p q r
]T

(3.7)

So, finally the position vector is ξ, the velocity vector is ζ, and the acceleration vector

is just the derivative of the velocity ζ̇. According to [7], the dynamics equations in the

hybrid frame can be written as

M ζ̇ +C(ζ) ζ = G+O(ζ) Ω+E(ξ) Ω2 (3.8)

The explanation of each term is shown in Section A.1.

A more useful representation of the model instead of the matrix version (3.8) is the set

of differential equations
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













































































Ẍ = (sinψ sinϕ+ cosψ sin θ cosϕ)
U1

m

Ÿ = (− cosψ sinϕ+ sinψ sin θ cosϕ)
U1

m

Z̈ = −g + (cos θ cosϕ)
U1

m

ṗ =
IY − IZ
IX

q r −
JTP
IX

q Ω +
U2

IX

q̇ =
IZ − IX
IY

p r +
JTP
IY

p Ω +
U3

IY

ṗ =
IX − IY
IZ

p q +
U4

IZ

(3.9)

where the acceleration vector ζ̇ has been isolated. Note that Ω is an scalar value different

from the vector Ω defined in (A.6).

The overall velocity Ω, the lift force U1 and torques U2, U3 and U4 are:



















































U1 = b (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = bl (−Ω2
2 + Ω2

4)

U3 = bl (−Ω2
1 + Ω2

3)

U4 = d (−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

Ω = −Ω1 + Ω2 − Ω3 + Ω4

(3.10)

Equations in (3.9) describes the dynamics of the (simplified) quadrotor system. Note that

there are three second-order differential equations and three first-order differential equa-

tions (instead of six second-order differential equations). As it was mentioned previously,

the velocity vector ζ is not just the derivative of the position vector ξ because of the

different frames taken for the linear and angular variables (i.e. Θ̇ 6= ω). Therefore, the

complete version of these equations should include another three first-order differential

equations which relates the angular position Θ with the angular velocity ω. This relation

can be obtained from the second equation in (3.4), repeated and expanded for convenience

as follows
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





















ϕ̇ = p+ sinϕ tan θ q + cosϕ tan θ r

θ̇ = cosϕ q − sinϕ r

ψ̇ =
sinϕ

cos θ
q +

cosϕ

cos θ
r

(3.11)

3.1.1 Attitude/Altitude model in state-space form

The control of the quadrotor will be divided on two different stages or blocks, as it will be

explained in more detail in Chapter 5. One block is related with the control of attitude

(desired value of the orientation in Euler angles, i.e. the desired Θ) and the control of

altitude (height position Z). The second control block will provide to the first block a

desired θ (pitch) and ϕ (roll) angles, which will allow the control of the horizontal position

(i.e. X and Y ). Therefore, for the first control block the first two equations in (3.9) will

not be considered.

Let define the state vector x, which includes (in a different order) the components of

the position vector ξ (3.1) and the velocity vector ζ (3.7) (without the mentioned linear

positions and velocities regarding X and Y ). Also the input vector u is defined, which

contains the four propeller speeds (so its equivalent to vector Ω)

x =
[

Z vZ ϕ θ ψ p q r
]T

, u = Ω =
[

Ω1 Ω2 Ω3 Ω4

]T

(3.12)

where vZ = Ż. Then (3.9) and (3.11) can be written together as a set of eight first-order

differential equations in a non-linear state space form (3.13). Inputs (U1, U2, U3, U4) and

Ω has been substituted by (3.10) so that the input are the speed of the propellers.
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
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





















ż = vZ

v̇Z = −g +
b

m
cos θ cosϕ (Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

ϕ̇ = p+ sinϕ tan θ q + cosϕ tan θ r

θ̇ = cosϕ q − sinϕ r

ψ̇ =
sinϕ

cos θ
q +

cosϕ

cos θ
r

ṗ =
IY − IZ
IX

q r −
JTP
IX

q (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IX
(Ω2

4 − Ω2
2)

q̇ =
IZ − IX
IY

p r +
JTP
IY

p (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IY
(Ω2

3 − Ω2
1)

ṙ =
IX − IY
IZ

p q +
d

IZ
(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4)

(3.13)

As commented in the beginning of this section, the general goal of the controller is not to

control the attitude, but the position (X, Y, Z) instead. It is assumed as a hypothesis that

the quadrotor will be close to the hovering condition while it follows a desired trajectory

[7, p. 33]. As a consequence of this assumption the Euler matrix (3.6) is close to the

identity matrix (Remark 3.1). In other words, it can be assumed from (3.4) that Θ̇ ≈ ω,

so the rate of change of Euler angles are just ϕ̇ = p, θ̇ = q and ψ̇ = r.

After assuming this hypothesis, equations (3.13) becomes:




































































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
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



















ż = vZ

v̇Z = −g +
b

m
cos θ cosϕ (Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

ϕ̇ = p

θ̇ = q

ψ̇ = r

ṗ =
IY − IZ
IX

q r −
JTP
IX

q (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IX
(Ω2

4 − Ω2
2)

q̇ =
IZ − IX
IY

p r +
JTP
IY

p (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IY
(Ω2

3 − Ω2
1)

ṙ =
IX − IY
IZ

p q +
d

IZ
(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4)

(3.14)
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3.1.2 Equilibrium points

The state vector x and the input u defines an equilibrium point for the system if, when

the system is on that state and the input is applied, the state does not evolve over time.

Therefore the equilibrium points are the set of solutions x = x∗ and u = u∗ for the

system of equations ẋ = 0.

From (3.14) it can be easily seen that v∗Z = p∗ = q∗ = r∗ = 0. From the last three equations

we see that all the propellers speed must be the same to avoid angular accelerations (i.e.

Ω∗
1 = Ω∗

2 = Ω∗
3 = Ω∗

4 = Ω∗).

Finally, from the second equation of (3.14) we see that the lift force applied by the

propellers must compensate the force of gravity:

Ω∗ =
1

2

√

m g

b cos θd cosϕd
(3.15)

Remark 3.2. The equilibrium input shown in (3.15) is valid for any θd and ϕd different from

±π/2. The equilibrium of the AA model (3.14) can be achieved without satisfying the

hovering condition (i.e. being θ and ϕ not zero), because this condition is not required in

order to have null vertical acceleration and null rotation accelerations. However, hovering

condition is required in the complete model (3.9), because it is in equilibrium (without

horizontal acceleration) only if θ∗ = ϕ∗ = 0. Then, the equilibrium input for the complete

model becomes Ω∗ = ΩH , computed as:

ΩH =
1

2

√

m g

b
(3.16)

For any desired height Zd and orientation (ϕd, θd, ψd), the equilibrium state x∗ and input

u∗ is:

x∗ =
[

Zd 0 ϕd θd ψd 0 0 0
]T

, u∗ = Ω∗
[

1 1 1 1
]T

(3.17)
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3.2 Quadrotor Takagi-Sugeno model

Given the state space non-linear equations (3.14) of Altitude/Attitude model of the

quadrotor, the idea is to obtain a set of LTI subsystems using the local sector non-linearity

approach. The first step is to write equations (3.14) on the following linear form:

ẋ(t) = A(z(t)) x(t) +B(z(t)) u(t) (3.18)

where x(t) and u(t) are the state and input vectors shown in (3.12). Matrices A and

B are not constant but depend on some premise variables z(t), which at the same time

depends on the states or the inputs.

In order to find matrices A and B, the following observations has been considered:

• It is a good practice to try to have as many components as possible in matrix A. A

term with a product of two state/input variables can be split in two terms, so that

each term is the component related with each state/input variable. For example,

if x1 and x2 are two state variables and the term is ax1x2, with ’a’ being constant,

then it can be written as (1
2
ax2) x1 + (1

2
ax1) x2.

• There is an independent constant term ’−g’ in the second equation of (3.14) that

should be multiplied by any state variable. One solution is to multiply and divide

that term by the first state variable Z(t).

• The non-linear terms Ω2
i can be split in two, so that one Ωi is introduced in the

matrix as a (variable) parameter.

From (3.14) and applying the observations just mentioned above, matrices A and B are:
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A(z(t)) =









































0 1 0 0 0 0 0 0

a21(t) 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 a67(t) a68(t)

0 0 0 0 0 a76(t) 0 a78(t)

0 0 0 0 0 a86(t) a87(t) 0









































(3.19)

B(z(t)) =









































0 0 0 0

b21(t) b22(t) b23(t) b24(t)

0 0 0 0

0 0 0 0

0 0 0 0

b61(t) b62(t) b63(t) b64(t)

b71(t) b72(t) b73(t) b74(t)

b81(t) b82(t) b83(t) b84(t)









































(3.20)

Where the components of (3.19) and (3.20) are:
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a21(t) = −
g

Z
, a67(t) =

IY − IZ
2IX

r, a68(t) =
IY − IZ
2IX

q

a76(t) =
IZ − IX
2IY

r, a78(t) =
IZ − IX
2IY

p, a86(t) =
IX − IY
2IZ

q

a87(t) =
IX − IY
2IZ

p, b21(t) =
b

m
cos θ cosϕ Ω1, b22(t) =

b

m
cos θ cosϕ Ω2

b23(t) =
b

m
cos θ cosϕ Ω3, b24(t) =

b

m
cos θ cosϕ Ω4, b61(t) =

JTP
IX

q

b62(t) = −
JTP
IX

q −
bl

IX
Ω2 b63(t) =

JTP
IX

q, b64(t) = −
JTP
IX

q +
bl

IX
Ω4

b71(t) = −
JTP
IY

p−
bl

IY
Ω1 b72(t) =

JTP
IY

p, b73(t) = −
JTP
IY

p+
bl

IY
Ω3

b74(t) =
JTP
IY

p b81(t) = −
d

IZ
Ω1, b82(t) =

d

IZ
Ω2

b83(t) = −
d

IZ
Ω3 b84(t) =

d

IZ
Ω4

(3.21)

Remark 3.3. Note that matrix A(z(t)) in (3.19) has three columns plenty of zeros. During

the development of this project an alternative version was considered. In that version the

third, fourth and fifth equations of (3.14) were changed as follows:































ϕ̇ =
p

2ϕ
ϕ+

1

2
p

θ̇ =
q

2θ
θ +

1

2
q

ψ̇ =
r

2ψ
ψ +

1

2
r

Therefore new parameters a33, a44 and a55 are introduced. This is done to avoid numerical

problems. However, this solution also increments the number of rules in the TS model,

so it was decided to work with the simplest version shown in (3.19) (the one that implies

less number of subsystems).

The output system (i.e. matrices A and B and their parameters) will be computed by a

linear combination of subsystems, as it is shown in (2.2). The set of subsystems can be

seen as vertices of a polytope, which should include all the realizable systems (the ones

obtained by substituting a feasible state and input vectors in (3.21)). One conservative
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way to achieve this is to take into account the subsystems obtained from combinations

of upper and lower bounds of the parameters in (3.21). In fact, these parameters will be

written as a function of some premise variables z(t). The bounds of these variables are

the ones that will define the polytope of subsystems.

3.2.1 Premise variables

The premise variables are obtained by looking at the states and inputs variables that

appear in (3.21). The constant values of the parameters has been omitted, so the premise

variables are only the varying part. The set of twelve premise variables z(t) is

z1 = 1/Z, z2 = p, z3 = q

z4 = r, z5 = cos θ cosϕ Ω1, z6 = cos θ cosϕ Ω2

z7 = cos θ cosϕ Ω3, z8 = cos θ cosϕ Ω4, z9 = Ω1

z10 = Ω2, z11 = Ω3, z12 = Ω4

(3.22)

Remark 3.4. The premise variables that would be obtained from b62, b64, b71 and b73 are

not included because they are linear combinations of other premise variables (see Case 3

in Section A.3). These parameters are computed as functions of premise variables from

(3.22) and they are not considered in the set of fuzzy rules.

Regarding the bounds of the premise variables the following observations are made:

• The lower and upper bounds of the premise variables z2, z3, z4, z9, z10, z11 and

z12 are just the bounds of the states p, q, r and the inputs Ω1, Ω2, Ω3 and Ω4,

respectively.

• The bounds of Z ∈ [Z Z] does not include Z = 0 to avoid numerical problems in

premise variable z1. Z and Z are both positive.

• The bounds of the input Ωi ∀i ∈ {1, 2, 3, 4} are two positive numbers. Each propeller

always rotates in the directions shown in Figure 2.1.
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• The interval for angles θ and ϕ are −θ < θ < θ and −ϕ < ϕ < ϕ, so they are

centered at zero. The interval does not include ±π/2 to avoid numerical problems

due to zeros at premise variables from z5 to z8.

The complete set of bounds for the premise variables (3.22) is

z1 = 1/Z, z1 = 1/Z, z2 = p, z2 = p,

z3 = q, z3 = q, z4 = r, z4 = r

z5 = cos θ cosϕ Ω1, z5 = Ω1, z6 = cos θ cosϕ Ω2, z6 = Ω2

z7 = cos θ cosϕ Ω3, z7 = Ω3, z8 = cos θ cosϕ Ω4, z8 = Ω4

z9 = Ω1, z9 = Ω1, z10 = Ω2, z10 = Ω2

z11 = Ω3, z11 = Ω3, z12 = Ω4, z12 = Ω4

(3.23)

Remark 3.5. As it is commented above, the interval for Z does not include Z = 0. In case

we want the operating point to be at Zd = 0, the system can be controlled at some positive

value Zd inside the interval, and then the E-frame can be translated in ZE direction so

that the new operating point becomes zero. The range of operation of Z ∈ [Z, Z] does

not affect the dynamic of the system which, as it is seen in (3.14), is independent of Z

position.

From (3.22) it can be seen that some premise variables are not independent. In particular

zi = cos θ cosϕ zi+4 for i ∈ {5, 6, 7, 8}. Note that for any fixed angles θ and ϕ, the relation

between zi and zi+4 is a straight line with slope β(θ, ϕ) = cos θ cosϕ. Figure 3.2 shows

the region of feasible values (gray area) for the pair of premise variables z5 and z9, but

the figure is equivalent for the other pairs of variables {zi, zi+4} for i ∈ {5, 6, 7, 8}.

3.2.2 Membership and activation functions

Assuming that all the premise variables in (3.22) belongs to Case 1 in Section A.4 (i.e.

the number of fuzzy rules cannot be reduced), then there are two membership functions

Mi1 and Mi2 for each premise variable i. All these pairs of membership functions satisfies

equations (A.13) and have the form shown in (A.14). They are plotted in Figure A.4.
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z9

z5

0

z5

z5

z9 z9

z9

β(θ, ϕ)z9

Figure 3.2: Relation between premise variables z5 and z9

Remark 3.6. The membership functions shown in (2.1) follow the same notation than in

[3], where Mij represents the fuzzy set of premise variable j in rule i. However, from now

on a new notation is considered where Mij represents the minimal (j = 1) or maximal

(j = 2) fuzzy set of the premise variable i.

Since all the vertices of the polytope are considered, there are 212 = 4096 subsystems. The

conditions of the fuzzy rules (not all depicted here for obvious reasons) are the following:

Rule 1: z1 is M11 and z2 is M21 and . . . and z12 is M121

Rule 2: z1 is M11 and z2 is M21 and . . . and z12 is M122

...

Rule 2047: z1 is M11 and z2 is M22 and . . . and z12 is M121

Rule 2048: z1 is M11 and z2 is M22 and . . . and z12 is M122

Rule 2049: z1 is M12 and z2 is M21 and . . . and z12 is M121

Rule 2050: z1 is M12 and z2 is M21 and . . . and z12 is M122

...

Rule 4095: z1 is M12 and z2 is M22 and . . . and z12 is M121

Rule 4096: z1 is M12 and z2 is M22 and . . . and z12 is M122
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As it is explained in Remark 2.2, the activation function hi(z(t)) for each subsystem can

be computed as the product of normalized membership functions:























































































































h1(z(t)) =M11 ·M21 · · ·M111 ·M121

h2(z(t)) =M11 ·M21 · · ·M111 ·M122

...

h2047(z(t)) =M11 ·M22 · · ·M112 ·M121

h2048(z(t)) =M11 ·M22 · · ·M112 ·M122

h2049(z(t)) =M12 ·M21 · · ·M111 ·M121

h2050(z(t)) =M12 ·M21 · · ·M111 ·M122

...

h4095(z(t)) =M12 ·M22 · · ·M112 ·M121

h4096(z(t)) =M12 ·M22 · · ·M112 ·M122

(3.24)

Remark 3.7. The design of the controller can be done offline so the drawback related to

the computational time due to the big number of rules it is not critical. However, as it

will be seen it could affect the chances of finding a solution for the controller. For that

reason it is considered the hypothesis that the pairs of premise variables (z5, z9), (z6, z10),

(z7, z11) and (z8, z12) can be classified as Case 2 in Section A.4. As it is seen in Figure 3.2

this is not true, but the number of rules/subsystems would be reduced and this model

has been validated (see Section 3.4).

As discussed before, there are two membership functions for each premise variable from z1

to z4. If the pairs of premise variables (z5, z9), (z6, z10), (z7, z11) and (z8, z12) are labeled

as j = {1, 2, 3, 4} respectively, and assuming the hypothesis of Remark 3.7, then there are

three membership functions Nj1, Nj2, Nj3 (see ’triangular polytope’ in Section A.4) for

each pair j. The number of fuzzy rules and subsystems is computed then as 34 ·24 = 1296.

The rules would have the following form:
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Rule 1: z1 is M11 and z2 is M21 and . . . and (z8, z12) is N41

Rule 2: z1 is M11 and z2 is M21 and . . . and (z8, z12) is N42

Rule 3: z1 is M11 and z2 is M21 and . . . and (z8, z12) is N43

...

Rule 646: z1 is M11 and z2 is M22 and . . . and (z8, z12) is N41

Rule 647: z1 is M11 and z2 is M22 and . . . and (z8, z12) is N42

Rule 648: z1 is M11 and z2 is M22 and . . . and (z8, z12) is N43

Rule 649: z1 is M12 and z2 is M21 and . . . and (z8, z12) is N41

Rule 650: z1 is M12 and z2 is M21 and . . . and (z8, z12) is N42

Rule 651: z1 is M12 and z2 is M21 and . . . and (z8, z12) is N43

...

Rule 1294: z1 is M12 and z2 is M22 and . . . and (z8, z12) is N41

Rule 1295: z1 is M12 and z2 is M22 and . . . and (z8, z12) is N42

Rule 1296: z1 is M12 and z2 is M22 and . . . and (z8, z12) is N43

And again the activation function hi(z(t)) for each subsystem can be computed as follows:
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













































































































































































h1(z(t)) =M11 ·M21 · · ·N31 ·N41

h2(z(t)) =M11 ·M21 · · ·N31 ·N42

h3(z(t)) =M11 ·M21 · · ·N31 ·N43

...

h646(z(t)) =M11 ·M22 · · ·N33 ·N41

h647(z(t)) =M11 ·M22 · · ·N33 ·N42

h648(z(t)) =M11 ·M22 · · ·N33 ·N43

h649(z(t)) =M12 ·M21 · · ·N31 ·N41

h650(z(t)) =M12 ·M21 · · ·N31 ·N42

h651(z(t)) =M12 ·M21 · · ·N31 ·N43

...

h1294(z(t)) =M12 ·M22 · · ·N33 ·N41

h1295(z(t)) =M12 ·M22 · · ·N33 ·N42

h1296(z(t)) =M12 ·M22 · · ·N33 ·N43

(3.25)

3.3 Quadrotor Takagi-Sugeno model with linear input

approximation

In the previous section the Takagi-Sugeno model of (3.14) has been derived. However, even

taking into account some hypothesis that reduce the number of fuzzy rules (Remark 3.4

and Remark 3.7) there still being 1296 rules/subsystems. The dimension of the problem

makes difficult the design of the controller, so a new model has been derived with the aim

of reducing the number of premise variables.

The new approach is based on a combination of local sector non-linearity method as

applied before, and local linear approximation method. The idea is to approximate the

quadratic input terms Ω2
i by linear functions. This linear approximation of the input has

been motivated by two facts, in addition to the reduction of premise variables. On one

hand, it was assumed that the quadrotor operates close to the hovering condition, and as
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it is explained in [7, p. 10], the deviation of the propeller speeds from the hovering value

ΩH should not be very large to avoid strong non-linearities or saturations. On the other

hand in [3, p. 6] it is recommended not to include the input variables in the parameters of

the TS model. This is done to avoid problems in the defuzzification process of controllers

when the premise variables are functions of the input.

Let consider the input propeller speed Ωi for any i ∈ {1, 2, 3, 4}. Then, Ω2
i can be linearized

around ΩH as it is shown in (3.26). Note that in order to have a positive value it should

be satisfied that Ωi > ΩH/2 (see Figure 3.3). If Ωi is inside an interval ΩH ± 50%, then

the approximated value of the square is positive

Ω2
i ≈ 2 ΩH Ωi − Ω2

H (3.26)

Ωi

Ω2
i

0 ΩHΩH/2

Ω2
H

Figure 3.3: Linear approximation of the squares of propellers speeds

Substituting the Ω2
i approximated expression from (3.26) and the definition of ΩH (3.16)

in the AA model (3.14), the new model of the quadrotor with linear input approximation

is (3.27). The new input force and torques are shown in (3.28).
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
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
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
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





















ż = vZ

v̇Z = −g (cos θ cosϕ+ 1) +
b

m
cos θ cosϕ 2ΩH (Ω1 + Ω2 + Ω3 + Ω4)

ϕ̇ = p

θ̇ = q

ψ̇ = r

ṗ =
IY − IZ
IX

q r −
JTP
IX

q (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IX
2ΩH (−Ω2 + Ω4)

q̇ =
IZ − IX
IY

p r +
JTP
IY

p (−Ω1 + Ω2 − Ω3 + Ω4) +
bl

IY
2ΩH (−Ω1 + Ω3)

ṙ =
IX − IY
IZ

p q +
d

IZ
2ΩH (−Ω1 + Ω2 − Ω3 + Ω4)

(3.27)


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
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
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











U1 = b (2ΩH (Ω1 + Ω2 + Ω3 + Ω4)− 4Ω2
H)

U2 = bl 2ΩH (−Ω2 + Ω4)

U3 = bl 2ΩH (−Ω1 + Ω3)

U4 = d 2ΩH (−Ω1 + Ω2 − Ω3 + Ω4)

(3.28)

The procedure to obtain the TS-LIA (Takagi-Sugeno with Linear Input Approximation)

model is equivalent to the followed for the previous TS model. The independent term of

the second equation in (3.27) has been multiplied and divided by the state Z as before,

and also the terms with products of two state variables has been separated in two. The

amount of parameters and their locations in matrices A(z(t)) and B(z(t)) are the same

than in (3.19) and (3.20), respectively. However, the values (3.21) have changed to the

ones shown in (3.29). Note that the parameters are independent of the input vector Ω.
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a21(t) = −
g(1 + cos θ cosϕ)

Z
, a67(t) =

IY − IZ
2IX

r, a68(t) =
IY − IZ
2IX

q

a76(t) =
IZ − IX
2IY

r, a78(t) =
IZ − IX
2IY

p, a86(t) =
IX − IY
2IZ

q

a87(t) =
IX − IY
2IZ

p, b21(t) =
b

m
cos θ cosϕ Ω1, b22(t) = b21(t)

b23(t) = b21(t), b24(t) = b21(t), b61(t) =
JTP
IX

q

b62(t) = −
JTP
IX

q −
bl

IX
2ΩH b63(t) = b61(t), b64(t) = −

JTP
IX

q +
bl

IX
2ΩH

b71(t) = −
JTP
IY

p−
bl

IY
2ΩH b72(t) =

JTP
IY

p, b73(t) = −
JTP
IY

p+
bl

IY
2ΩH

b74(t) = b72(t), b81(t) = −
d

IZ
2ΩH , b82(t) = −b81(t)

b83(t) = b81(t), b84(t) = −b81(t)

(3.29)

3.3.1 Premise variables

In this case there are five premise variables (3.30), taking into account that the ones

obtained from b62(t), b64(t), b71(t) and b73(t) are linear combination of others (see Remark

3.4). Note that z1 and z5 are not independent, so a reduction in the number of fuzzy

rules was considered. However, as it is seen in Figure 3.4, that pair of variables can not

be included in the triangular polytope case (see Section A.3).

z1 =
1 + cos θ cosϕ

Z
, z2 = p, z3 = q

z4 = r, z5 = cos θ cosϕ

(3.30)

Finally, the bounds of the premise variables are

z1 =
1 + cos θ cosϕ

Z
, z1 =

2

Z
, z2 = p, z2 = p

z3 = q, z3 = q, z4 = r, z4 = r,

z5 = cos θ cosϕ, z5 = 1

(3.31)



3.3. Quadrotor Takagi-Sugeno model with linear input approximation 37

z1

z5

0

z5

z5

z1 z1

Figure 3.4: Relation between premise variables z1 and z5 in the TS-LIA model

3.3.2 Membership and activation functions

There are two membership functions Mi1 and Mi2 for each premise variable i, and they

are computed as it is shown in (A.14). Since the number of membership functions is five

and all the combinations of bounds of the premise variables are considered, the number

of fuzzy rules/subsystems of the TS-LIA model is 25 = 32.

Rule 1: z1 is M11 and z2 is M21 and z3 is M31 z4 is M41 and z5 is M51

Rule 2: z1 is M11 and z2 is M21 and z3 is M31 z4 is M41 and z5 is M52

...

Rule 14: z1 is M11 and z2 is M22 and z3 is M32 z4 is M42 and z5 is M51

Rule 15: z1 is M11 and z2 is M22 and z3 is M32 z4 is M42 and z5 is M52

Rule 16: z1 is M12 and z2 is M21 and z3 is M31 z4 is M41 and z5 is M51

Rule 17: z1 is M12 and z2 is M21 and z3 is M31 z4 is M41 and z5 is M52

...

Rule 31: z1 is M12 and z2 is M22 and z3 is M32 z4 is M42 and z5 is M51

Rule 32: z1 is M12 and z2 is M22 and z3 is M32 z4 is M42 and z5 is M52

The computation of activation functions hi(z(t)), based on the product of all the combi-

nations of membership functions, is also equivalent to the previous TS model:
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


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



















h1(z(t)) =M11 ·M21 ·M31 ·M41 ·M51

h2(z(t)) =M11 ·M21 ·M31 ·M41 ·M52

...

h14(z(t)) =M11 ·M22 ·M32 ·M42 ·M51

h15(z(t)) =M11 ·M22 ·M32 ·M42 ·M52

h16(z(t)) =M12 ·M21 ·M31 ·M41 ·M51

h17(z(t)) =M12 ·M21 ·M31 ·M41 ·M52

...

h31(z(t)) =M12 ·M22 ·M32 ·M42 ·M51

h32(z(t)) =M12 ·M22 ·M32 ·M42 ·M52

(3.32)

3.4 Validation of TS models

Three different models has been built in SimulinkR© for validation tests: the non-linear

Altitude-Attitude (AA) model, the TS model and the TS-LIA model. The simulation of

the non-linear AA model is done just by implementing the differential equations (3.14).

The simulation of the last two Takagi-Sugeno models is done by implementing the linear

system (2.2), where the set of subsystems are computed offline using the bounds of premise

variables (3.23) or (3.31) for each case. The activation functions hi(z(t)) are obtained

from (3.25) or (3.32) by first computing the premise variables from the states ((3.22) or

(3.30)), and then obtaining the membership functions from the premise variables. The

goal is to analyze if the TS models are equivalent to the AA model, and also TS and

TS-LIA models are similar between them in spite of the approximation.

The same input signal u = [Ω1 Ω2 Ω3 Ω4]
T has been applied to all three models. The

type of input signal used for validation is a Pseudo-Random Binary Signal (PRBS), the

same used in [5]. PRBS is a periodic, deterministic signal with autocorrelation function

similar to a white noise signal [8]. It allows the excitation of the system in a wide range

of frequencies and it has only two possible values, so its a sequence of pulses of variable

width. The minimum duration of each pulse has been selected to be 0.1 s. Figure 3.5
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shows the PRBS inputs applied for the validation test, obtained form Matlab function

idinput().

(a) Ω1 (b) Ω2

(c) Ω3 (d) Ω4

Figure 3.5: PRBS input signal for validation

Figure 3.6 shows the output height z and angular positions ϕ, θ and ψ when the validation

PRBS input is applied. The values for the parameters and bounds of the states used in

these simulations appears in Section A.2. Apparently there is not a significant difference

between the models.

Let define the errors ez̈, eϕ̈, eθ̈ and eψ̈ that measures the difference between the acceleration

obtained form any of the Takagi-Sugeno models and the original AA model. In order to

compare the two Takagi-Sugeno models (TS and TS-LIA), these acceleration errors have

been computed and plotted in Figure 3.7. Note that regarding the TS model the errors

are not significantly different from zero. The same occurs with the TS-LIA model in the

case of angular accelerations. The error regarding the acceleration of z̈ (Figure 3.7 (a))

is more important for that model. However, as it can be seen in Figure 3.6 (a), this error

does not imply a big difference in the behaviour of the model.
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(a) Lift (b) Roll

(c) Pitch (d) Yaw

Figure 3.6: Output positions from AA, TS and TS-LIA models with a PRBS input

(a) (b)

(c) (d)

Figure 3.7: Acceleration errors between TS models and the AA model



Chapter 4

Attitude/Altitude control

The goal of this chapter is to design a state feedback controller for altitude and attitude

using the TS-LIA model found in the previous chapter. In the first part the theoretical

design of the state feedback controller and the state observer is described. In order to

make the quadrotor follow variable references, two different control schemes are presented

in the next sections: the FeedForward (FF) Control scheme and the Reference Model

based FeedForward (RM-FF) Control scheme.

4.1 State feedback control and state observer

In this section, a fuzzy controller is designed based on the Parallel Distributed Compen-

sation approach (see Section 2.3), so that the closed-loop system (2.6) is stable and has

the poles in some LMI region to achieve the desired performance (quadratic D-stability).

Then, an state observer is designed assuming that only the position Z and the orientation

Θ variables are known.

4.1.1 Apkarian filter

As it is explained in Section 2.4.1, the number of LMI constraints needed to check

quadratic stability is reduced if all the subsystems in the polytopic model has the same

41
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matrix B. This can be achieved by adding an Apkarian filter in the input of the system.

Let consider our TS-LIA model with equations shown in (3.27). This model can be written

in linear form as it is shown in (3.18) and repeated below.

ẋ = A(z(t)) x+B(z(t)) u (4.1)

The filter should be such that the equilibrium of the states are the input values and the

dynamics should be fast, so we could assume the dynamics of the filter negligible (i.e. the

input of the filter is equivalent to the input of the quadrotor). One possible filter is shown

in (4.2), where AF = −100 · I4, BF = 100 · I4 and I4 ∈ R
4x4 is the identity matrix.







ẋF = AF xF +BF uF

yF = xF

(4.2)

When applying the filter, we are imposing that the output of the filter is the new input

of the TS-LIA model (i.e. u = yF ). Then, the extended model is (4.3), the new input is

uF and the new state vector is xe (4.4). Note that now matrix Be is constant.

ẋe =





A(z(t)) B(z(t))

0 AF



 xe +





0

BF



 uF = Ae(z(t)) xe +Be uF (4.3)

xe =





x

xF



 (4.4)

This prefiltering does not affect the procedure followed to obtain the TS-LIA model, so

the premise variables, membership functions and activations functions remains the same.

The extended TS-LIA model is shown in (4.5), where matrices Aei and Bei form LTI

subsystem i-th are (4.6).

ẋe =
32
∑

i=1

hi(z(t)) {Aei xe +Bei uF} (4.5)
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Aei =





Ai Bi

0 AF



 , Bei = Be =





0

BF



 ∀i = 1, . . . , 32 (4.6)

4.1.2 State feedback controller design

Let consider the state feedback control law (4.7) for the extended TS-LIA model (4.5),

where the activation functions are (3.32).

uF =
32
∑

i=1

hi(z(t)) Ki xe (4.7)

By substituting (4.7) into (4.5) the following closed loop system is obtained:

ẋe =
32
∑

i=1

32
∑

j=1

hi(z(t))hj(z(t)) {Aei +Be Kj} xe (4.8)

As it is explained in Section 2.4, the design of the controller is done by solving an

LMI problem involving the quadratic stability constraints (2.12). In case we want D-

stabilization, the set of LMI constraints (4.9) are needed, and they depend on the LMI

region (2.14) where we want to place the poles.

L⊗ P +M ⊗ P (Aei +BeKi) +MT ⊗ (Aei +BeKi)
TP < 0 ∀i = 1, . . . , 32 (4.9)

A pair of conjugate complex poles s of the closed loop system can be written as s =

−ξωn ± jωd where ξ is the damping ratio, ωn is the undamped natural frequency and ωd

is the frequency response defined as ωd = ωn
√

1− ξ2. Three different LMI regions has

been considered, each one related with a performance specification regarding α = ξωn, ωn

and ξ:

• Minimum decay rate α: If we want to set a minimum decay rate α in the closed

loop system response, the poles should be inside the LMI region defined in (4.10),
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where α > 0. According to the general definition of an LMI region (2.14), in this

case Lα = 2α and Mα = 1 [6, p. 103].

Sα = {s = x+ jy | x < −α} (4.10)

Applying condition (4.9) to the closed-loop system (4.8), the LMI condition associ-

ated to this LMI region is

2αP + (Aei +BeKi)
TP + P (Aei +BeKi) < 0 ∀i = 1, . . . , 32 (4.11)

• Maximum natural frequency ωn: Natural frequency is related with the max-

imum frequency response in the undamped case (ξ = 0). If we want to set a

maximum ωn condition, the LMI region associated is (4.12), where Lρ and Mρ are

(4.13).

Sρ = {s = x+ jy | |x+ jy| < ρ} (4.12)

Lρ =





−ρ 0

0 −ρ



 , Mρ =





0 1

0 0



 (4.13)

Substituting (4.13) in (4.9), the LMI condition associated to this LMI region is





−ρP P (Aei +BeKi)

(Aei +BeKi)
TP −ρP



 < 0 ∀i = 1, . . . , 32 (4.14)

• Minimum damping ratio ξ: The damping ratio determines how oscillatory the

evolution of the state in the closed-loop system can be. This factor is related with

the angle γ by the formula ξ = cos γ (see Figure 4.1). In order to set a minimum

damping factor the following LMI region is defined:

Sγ = {s = x+ jy | |y| < −x tan(γ)} (4.15)

In this case matrices Lγ and Mγ are [6, p. 105]:
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Lγ = 0, Mγ =





sin(γ) cos(γ)

− cos(γ) sin(γ)



 (4.16)

As in the previous cases, by substituting matrices (4.16) in (4.9) the LMI condition

associated to this LMI region is obtained





(PGi +GT
i P ) sin γ (PGi −GT

i P ) cos γ

(GT
i P − PGi) cos γ (PGi +GT

i P ) sin γ



 < 0 ∀i = 1, . . . , 32 (4.17)

where Gi = Aei +BeKi.

The intersection of LMI regions is also an LMI region. A new LMI region is defined as

Sα,ρ,γ = Sα ∩ Sρ ∩ Sγ (4.18). Figure 4.1 shows where the poles should be located in the

complex plane to satisfy the performance conditions.

Sα,ρ,γ = {s = x+ jy | x < −α < 0, |x+ jy| < ρ, |y| < −x tan(γ)} (4.18)

Re(s)

Im(s)

γ

α

ρ

Figure 4.1: LMI region Sα,ρ,γ

As it is explained in Section 2.4, a change of variables is needed in conditions (4.11),

(4.14) and (4.17) in order to have a LMI problem, so we define Wi = KiQ and Q = P−1.
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With these variables, the LMI conditions becomes (4.19). The controllers are obtained

from the set of solutions Wi by doing Ki = WiQ
−1.








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





































Q > 0

2αQ+G11i < 0 ∀i = 1, . . . , 32




−ρQ AeiQ+BeWi

QAT
ei +W T

i B
T
e −ρQ



 < 0 ∀i = 1, . . . , 32





G11i sin γ G12i cos γ

G21i cos γ G11i sin γ



 < 0 ∀i = 1, . . . , 32

(4.19)

Where G11i = AeiQ+QAT
ei+BeWi+W T

i B
T
e , G12i = AeiQ−QAT

ei+BeWi−W T
i B

T
e

and G21i = −AeiQ+QAT
ei −BeWi +W T

i B
T
e

4.1.3 State Observer design

The state feedback control designed before assumes that all the states are measurable.

However, usually this is not the case and a state estimator is needed. If only positions

measurements are provided (i.e. position Z and orientation angles ϕ, θ, ψ), a new output

equation (4.20) is added to the TS-LIA extended model (4.5), where the output vector is

y = [Z ϕ θ ψ]T . Matrix C is the identity matrix in case all the states are measurable.

y = C xe =

















1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

















xe (4.20)

Considering our extended non-linear model (4.3), the observer is a dynamical system that

has as state the vector x̂e, which is the estimation of state vector xe. The observer has

two inputs: the control input uF and the output vector y. Then, the state equation of

the linear observer has the following form:
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˙̂xe = Aox̂e +BouF +Ly (4.21)

Let define the state estimation error eest = xe − x̂e. Matrices Ao and Bo are chosen as

Ao = Ae(z(t))−LC and Bo = Be so that the dynamic equation of the estimation error

is an autonomous system with equilibrium at origin

ėest = ẋe − ˙̂xe = Ae(z(t)) xe +Be uF − (Aox̂e +BouF +Ly)

= Ae(z(t)) xe +Be uF − (Ae(z(t))−LC)x̂e −Be uF −LCxe

= (Ae(z(t))−LC)(xe − x̂e) = (Ae(z(t))−LC)eest

(4.22)

Matrix L is the gain of the observer and should be chosen such that Ae(z(t)) − LC is

stable, so the estimation error evolves to the equilibrium of (4.22) at origin. Since we

have a polytopic model, matrix Ae(z(t)) is actually a linear combination of matrices Aei

as it is shown in (4.5). Therefore the procedure of design a state observer is similar to the

design of a state-feedback controller. As in the case of the controller, the observer gain

L is a linear combination of gains Li obtained from the design of the observer for each

subsystem. The state equation of the observer for the i-th subsystem is

˙̂xe = (Aei −LiC)x̂e +BeuF +Liy (4.23)

We want to set the poles of Hi = Aei − LiC in a LMI region just like it is done in the

design of the controller for Gi = Aei +BeKi. LMI constraints (4.11), (4.14) and (4.17)

now becomes


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



































2αP +HT
i P + PHi < 0 ∀i = 1, . . . , 32





−ρP PHi

HT
i P −ρP



 < 0 ∀i = 1, . . . , 32





(PHi +HT
i P ) sin γ (PHi −HT

i P ) cos γ

(HT
i P − PHi) cos γ (PHi +HT

i P ) sin γ



 < 0 ∀i = 1, . . . , 32

(4.24)
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where Hi = Aei −LiC and P > 0.

Again a change of variables should be done in order to solve the LMI problem, so it is

defined the new variable Mi = −LT
i P . After applying the change in (4.24), the goal is

to find matrices P and Mi such that constraints
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
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
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
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





P > 0

2αP +H11i < 0 ∀i = 1, . . . , 32




−ρP PAei +MTC

AT
eiP +CTMi −ρP



 < 0 ∀i = 1, . . . , 32





H11i sin γ H12i cos γ

H21i cos γ H11i sin γ



 < 0 ∀i = 1, . . . , 32

(4.25)

are fulfilled, where H11i = PAei + AT
eiP + CTMi + MTC, H12i = PAei − AT

eiP −

CTMi +MTC and H21i = AT
eiP −PAei +CTMi −MTC. Once the solutions Mi are

obtained, the gains of the observer are computed as Li = −(MiP
−1)T .

4.2 Reference tracking

If the state feedback control law (4.7) is applied to the extended TS-LIA model (4.3),

and the design procedure is done as it is explained in Section 4.1.2, then the closed-loop

system is an stable autonomous system with equilibrium at origin. If we want to set the

equilibrium in a state different from the origin, one approach is to consider two additional

inputs for the closed-loop system: an input reference uF_ref and a state reference xe_ref .

Figure 4.2 shows a general scheme of this approach.

The block named as ’F’ is the Apkarian filter (4.2) and the AA model is (3.14) and

represents the quadrotor system. Note that now the control law is (4.26) since the input

to the controller is the state error exe = xe_ref−xe and the input applied to the quadrotor

system is not directly the output of the controller. The control input to the system now
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K(z(t)) F AA model
xe_ref + exe µ

−

uF xe

−

uF_ref

+

Figure 4.2: Control scheme with state and input reference

is uF = uF_ref − µ. It is easy to prove that in case xe_ref = uF_ref = 0 the control law

(4.26) becomes (4.7).

µ = K(z(t)) exe, K(z(t)) =
32
∑

i=1

hi(z(t)) Ki (4.26)

The same controllers Ki found in Section 4.1.2 are valid in this scheme. This can be

seen by computing the closed-loop system (4.27), where uF is obtained from (4.26). If

Ae(z(t)) +BeK(z(t)) is stable then (4.27) has some stable equilibrium point defined by

uF_ref and xe_ref .

ẋe = Ae(z(t)) xe +Be uF

= Ae(z(t)) xe +Be(uF_ref −K(z(t))(xe_ref − xe))

= (Ae(z(t)) +BeK(z(t))) xe +Be(uF_ref −Kxe_ref )

(4.27)

There are different ways of computing uF_ref and xe_ref . In this work, two approaches

has been studied. In the first one, the input reference and the state reference are both

computed from the desired output position and orientation, based on the knowledge of

the steady state conditions. In the second approach, a reference model computes the

input reference whereas the state reference should be given.

4.2.1 Feedforward control

In this approach, the control scheme is the one shown in Figure 4.3. The state and

input references are computed from the desired position vector yd = [Zd ϕd θd ψd]T as

uF_ref = Nuy
d and xe_ref = Nxy

d.
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Nx K(z(t)) F AA model

Nu

yd +xe_ref exe µ

−

uF xe

−

uF_ref

+

Figure 4.3: Feedforward control scheme

In steady state conditions, ẋe = 0, xe = xe_ref = Nxy
d and Cxe = yd, where C is the

same matrix defined in (4.20). Since exe = 0, the output of the controller is µ = 0 so

the input to the system is uF = uF_ref = Nuy
d. If we apply these conditions to the

extended TS-LIA model (4.3), the following equations are found:







Ae(z(t)) Nxy
d +Be Nuy

d = 0

CNxy
d = yd

(4.28)

The solution of (4.28) for Nx and Nu is:





Nx

Nu



 =





Ae(z(t)) Be

C 0





−1



0

I



 (4.29)

Note that Nx and Nu are not constant and should be computed on-line given the current

matrix Ae(z(t)). Substituting uF_ref = Nuy
d and xe_ref = Nxy

d in (4.27) the closed-

loop system is found:

ẋe = (Ae(z(t)) +BeK(z(t))) xe +Be(Nu −K(z(t))Nx) y
d (4.30)

The main advantage of this scheme is that it is easy to implement and only the desired po-

sition yd must be provided. As it will be shown in the simulations, this scheme is suitable

for tracking of constant references, or references that does not change rapidly. However

for most of the variable references an steady state error appears. Another drawback of
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this scheme is that the computation of an inverse matrix is required in (4.29), which can

yield into numerical problems.

4.2.2 Reference model based feedforward control

In this approach [9], the reference for the state x of the TS-LIA model (not the extended

state xe) should be provided. The input reference uF_ref is obtained using a reference

model and desired positions, velocities and accelerations. The reference of the extended

state xe_ref is found by definition (4.4) as the concatenation of xref and uF_ref . Figure 4.4

shows the control scheme of this approach.

K(z(t)) F AA model

Input ref.

calculation

xref
xe_ref + exe µ

−

uF xe

−

ẋref

uF_ref

uF_ref

+

Figure 4.4: Reference model based feedforward control scheme

Let define the extended reference model (4.31). Note that matrices Ae(z(t)) and Be

are the same that appear in the extended TS-LIA model (4.3). As a consequence, these

matrices depend on state vector xe (instead of its own state vector xe_ref ). Therefore the

premise variables, membership functions and activation functions are also the same.

ẋe_ref = Ae(z(t)) xe_ref +Be uF_ref (4.31)

The state vector of the extended reference model (4.32) is:

xe_ref =
[

Zd vdZ ϕd θd ψd pd qd rd Ω1_ref Ω2_ref Ω3_ref Ω4_ref

]T

(4.32)

Let recall the state error definition exe = xe_ref−xe and the input error µ = uF_ref−uF .

By differentiating exe the error model is obtained (4.33). Since both extended reference
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model and extended TS-LIA model share the same matrices Ae(z(t)) and Be, the error

model has also those matrices. Therefore, all the procedure followed in the design of the

controller for the extended TS-LIA model (4.3) is valid for the error model (4.33), and

the controller obtained is the same. The control law (4.26) applied to (4.33) drives the

state xe toward the reference xe_ref .

ėxe = ẋe_ref − ẋe = Ae(z(t)) xe_ref +Be uF_ref −Ae(z(t)) xe −Be uF

= Ae(z(t))(xe_ref − xe) +Be(uF_ref − uF )

= Ae(z(t)) exe +Be µ

(4.33)

Let assume that the desired reference input uF_ref are the inputs of the TS-LIA model,

i.e. they are the angular velocities Ω1_ref , Ω2_ref , Ω3_ref and Ω4_ref . From the reference

model (4.31), the four differential equations (4.34) are considered. The other differential

equations either do not depend on the input or are the ones referred to the filter, which

is not needed for the computation of the reference inputs. The parameters of the model

{a21(t) b21(t) . . . b81(t)} are shown in (3.29).



































v̇Z
d = a21(t) Z

d + b21(t) (Ω1_ref + Ω2_ref + Ω3_ref + Ω4_ref )

ṗd = a67(t) q
d + a68(t) r

d + b61(t) (Ω1_ref + Ω3_ref ) + b62(t) Ω2_ref + b64(t) Ω4_ref

q̇d = a76(t) p
d + a78(t) r

d + b72(t) (Ω2_ref + Ω4_ref ) + b71(t) Ω1_ref + b73(t) Ω3_ref

ṙd = a86(t) p
d + a87(t) q

d + b81(t) (Ω1_ref − Ω2_ref + Ω3_ref − Ω4_ref )

(4.34)

Remark 4.1. Taking advantage of the fact that the TS-LIA model is linear with respect the

input, the system of equations (4.34) can be solved explicitly for Ωi_ref for i = {1, 2, 3, 4},

so an online computation of an inverse matrix is not needed in this case.

Note that not all the desired positions, velocities and accelerations are needed to compute

the input references. In particular, the desired position Zd, the desired angular velocities
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pd, qd, rd, and the desired accelerations v̇dZ , ṗd, q̇d, ṙd should be provided. The explicit

computation of input vector Ωref =
[

Ω1_ref Ω2_ref Ω3_ref Ω4_ref

]T
is derived below.

Let consider the system of linear equations (4.34) and the vector of input references Ωref =
[

Ω1_ref Ω2_ref Ω3_ref Ω4_ref

]T
. By writing the equations in matrix form ArΩref = Br,

the solution is Ωref = A−1
r Br

















Ω1_ref

Ω2_ref

Ω3_ref

Ω4_ref

















=

















b21(t) b21(t) b21(t) b21(t)

b61(t) b62(t) b61(t) b64(t)

b71(t) b72(t) b73(t) b72(t)

b81(t) −b81(t) b81(t) −b81(t)

















−1 















v̇dZ − a21(t)Z
d

ṗd − (a67(t) q
d + a68(t) r

d)

q̇d − (a76(t) p
d + a78(t) r

d)

ṙd − (a86(t) p
d + a87(t) q

d)

















(4.35)

The explicit solution of A−1
r is

A−1
r =

















− b72(t)+b73(t)
2b21(t)(b71(t)−b73(t))

0 1
b71(t)−b73(t)

b72(t)−b73(t)
2b81(t)(b71(t)−b73(t))

− b61(t)+b64(t)
2b21(t)(b62(t)−b64(t))

1
b62(t)−b64(t)

0 − b61(t)−b64(t)
2b81(t)(b62(t)−b64(t))

b71(t)+b72(t)
2b21(t)(b71(t)−b73(t))

0 − 1
b71(t)−b73(t)

b71(t)−b72(t)
2b81(t)(b71(t)−b73(t))

b61(t)+b62(t)
2b21(t)(b62(t)−b64(t))

− 1
b62(t)−b64(t)

0 b61(t)−b62(t)
2b81(t)(b62(t)−b64(t))

















(4.36)

It can be proven that A−1
r always exists. Indeed, b71(t) 6= b73(t) and b62(t) 6= b64(t) ∀t.

If we look at those parameters in (3.29), we see that b71(t) and b73(t) are two parallel

straight lines, and the same happens with b62(t) and b64(t).





Chapter 5

Path following

In the previous chapter, it was shown how to control the altitude and orientation of a

quadrotor system. In this chapter, the reference tracking scheme has been extended to

a general control scheme which allows the tracking of trajectories in X, Y and Z. First,

the Integral Backstepping (IB) control that provides the desired acceleration in X and

Y is defined. Then, the computation from the desired accelerations to the roll and pitch

references is done. Finally, the stability of the general control scheme is discussed.

5.1 General control scheme

The general control scheme for tracking 3D trajectories is shown in Figure 5.1 [5]. The IB

control block is the Integral Backstepping controller that provides the accelerations in X

and Y in order to control horizontal position. The A.A. control block includes the RM-FF

control explained in Section 4.2.2. That scheme is used instead of the FF control because,

as it will be seen in the simulations, it provides zero error in tracking of Z position and

orientation control.
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IB

control

Roll-Pitch

references

A.A.

control

Filter +

AA model

XT ẊT ẌT

YT ẎT ŸT Ẍd Ÿ d

ZT ŻT Z̈T

ψT ψ̇T ψ̈T

ϕd ϕ̇d ϕ̈d

θd θ̇d θ̈d

x

Figure 5.1: Control scheme for path following

5.2 Integral Backstepping control

The computation of the desired acceleration in X and Y directions is done using the

integral backstepping control technique [10]. This control technique will be explained for

X direction only, but the same can be applied for Y direction.

It is assumed that trajectory points XT are perfectly known, and also the time derivatives

ẊT and ẌT . Let define the tracking error eX = XT − X where XT is the desired x-

coordinate position in the trajectory and X is the current x-coordinate position. The

time derivative of this error is ėX = ẊT − Ẋ where ẊT is the desired velocity in the

trajectory and Ẋ is the current velocity. First, the control law with proportional and

integral terms (5.1) is defined, where Kd, Kp are positive constants and Vc is the virtual

control velocity. Note that velocity Vc takes into account the desired velocity in the

trajectory ẊT and the velocity needed to minimize the tracking error eX .

Vc = Kd eX +Kp

∫ t

0

eX(τ) dτ + ẊT (5.1)

In order to find Kd and Kp, let consider the case that the current velocity Ẋ is the desired

control velocity Vc. Then, by substituting (5.1) into the definition of ėX , the following

differential equation is found:

ėX = −Kd eX −Kp

∫ t

0

eX(τ) dτ (5.2)

By differentiating (5.2), we see that Kd and Kp determine the dynamics of the tracking

position error
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ëX +Kd ėX +Kp eX = 0 (5.3)

The poles of (5.3) are chosen such that the system is critically damped. Therefore, both

poles are λ1 = λ2 = λ where λ is a real negative number, and the constants are obtained

from

Kd = −2λ, Kp = λ2 (5.4)

Let define the velocity tracking error as eV = Vc− Ẋ. Note that this is not the same error

than the derivative of tracking error ėX . The goal of the next step is to achieve eV = 0.

The desired dynamic for eV is defined as

ėV +Kv eV + ex = 0 (5.5)

where Kv is constant and positive.

The derivative ėV can be obtained by substituting (5.1) into the definition of eV and then

computing the derivative:

ėV = Kd ėX +Kp eX + ẌT − Ẍ (5.6)

Finally, the desired acceleration Ẍd is obtained substituting (5.6) into (5.5).

Ẍd = Kd ėX + (Kp + 1) eX +Kv eV + ẌT (5.7)

5.3 Computation of roll and pitch references

Let consider the dynamic equations of the quadrotor regarding X and Y (5.8), which are

the first two equations of the quadrotor model shown in (3.9).



58 Chapter 5. Path following











Ẍ = (sinψ sinϕ+ cosψ sin θ cosϕ)
U1

m

Ÿ = (− cosψ sinϕ+ sinψ sin θ cosϕ)
U1

m

(5.8)

The horizontal acceleration of the quadrotor depends on the thrust U1 and angular po-

sitions ϕ, θ for a given yaw ψ. Therefore, the desired acceleration Ẍd and Ÿ d should be

converted into a desired ϕd and θd assuming that ψ is measured. Also it is assumed that

U1 only compensates gravity (i.e. Z̈ = 0), and therefore it is computed as:

U1 =
m g

cos θ cosϕ
(5.9)

Considering the desired accelerations Ẍd and Ÿ d and substituting (5.9) into (5.8) the

following set of equations is found:















Ẍd = g

(

sinψ

cos θ
tanϕ+ cosψ tan θ

)

Ÿ d = g

(

−
cosψ

cos θ
tanϕ+ sinψ tan θ

) (5.10)

The solution of (5.10) for ϕ and θ provides the required pitch and roll angles to have the

desired horizontal acceleration:























θd = arctan

(

cosψ Ẍd + sinψ Ÿ d

g

)

ϕd = arctan

(

sinψ Ẍd − cosψ Ÿ d

g
cos θd

) (5.11)

In case of using the RM-FF control scheme for the Attitude/Attitude control (see Sec-

tion 4.2.2), we will need not only the desired orientation ϕd and θd but also their time

derivatives ϕ̇d, θ̇d, ϕ̈d and θ̈d. In order to simplify the computation of these derivatives,

the hypothesis of small Euler angles for θ and ϕ has been considered [11]. Therefore,

the first order approximation of arctan function is done (arctan(x) ≈ x), and cos θd ≈ 1.

Finally, (5.11) becomes (5.12).
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









θd =
(

cosψ Ẍd + sinψ Ÿ d
)

/g

ϕd =
(

sinψ Ẍd − cosψ Ÿ d
)

/g
(5.12)

The desired angular velocities ϕ̇d and θ̇d are











θ̇d =
(

cosψψ̇Ÿ d − sinψψ̇Ẍd + ˙̈Xd cosψ + ˙̈Y d sinψ
)

/g

ϕ̇d =
(

cosψψ̇Ẍd + sinψψ̇Ÿ d + ˙̈Xd sinψ − ˙̈Y d cosψ
)

/g
(5.13)

Note that we need to know how the acceleration Ẍd given by the controller changes over

time. This means that the third derivative ˙̈Xd must be computed by differentiating (5.7).

Taking into account (5.6) and defining ëX = ẌT − Ẍ, the result for ˙̈Xd (the result for ˙̈Y d

would be equivalent) is

˙̈Xd = (Kd +Kv)ëX + (Kp +KvKd + 1)ėX +KvKp eX + ˙̈XT (5.14)

The desired angular accelerations ϕ̈d and θ̈d are shown in (5.15).














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










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





θ̈d =
(

−(ψ̇2 cosψ + ψ̈ sinψ)Ẍd − 2ψ̇ sinψ ˙̈Xd + cosψ ¨̈Xd+

+ (−ψ̇2 sinψ + ψ̈ cosψ)Ÿ d + 2ψ̇ cosψ ˙̈Y d + sinψ ¨̈Y d
)

/g

ϕ̈d =
(

(−ψ̇2 sinψ + ψ̈ cosψ)Ẍd − 2ψ̇ cosψ ˙̈Xd + sinψ ¨̈Xd+

+ (ψ̇2 cosψ + ψ̈ sinψ)Ÿ d + 2ψ̇ sinψ ˙̈Y d − cosψ ¨̈Y d
)

/g

(5.15)

As it can be seen, the fourth derivative ¨̈Xd is needed, and it is obtained by differentiating

(5.14) as

¨̈Xd = (Kd +Kv) ˙̈eX + (Kp +KvKd + 1) ëX +KvKp ėX + ¨̈XT (5.16)

where ˙̈eX = ˙̈XT − ˙̈X.
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Although in general the first four derivatives of XT and YT are needed, this depends on the

complexity of the trajectory. For smooth trajectories, third and fourth derivatives could be

neglected. Also note that the second derivative of ψ̈ is needed in (5.15). This acceleration

is not an state so it is not measured nor estimated. However it can approximated by the

desired acceleration ψ̈T .

5.4 Stability analysis

The AA controller does not guarantee that the quadrotor achieve the desired orientation

instantaneously. As a consequence, the desired accelerations Ẍd and Ÿ d provided by the

IB controller are also achieved after some time. Although the design of the state feedback

controller and the IB controller is done so that they are stable, the whole control system

shown in Figure 5.1 could be unstable. The goal of this section is to study how the

dynamics of the AA controller affects stability of path following control. Additionally, the

controller parameters Kp, Kd and Kv that ensure stability are determined.

Let consider the control scheme of Figure 5.2 which is the same than Figure 5.1 but

regarding the movement in X coordinate only.

Gc(s) GX(s) 1/s2
XT (s) + EX(s) Ẍd(s) Ẍ(s) X(s)

−

Figure 5.2: Path control scheme for X dynamics

Transfer function Gc(s) represents the IB controller shown in (5.7). Transfer function

GX(s) represents the combination of the roll-pitch reference computation block, the AA

controller and the quadrotor equations for acceleration in X. As a result, GX(s) is a

system with one input Ẍd and one output Ẍ, and ideally an unitary static gain. Finally,

the current acceleration is integrated such that the output is the position X(s). The

difference between the current position and the desired position in the trajectory is the

tracking error EX(s) = XT (s)−X(s).
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Considering the definition of eV = VC − Ẋ, the definition of ėX = ẊT − Ẋ and (5.1), then

(5.7) can be rewritten as

Ẍd = Kd ėX + (Kp + 1) eX +Kv

(

Kd eX +Kp

∫ t

0

eX(τ) dτ + ėX

)

+ ẌT (5.17)

The transfer function Gc(s) is obtained by applying the Laplace transform into (5.17)

Gc(s) =
Ẍd(s)

EX(s)
=

(Kd +Kv)s
2 + (KvKd +Kp + 1)s+KvKp

s
(5.18)

The transfer function GX(s) has been approximated by a second order system as

GX(s) =
Ẍ(s)

Ẍd(s)
=

KX

1
ω2

nX

s2 + 2ξX
ωnX

s+ 1
(5.19)

The estimation of parameters KX , ωnX and ξX is done by applying a unitary step as input

Ẍd and looking at the response Ẍ. Figure 5.3 shows this response and the approximated

second order system response.

Figure 5.3: Step response of GX(s) and second order approximation
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Remark 5.1. It is seen in simulation that in case Z̈d = 0 the evolution of Ẍ is the same

for different Ÿ d. Although the states in the AA model are not decoupled, it is assumed

that the evolution of Ẍ is independent from Ÿ when Z̈d = 0.

The stability of the closed-loop system shown in Figure 5.2 has been studied using the

Nyquist criterion applied to the open-loop system

Gol = Gc(s)GX(s)
1

s2
=

K
(

1
ω2
nc

s2 + 2ξc
ωnc
s+ 1

)

(

1
ω2

nX

s2 + 2ξX
ωnX

s+ 1
)

s3
(5.20)

where

ωnc =

√

KvKp

Kd +Kv

, ξc =
ωnc (KvKd +Kp + 1)

2 KvKp

, K = KXKvKp (5.21)

By substituting s = jω in (5.20), the gain |Gol(jω)| =M(jω) and phase Gol(jω) = Φ(jω)

of the frequency response can be computed as










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















M(jω) =
|K|

∣

∣

∣

(

1− ω2

ω2
nc

)

+ j 2ξc
ω
ωnc

∣

∣

∣

ω3

∣

∣

∣

(

1− ω2

ω2

nX

)

+ j 2ξX
ω

ωnX

∣

∣

∣

Φ(jω) = −
3π

2
− arctan

(

2ξX
ω

ωnX

1− ω2

ω2

nX

)

+ arctan

(

2ξc
ω
ωnc

1− ω2

ω2
nc

)

(5.22)

For any given positive frequency ω, a complex number with magnitude M(ω) and angle

Φ(ω) is obtained from (5.22). In case ωnX > ωnc (that we can assume is true if we want

the dynamics of the AA controller to be faster than the IB controller) then a qualitative

representation of the Nyquist plot for ω > 0 rad is shown in Figure 5.4. As it can be

seen, the curve crosses the real axis at two different frequencies. In the special case where

ωnX >> ωnc (i.e. the AA control is instantaneous in comparison with the IB control),

the curve only crosses once at frequency ω = ωnc and the phase tends to −π/2 rad when

ω → ∞. If ωnX < ωnc then the curve never crosses the real axis.
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Figure 5.4: Qualitative Nyquist diagram of the open-loop system

Nyquist stability criterion: Let define the number of poles with positive real part of

the closed-loop system as Z, the number of poles of the open-loop system as P , and the

number of clockwise semi-encirclements (note only the half Nyquist plot is drawn) around

−1 as N . In case the closed-loop system has poles at zero (three in our case) it must be

added as many counter-clockwise quarters of circle as poles, starting at the initial phase

(i.e. when ω = 0 rad). According to the Nyquist criterion the number of unstable poles

of the closed-loop system is Z = P +N .

In our case P = 0 because GX(s) is stable (the closed-loop AA controller system is stable).

Therefore, in order to have Z = 0, i.e. an stable closed-loop system, it must be N = 0.

If the dashed segment shown in Figure 5.4 includes the complex point −1 + j0, then

N = 1 + (−1) = 0 and the stability condition is fulfilled.

Note that all the parameters in (5.21) depend on two parameters: the real pole λ and

IB controller’s constant Kv. Constants Kd and Kp are computed from λ as shown in

(5.4). Parameters KX , ωnX and ξX are known. Therefore the only tunable parameters

are λ and Kv. Figure 5.5 shows four examples of bode diagrams for the following pairs

of parameters: {Kv = 0.1, λ = −0.1}, {Kv = 10, λ = −0.1}, {Kv = 0.1, λ = −10} and

{Kv = 10, λ = −10}.

Note that there are two cases where the phase curve does not cross the −180 degrees. In

the other two cases the closed loop system is stable. We want to know in detail which is
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Figure 5.5: Bode diagram for four pairs of parameters Kv and λ

the region in the space of parameters {Kv, λ} where the Nyquist stability condition holds.

This is the same than check in which cases the Nyquist plot crosses the real axis twice in

ω180_1 and in ω180_2 > ω180_1, so that M(ω180_1) > 1 and M(ω180_2) < 1.

Let consider the intervals λ ∈ [−10, 0] and Kv ∈ [0, 20]. By solving Φ(jω) = −π using

the second equation of (5.22), ω180_1 and ω180_2 are found, and conditions M(ω180_1) > 1

and M(ω180_2) < 1 are checked using the first equation of (5.22). The parameters that

satisfy the stability conditions are the one located in the shaded region of Figure 5.6. It

can be seen as an example that the pairs of parameters that makes the closed-loop system

stable in Figure 5.5 ({Kv = 0.1, λ = −0.1} and {Kv = 10, λ = −0.1}) are inside the

shaded region of Figure 5.6.
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Figure 5.6: Region of parameters λ and Kv that satisfies stability condition





Chapter 6

Simulations and results

The different control techniques explained in this work has been implemented and simu-

lated in SimulinkR©, and the results are discussed. First, three state-feedback controllers

for altitude/attitude control have been designed and compared. Then, an state-observer

has been designed. In the next section the FeedForward (FF) and Reference Model based

FeddForward (RM-FF) control scheme have been implemented, simulated and compared.

Finally, in the section dedicated to path tracking, an IB controller has been implemented

in order to control X and Y position, and make the quadrotor to follow a 3D trajectory

in simulation.

Before starting with the simulations, some general settings has been considered:

• The quadrotor system has been modeled and simulated using equations (3.9). The

inputs are the angular speeds of the propellers. Since the design of the state-feedback

controller is done including an Apkarian filter, this filter it is also added to the input

of the quadrotor simulation model.

• The input to the quadrotor model (angular velocities Ω) has been saturated to

make the model more realistic. The limits of the angular speeds are set to Ωi ∈

[0, 600] rad s−1.
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• Two Gaussian noise blocks has been added to the input Ω and the states x to add

realism to the model. The noise has zero mean and variances σ2
x for the states and

σ2
Ω

for the inputs. The matrices of covariances are diagonal.

σ2
x =

[

0.052 0.52 0.032 0.032 0.032 0.32 0.32 0.32
]

(6.1)

σ2
Ω
=
[

0.012 0.012 0.012 0.012
]

(6.2)

• The values for general parameters and bounds of the TS model are summarized in

Section A.2.

• Although the polytopic model used for the design of the state feedback controller

does not include Z = 0, in most of the simulations the operation point for Z is zero

or near to zero. This is done by simulating in other altitudes and then translating

the result as it is explained in Remark 3.5.

• The sample time in all the simulations is 1 ms.

6.1 State feedback controller

Controllability should be checked before the design of the controller. Since the dynamics

of the filter can be neglected, the (not extended) TS-LIA model has been considered in

the controllability analysis.

Controllability analysis: It has been checked if all the states of the TS-LIA model

are controllable by computing the controllability matrix for each subsystem. Given the

subsystem matrices Ai and Bi, the controllability matrix Ci is computed as (6.3), which

has maximum rank for each i-th subsystem.

Ci =
[

Bi Ai Bi A2
i Bi . . . A8

i Bi

]

(6.3)

Several state feedback controllers has been designed following the procedure explained

in Section 4.1.2 by specifying different LMI regions for the closed loop poles. The LMI
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regions are defined by Sα,ρ,γ (see Figure 4.1), where α is the minimum decay rate, ρ is

the maximum natural frequency and γ is related with the minimum damping ratio. In

this section, three examples of controllers with different performance requirements will be

analysed. The parameters of the LMI regions are shown in Table 6.1.

LMI region α ρ γ

R1 1 100 π/3
R2 5 100 π/3
R3 1 100 π/6

Table 6.1: Three examples of LMI regions requirements for pole placement

The location of the closed loop poles at each LMI region is shown in Figure 6.1.

(a) R1 (b) R2 (c) R3

Figure 6.1: Pole placement of closed loop system in different LMI regions

Figure 6.2 shows the evolution of position Z and angular positions ϕ, θ and ψ, starting at

initial positions Z(0) = 1 m, ϕ(0) = π/4 rad, θ(0) = −π/4 rad and ψ(0) = π/2 rad. The

initial velocities are zero. The initial states of the filter are the values at hovering condition

ΩH , so the net accelerations are zero. All three controllers stabilizes the quadrotor at the

origin (see Remark 3.5). Note that the parameter that affects the performance more

significantly is the value of α, which determines how fast the steady state is achieved.

However, usually faster poles implies more "aggressive" control inputs. As a consequence

the required angular speed of the propellers, which have physical limitations, are not able

to follow the control signal which can be negative or very high. Therefore the saturation

of the input Ω includes a non-linearity that could yield into an undesired behaviour (like

the peak shown in Figure 6.2 (b)) or even instability.



70 Chapter 6. Simulations and results

(a) Altitude (b) Roll

(c) Pitch (d) Yaw

Figure 6.2: Comparison of different state feedback controllers

In Figure 6.3 the angular speed of the propellers are shown. Only the first two seconds of

the simulation time has been plotted. As commented, in the case of having fast closed-

loop poles (α = 5) the input is saturated for long time. Note that the steady state value

is ΩH = 212.7 rad.

6.2 State observer

Observability analysis: It has been checked if all the states of the TS-LIA model are

observable by computing the observability matrix for each subsystem. Given the subsys-

tem matrices Ai and constant matrix C (6.4), the observability matrix Oi is computed

as (6.5), which has maximum rank for each i-th subsystem.
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(a) (b)

(c) (d)

Figure 6.3: Angular speed of propellers Ω1, Ω2, Ω3 and Ω4

C =

















1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

















(6.4)

Oi =























C

C Ai

C A2
i

...

C A8
i























(6.5)

The state observer has been designed following the procedure shown in Section 4.1.3. The

poles of the observer should be faster than the closed-loop system poles. If the selected

controller is the one that places the poles in the LMI region R1 of Table 6.1, where α = 1,

then the poles of the observer should be about 10 times faster, i.e. α = 10.
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It is assumed that only the position Z and angles ϕ, θ, ψ are measured. Figure 6.4

shows the estimation error, which is the difference between the actual state and the state

estimated by the observer. Note that only the first half second of simulation has been

plotted. It is shown the states of the AA model but actually the complete extended state

(which includes the states of the filter) is estimated.

Figure 6.4: State estimation error

6.3 Reference tracking

Two different control schemes has been proposed for the case when the desired position

Zd and desired orientations ϕd, θd, ψd are not constant: the Feedforward (FF) control

scheme (see Section 4.2.1) and the Reference Model based Feedforward (RM-FF) control

scheme (see Section 4.2.2). Figure 6.5 shows the evolution of altitude and orientation

of the quadrotor when each control scheme is applied. The variable references are the

sinusoidal functions (6.6), where AZ = 1 m, Aϕ = Aθ = Aψ = 0.5 rad are the amplitude

of oscillation. The periods are NZ = Nϕ = Nθ = Nψ = 10 s. Initial conditions are

the same than in the previous simulations. The state feedback controller used in these

simulations is again the one that set the poles of the closed-loop system in R1.
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Zd = AZ sin

(

2πt

NZ

)

, Żd = AZ
2π

NZ

cos

(

2πt

NZ

)

, Z̈d = −AZ

(

2π

NZ

)2

sin

(

2πt

NZ

)

ϕd = Aϕ sin

(

2πt

Nϕ

)

, ϕ̇d = Aϕ
2π

Nϕ

cos

(

2πt

Nϕ

)

, ϕ̈d = −Aϕ

(

2π

Nϕ

)2

sin

(

2πt

Nϕ

)

θd = Aθ sin

(

2πt

Nθ

)

, θ̇d = Aθ
2π

Nθ

cos

(

2πt

Nθ

)

, θ̈d = −Aθ

(

2π

Nθ

)2

sin

(

2πt

Nθ

)

ψd = Aψ sin

(

2πt

Nψ

)

, ψ̇d = Aψ
2π

Nψ

cos

(

2πt

Nψ

)

, ψ̈d = −Aψ

(

2π

Nψ

)2

sin

(

2πt

Nψ

)

(6.6)

The FF control scheme, only requires the first column of (6.6), i.e. the desired position

and orientation. Since the FF scheme assumes the steady state behaviour of the system,

it works properly when the references are constant values. But when the references are

variable like in Figure 6.5 the output is delayed in phase and reduced in magnitude.

Another drawback is that the FF control requires the computation of an inverse matrix

in (4.29), which can result into numerical problems. Therefore, the FF control scheme

also introduce, a limitation in the desired performance.

In the case of the RM-FF control scheme it is seen that there is no steady state error and

it makes the position and orientation to follow the sinusoidal references. The computation

of an inverse matrix is not needed in this case (see Remark 4.1). The main drawback of

the RM-FF control scheme is that it needs the knowledge of the reference velocity and

acceleration, not only the position, and that could not be provided nor computed. Also

it could be difficult to provide the velocities and accelerations if the references are the

output of another controller, like in the computation of roll and pitch references from the

IB controller (see Section 5.3).

6.4 Path tracking

As it is explained in Chapter 5, the control in X and Y is done assuming that the desired

positions XT , YT , velocities ẊT , ẎT and accelerations ẌT , ŸT are known. The IB control

provides the required acceleration in X and Y , and then the references for roll and pitch
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(a) Altitude (b) Roll

(c) Pitch (d) Yaw

Figure 6.5: Variable reference tracking using Feedforward (FF) control scheme and
Reference Model based Feedforward (RM-FF) control scheme

orientations are computed from these accelerations (see Figure 5.1). These roll and pitch

references, along with the reference in altitude and yaw, provides the complete reference

to the altitude and attitude control. In particular, the RM-FF control scheme is applied

because it is able to track variable references.

The state feedback controller used in the AA control is the one that places the poles of

the closed-loop system in R2 (see Table 6.1). This controller will determine which is the

estimated dynamics of GX(s) (see Figure 5.3), i.e. the parameters of its second order

approximation (5.19). The estimated parameters of GX(s) are KX = 1.0035, ωnX =

7.1638 rad s−1 and ξX = 0.9287. The state feedback controller also determines the

parameters of the IB controller λ and Kv, i.e. the region of these parameters where the

Nyquist stability condition is satisfied. This region for the controller used is the one shown

in Figure 5.6. The parameters chosen are λ = −2.5 s−1 and Kv = 0.5 s−1. The other two

parameters Kp and Kd are computed from (5.4).

Let consider first a trajectory composed by one point [XT YT ZT ]
T . This is equivalent

to say that references for X, Y and Z are constant. The coordinates of the point are
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XT (t) = 1m, YT (t) = 1m and ZT (t) = 1m for all t. The desired velocity and acceleration

at this point is zero. The desired yaw orientation is ψT = 0 rad. The quadrotor is

initially at origin position with initial yaw ψ(0) = π/3 rad and zero angular velocities

and accelerations. Figure 6.6 shows the simulation results.

(a) Position (b) Roll

(c) Pitch (d) Yaw

Figure 6.6: 3D Position and yaw orientation control with constant references

In order to have a good performance regarding the settling time, a fast state-feedback

controller is needed and appropriates constants for the IB controller should be chosen.

However, fast controllers cause the drawback mentioned in the previous section: the

saturation of the propeller speeds could produce undesired long-term saturated inputs,

which could yield into an unstable behaviour of the quadrotor. Fortunately, the magnitude

of the control input not only depends on the controller. It also depends on how big is the

reference compared with the initial state. In the example of Figure 6.6, the gap between

initial and desired position for each coordinate is 1 m. However, a new trajectory could

be defined that connects initial and the same final point but considering more points

in between, so the gaps between trajectory points are smaller. As a consequence, the
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required control input will be smaller, and also the time the input is saturated is reduced,

improving the overall performance.

Let define a new trajectory T (t) = [XT (t) YT (t) ZT (t)]
T where the parametrized coordi-

nates are (6.7).

T (t) =























XT (t) = ẊT t

YT (t) = ẎT t

ZT (t) = ŻT t

(6.7)

If the desired velocities ẊT , ẎT and ŻT are constant the trajectory (6.7) is a straight

line. In order to connect the initial point (origin) with the desired final point [1 1 1]T the

velocities must be equal. These velocities has been set to ẊT = ẎT = ŻT = 0.5 m s−1

so that the results are similar to the previous simulation, but any other value would be

valid. The state feedback controller and the constants of the IB controller are the same

than in the previous simulation, as well as the initial conditions.

The results of the simulation with this new trajectory are shown in Figure 6.7. Since the

velocity in each coordinate is considered constant, the references for X, Y and Z are now

ramps instead of steps. The slope of the ramps are the desired velocities ẊT , ẎT and

ŻT . Once these references reach the desired final position, then they are set to a constant

value at that position. Note as the the coordinates X, Y and Z follow the references.

Note also as the roll and pitch angles are small (i.e. near the hovering condition) when

the quadrotor is following the ramp references (before the abrupt change of slope).

In the last simulation, an helicoidal trajectory is considered. It is defined by equations

(6.8), where ŻT = 1 m s−1 is constant.

T (t) =































XT (t) = AX cos

(

2πt

NX

)

YT (t) = AY sin

(

2πt

NY

)

ZT (t) = ŻT t

(6.8)

The position, velocity and acceleration references for X and Y directions are sinusoidal

signals as in (6.6). The yaw reference is set to ψT = 0 rad for all the simulation time, so the
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(a) Position (b) Roll

(c) Pitch (d) Yaw

Figure 6.7: 3D straight line reference tracking

quadrotor is performing a translation over the trajectory. The initial position is [0 0 0]T ,

with zero velocities and accelerations. The amplitude of oscillations are AX = AY = 1 m,

and the periods are NX = NY = 10 s. The result of the simulation is plotted in Figure 6.8.

Position Z evolves following a straight line whereas X and Y follow the sinusoidal refer-

ences with zero steady state error. Note that the assumption of small Euler angles can be

verified if the slope of the references changes smoothly (Figure 6.8 (c) and (d)), in contrast

to the previous simulation (Figure 6.7 (b) and (c)). Figure 6.9 shows the evolution of 3D

position in the same simulation.
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(a) Z (b) X,Y

(c) Roll (d) Pitch

Figure 6.8: 3D helicoidal line reference tracking

Figure 6.9: 3D position in helicoidal tracking



Chapter 7

Conclusions and future work

In this chapter, the conclusions of the thesis are discussed, as well as some additional

work that could be done in future projects. Although some of them has been already

commented as remarks in previous chapters, the main conclusions are the following:

• On the generation of a Takagi-Sugeno model, it has been seen that there is a trade-

off between how accurate the model is and how big the dimension of the model is

(number of rules/subsystems). The Takagi-Sugeno model obtained from sector non-

linearity approach has been proven to be the most accurate (see Figure 3.7) but also

the one with more rules/subsystems. In the best case (when the triangular polytopic

is considered for some premise variables), there are 1296 rules/subsystems. However

the TS-LIA model provides a handy Takagi-Sugeno model of 32 rules/subsystems,

despite the lost of accuracy in the linear approximation of input torques and forces.

• One of the main advantages of the TS-LIA model developed in this work is, as it is

said above, the reduction on the dimension of the model. Other advantage is the

fact that the premise variables are independent form the input which makes the

defuzzification process of the controller easier. It has also the advantage of being

linear with respect the input, so the computation of input references in the Reference

Model based FeedForward control scheme does not require the computation of an

inverse matrix, so it can be computed explicitly instead (Remark 4.1).

79
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• The Reference Model based FeedForward control scheme is suitable for tracking

variable references in the altitude and orientation control with zero steady state

error. However, it has limitations related with references of angles that are far from

zero, where the assumption of small Euler angles is not fulfilled. Another drawback

is that not only positions should be provided as references. The knowledge of desired

velocities and accelerations are also necessary.

• There is a physical limitation on the required performance (for example on how fast

the closed-loop system might be) when the state feedback controller is designed.

This limitation is related with the fact that the speed of the propellers could be

saturated. If the input applied is not the control input for too long due to the

saturation, this could produce an unstable system behaviour.

• The tracking of trajectories in 3D space generates better results if the trajectory

points are close one another, so the required control input does not force the sat-

uration. In addition, the references for roll and pitch angles do not violate the

assumption of small Euler angles.

The following are some proposed ideas for future works:

• The quadrotor models shown in this work have as input the angular speed of the

propellers. As a consequence, it is assumed that when an input control signal is

applied, the desired angular speed is achieved instantaneously. In a more realistic

model the input would be the voltage to the actuators, and therefore the dynamics

that relates this voltage with the angular speed would be considered. In that case

the input would not be the noisy signal shown in Figure 6.3 because a limitation on

the rate of change of angular speeds would be introduced.

• The approximation of the input done in the TS-LIA model is valid under the assump-

tion of small changes of propellers speed with respect hovering condition. However,

an important property of the physical system (the quadratic relation between angu-

lar speed and forces/torques) is neglected. It would be interesting to explore which

are the limitations, if any, of this assumption.
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• As commented in the conclusions, the saturation in the propellers speed could cause

instability. However, the system could remain stable for short time saturated input

signals as it is shown in Figure 6.2 and Figure 6.3. It would be interesting to study

the stability of the system taking into account the non-linearity introduced by the

saturation.

• The stability analysis of the path tracking control is done by approximating the

inner Altitude/Attitude control to a linear second order system. This provides a

general idea on how the parameters of the IB controller should be set in order to

make the system stable. A more general result could be obtained by taking into

account the complete AA control instead of an approximation.

• Implementation of the ideas developed in this work in a real environment.





Appendix A

Quadrotor models

A.1 Newton-Euler model

The Newton-Euler model derived in [7] has the following form:

M ζ̇ +C(ζ) ζ = G+O(ζ) Ω+E(ξ) Ω2 (A.1)

Each one of the matrices are explained below:

• Inertia matrix: Constant matrix that contains the inertial mass (m) and the

inertia moments in the principal directions (IX , IY and IZ).

M =





























m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 IX 0 0

0 0 0 0 IY 0

0 0 0 0 0 IZ





























(A.2)

• Coriolis-centripetal matrix: Matrix that considers the Coriolis and centripetal

accelerations. It depends on the inertia moments and the angular velocity ω.
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C(ζ) =





























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 IZ r −IY q

0 0 0 −IZ r 0 IX p

0 0 0 IY q −IX p 0





























(A.3)

• Gravitational vector: External force/torque due to gravity. It is constant.

G =





























0

0

−m g

0

0

0





























(A.4)

• Gyroscopic propeller matrix: Matrix that represents the gyroscopic effect. It

depends on the angular velocity ω and the rotational moment of inertia JTP around

the propeller axis. As it is shown in (A.1), this matrix is multiplied by the pro-

pellers speed vector Ω, shown in (A.6), which contains the angular speed Ωi of each

propeller i ∈ {1, 2, 3, 4}.

O(ζ) = JTP





























0 0 0 0

0 0 0 0

0 0 0 0

q −q q −q

−p p −p p

0 0 0 0





























(A.5)

Ω =
[

Ω1 Ω2 Ω3 Ω4

]T

(A.6)

• Movement matrix: In the B-frame there are four basic forces/torques which are

related with the basic movements explained in the previous section: a lift force in
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ZB named U1, a torque which produces the roll rotation around axis XB named

U2, a torque which produces the pitch rotation around axis YB named U3, and the

counter-torque which produces the yaw rotation around axis ZB named U4:

















U1

U2

U3

U4

















=

















b b b b

0 −b l 0 b l

−b l 0 b l 0

−d d −d d

















Ω
2 (A.7)

Here b is the thrust factor, d is the drag factor, l is the distance between the center

of the quadrotor and the center of any propeller and Ω
2 = [Ω2

1 Ω2
2 Ω2

3 Ω2
4]
T .

The last term in (A.1) is the product of the movement matrix E(ξ) and the vector

Ω
2, and can be written in terms of the forces/torques (U1, U2, U3, U4) as:

E(ξ) Ω2 =





























(sψsϕ + cψsθcϕ) U1

(−cψsϕ + sψsθcϕ) U1

(cθcϕ) U1

U2

U3

U4





























(A.8)

A.2 System and models parameters

This section summarizes all the values of parameters and constants needed to run the

simulations of the AA models and TS models.

A.2.1 Quadrotor system parameters

The parameters used in this thesis (Table A.1) are based on the estimations done by [7]

and used later in [9]. Note that ideally the quadrotor is symmetric with respect x-axis and

y-axis, so the moments of inertia IX and IY are equal. As a consequence, the equation
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of ṙ in the AA model could have been simplified, but it is not in order to maintain the

generality of the model.

Parameter Description Value

m Mass of the quadrotor 1 kg
IX Body moment of inertia around x-axis 8.1× 10−3 Nms2

IY Body moment of inertia around y-axis 8.1× 10−3 Nms2

IZ Body moment of inertia around z-axis 14.2× 10−3 Nms2

d Drag factor 1.1× 10−6 Nms2

b Thrust factor 54.2× 10−6 Ns2

l Distance from the center of the quadrotor to
a propeller

0.24 m

JTP Total rotational moment of inertia around
the propeller axis

104× 10−6 Nms2

Table A.1: Quadrotor system parameters

From (3.16) the input needed in hovering condition can be computed, and its value is

ΩH = 212.7 rad s−1.

A.2.2 Bounds of input, state and premise variables

The generation of a Takagi-Sugeno model requires the definition of bounds for the premise

variables. The premise variables not depend on all the states, so only the bounds for the

states and inputs that appears in the premise variables will be defined as follows

Z ∈ [1, 20] m ϕ ∈ [−π/4, π/4] rad

θ ∈ [−π/4, π/4] rad p ∈ [−0.25, 0.25] rad s−1

q ∈ [−0.25, 0.25] rad s−1 r ∈ [−0.25, 0.25] rad s−1

Ω1 ∈ [100, 500] rad s−1 Ω2 ∈ [100, 500] rad s−1

Ω3 ∈ [100, 500] rad s−1 Ω4 ∈ [100, 500] rad s−1

(A.9)

The selection of bounds for Z has been chosen arbitrarily and the only aim is to avoid

the zero in the interval (see Remark 3.5). The other bounds has been selected as in [9].

The bounds of the premise variables for the TS model are:
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z1 = 1/20, z1 = 1, z2 = −0.25, z2 = 0.25,

z3 = −0.25, z3 = 0.25, z4 = −0.25, z4 = 0.25

z5 = 50, z5 = 500, z6 = 50, z6 = 500

z7 = 50, z7 = 500, z8 = 50, z8 = 500

z9 = 100, z9 = 500, z10 = 100, z10 = 500

z11 = 100, z11 = 500, z12 = 100, z12 = 500

(A.10)

And the bounds of the premise variables for the TS-LIA model are:

z1 = 1.5/20, z1 = 2, z2 = −0.25, z2 = 0.25

z3 = −0.25, z3 = 0.25, z4 = −0.25, z4 = 0.25,

z5 = 0.5, z5 = 1

(A.11)

A.3 Reduction on the number of rules in a TS model

One of the main problems on generating a Takagi-Sugeno model is the number of rules

and subsystems that could arise. Assuming that the subsystems are found by combination

of bounds of the premise variables and that all the combinations are considered, then 2k

rules are needed (where k is the number of premise variables). However, is not always

mandatory to consider all the combinations. In many cases some rules/subsystems can

be neglected so that the dimensionality of the TS model is reduced at expense of loosing

conservativeness.

The general idea is try to reduce the polytopic space of premise variables defined by the

combinations of bounds without excluding any realizable subsystem. For the examples

below, it will be assumed that there exist at least two premise variables z1 and z2 that could

be independent or not, and maybe other p − 2 premise variables which are independent

from the first two. The bounds for the premise variables are: z1 ∈ [z1 z1] and z2 ∈ [z2 z2].

• Case 1: Rectangular polytopes
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When two variables are independent (see Figure A.1(a)), or the dependency is such that

the realizable values cannot be constraint by three vertices (see Figure A.1(b)(c)), then

the rules/subsystems related with all the combinations of upper and lower bounds must

be considered. In this case we have two membership functions for each premise variable

(see Section A.4).

All the possible combinations of fuzzy subsets (“big” and “small”) appears in the fuzzy

rules:

Rule 1: z1 is “small” and z2 is “small” and . . .

Rule 2: z1 is “small” and z2 is “big” and . . .

Rule 3: z1 is “big” and z2 is “small” and . . .

Rule 4: z1 is “big” and z2 is “big” and . . .

(a) (b) (c)

Figure A.1: Example of premise variables such that all four vertices should be consid-
ered

• Case 2: Triangular polytope

When the set of realizable values for z1 and z2 can be constrained by a triangle with three

combinations of upper and lower bounds, then the fourth combination can be omitted.

In Figure A.2, two examples of this are shown. In this case, there are three membership

functions for each pair of dependent premise variables (see Section A.4).

The number of fuzzy rules is 3k, where k is the number of pairs of premise variables. For

the examples in Figure A.2, the combinations of the fuzzy subsets in the rules would be:
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(a) (b)

Figure A.2: Example of premise variables such that only three vertices are needed

Rule 1: z1 is “small” and z2 is “small” and . . .

Rule 2: z1 is “big” and z2 is “small” and . . .

Rule 3: z1 is “big” and z2 is “big” and . . .

• Case 3: Straight line

Let consider the case when a premise variable zn+1 is a linear combination of n premise

variables [z1 z2 . . . zn]. In other words, zn+1 can be written as:

zn+1 = a0 + a1 z1 + a2 z2 + · · ·+ an zn (A.12)

where a0, a1, . . . , an are constants. In this case, all the realizable values can be constrained

by a straight line between two vertices (i.e. two of the combinations of upper and lower

bounds). Figure A.3 shows the particular example of two premise variables such that

z2 = a0 + a1 z1, where a1 > 0.

In that example, the combinations of fuzzy sets are reduced to two rules:

Rule 1: z1 is “small” and z2 is “small” and . . .

Rule 2: z1 is “big” and z2 is “big” and . . .

In fact, one of the premise variables becomes irrelevant in the computation of how many

rules are.



90 Appendix A. Quadrotor models

Figure A.3: Example of premise variables whit linear relationship

A.4 Membership functions on rectangular and triangu-

lar polytopes

Membership functions can be defined in many ways depending on how the fuzzy subset

(the subjective label “big”, “small”, etc.) is related with the premise variables. In this

work, the membership functions are linear functions of the premise variables and bounds,

so the method of obtaining the membership functions can be generalized for the case of

rectangular and triangular polytopes (see Section A.3).

• Rectangular polytope

Let define the subset of premise variables [z1, z2, . . . , zn] which are classified in the “case

1” shown in Appendix A.3, i.e. all the combinations of lower and upper bounds of the

premise variables should be considered. In this case, each premise variable zi has two

membership functions: Mi1(zi(t)) measures the degree of membership (a number between

0 and 1) to the lower bound value zi and Mi2(zi(t)) is related with the upper bound value

zi.

We want Mi1(zi(t)) and Mi2(zi(t)) be such the following equations are satisfied [3]:







zi =Mi1(zi(t)) zi +Mi2(zi(t)) zi

Mi1(zi(t)) +Mi2(zi(t)) = 1
(A.13)
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Solving (A.13), the following two membership functions are obtained:

Mi1(zi(t)) =
zi − zi
zi − zi

, Mi2(zi(t)) =
zi − zi
zi − zi

(A.14)

In Figure A.4 functions (A.14) are plotted. Note that Mi1 = 1 and Mi2 = 0 when zi = zi,

and otherwise when zi = zi.

zi

M(zi)

Mi2Mi1

0

1

zi zi

Figure A.4: Membership functions of a premise variable. Rectangular polytope ap-
proach

• Triangular polytope

In the case when two premise variables are dependent and the dependency can be con-

strained in a triangle as it is shown in Figure A.2, one combination of bounds (vertex)

can be omitted. In the case of a rectangle polytope the premise variables are computed

independently from two membership functions (A.13). Now, instead of having two mem-

bership functions for each premise variable, there are three membership functions for each

pair of premise variables.

Let define a pair of premise variables (z1,z2) which are dependent, and the dependency

has one of the forms shown in Figure A.2(a) or Figure A.2(b). Similarly to the case

of a rectangle polytope, the vector of premise variables [z1 z2]
T is obtained by a linear

combination of three vertices: [z1 z2]
T , [z1 z2]

T and [z1 z2]
T . The combination is done

multiplying each vertex by a membership function, that can be named as Nj1, Nj2 and
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Nj3, where j is a number associated with the pair (z1, z2). Then the system of equations

in this case is:























z1

z2



 = Nj1





z1

z2



+Nj2





z1

z2



+Nj3





z1

z2





Nj1 +Nj2 +Nj3 = 1

(A.15)

The solution of (A.15) for Nj1, Nj2 and Nj3 is































Nj1 =M11 =
z1 − z1
z1 − z1

Nj2 =M21 −M11 =
z2 − z2
z2 − z2

−
z1 − z1
z1 − z1

Nj3 =M22 =
z2 − z2
z2 − z2

(A.16)

Note that they can be written as a function of membership functions like (A.14).



Appendix B

Costs/Sustainability

B.1 Costs

This project has two types of costs associated: the one related with the human resources,

which takes into account the working time spent by the engineer, and the costs related

with the use of material or software.

For computing the first cost it has been taken into account how much time has been spent

in the development of the project, the writing and the use of the software for simulations.

Concept Hours e/h Cost

Development 200 h 30e/h 6.000 e
Writing 100 h 30e/h 3.000 e
Simulation 50 h 30e/h 1.500 e

Total 350 h 10.500 e

Table B.1: Human Resources costs

The main resource used in this thesis is MatlabR© and SimulinkR© software. The license

for students for academic purposes is 35 e.
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B.2 Environmental impact

In this section some considerations about sustainability regarding the use of UAV’s are

explained.

• Use of batteries. Besides the specifications explained in this work for the design

of the controllers, one additional criteria could be the reduction of batteries usage.

Extending life of batteries could reduce the amount of waste produced as a result

of activities based on UAV’s.

• UAV’s and Wildlife. One important usage of UAV’s is the surveillance of wildlife

areas. The designer should consider the effect of noise pollution and the potential

interaction of the quadrotor with birds or other animals.

• Safety: In an urban environment it should also be considered the interaction of the

quadrotor with people. From the point of view of the design process some limitations

regarding the accelerations or velocities could be applied for safety reasons.
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