
Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Treball de Fi de Master

Master’s degree in Automatic Control and Robotics

 TASK PLANNING FOR TABLE CLEARING OF

CLUTTERED OBJECTS

 MEMÒRIA

 Autor: Nicola Covallero

Director/s: David Martínez Martínez
 Guillem Alenyà Ribas

Convocatòria: June 2016

Abstract

Manipulation planning is a field of study with increasing interest, it combines manipulation skills and

an artificial intelligence system that is able to find the optimal sequence of actions in order to solve

manipulation problems. It is a complex problem since involves a mixture of symbolic planning and

geometric planning. To complete the task the sequence of actions has to satisfy a set of geometrical

restrictions.

In this thesis we present a planning system for clearing a table with cluttered objects, which tackles

geometrical restrictions within symbolic planning with a backtracking approach.

The main contribution of this thesis is a planning system able to solve a wider variety of scenarios

for clearing a table with cluttered objects. Grasping actions alone are not enough, and pushing actions

may be needed to move an object to a pose in which it can be grasped. The planning system presented

here can reason about sequences of pushing and grasping actions that allow a robot to grasp an object

that was not initially graspable.

This work shows that some geometric problems can be efficiently handled by reasoning at an

abstract level through symbolic predicates when such predicates are chosen correctly. The advantage

of this system is a reduction in execution time and it is also easy to implement.

This master thesis has been developed in the Institut de Robòtica i Informàtica Industrial (IRI)

in the Perception and Manipulation laboratory with the supervision of David Martínez Martínez as

director and Guillem Alenyà Ribas as co-director.

Contents

1 Introduction 1

1.1 Project motivation . 1

1.2 Objectives . 2

1.3 Methodology . 2

1.4 Problem Approach . 3

1.5 Contributions . 4

1.6 Set up . 4

1.7 Outline of the Thesis . 6

2 Previous works 8

3 Planning system 11

3.1 Task Planners Review . 11

3.2 Planner . 12

3.3 Symbolic Predicates . 13

3.3.1 Formulation . 13

3.3.2 Predicates . 13

3.3.3 Actions . 15

3.3.4 Backtracking . 16

4 Implementation 22

4.1 Object detection . 22

4.1.1 Tabletop Object Detection . 23

4.1.2 Object Segmentation . 24

III

IV Task planning for table clearing of cluttered objects

4.2 Background . 26

4.3 Action Execution . 31

4.3.1 Pushing . 31

4.3.2 Grasping . 35

4.4 States generation . 36

4.4.1 Predicate: block_grasp . 36

4.4.2 Predicate: on . 38

4.4.3 Predicate: block_diri . 40

5 Software design 43

6 Experiments 47

7 Budget and impact 55

7.1 Budget . 55

7.2 Impact . 58

8 Conclusions 60

9 Bibliography 66

Chapter 1

Introduction

This chapter introduces the project’s motivation, its objectives, the methodology followed, the prob-

lem that we are tackling, the experimental set up and the structure of the thesis.

1.1 Project motivation

Robotic manipulation of objects is an increasing field of research which has captured the interest of

researches from many years ago. In several industrial environments robots can be easily programmed

when the objects are known a priori, i.e. the manipulation is always the same, and robot operations

avoid cluttered scenes, but the workspace has to be designed in a manner to provide to the robot a

non cluttered scene. However, there are situations in which robots with enhanced intelligence can

be useful. An example in which a robot could face a cluttered scenario is the one of the Amazon

Picking Challenge [7], which provides a challenge problem to the robotics research community that

involves integrating the state of the art in object perception, motion planning, grasp planning, and

task planning to manipulate real-world items in industrial settings such the ones human operators

face in Amazon’s warehouse. Joey Durham from Amazon Robotics describes the challenges of this

competition as follows:

“A robot for picking purposes must possess a lot of skills: The selected item must be

identified, handled and deposited correctly and safely. This requires a certain level of

visual, tactile and haptic perceptive skills and great handling capabilities.”

1

2 Task planning for table clearing of cluttered objects

Moreover, we introduce also the concept of Industry 4.01. This term derives from the fact that

we stand on the cusp of a fourth industrial revolution in which the factories will be smarter. The

principles of this revolution are the ability of machines to communicate with each other, to create a

virtual copy of the physical world, to support humans in tasks that are unpleasant and the ability to

make decisions on their own. With these considerations we think that this thesis is well motivated

since it proposes a planning system to enhance the self-decision making step of robots for the tasks of

clearing a table.

1.2 Objectives

The objective of this thesis is designing and implementing an artificial intelligence system which can

reason about how to interact with the objects in order to clear a table with cluttered objects. To clear a

table means grasp all the objects and remove them by dropping them, for example, into a bin. To do

so, a robotic manipulator is used in order to interact with the objects. The idea is to design the system

by human-inspired actions, that is the intelligence system we want to develop tries to solve the task

similarly as a human would do.

1.3 Methodology

The methodology we will follow for the project is composed of 5 phases:

1. documentation,

2. designing of the algorithm,

3. implementation,

4. tests in simulations and with the real robot,

5. analysis of the results.

The documentation regards reviewing the state of the art in manipulation planning and gathering all

the others information required to design properly the algorithm such as objects segmentation, plane

1http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/

industrie4.0-smart-manufacturing-for-the-future-en.pdf

http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf

Task planning for table clearing of cluttered objects 3

detection, grasping. Next the algorithm will be designed, identifying a way to tackle the problem

with planning, and then implemented. After the implementation it will be tested in a simulated

environment (Chapter 5) and then with the real set up (Chapter 6). Finally the results will be analysed

in order to have some conclusions about the proposed planning system.

1.4 Problem Approach

In this section the approach to solve the planning problem is described. The strategy to solve the

problem is inspired by the way humans solve it. A human would use mainly two actions: grasping

and pushing. When it is not possible to grasp an object, because other objects hinder the human to

put the hands in the proper way to grasp the desired one, he/she interacts with the scene to make

the object graspable. However, humans are characterized by a high dexterity and therefore they have

a lot of freedom in the way to grasp objects. Robots, normally, do not have such a dexterity and

grasping in cluttered scene could be very hard without moving the objects.

The pushing action requires to put the end effector in a certain pose and then push the object

by moving the end effector. However, it is difficult to push an object and ensure that it follows the

desired path since this action depends on its shape. Moreover a controller would be needed in order

to correct the pose of the end effector along the path. We assumed that all objects had basic shapes,

so that a simple pushing action performs well.

Based on these considerations, the actions the robot has to use are grasping and pushing. Grasping

is the most important action since it lets to take an object and drop it somewhere, for instance into a

bin, clearing in this way the table. There exist different works facing the same task by focusing only

in grasping [13, 38]. The pushing is useful when two adjacent objects could not be grasped if they

are so close such that the robot’s gripper, when attempting to grasp an object, is going to collide with

the adjacent one, making the object ungraspable. The pushing action can separate adjacent objects

that mutually exclude themselves from being grasped. For simplicity we only consider actions that

interact with a single object.

The robot’s decision maker uses a planning system that returns a sequence of actions that achieve

the goal of clearing the table. The robot reasons in an abstraction level by considering only symbolic

predicates with limited geometrical information. Then the plan is checked to see if it is feasible, and

if it isn’t, backtracking is done.

The symbolic predicates have to capture enough information to make the planner know how it

4 Task planning for table clearing of cluttered objects

has to interact with the objects. The problem clearly include several geometrical restrictions regarding

how to interact with the scene. We want to handle the objects carefully and avoiding collisions, this

means that planner has to understand if an object can be moved or grasped, in the case it cannot

perform an action it has to know what are the objects that hinder that action. These constraints are

captured by the symbolic predicates. Anyway, not all the geometrical constraints can be handled by

symbolic predicates but the system still performs good.

We assume the world is perfectly known. As actions are actually non-reliable, the planner replans

after the execution of each action.

To solve the problem a perception system is developed in order to segment the objects through a

vision system (Kinect), and from those segmented objects the states are generated. Those states allow

the planner to know how to interact with the objects. Then the planner returns the action to execute

and it is checked if feasible, otherwise it backtracks. All this process is iterated after the execution of

each action.

1.5 Contributions

The contributions of this thesis are:

• The combination of pushing and grasping actions that allows to solve a wider variety of scenar-

ios than considering only grasping action.

• A symbolic planning system which finds the best sequence of pushing and grasping actions.

• A perception system which translates geometrical restrictions into symbolic predicates. A lazy

approach is used to evaluate if actions are feasible in order to improve the efficiency of the

system.

1.6 Set up

The set up of the environment the robot will work in is presented here.

The robot used is a Barret WAM arm, which is a 7 degree of freedom (DoF) manipulator arm

(Figure 1.1a). The WAM is noteworthy because it does not use any gears for manipulating the joints,

but cable drives, so there are no backlash problems and it is both fast and stiff. Cable drives permit

Task planning for table clearing of cluttered objects 5

(a) Barrett WAM arm (b) Microsoft Kinect sensor

Figure 1.1: Robot and vision sensor.

Figure 1.2: Gripper used for the experiments

low friction and ripple-free torque transmission from the actuator to the joints. To detect the objects a

Kinect camera, a RGB-D sensor, is employed (Figure 1.1b).

To manipulate the objects the robot has a gripper designed in the IRI institute and actuated by

Dynamixel motors. Such a gripper is depicted in Figure 1.2 from several point of views. Its closing

width2 is 3 centimetres while its opening width3 is of 7 centimetres, therefore we are constrained to

grasp objects with a width in the range [3÷ 7]cm.

For the task planner, as the reader will see in Chapters 3 and 4, the model of the gripper will be an

important resource in order to compute the predicates.

The gripper will be modeled measuring some principal elements such as: finger’s width and

height, gripper’s width, height and deep, closing and opening width. The modeling procedure is

depicted in Figure 1.4. The resulting model is a simple triangle mesh which includes all the important

geometric information of the gripper. Such a simple model allows the collision algorithm commented

in Chapter 4 to check for collision in just a few milliseconds. A more detailed and complex model

would have higher precision, but such a high accuracy is not needed, and it would slow down the

algorithm. The gripper is mounted in the end effector of the robot as shown in Figure 1.3.

2Distance between the fingers when the gripper is closed.
3Distance between the fingers when the gripper is open.

6 Task planning for table clearing of cluttered objects

Figure 1.3: Gripper and WAM.

Elements measured Opened gripper mesh model Closed gripper mesh model

Figure 1.4: At the left the principal elements measured are highlighted for the opened gripper model. The

gripper mesh model is here shown in the PCL visualizer. The red, green and blue axis are respectively the x, y

and z axis.

The scenario the robot is going to work in is composed of a table and the objects will lay on top of

it. In Figure 1.5a the main elements of the set up are highlighted. The WAM arm’s base is in a fixed

position with respect the table and the Kinect camera is located on top of the table pointing down.

The Kinect is calibrated and the fixed transformation between the Kinect’s frames and the base frame

of the robot is known, so all the points measured by the Kinect can be expressed in coordinates with

respect the robot’s base frame. Figure 1.5b shows an example of a cluttered scene the robot is going to

deal with, and Figure 1.5c shows the same scene as seen by the Kinect. To avoid occlusions, we wait

until the robot finishes to execute an action and moves away before taking new images.

1.7 Outline of the Thesis

This thesis is structured as follow. In Chapter 2 a review of the current state of the art in manipulation

planning is done. The planning system developed and the algorithm to generate the states will be

explained in Chapters 3 and 4 respectively. In Chapter 5 the software design will be presented as

well the algorithm’s structure. The experiments performed are discussed in Chapters 6. Before to

proceed to the conclusions the budget and the impact of this work is discussed in Chapter 7. Finally

Task planning for table clearing of cluttered objects 7

(a) Principal elements of the experimental

set up.

(b) Example of a cluttered scene.

(c) Kinect’s view.

Figure 1.5: Experimental set up with an example of a cluttered scene the robot is going to interact with.

the conclusions about this work are presented in Chapter 8.

Chapter 2

Previous works

In this chapter we present some previous works regarding manipulation planning. In the other chap-

ters the state of the art will be introduced more in concrete accordingly to the chapters’ topic.

Many manipulation planning approaches[24] assume that the task can be treated as a geometric

problem with the goal to place the objects in their desired positions. Planning is essentially done

with a mixture of symbolic and geometric states. They require to obtain the symbolic predicates that

represent geometric features, which are very time consuming. Therefore, these hybrid planners can

be too slow in real applications.

Dogar and Srinivasa [10] proposed a framework for planning with cluttered scenes using a library

of actions inspired by human strategies. They designed a planning system that decides which objects

to move, the order, where to move them, and the appropriate manipulation actions. Moreover, it

accounts for the uncertainty in the environment all through this process. The planning system first

attempts to grasp the goal object, and if it is not possible, it identifies what is the object that prevents

the action and adds it to a list of objects that have to be moved. Afterwards, those objects are moved

in whatever position that makes the goal feasible. Their work is the most similar to our, but their

planning system cannot be directly applied to a table clearing task. The goal is a single object at a

time, then to grasp another object they need to replan. Our approach performs better with goals that

involve more than one object. We plan sequence of actions considering all objects in the goal. The

actions they use to move objects that were in the way may actually hinder future goals.

A recent alternative proposed by Mösenlechner and Beetz [28] is to specify goals symbolically but

evaluate the plan geometrically. The idea is to use a high-fidelity physics simulation to predict the

8

Task planning for table clearing of cluttered objects 9

effects of actions and a hand-built mapping from geometric to symbolic states. Planning is conducted

by a forward search, the effects of actions are determined by simulating them, and then the mapping

is used to update the symbolic state. However, their method requires to know the physic of the

manipulated objects to simulate them. Moreover the authors didn’t test their planning system with

a complex scene like the ones faced in this thesis. Our planning system doesn’t use any simulator,

instead it relies on a prediction algorithm to represent how the objects can be manipulated, leading to

a faster and easier to implement solution.

In [6] the authors address a problem similar to the one of this thesis. The authors blended pushing

and grasping actions for a table manipulation task. They use the concept of reachability [39] to exclude

impossible poses of the gripper at the planning stage, creating a reliable plan suitable for real-time

operation. The authors model the planning problem through a Markov Decision Process (MDP),

discretizing the world in grid cells and assigning each one a push and grasp vector defined by the

reachability concept. Their advantage is that they plan a trajectory level so they can consider more

details. In contrast, we plan at an action level, so we can consider more complex goals involving

several objects, and will optimize the sequence of actions for completing the whole task. Moreover,

while their method needs to be adapted to each robot, to build a reachability map, our method can be

directly integrated in any robotic manipulator.

Symbolic planning requires knowledge about the preconditions and effects of the individual ac-

tions and such a knowledge can be obtained through machine learning techniques. In [3] the authors

proposed an approach to learn manipulation skills, including preconditions and effects, based on

teacher demonstrations. With just a few demonstrations the method learns the preconditions and

effects of actions. This work looks promising since it allows to resolve planning problem by learning

the model, but it is suitable only for simple actions. Having a hand-built model, like the one of our

work, lets to solve more complex problems and also it is more straightforward.

In [9] Dearden and Burbridge proposed an approach for planning robotic manipulation tasks

which uses a learned bidirectional mapping between geometric states and logical predicates. First,

the mapping is applied to get the symbolic states and the planner plans symbolically, then the map-

ping is applied to generate geometric positions which are used to generate a path. If this process

fails they allow the system a limited amount of purely geometric backtracking before giving up and

backtracking at the symbolic level to generate a different plan. However, this method cannot tackle

complex scenes, such as cluttered objects, since in those cases learning a good mapping would be

10 Task planning for table clearing of cluttered objects

very hard.

Compared to the state of the art, we propose a planning system for clearing cluttered objects.

Our approach plans at a symbolic level, which is efficient and is low time consuming (the time to

get a plan is usually less than 0.5 seconds). As far as we know, previous approaches haven’t tackled

very cluttered scenes, such as the one in Figure 1.5b. We will also show that the lack of geometric

constraints introduces some limitations to the system, but the general results obtained are good.

Chapter 3

Planning system

In this chapter the general framework adopted is discussed, proposing a suitable task planning sys-

tem. After the review of the current state of the art of task planners, a proper planner is chosen and

then a suitable description to the table clearing problem is discussed.

3.1 Task Planners Review

To choose the proper planner for the task we evaluated three main categories of planners:

1. classical planners,

2. hierarchical planners,

3. probabilistic planners.

Classical planners are characterized by environments which are fully observable, deterministic,

finite and static (changes happen only when the agent acts) and discrete (in time, actions, objects...)

[34]. A very well known classic planner is the Fast Downward planner [14].

Hierarchical planning, also called Hierarchical Task Network(HTN), works in a similar way to how

it is believed that human planning works [26]. It is based on a reduction of the problem. The planner

recursively decomposes tasks into subtasks, stopping when it reaches primitive tasks that can be

performed directly by planning operators. This kind of planner needs to have a set of methods,

where each method is a schema for decomposing a particular kind of task into a set of subtasks. For

this kind of planning technique a well known planner is SHOP [29].

11

12 Task planning for table clearing of cluttered objects

Probabilistic planning is a planning technique which considers that the environment is not de-

terministic but probabilistic. So the actions have a probability to obtain a certain state, and given

an initial state and a goal state, the planner finds the solution path with the highest reward, which

depends also on the probability. Probabilistic problems are usually formalized as Markov Decision

Processes (MDP). In this category two probabilistic planners that performed good in planning com-

petitions are Gourmand [23] and PROST [21].

3.2 Planner

The problem involves a big amount of uncertainty due to the interaction of the robot with the en-

vironment. When the robot interacts with the objects, it is hard to predict correctly the position of

the object after the execution, that is the next state. A probabilistic planner considers the probability

associated with every effect to predict the state after executing an action, such a probability has to be

specified or learned for each type of object.

Martinez et al. [27] faced the problem of cleaning a surface entirely by probabilistic symbolic

planning. The problem they solved was characterized by a strong uncertainty, and a unexpected

effect of an action would require to replan and therefore to slow down the system. Another way to

face the problem of probability is replanning after each executed action [17], or whenever the current

state deviates from the expected one, generating a new plan from the current state to the goal. In this

case the actions are considered deterministic, and only the first action is executed before replanning

again.

Little et al. discussed in [25] the problem of when is more useful the probabilistic planning with

respect a simple replanning system. They defined a planning problem probabilistic interesting if dead

ends can be avoided, exist multiple goal trajectories and there is at least one pair of distinct goal

trajectories, τ and τ
′

that share a common sequence of outcomes for the first n − 1 outcomes, and

where τn and τ
′
n are distinct outcomes of the same action.

They assert that unless a probabilistic planning problem satisfies all of the conditions to be prob-

abilistic interesting then it is inevitable that a well-written replanner will outperform a well-written

probabilistic planner. Moreover the authors do not negate the possibility that a deterministic replan-

ner could perform optimally even for probabilistically interesting planning problems.

To conclude, in many problems it is more efficient to replan with a deterministic planner rather

than directly using a probabilitic planner.

Task planning for table clearing of cluttered objects 13

Taking into account such considerations and that, except for rare cases, our planning problem is

not probabilistic interesting, the problem has been thought to be solved by a deterministic planner.

A hierarchical planner would be a good choice if the problem presented some hierarchies, for

instance in the case the goal was to clear several tables. Since the problem is about cleaning a single

table it is more straightforward to use a classical planner.

The planner chosen was the Fast Downward planner [14], a very well know classic one. This

planner is feature-wise complete, stable and fast in solving planning problems.

3.3 Symbolic Predicates

3.3.1 Formulation

The problem is formulated as a 6-tuple Π = 〈S, so, G, A, T, c〉, where:

• S is a finite set of states;

• so ∈ S is an initial state;

• G ∈ S is a goal state;

• A(s) is a set of applicable actions for each s ∈ S;

• T(a, s) : S× A× S is a deterministic transition function;

• c(a) is the cost to apply action a.

The plans τi are sequences of actions applicable from the initial state until the goal state. The cost of

a plan C(τi) is the sum of the cost of the actions of the plan C(τi) = ∑a∈τ c(a). The optimal solution

τ∗ is the solution with less cost: τ∗ = minτi c(τi). In this work we do not specify specific costs for the

actions, so the planner returns the plan with fewer actions.

3.3.2 Predicates

The Fast Downward planner needs the problem to be formulated in Problem Domain Description Lan-

guage (PDDL) [2]. In this section the symbolic predicates that have been considered in order to solve

the problem are described.

14 Task planning for table clearing of cluttered objects

The task this thesis faces is a common task done by humans, who think in order to find a feasible

sequence of actions. Such a sequence is normally composed of actions that avoid collision between

the manipulated objects and the other ones, whenever possible. To do this we, as humans, think on

what is going to happen if we manipulate an object in a certain way. The design of the problem has

been inspired by such a reasoning way and symbolic predicates are added so that the planner can

reason about collisions and geometrical constraints.

As described in the introduction, the system will be able to perform two types of actions: pushing

and grasping. Grasping action is a necessary action in order to grasp an object and drop it into a bin,

while the pushing action is an auxiliary action which has the aim to move an object in a pose that

do not obstacle the solution of the problem. The pushing action is said to be auxiliary because it is

not strictly necessary to solve every kind of problem, depending on the cluttered scene the grasping

action could be enough. The combination of these two actions makes wider the range of problem this

planner can solve.

The symbolic predicates are designed accordingly to the available actions trying to answer the

following questions:

• When can an object be grasped?

• When can a object be pushed? In which direction?

Answering these questions the following predicates are defined:

• removed: (removed o1) means that object o1 has been grasped and removed from the table.

The goal is reached when all the objects have been removed.

• on:(on o1 o2) means that object o1 stands on top of object o2. This predicate is defined since

we don’t want to interact with an object that has objects on top of itself. If we would grasp it,

the object above would likely fall corrupting in this way the scene. That behaviour is undesired

since a human, normally, would not grasp the bottom object without first grabbing the one on

the top. Similarly for the pushing action, when an object with objects on top of itself is pushed,

they could fall or collide with other objects. Vice versa if it was on top of other objects.

• block_grasp: (block_grasp o1 o2) means that object o1 obstacles object o2 to be grasped.

Once we are sure that an object has no objects on top of it we have to check if it can be grasped,

that is if the gripper will collide with object o2 attempting to grasp the desired one. With this

Task planning for table clearing of cluttered objects 15

predicate the planner knows that the robot has first to interact with those objects before to grasp

the desired one.

• block_dir1, block_dir2, block_dir3, block_dir4: (block_dir1 o1 o2) means that object o1 ob-

stacles object o2 to be moved along direction 1. We will consider 4 possible pushing directions

(defined in Chapter 4) per object. Being observant to the philosophy of human-inspired actions,

we avoid collisions when we push an object. To do so we translate the object along the pushing

direction, for a certain length, and check for collision. Moreover, to push an object the end effec-

tor has to be put in the opposite side with respect the pushing direction, so an object cannot be

pushed along a certain direction even in the case the gripper collides with an object. Therefore

if an object cannot be moved along a certain direction it is because the object would collide, or

the end effector would collide.

• ik_unfeasible_dir1, ik_unfeasible_dir2, ik_unfeasible_dir3, ik_unfeasible_dir4, ik_unfeasible_grasp:

to consider the geometrical constraints regarding the working space of the robot, a predicate

which states whether the inverse kinematic has solution is added for each action. For instance,

(ik_unfeasible_dir1 o1) means that the inverse kinematic to push the object o1 along direc-

tion 1 has no solution.

3.3.3 Actions

In this section the actions preconditions and effects are described.

Grasping Action The preconditions to grasp a certain object are:

• no object stands on top of it,

• no object collides with the gripper attempting to grasp the desired object,

• the inverse kinematic has solution.

The effects of the grasping action are:

• the grasped object is removed and dropped into the bin,

• the grasped object no more blocks other object to be pushed or grasped,

• if the grasped object was on top of other ones, it is no more on top of them.

16 Task planning for table clearing of cluttered objects

Pushing Action The preconditions to push a certain object, along a certain direction, are:

• no object stands on top of it,

• the manipulated object is not on top of other objects,

• no object collides with the manipulated one, or with the gripper, when pushed,

• the inverse kinematic has solution.

In particular we defined 4 pushing actions, one per pushing direction. The symbolic planner is not

able to capture all the geometrical information of the problem through symbolic predicates, therefore

it is not able to predict the future position of the manipulated object, and so the future states. This

problem was handled by considering the object to be pushed far enough in such a way it is singulated

from the other ones. Therefore the effects of this action are:

• the manipulated object no more blocks other objects to be pushed or grasped,

• the other objects no more block the manipulated object to be pushed or grasped.

3.3.4 Backtracking

The geometrical constraints related to the inverse kinematic of the robot are computationally expen-

sive. Moreover, as the reader will see in Chapter 4, the actions are defined by more poses, so the

inverse kinematic is even more expensive. Computing it for each possible action (we have 5 actions

in total, one grasping action and 4 pushing actions) for each object would make the computation

of the predicates too expensive making the planning system quite slow. Usually the objects are in-

side the working space of the robot and the computation of the ik_unfeasible predicates is usually

unnecessary.

To overcome this we used the backtracking technique[4]. Backtracking is based on a two-fold

strategy:

1. planning and checking if the plan is feasible,

2. if it is not, the state is updated with the new information and the system repeats from point 1

until a feasible plan is obtained.

Task planning for table clearing of cluttered objects 17

Planning symbolically is very fast therefore replanning several times is not a problem. With this

method the inverse kinematic will be solved only for the action we want to execute, the first one

of the plan, and no time is wasted in computing the inverse kinematic for unnecessary actions. If

executing the first plan’s action is not possible the equivalent ik_unfeasible predicate is updated.

The pseudo algorithm to get a plan is shown in Algorithm 1.

Algorithm 1 Planning procedure with backtracking.

Inputs: initial state s0 and goal state G.

Outputs: a feasible plan or not plan at all.

procedure GETPLAN(s0,G)

repeat

plan← GETFASTDOWNWARDPLAN(s0,G)

if ¬EXISTSSOLUTION(plan) then return NULL

end if

action← GETFIRSTACTION(plan)

success← HASIKSOLUTION(action)

if ¬success then

s0 ← UPDATEINITIALSTATE(action)

end if

until success return plan

end procedure

It is possible that an object cannot be grasped in a certain pose, because the inverse kinematic has

no solution, but it can be moved in a new pose in which it can be grasped. Therefore the pushing ac-

tions also will include the effect that the object of interest will have a solution of the inverse kinematic

in the new pose. This is usually a rare case but it might happen. In the case the object is in a pose

where it cannot be neither grasped or pushed because of the inverse kinematic, first the planner will

return as a solution to grasp it, then it will replan and the solution will be to push it in one direction

and grasp it, and so until no action can be executed and there exist no solution for the plan.

A situation in which the backtracking is useful is shown in Figure 3.1. Accordingly to our strategy,

the robot cannot grasp the black or red box because the gripper would collide, and the same for

pushing them. It has to interact with the white cup in order to make space to move the other objects

and then grasp them. For this case the system would perform the following set of operations:

18 Task planning for table clearing of cluttered objects

Figure 3.1: Unfeasible plan due to geometrical constraints. In this case the planner returns as action to execute

grasping or pushing away the white cup (highlighted by a red circle) but it is out the configuration space of the

robot and there exist no plan for that problem.

1. It first gets the following plan: (grasp o2), (push_dir1 o0), (grasp o1), (grasp o0),

2. It solves the inverse kinematic for the (grasp o2) action, but it finds no solution and adds to

the states the predicate (ik_unfeasible_grasp o2),

3. It replans and gets the following plan: (push_dir1 o2), (grasp o2), (push_dir1 o0), (grasp

o1), (grasp o0),

4. It solves the inverse kinematic for the (push_dir1 o2) action but it finds no solution, so the

predicate (ik_unfeasible_dir1 o2) is added to the states,

5. It continues until there exists no solution for the planning problem.

It may happen that the object outside the working space of the robot blocks the execution of the

task because it is impossible to achieve the goal to grasp all the objects since one is outside the working

space. This happens when all the ik_unfeasible predicates for an object are set to true. When this

situation occurs the object is removed from the goals so that the rest of the goal can be completed.

It is important to point out again that the system is deterministic, meaning that all the actions are

supposed to give the resultant state with a probability of 1. Clearly the biggest uncertainty is related

to the pushing action; the method used to select the pushing directions does not taken into account

reliably the geometry of the object and the trajectory will be unlikely the desired one but a similar one.

Overall the planner is considering to push the manipulated object at infinity to isolate it, and that’s

false. This is another uncertainty of the pushing action due to the lack of geometrical information.

After the execution of an action the planner gets a new depth image from the Kinect, it segments

Task planning for table clearing of cluttered objects 19

the scene, it recomputes the states and replans. In this way the planner considers a totally new prob-

lem and all the uncertainties associated to the previous plan will be solved by the current one.

In order to provide a graphical scheme to the reader the perception and planning pipeline is de-

picted in Figure 3.2. It can be appreciated the two fold strategy of the algorithm, the first stage (Figure

3.2a) is devoted to get the predicates from the Kinect sensor and the second one to get a plan, to

evaluate its feasibility and to execute it (Figure 3.2b).

Actions PDDL syntax For clarity purposes, the PDDL syntax of the described actions is shown here.

For the grasping action its PDDL syntax is shown in listing 3.1.

1 (: a c t i o n grasp

: parameters (? o − obj)

3 : precondi t ion (and

; grasp i t i f the IK has a s o l u t i o n

5 (not (i k _ u n f e a s i b l e _ g r a s p ?o))

; grasp i t i f there are no o b j e c t s on i t s top

7 (not (e x i s t s (? x − obj) (on ?x ?o)))

; grasp i t i f there i s no o b j e c t t h a t blocks i t

9 ; to be grasped

(not (e x i s t s (? x − obj) (block_grasp ?x ?o))))

11 : e f f e c t (and

; the o b j e c t " o " i s removed

13 (removed ?o)

; i f the o b j e c t was on top of other ones now i t i s

15 ; no more on top of them

(f o r a l l (? x − obj)

17 (when (on ?o ?x) (not (on ?o ?x))))

; the grasped o b j e c t s no more blocks other o b j e c t s

19 ; to be pushed or grasped

(f o r a l l (? x − obj)

21 (and

(when (block_grasp ?o ?x) (not (block_grasp ?o ?x)))

23 (when (b lock_dir1 ?o ?x) (not (b lock_dir1 ?o ?x)))

(when (b lock_dir2 ?o ?x) (not (b lock_dir2 ?o ?x)))

25 (when (b lock_dir3 ?o ?x) (not (b lock_dir3 ?o ?x)))

(when (b lock_dir4 ?o ?x) (not (b lock_dir4 ?o ?x))))

Listing 3.1: PDDL syntax of the grasping action

20 Task planning for table clearing of cluttered objects

For the pushing action its PDDL syntax is shown in listing 3.2.

(: a c t i o n push_dir1

2 : parameters (? o − obj)

: precondi t ion (and

4 ; push i t i f the IK has a s o l u t i o n

(not (i k _ u n f e a s i b l e _ d i r 1 ?o))

6 ; push in d i r e c t i o n 1 only i f there are no

; o b j e c t s t h a t block i t along t h a t d i r e c t i o n

8 (not (e x i s t s (? x − obj) (b lock_dir1 ?x ?o)))

; push i t i f i t has no o b j e c t s on top of i t

10 ; and i f i t not on top of other ones

(not (e x i s t s (? x − obj) (on ?x ?o)))

12 (not (e x i s t s (? x − obj) (on ?o ?x))))

: e f f e c t (f o r a l l (? x − obj)

14 (and

; once pushed the o b j e c t i s no more blocked in any d i r e c t i o n

16 ; and i t no more blocks other o b j e c t s to be moved

(when (b lock_dir1 ?o ?x) (not (b lock_dir1 ?o ?x)))

18 (when (b lock_dir2 ?o ?x) (not (b lock_dir2 ?o ?x)))

(when (b lock_dir3 ?o ?x) (not (b lock_dir3 ?o ?x)))

20 (when (b lock_dir4 ?o ?x) (not (b lock_dir4 ?o ?x)))

(when (b lock_dir1 ?x ?o) (not (b lock_dir1 ?x ?o)))

22 (when (b lock_dir2 ?x ?o) (not (b lock_dir2 ?x ?o)))

(when (b lock_dir3 ?x ?o) (not (b lock_dir3 ?x ?o)))

24 (when (b lock_dir4 ?x ?o) (not (b lock_dir4 ?x ?o)))

; once pushed i t can be grasped and i t no more

26 ; b locks other o b j e c t s to be grasped

(when (block_grasp ?x ?o) (not (block_grasp ?x ?o)))

28 (when (block_grasp ?o ?x) (not (block_grasp ?o ?x)))

; i f before i t cannot be grasped because of

30 ; the IK , we consider t h a t the IK now has s o l u t i o n

(when (i k _ u n f e a s i b l e _ g r a s p ?o) (not (i k _ u n f e a s i b l e _ g r a s p ?o))))))

Listing 3.2: PDDL syntax of the pushing action along direction 1

Task planning for table clearing of cluttered objects 21

(a) Perception Pipeline

(b) Planning Pipeline

Figure 3.2: Perception and planning pipeline

Chapter 4

Implementation

In this chapter the implementation is discussed, presenting how the objects are detected and how the

symbolic predicates are obtained.

4.1 Object detection

To interact with the objects we have first to detect them. To do so, they need to be segmented since

the algorithm is dealing with unknown objects it is not going to recognize an object as a particular

one, instead it segments the objects in the scene.

This stage is composed of 3 steps:

1. Filtering the point cloud

2. Detecting the tabletop objects

3. Segmenting the tabletop objects

The Kinect camera is recording a depth image which is quite noisy, overall at the edges, for a proper

segmentation is better applying a filter. For this we used the statistical outlier removal algorithm [36].

Next, since the objects are on a table, the algorithm has to detect first the table, and so the objects that

stand on top of it, and then segmenting them. We don’t want to segment the entire image, if so, the

table would be segmented as an object, and the floor as well.

22

Task planning for table clearing of cluttered objects 23

(a) Input Point Cloud (b) RANSAC plane estimation (c) Table plane

(d) Convex Hull (e) Convex hull in the point cloud (f) Tabletop objects

Figure 4.1: Object Segmentation: Given the point cloud (a), the estimated table’s plane is obtained (b and c),

its convex hull is extracted (d and e), and the tabletop objects are obtained by a polygonal prism projection (f).

4.1.1 Tabletop Object Detection

The strategy for the tabletop object detection phase is composed of 3 different steps:

1. Table plane estimation (by RANSAC): the points of the table are detected estimating a plane in

the point cloud, all the points which belong to such a plane are the points of the table.

2. 2D Convex Hull of the table: having the points of the table a 2D convex hull is computed in

order to get a 2D shape containing those points.

3. Polygonal prism projection: all the points are projected on the table plane previously estimated

and all the points which projections belong to the 2D convex hull are considered to be points of

tabletop objects. The points that do not belong to it are points of non-tabletop objects.

The steps of this tabletop object detection algorithm are described in Figure 4.1 for the point cloud1

in Figure 4.1a.

1Point cloud taken from the Object Segmentation Database (OSD) http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

24 Task planning for table clearing of cluttered objects

(a) Input scene (b) Supervoxels (c) Adjacency graph

Figure 4.2: Example of supervoxels for the table top objects.

4.1.2 Object Segmentation

Once the objects on the table are detected the following phase is to segment them in order to get a

point cloud per object.

Supervoxel

For their segmentation the supervoxel concept is used. A supervoxel is a group of voxels that share

similar characteristics, for instance similar normals.

In this work the supervoxels are computed with the Voxel Cloud Connectivy Segmentation (VCCS) al-

gorithm [32], which is able to be used in online applications. An example of the obtained supervoxels

is shown in Figure 4.2.

The algorithm works in 3 main steps:

• Voxelizing the point cloud.

• Creating an adjacency graph for the voxel-cloud.

• Clustering together all adjacent voxels which share similar features.

Local Convex Connected Patches Segmentation

Once the supervoxels of the tabletop objects are computed, they can be clustered in order to segment

the objects. Papon et al. [37] also proposed a segmentation algorithm based on their supervoxel tech-

nique, called Local Convex Connected Patches Segmentation (LCCP). This algorithm permits to segment

Task planning for table clearing of cluttered objects 25

Figure 4.3: LCCP algorithm’s structure. Reproduced from [37]

objects by clustering together adjacent convex supervoxels, in Figure 4.3 the algorithm is briefly de-

scribed. The algorithm is quite simple but very good for segmentation of objects that have convex

shapes.

It clusters all the adjacent convex supervoxels (patches) using 2 criterion:

• Extended criterion: to consider two adjacent patches convex, both must have a connection to a

patch which is convex with respect both patches

• Sanity Criterion: check if the adjacent patches which can be considered as convex present geo-

metric discontinuities (see point D of Figure 4.3), in this case they are not considered as valid to

form a cluster.

Then, due to the smoothed normals that could appear in some edges of the objects (point G Figure

4.3), the algorithm merges the clusters that are composed of few supervoxels to the biggest adjacent

cluster.

By tuning properly the parameters of the segmentation algorithm the objects can be correctly

segmented obtaining for one of them a point cloud. Two examples of the segmentation algorithm for

a cluttered scene are depicted in Figure 4.4.

Note that we set the algorithm in order to segment considering geometric properties, and not the

color of the pixels. Considering the colors could lead to worst segmentation results for our case of

26 Task planning for table clearing of cluttered objects

Figure 4.4: Example of segmentation results.

studio since many objects have several colors.

Figure 4.5: Box with a green stripe.

A color based segmentation could segment a draw on an

object, or a small part of the object, as a different object, but

this, accordingly to the strategy we are going to use (see next

sections), would lead to an unfeasible problem. For instance,

in Figure 4.5 is shown a box with a green stripe on its top

surface, a segmentation algorithm based also on colors could

lead to segment the green stripe as another object, and the re-

sult is that it is impossible to grasp the green stripe without

collide with the box. This is the main reason the segmenta-

tion we used is based only on geometric features.

4.2 Background

In this section some concepts, that will be used to execute the actions and to generate the states, are

presented.

Principal Direction The principal direction of an object is its principal axis which is defined as any

of three mutually perpendicular axes about which the moment of inertia of a body is maximum. For

instance, for a rectangular object its principal direction is the axis aligned with its longest dimension.

To obtain the principal axis the principal component analysis (PCA) [16] technique is used. This

technique is a common statistical procedure that uses orthogonal transformation to convert a set of

observations of possibly correlated variables into a set of values of linearly uncorrelated variables,

which are called principal components. The transformation is defined in a manner that the first com-

ponent has the largest variance, the second has the second largest variance and so on. The principal

Task planning for table clearing of cluttered objects 27

(a) (b)

Figure 4.6: Principal Components Analysis - In Figure 4.6a PCA for a standard 2D set of observations. In

Figure 4.6b results of the PCA for a rectangular segmented object. The green, red lines refers to different

ways of the first principal direction, while blue and cyan lines refers to different ways of the second principal

direction. The third one is orthogonal to the first two principal directions.

components are orthogonal because they are the eigenvectors of the covariance matrix, which is sym-

metric. An example of the principal components for a 2D data set is depicted in Figure 4.6a2. The

principal components are computed through the covariance matrix of the set of observation, and its

eigenvectors λ̄v represent the principal components while its eigenvalues λ represent the variance of

the data set along the principal component λ̄v.

A generic point cloud can be seen as a set of observations and the PCA can be directly applied

to the object’s point cloud to retrieve its principal components. In this works we refers to principal

components as principal directions. In Figure 4.6b the first two principal directions of a generic object

are illustrated. Note that for each principal direction we can actually obtain two directions (one per

sense).

Projection onto a plane We will see later that the concept of the projections of a point onto a plane

will be useful. Considering a point p = (xp, yp, zp) and a plane P defined by the following equation

ax + by + cz + d = 0

2Image taken from https://en.wikipedia.org/wiki/Principal_component_analysis

https://en.wikipedia.org/wiki/Principal_component_analysis

28 Task planning for table clearing of cluttered objects

the projection pP of point p onto the plane P is given by the following set of operations:

1. Calculate the origin point PO = (xO, yO, zO) of the plane, which can be calculated by arbitrary

xO and yO coordinates as

zO =
−1
c
(axO + byO + d),

then calculate the coordinates of PO with respect the point p

pP = p−PO.

2. Then calculate the projection of pP onto the plane normal n̄ = (a, b, c)

λp = n̄ · pP .

3. Translate point p by λp along the normal of the plane n̄

pP = p− λpn̄.

The minus sign is due to the fact that the normal is pointing upwards.

Rotation Matrices Rotation matrices express a rotation between two reference frames. Given two

frames {A} and {B}, and the rotation matrix A
BR that defines the rotation of {B} relative to {A} then

a point AP with respect frame {A} is given by AP = A
BR BP, where BP is the same point relative to

frame {B}.

Having a frame {B} defined by axis ˆAXB, ˆAYB and ˆAZB, where ˆAYB is the y axis of frame {B}

relative to frame {A}, the rotation matrix between {A} and {B} is defined as

A
BR =

ˆAXB

ˆAYB

ˆAZB

To transform any object, such as the gripper mesh model, to a pose defined by frame {B} then the

following homogeneous transform is applied:

H =

 B
AR ABO

0̄ 1

where B

AR = A
BR
>

and ABO is the origin of frame {B} relative to {A}. In this way, having some axis

that define our new reference frame, we can transform the gripper model in such a way its closing

point is in the origin of the new frame and its orientation is aligned to the one of the new reference

frame.

Task planning for table clearing of cluttered objects 29

(a) Pointcloud (b) Convex hull

Figure 4.7: Convex hull example

Bounding Box A bounding box is the smallest cubic volume that completely contains an object3. An

axis-aligned bounding box (AABB) is a bounding box aligned with the axis of the coordinate system,

while an oriented bounding box (OBB) is a bounding box oriented with the object. To compute the

OBB the object is transformed from its frame to the world frame and the dimensions of the bounding

box are obtained by computing the maximum and minimum coordinates of the transformed object.

In this way it is possible to have an approximation of the length, width and height of an object.

Convex Hull A convex hull of a point cloud P is the smallest 3D convex set that contains P. In

Figure 4.74 an example of the convex hull for a point cloud is shown. The vertices are first detected

and then connected among them by means of triangles. In this way a triangle mesh is associated to

the convex hull.

Collision Detection To understand if an object blocks a certain action, such as the pushing along a

direction, we have to check if along the desired trajectory the pushed object will collide with the other

ones. The collision detection is therefore a crucial step to generate the states. There exist different

techniques to assert if two objects are colliding and all of them need a representation of the object,

which could be a basic shape or a more complex as an octree.

The mesh shape has been thought to use since it can be directly obtained from a convex hull.

Given two objects A and B and their configurations qA and qB, the collision test returns a boolean

value about whether two objects collide or not [31]. Two objects collide if

A(qA) ∩ B(qB) 6= 0

3https://en.wikipedia.org/wiki/Bounding_volume
4Images obtained from http://xlr8r.info/mPower/gallery.html

https://en.wikipedia.org/wiki/Bounding_volume
https://en.wikipedia.org/wiki/Bounding_volume
http://xlr8r.info/mPower/gallery.html
http://xlr8r.info/mPower/gallery.html

30 Task planning for table clearing of cluttered objects

(a) (b) (c)

Figure 4.8: Convex hulls and collision detection using the segmented objects retrieved by the LCCP segmenta-

tion algorithm. The gray surface represents the plane’s 2D convex hull. In Figure 4.8b it is possible appreciating

that we miss the information about the hidden part of the object. In Figure 4.8c a collision detection example is

depicted. The convex hull of object o1 is translated along a direction and no collision is detected since the two

convex hulls do not intersect.

The collision detection will be used to understand if in a given pose q the object A would collide

with the other objects in the scene.

In order to relax the collision detection the majority of collision libraries, before to use complex al-

gorithm to detect collision between two shapes, they first check if the bounding volumes (e.g. AABB)

of the objects intersect, if they don’t the objects surely don’t collide. If their bounding volumes inter-

sect the objects might collide.

Objects Modeling The Kinect can mainly see one face (usually the top) of the objects and therefore

we cannot apply directly the convex hull algorithm to the detected surfaces. If we applied the convex

hull on an object’s observed surface, we would have likely the situation depicted in Figure 4.8c, in

which the collision detections would not detect any collision when it should. This is because we are

missing the surfaces that cannot be seen from the Kinect’s point of view.

From the Kinect’s point cloud also the table plane is known, so the information we have are: the

table plane model and the segmented objects (mainly the top surfaces). If an human would be in the

same pose of the Kinect, looking at the table, he would imagine that the objects are not floating sur-

faces, and he/she would deduce the objects shape from the shape of the top surface. The sides of the

objects can be deduced by projecting the top surface’s edges to the plane and then filling the missing

object’s sides with points. To do that we have to detect the top surface’s edges. A easier method

is directly projecting all the points of the surfaces onto the table plane and then apply the convex

hull algorithm to the resulting point cloud given by the sum of the top surface and its projection. In

Task planning for table clearing of cluttered objects 31

(a) Surfaces projection (b) Resulting convex hull

Figure 4.9: Convex hull of the objects using their projections onto the table plane.

this way the missing sides are indirectly retrieved by the convex hull. An example of this method is

depicted in Figure 4.9.

4.3 Action Execution

Since the generation of the state depends on the way we decided to execute the actions, the way the

actions are executed is discussed in this section.

4.3.1 Pushing

Pushing is a difficult action to execute when the goal is to move one object along a path. The majority

of pushing actions in object manipulation have the aim to interact with the objects in order to move

them and validate the segmentation [20] [18] [19] , without taking care about the final position of

the objects or about eventual collisions. Hermans er al. [15] presented a novel algorithm for object

singulation through pushing actions, here the pushing actions have the aim to separate objects in

cluttered scenes but they are not interested in singulate tidily the objects but just to find a feasible

interaction to singulate them regardless possible collisions.

We considered to work with objects with simple shapes, such as parallelepipeds. A human would

push such object mainly accordingly its principal axis and the one orthogonal to its (i.e. the first

2 principal components of Figure 4.6b), he/she also could push it along the diagonal thanks to the

several degrees of freedom of the hands. Inspired by this consideration, we decided to consider its

32 Task planning for table clearing of cluttered objects

(a) Pushing directions computed us-

ing the segmented surface seen by the

Kinect.

(b) Pushing directions associated to the

object’s convex hull.

Figure 4.10: Example of pushing directions.

first two principal directions as possible directions to push an object. In particular, there are two

senses for each direction, so in total we have 4 possible pushing directions per object, as depicted in

Figure 4.10.

Another things to take into account is that the principal directions are not always parallel to the

table plane. An object which stands on top of a table will be obviously pushed along a direction

parallel to the table. For this aim the first two principal directions are projected on to the table plane.

So the pushing directions considered are not the principal directions but their projections.

Next, the pose of the gripper is computed accordingly to its shape, to the shape of the objects and

the pushing direction.

In Figure 4.11a is possible observing the profile of the gripper mounted to the base of the gripper,

highlighted by the blue color. Such base has a circular shape and the gripper’s depth is less than

the one of the base. It is undesirable pushing an object with a circular, or spherical, shape for the

end effector because there is more uncertainty on the resulting path of the manipulated object. The

gripper has no a circular shape and it is all symmetric, this make it suitable to push an object with

a certain stability (i.e. make the object follow the desired path) during the action. Since we want a

pushing action as accurate as possible, we don’t want that the gripper’s base touches the manipulated

object.

Knowing also the height of the objects retrieved by its OBB, it is possible having a pose for the

gripper is such a way that the gripper’s base does not touch the object. The gripper’s pose, relative

Task planning for table clearing of cluttered objects 33

(a) The gripper and its base. (b) Profile view of a desired pose for pushing an object.

Figure 4.11

to the object, is computed in manner to locate the red point of Figure 4.11a to be at the same height

of the object. In this way the fingers will fully touch the object during the pushing action. Moreover,

to make easy for the robot reaching the pushing pose, it was defined to be a certain distance from the

object (in our experiment it was set to 5cm). It would be difficult to reach the pose of Figure 4.11b

without colliding with the object.

Due to the limited opening width of the gripper (7 centimetres) the objects the robot can manip-

ulate are thin. This means that when pushing along the principal axis, the object’s width is likely

small(Figure 4.12a). Pushing in such a way the gripper will likely push also the black juice box.

Therefore when pushing along the principal axis, the pose used is the one in Figure 4.12b. The pose

of Figure 4.12a is more stable since the contacts point (the fingers) are more distant between them-

selves. For this reason this pose is used only when pushing the objects along the directions 3 and

4.

Having the projections of the principal components, the table normal and the desired coordinates

for the gripper’s closing point it is possible defining a rotation and translation matrices. To push

along direction 1 those matrices are:

Rdir1 =

dir2X dir2Y dir2Z

dir4X dir4Y dir4Z

nx ny nz

>

T =

cx

cy

cz

 (4.1)

where dir1X refers to the x coordinate of the vector that defines the direction 1, n is the table’s normal

34 Task planning for table clearing of cluttered objects

(a) (b)

Figure 4.12: Possible pushing poses for push an object along its principal axis - In Figure 4.12a the closing

direction of the gripper is orthogonal to the pushing direction, and for the case depicted in the figure the gripper

will likely push also the black juice box. In Figure 4.12b the closing direction of the gripper is parallel to the

pushing direction.

and c is the desired tool closing point5.

As previously said, the planner considers to push the objects at infinity, but in reality the robot

has to push the objects for a finite length. Since the planner has no geometric information, it does not

know how much it has to push in order to singulate the object, or to make it graspable. For this reason

the pushing length is chosen accordingly the dimension of the OBB relative to the pushing direction.

For instance, if the robot is going to push the object o1 along direction 1 the length l of the pushing

action is l = k ·OBBo1(length_object), where k is a gain factor (1 in our experiments) called pushing

step. This is a big limitation since the robot will push an object for a length which is function of the

manipulated object and not of the surrounding ones. The improvement of this limitation will be one

of the topics for future works.

To retrieve the path we consider the total length l and we discretize it by n points having in this

way n + 2 poses (+2 because of the pushing pose and the final pose). For each pose the inverse

kinematic is calculated. In this way we obtain a discrete path.

When the robot approaches the pushing pose it could be that it collides with other objects. It

would be suitable to use MoveIt!6 which can build an octomap representation of the scene and find

a path avoiding collisions with the scene. The integration of MoveIt! will be a future work. To avoid

the collisions we considered a pre-pushing pose which has the same pose of the pushing pose but

5The gripper’s closing point is finger’s contact point. (Although in this case the fingers do not touch themselves)
6Ioan A. Sucan and Sachin Chitta, “MoveIt!”, [Online] Available:http://moveit.ros.org

http://moveit.ros.org
http://moveit.ros.org

Task planning for table clearing of cluttered objects 35

translated, accordingly to the table’s normal, 20 centimetres from the pushing pose. This pre-pushing

pose is easier to reach without collisions. After the execution of the pushing action the robot goes

to its home pose (depicted in Figure 1.5a) in order not to stay inside the Kinect’s view. When it goes

to home it might happen that it collides with some objects, so also for the final pose we considered

another one translated, accordingly the table’s normal, 20 centimetres from the last pose. In this way

the pushing trajectory is defined by a total of n + 4 poses.

4.3.2 Grasping

There exist an advanced state of the art regarding grasping. Despite this, all the techniques of grasp-

ing are usually computationally expensive. Many of them rely on the identification of the shape of

the objects and then a set of pre-built grasping poses is returned[5]. Other techniques rely on the

identification of local features which can state if a grasping pose is feasible or not. Two goods grasp-

ing planning algorithms of this kind, which deal with novel objects, are AGILE [38] and HAF [13],

despite this, they are not so robust and they are computationally expensive and not suitable for this

thesis [8]. In order to have a fast planning algorithm we considered a very simple approach to grasp

the objects, which is suitable only with the kind of objects we are going to interact with. Despite this,

the planner presented by this thesis can be directly integrated with several grasping algorithms.

The idea is to grasp the object in manner that the gripper’s closing direction7 is orthogonal the

principal axis of the object. The approaching direction8 of the gripper is given by the third principal

component of the object. Then the gripper’s closing point coordinates are given by the centroid, of

the object’s top surface, translated along the approaching direction by the half of the gripper’s fingers

height. In this manner a single grasping pose is obtained for each object.

To grasp the object also the robot needs a pre grasping pose, if not the gripper would collide with

object attempting to reach the grasping pose, moving it away, and the grasp would fail. The pre

grasping pose is simply defined by the grasping pose translated along its approaching direction by

20 centimetres. Once the object has been grasped it is easy that it collides with other ones, therefore

a post grasping pose is defined by translating the grasping pose for 20 centimetres along the table’s

normal.

On the whole the grasping action is composed of the following set of actions:

7The gripper’s closing direction is the direction along with the fingers move when grasping.
8The gripper’s approaching direction is the direction along with the gripper approaches the grasping pose.

36 Task planning for table clearing of cluttered objects

Figure 4.13: Visualization of the computation of block_grasp predicate for object o0. The opened gripped

model is transformed to the grasping pose for object o0 and it is tested if the gripper mesh model collides with

the other objects, in this case it collides with o1.

1. Reaching the pre grasping pose.

2. Opening gripper.

3. Reaching grasping pose.

4. Closing gripper.

5. Reaching the post grasping pose.

6. Going to the dropping pose: the object will be dropped into a bin.

4.4 States generation

In Chapter 3 the predicates used were described, in this section their computation is presented in

detail.

4.4.1 Predicate: block_grasp

The (block_grasp o1 o0) predicate refers to the fact that object o1 blocks o0 to be grasped. The com-

putation is this predicate is straightforward: the mesh model of the opened gripper is transformed

to the grasping pose of object o0, and checked if it collides with the other objects. In figure 4.13 such

procedure is shown and in Algorithm 2 the pseudo algorithm is described in detail.

Notice that this method requires to check for collision between the gripper and objects that might

be very far from the interested object, i.e. there is no need to compute the collision detection. Despite

Task planning for table clearing of cluttered objects 37

Algorithm 2 Computation of block_grasp predicates.

Inputs: Set of objects O (convex hull retrieved with the projection onto the table plane) and the set of

grasping poses Gposes.

Outputs: The block_grasp predicates.

function COMPUTEBLOCKGRASPPREDICATES(O,Gposes)

block_grasp_predicates← NULL

for all A ∈ O do

gripperMeshTrans f ormed← TRASNFORMGRIPPERMODEL(Gposes(A))

for all B ∈ O do

if A 6= B then

collision← ISTHERECOLLISION(gripperMeshTrans f ormed,B)

if collision then

block_grasp_predicates← ADDPREDICATE((block_grasp B A))

end if

end if

end for

end for

return block_grasp_predicates

end function

38 Task planning for table clearing of cluttered objects

this, as explained in Section 4.2, the majority of collision detection algorithms first check if the bound-

ing boxes of the objects intersect. This is a computationally cheap operation, and only if they intersect

the computationally expensive algorithm are used to check for collision. This makes the Algorithm

2 efficient and computationally not expensive. It has been observed that, in average, to compute this

predicate the time is about 10 milliseconds per object.

4.4.2 Predicate: on

The (on o0 o1) predicate means that object o0 is on top of object o1. With the convex hull of the

objects is easy to understand if two objects are one on top of the other one by checking for collision,

but in this way we do not know who is above and who is below. To do this their surface projections

onto the table plane are used. The research group of Artificial Intelligence and Robotics Laboratory of

Istanbul Technical University, published some interesting researches suitable to the aim of this thesis.

In [11] [30] [12] the authors proposed some approaches to enhance 3D recognition and segmentation

results to create and maintain a consistent world model involving attributes of the objects and spatial

relations among them. Their researched focused on modelling the world for manipulation planning

tasks. They do not consider scene like the one of this thesis but simpler ones such as a pile of cubes

above each other. What can be directly used from their work is the computation of the on predicate.

The on relation for a pair of objects is determined by checking whether their projections onto the table

plane overlap. This predicate was not a relevant part of their work and they did not provide too

much information about its computation. Therefore our implementation for the on predicate is based

on their idea with some modifications.

Our idea is based on the fact that an object which stands on top of another one occludes some

parts of the object below. In the other side, the one below does not occlude any part of the top object.

Let’s consider the scene in Figure 4.14a, the object o0 occludes a portion of object o1. The projections

P0 and P1 onto the table plane of o0 and o1 are respectively the red and green ones in Figure 4.14b. The

convex hull CP1 of the projection P1 of o1 intersects with the projection P0 of o0, while the projection

P1 of o1 does not interesct with the convex hull CP0 of the projection of o0 (Figures 4.14c and 4.14d).

Although this method works fine to compute the on predicate it has the limitation that its scope is

only for objects for a rectangular shape, or similar shapes.

It is important to take into account also that actually the edges of the occluded parts of the below

object, once projected, could be at the same position, of some projected edges of the top object. This

Task planning for table clearing of cluttered objects 39

(a) Scene (b) P1 & P0

(c) CP1 & P0 (d) P1 & CP0

Figure 4.14: Visualization of the computation of the on predicate. Figure 4.14b shows the real image, Figure

4.14b shows the projections of the objects onto the table plan while Figures 4.14c and 4.14d represent the two

steps strategy to compute the on predicate.

could be dangerous for the computation of this predicate. Therefore a threshold is added. Focusing

the attention on Figures 4.14c and 4.14d it can be appreciated that the intersection CP1 ∩ P0 includes

several points, while, in case the edges projections relative to the occluded and occluding part have

similar coordinates, the intersection CP0 ∩ P1 would include just few points. Therefore the (on o0 o1)

predicate is update accordingly to the following formula:

(on o0 o1) =

True, length(CP0 ∩ P1) < th0 ∧ length(CP1 ∩ P0) > th1

False, otherwise
(4.2)

where length(A) means the number of elements in the set A. The values of the thresholds th0 and th1

are determined empirically and they are th0 = th1 = 100.

The formula 4.2 is then evaluated for every possible combinations of objects, therefore the com-

plexity to generate this state is O(n2), where n is the number of objects. Despite this, its computation

is very fast. The example in Figure 4.14 was evaluated just 2 times since there are only 2 objects and it

40 Task planning for table clearing of cluttered objects

took 3 milliseconds, that is ≈ 1.5 ms
pair o f object . For instance, for a complex scene with 10 objects the total

time devoted to compute this predicate would be approximatively 10 · 9 · 1.5 ≈ 135ms.

4.4.3 Predicate: block_diri

The (block_diri o1 o0) predicate, if true, means that object o1 blocks object o0 when moved along

its i-th direction.

Object o1 can blocks object o0 to be moved along a certain direction if a collision will appear

between the two objects. In order to do that, having a certain pushing length li for the i-th direction

of object o0, its convex hull Co0 is translated along the considered direction until reaching its final

position which is p f = pi + l · diri, where p f and pi are respectively the centroid at the final and initial

pose. Object o0 is going to do a path from its initial and final pose so the collision should be checked

along its path. We decided to use a discrete strategy, that is we consider several poses between the

initial one and the final one, including the final one, and for each one we check if the transformed

object collides with the other objects.

Considering the kind of objects we are going to interact with, the discrete path is computed by

translating the object along the pushing direction by a length equal to the OBB dimension associated

to that direction, until reaching the final pose. Note that no collision detection is done for the object

at its initial pose, therefore the total number of poses considered for the pushing path are nposes =⌈
k·AABBdimension
AABBdimension

⌉
= dke, where k is the pushing step defined in Section 4.3.1.

To push an object along a certain direction the robot needs to put its end effector at the opposite

side of the object. Therefore object o1 can block object o0 to be moved along a certain direction also

in the case the end effector cannot be put in the pushing pose because it would collide with o1. This

computation is simply done by transforming the closed gripper mesh model to the pushing pose and

check for collision with the other objects, as similarly done for the computation of the block_grasp

predicate.

In Figure 4.15 is shown graphically the procedure to compute the predicate.

Note that also the gripper during the pushing action will move, so ideally the collision checking

should be done exactly as done for the object. We decided to neglect this and check only for the initial

pushing pose in order to relax the planner and not to make it too much conservative. This means that

during the pushing action the robot might actually move more than one object. Despite this relaxing

strategy the algorithm showed to work fine and cases in which the gripper moved more than one

Task planning for table clearing of cluttered objects 41

(a) Top view of the convex hull

of the segmented objects.

(b) Evaluating the (block_dir1

* o5) predicate

(c) Evaluating the (block_dir1

* o7) predicate

(d) Evaluating the (block_dir3

* o7) predicate

(e) Evaluating the (block_dir2

* o3) predicate

(f) Evaluating the (block_dir1

* o0) predicate

Figure 4.15: Visualization of the computation of block_diri predicates. "Evualuating the (block_dir1 * o0)

predicate" means that the algorithm is evaluating for all the objects, except o0, if they collide with o0 when

pushed along direction 1.

object were really rare.

The computation of this predicate can be appreciated in detail in Algorithm 3. From that pseudo

code can be noted that the complexity of this function to compute the predicate approximatively is

O(n2), where n is the number of objects.

The computation of this algorithm is the most computational expensive of all the planner since it

involves many collision detection phases. In fact the time required to compute this predicate for the

example in Figure 4.15 (considering to push the objects 1.5 times the OBB dimension relative to the

pushing direction) was ≈ 1.115seconds, were ≈ 0.869s were dedicated to check if the objects would

collide when moved, while≈ 0.239s were dedicated to check if the gripper collides with some objects.

42 Task planning for table clearing of cluttered objects

Algorithm 3 Computation of block_dir predicates.

Inputs: set of objects O (convex hull retrieved with the projection onto the table plane), set of the

pushing directions Pd of all the objects, set of the initial pushing pose Pposes of all the objects, set of all

the pushing paths Ppath relative to each direction and each object.

Outputs: block_dir predicates

function COMPUTEBLOCKDIRPREDICATES(O,Pd,Pposes,Ppath)

block_dir_predicates← NULL

for all A ∈ O do

for all d ∈ Pd(A) do

for all p ∈ Ppath(A, d) do

AT ← TRANSFORMOBJECT(A, p)

for all B ∈ O do

if A 6= B then

collision← ISTHERECOLLISION(AT ,B)

if collision then

block_dir_predicates← ADDPREDICATE((block_dird B A))

end if

end if

end for

end for

closedGripperMesh← TRASNFORMCLOSEDGRIPPERMODEL(Pposes(A, d))

for all B ∈ O do

if A 6= B then

collision← ISTHERECOLLISION(closedGripperMesh,B)

if collision then

block_dir_predicates← ADDPREDICATE((block_dird B A))

end if

end if

end for

end for

end for

return block_dir_predicates

end function

Chapter 5

Software design

In this chapter the software design and the external libraries used are briefly described.

The code has been implemented using C++ and the ROS framework (Robot Operating System)

[33]. Moreover, the external libraries used are Point Cloud Library (PCL) [35], an open source library

which provides a wide array of tools for 3D perception, and the Flexible Collision Library (FCL) [31],

an open source library for collision detection.

The algorithm relies heavily on the PCL library to do the following operations: filtering, segmen-

tation, plane estimation, principal component analysis, projections onto the table plane and convex

hulls. The FCL library was used only for collision detection between the convex hulls of the objects

and the gripper as well.

The planner used is the Fast Downward planner [14] which uses the PDDL syntax.

ROS The algorithm has been developed by using different nodes in order to have a modular and

flexible design. The nodes are:

• A node to segment the objects and estimating the table plane coefficients.

• A node to generate the states having as input the segmented objects and the table plane.

• A node that, given the states, writes the problem in PDDL, executes the Fast Downward planner

and returns the resulting plan.

• A node to evaluate the execution of the first action of the plan.

• A decision maker node which controls all the processes and decides the next task to do.

43

44 Task planning for table clearing of cluttered objects

These nodes implement services, that is they are independent modules that receive an input and

return an output. The software architecture is sketched in Figure 5.1.

The decision maker node does the following operations

1. Wait for a point cloud.

2. Call the segmentation service giving as input the point cloud and receiving as result the seg-

mented tabletop objects and the plane coefficients.

3. Call the state generation service giving as input the tabletop objects point clouds and the plane

coefficients and receiving as result all the states, as well the poses for the pushing and grasping

actions.

4. Call the planner giving as input the states.

5. Call the action execution service. The result of this service is a boolean variable which specifies

if the requested action has the inverse kinematic feasible. If it is not feasible, the decision maker

adds to the states the ik_unfeasible state for that action and requests a new plan.

Figure 5.1: Software architecture.

Task planning for table clearing of cluttered objects 45

Simulation The implemented algorithm was first tested in simulation with Gazebo[22] before test-

ing it in the real robot. A simple URDF model of the gripper (with no joints) was designed in order

to simulate the pushing action. This model was not able to simulate the grasp of an object, there-

fore the simulation of the grasping action was done in manner to remove the object in the simulation

environment when the robot tried to grasp it. As debugging tool the RVIZ package[1] has been used.

In the simulation the real set up is accurately reproduced (Figure 5.2a). A simulation of the plan-

ning system is depicted in Figure 5.2 for a simple problem. The first plan returned is: (push_dir1 o2)

(push_dir1 o0) (grasp o2) (grasp o1) (grasp o0). While the real executed plan is: (push_dir1

o2) (grasp o2) (push_dir1 o0) (grasp o1) (grasp o0). The difference is only that it swaps the

second action with the third one, this because the two plans have the same length and at every new

frame the system replans again considering it as a problem uncorrelated to the previous one.

After the algorithm was asserted to work as expected in simulation we moved to perform experi-

ments with the real robot.

46 Task planning for table clearing of cluttered objects

(a) Simulation of the real set up (b) Kinect’s view

(c) Visualization in RVIZ of the objects and the ac-

tion to execute ((push_dir1 o2)).

(d) Execution of the first plan’s action

((push_dir1 o2)).

(e) Visualization in RVIZ of the objects and the ac-

tion to execute ((grasp o2)).

(f) Visualization in RVIZ of the objects and the ac-

tion to execute ((push_dir1 o0)).

Figure 5.2: Simulation in Gazebo of a simple experiment.

Chapter 6

Experiments

In this chapter an experiment is presented in order to assert the quality of the proposed planning

system. The experiment presents the advantage of having pushing actions in addition to grasping

actions.

The experiment (Figure 6.1) presents the main challenges that our system can handle, which are:

objects on top of others and objects that need to be moved in order to grasp them.

In Figure 6.2 the execution of the plan and the results of each action are shown (this run can be

seen at https://youtu.be/E4WcyeodW1c1). The system takes the following decisions:

• First it decides to push away object o2 since it is not able to grasp it due to its grasping pose.

(a) Kinect’s view (b) Objects labels.

Figure 6.1: Kinect’s view of the first experiment.

1The run of the experiment is slow down by some bad segmentations which make the planner finds no solution and by

some data recording processes.

47

https://youtu.be/E4WcyeodW1c
https://youtu.be/E4WcyeodW1c

48 Task planning for table clearing of cluttered objects

(push_dir3 o2) (grasp o2) (push_dir1 o1) (push_dir1 o0) (grasp o4)

(grasp o1) (grasp o3) (grasp o0) (grasp o5)

Figure 6.2: Results of a run for the experiment of Figure 6.1. The executed plan is: (push_dir3 o2) (grasp

o2) (push_dir1 o1) (push_dir1 o0) (grasp o4) (grasp o1) (grasp o3) (grasp o0) (grasp o5). The first

and third row of images show the robot executing the actions, while below the results of those actions.

Task planning for table clearing of cluttered objects 49

(a) (b)

Figure 6.3: Collision between the gripper and o3 for the grasping pose of object o2.

In that pose the Kinect is able to see also a side of the object, and therefore its second and third

principal components make the grasping pose being the one in Figure 6.3, which is colliding

which object o3. Therefore it has to move object o3, but it cannot because o2 hinders that action,

another option is pushing away o2 and then grasp it.

• Then it pushes away object o1 because it is not possible to grasp it or to move the other objects

having o1 in such a position.

• Next it pushes object o0, this action shows the optimality of the planner. If it did not push o0

it had to push away first o5 and o3 to make o0 graspable, it saved one action pushing away o0.

The outcome of this action is not the expected one since the gripper, during the pushing action,

touched slightly also o5 (Figure 6.4). In this case is possible noting the ability of the system to

adapt to unexpected outcomes.

• Then the robot finishes the task grasping the remaining objects.

In order to get some statistics regarding the planning system we performed 6 runs of the exper-

iment. All the times commented refer about an execution on a machine with dual-core CPU with

3.16GHz. In Table 6.1 the executed plans of all the runs are reported. The plans are different because

of two main reasons: the segmentation is not always the same, and the positions of the objects may

vary very slightly between different experiments.

It should be noted that the segmentation may vary a lot due to the noise of the Kinect, despite the

filtering. Also the tuning of the segmentation parameters made it quite noise sensitive. Moreover, at

the edges the segmentation algorithm had some drawbacks since it could cluster some edges points to

the biggest adjacent clusters of supervoxels, this means that some edges of an object could be detected

50 Task planning for table clearing of cluttered objects

Figure 6.4: Unexpected outcome: pushing o0 the gripper touches also o5.

as part of the adjacent object. This, in several situations, can lead to find no plan since the object model

is not similar to the real object, and during the computation of the collisions the system could detect

false collisions. In this case the system can either return no solution, so it will take a new image and

repeat all the process (the new segmentation could solve the problem), or find anyway a plan.

Experiments analysis In run 1 the robot grasps object o3 although there was o4 on top of it. This

is because reaching the pushing pose for the execution of (push_dir1 o0) action the robot collided

with o4, corrupting in this way the scene. In runs 1, 4 and 5 the optimal plan does not return to push

object o0 as a solution but it returns to push either o5 or o3, this also is because of the segmentation

(at that iteration that system detected that it was not possible pushing away o0).

Sometimes because the object detection was not good enough, the grasping pose for o4 was

marked as unfeasible and the system replanned. This was then fixed by successive segmentations.

Computation time analysis From the 6 runs of this experiment the different elapsed times for the

several steps of the algorithm have been measured (Figure 6.5). The planning system is slowed down

by the filtering process (≈ 2.2sec), therefore other filtering algorithms should be considered. The

segmentation is really fast since in average it takes half second to segment the image.

The most important part of this analysis regards the time needed to generate the states and get a

plan (Figures 6.5c and 6.5d). The planning system is able to compute the predicates quite fast and, as

commented in Chapter 4, its complexity is O(n2). The Fast Downward planner showed to be very

fast in resolving also complex problems with 7 objects. It is important also taking into account that

our implementation to get the plan is not the optimal one since we write each time a PDDL file and

then call the binary file of the planner. Hence, the process is slowed down by the writing of the PDDL

Task planning for table clearing of cluttered objects 51

Table 6.1: Executed plans of the 6 runs for the experiment of Figure 6.1. Nactions is the total number of exe-

cuted actions, Timetot is the total time to solve the task (neglecting the time lost due to the bad segmentation),

¬Solution is the number of iterations in which no solution was found because of the segmentation and ¬IK is

the number of actions that had no solution for the inverse kinematic and the system replaned.

Run Plan Nactions Timetot ¬Solution ¬IK

1

(push_dir3 o2) (push_dir1 o1) (grasp o1)

(push_dir1 o5) (grasp o5) (push_dir3 o2)

(push_dir1 o0) (grasp o0) (grasp o3)

(grasp o2) (grasp o4)

11 404.9s 3 6

2

(push_dir3 o2) (grasp o2) (push_dir2 o1)

(grasp o1) (grasp o4) (push_dir2 o0)

(grasp o0) (grasp o3) (grasp o5)

9 263.2s 19 0

3

(push_dir3 o2) (grasp o2) (grasp o4)

(push_dir2 o1) (grasp o1) (push_dir1 o0)

(grasp o0) (grasp o3) (grasp o5)

9 306.2s 3 1

4

(grasp o2) (grasp o4) (push_dir1 o3)

(grasp o3) (push_dir1 o1) (grasp o1)

(push_dir1 o5) (grasp o5) (grasp o0)

9 266.7s 0 0

5

(push_dir3 o2) (grasp o4) (push_dir1 o1)

(grasp o1) (push_dir1 o5) (grasp o5)

(push_dir1 o0) (grasp o0) (grasp o3)

(grasp o2)

10 283.9s 0 0

6

(push_dir3 o2) (grasp o2) (push_dir1 o1)

(push_dir1 o0) (grasp o4) (grasp o1)

(grasp o3) (grasp o0) (grasp o5)

9 262.1s 6 0

52 Task planning for table clearing of cluttered objects

file and the parsing of that file, and a better implementation should be considered. Despite this, the

time to get a plan is small.

Regarding the time needed to compute the inverse kinematic, there is a considerable variance due

to the fact that the inverse kinematic is based on an optimization algorithm and there are poses for

which the solution is found fast.

The execution of the actions is obviously the more expensive part. The grasping actions takes

more time than pushing since it is composed of more steps.

In Figure 6.6 the execution times per iteration of the perception and planning pipeline are de-

picted. We can observe that the whole system takes about ≈ 4.5seconds to take a decision after re-

ceiving a point cloud. Neglecting the filtering and the segmentation the system takes ≈ 2.3seconds to

make a decision. The overhead planning (state generation and planning) is quite fast. The execution

of the actions takes a long time compared to the decision making step, therefore an optimization of

the sequence of actions is important to reduce the total time to complete the task. The system, com-

pared to other approaches that consider one object at a time [10], lets to reduce the number of actions

needed to solve the task.

To conclude, we present in Figure 6.7 the elapsed times for the different phases of the proposed

planning system for the 6-th run of the experiment. From that graph it is appreciable that the worst

part of the planning system is due to the low level perception (filtering and segmentation). The state

generation takes some time for complex problems but for simple problems is very efficient.

Task planning for table clearing of cluttered objects 53

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

FILTERING

T
im

e
 [
S

e
c
o
n
d
s
]

Time to filter the point cloud

(a) Filtering time in seconds.

400

450

500

550

600

650

700

SEGMENTATION

T
im

e
 [
m

ill
is

e
c
o
n
d
s
]

Time to segment the point cloud

(b) Segmentation time in milliseconds.

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7
Number of objects

T
im

e
 [
m

ill
is

e
c
o
n
d
s
]

Time to generate the states

(c) State generation time in milliseconds.

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7
Number of objects

T
im

e
 [
m

ill
is

e
c
o
n
d
s
]

Time to get a plan

(d) Planning time in milliseconds.

0.5

1

1.5

2

2.5

3

3.5

4

TOTAL FEASIBLE UNFEASIBLE
Inverse Kinematic

T
im

e
 [
S

e
c
o
n
d
s
]

Time to solve the IK

(e) Inverse kinematic time in seconds.

16

18

20

22

24

26

28

30

32

34

36

PUSHING GRASPING
Actions

T
im

e
 [
s
e
c
o
n
d
s
]

Time to execute the action

(f) Action execution time in seconds.

Figure 6.5: Elapsed time for the different phases of the algorithm. These data are taken from the 6 runs of the

experiment of Figure 6.1.

54 Task planning for table clearing of cluttered objects

1

2

3

4

5

6

7

8

PERCEPTION + PLANNING PIPELINE STATE GENERETION + PLANNING PIPELINE (with IK)

T
im

e
 [
s
e
c
o
n
d
s
]

Figure 6.6: Time in seconds of the execution of the perception and planning pipelines. Those execution times

are retrieved by all the runs without taking care about the number of segmented objects.

1 − 7 2 − 8 3 − 5 4 − 5 5 − 6 6 − 4 7 − 3 8 − 2 9 − 1
0

5

10

15

20

25

30

35

40

<Iteration − Number of segmented objects>

T
im

e
 [
s
e
c
o
n
d
s
]

Filterting

Segmentation

States generation

Planning

IK

Action execution

(a)

1 − 7 2 − 8 3 − 5 4 − 5 5 − 6 6 − 4 7 − 3 8 − 2 9 − 1
0

1

2

3

4

5

6

<Iteration − Number of segmented objects>

T
im

e
 [
s
e
c
o
n
d
s
]

Filterting

Segmentation

States generation

Planning

IK

(b)

Figure 6.7: Execution time for the different steps of the pipeline for the 6-th run of the experiment. Figure 6.7a

includes the execution of the actions, while Figure 6.7b does not include the execution of the actions.

Chapter 7

Budget and impact

This chapter covers the budget analysis of the work. The elements which have an associated costs are

identified, and they are hardware, software, human resources and general expenses. Also a discussion

about the impact of the work from an economical and environmental point of view is done.

7.1 Budget

In this section we present the associated costs of the work for each one of the different factors: hard-

ware, software, human resources and general expenses.

Hardware resources

The hardware resources used to develop this work are a personal computer, the WAM arm manipu-

lator, the gripper and the Kinect. The objects used for the experiments have a derisory cost so they

have been not considered.

We consider 40 hours of work per week, and 52 weeks per year. IRI’s organization office gave me

the amortization periods of the technical equipment, and they are: 3 years for the personal compute,

gripper and Kinect, and 5 years for the WAM manipulator. The gripper has been designed at IRI

institute and we estimated a cost of e 300 for it.

In Table 7.1 these associated costs of the hardware are shown.

55

56 Task planning for table clearing of cluttered objects

Resource Unit price Amortization period Price per hour Hours of use Amortization

Lab PC e1,000.00 3 years e0.16 420 e67.31

WAM e97,500.00 5 years e9.375 20 e187.5

Gripper e300.00 3 years e0.0481 20 e0.96

Kinect e 150.00 3 years e 0.024 40 e 1.081

Total e98,950 - e256.85

Table 7.1: Costs associated to hardware resources

Software resources

The software used to develop the work were all open source software free of charge. The software

to control the robot and to compute the inverse kinematic was developed in the laboratory itself.

Therefore for a correct analysis we should consider the hours spent by the worker to design such part

of the software. But such a software has been used in many projects done in this laboratory through

the years, each one with several hours. Therefore, due to the difficulty to estimate such a cost, we

neglected it in the analysis.

Resource Unit price

Ubuntu 14.04LTS e 0.00

ROS Indigo (plus packages) e 0.00

Fast Downward planner e 0.00

Point Cloud Library e 0.00

Flexible Collision Library e 0.00

LATEX(texlive) e 0.00

Gimp e 0.00

Total e 0.0

Table 7.2: Costs associated to software resources

Human resources

Since I am a student which is doing a thesis and I do not have any grant the human resources cost

is 0. For seek of completeness we hypothesize this work could be done by a private institution and

Task planning for table clearing of cluttered objects 57

we want to analyse the costs of the human resources of the project. In the developing of this work

there are several stages that should be conducted by different specialized roles, such as technical

project manager to manage the project, a software engineer to implement the code and a tester to test

the implementation. The total number of hours are an approximation of the hours I invested in the

project and those have been divided accordingly to the time I spent impersonating each role.

Role Salary (per hour) Number of hours Total wage

Technical project manager e38.53 1 50 e1,927

Software engineer e40.6062 2 310 e12,588

Tester e32.15 3 60 e1,929

Total - 420 e16,444

Table 7.3: Human resources’ costs

General expenses

These expenses are relative the use of the laboratory, the energy consumed by the robot and the

computer. The consumed energy is a direct and variable cost, while the fixed costs will be the ones re-

garding the rent of the laboratory. The costs regarding the rent(including lights, heating and cooling)

and internet connection have been not considered properly since they are costs of the IRI institute. To

include them in the analysis we consider a cost of e 200 per month (the project was developed from

March to the end of May). To calculate the expenses relative the electricity used we considered the

price in Spain on October 2015 (0.22e/kWh)4.

1resource http://www.indeed.com/salary/Project-Manager.html
2resource http://www.indeed.com/salary/Software-Engineer.html
3resource http://www.indeed.com/salary/Software-Tester.html
4resource http://www.elmundo.es/economia/2015/10/20/5626187fca474195608b45c7.html

http://www.indeed.com/salary/Project-Manager.html
http://www.indeed.com/salary/Project-Manager.html
http://www.indeed.com/salary/Software-Engineer.html
http://www.indeed.com/salary/Software-Engineer.html
http://www.indeed.com/salary/Software-Tester.html
http://www.indeed.com/salary/Software-Tester.html
http://www.elmundo.es/economia/2015/10/20/5626187fca474195608b45c7.html
http://www.elmundo.es/economia/2015/10/20/5626187fca474195608b45c7.html

58 Task planning for table clearing of cluttered objects

Resource Average power Hours of usage Price

Lab PC 250 W 420 h e 23.10

WAM 60 W 20 h e 0.26

Fixed costs e 600

Total e 623.36

Table 7.4: General expenses. A price of e0.22 per kWh has been assumed.

Total cost

Considering the costs of the hardware, software, human resources and general expenses we obtain

the total cost of the project. We consider also a margin of contingencies of 15% in order to consider

additional costs and the error of the estimation of the costs.

Category Value

Hardware e 256.85

Software e 0

HR e 16,444

General expenses e623.36

Subtotal costs e17,324.21

Margin (15%) e2,598.63

Total costs e19,922.84

Table 7.5: Total costs

7.2 Impact

Economical impact

The work developed in this thesis is not a product to be sold and have no direct economic benefits.

This thesis had the aim to investigate a method in order to contribute with the current state of the

art in manipulation planning. The impact of this work is increasing the amount of knowledge and

contributions created in the UPC, this increases the UPC’s notoriety and could attract investors.

The application of a robot to solve manipulation problem, such grasping a specific object in a

Task planning for table clearing of cluttered objects 59

cluttered environment, in industrial set ups is still not ready to be applied. The robots, although ex-

pensive, can substitute an human operator saving money but the time they take to solve manipulation

tasks is much more than one human would take. This consideration is based on the experiment we

performed, the task could be easily solved by a human in few seconds while the robots took about 5

minutes. Despite this, with further improvements regarding the low level perception and the action

execute time, the application of these robots could be profitable.

To analyse the potential impact it could have the application of this work in the future, we recall

the concept of Industry 4.05. The proposed planning system is clearly able to enhance the self-decision

making step of robots, which directly falls in the concept of Industry 4.0. In this revolution the new

industries will let to produce more with less cost. At its side there will be also a revolution in the em-

ployment, the employments that can be substituted by the robots will disappear, but in contrast new

employments will appear to make all this new industry works properly. Therefore, in a long term,

this work can have a relevant economical impact since it is contributing to this "industrial revolution"

which will affect heavily the economy.

Environmental impact

Considering the directive 2011/92/EU of the European Parliament and of the council of 13 December

20116 they sates in article 1 point 1 the following:

The directive shall apply to the assessment of the environmental effects of those public

and private projects which are likely to have significant effects on the environment.

Since the project presented in this thesis is a project of research with no direct applications in industry,

it has no significant effects on the environment and an environmental impact analysis is not required.

5http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/

industrie4.0-smart-manufacturing-for-the-future-en.pdf
6http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:026:0001:0021:En:PDF

http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:026:0001:0021:En:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:026:0001:0021:En:PDF

Chapter 8

Conclusions

In this chapter we present the conclusions of this work, and also the limitations and possible lines of

future work.

The objectives established have been achieved developing a planning system which is able to

solve table clearing tasks with cluttered objects reasoning at a symbolic level. The planning system

can choose the best sequences of pushing and grasping actions to solve problems that could be not

solved by only considering grasping actions.

The novelty of this thesis regards the tackling of geometrical restrictions within symbolic plan-

ning. To do so, a perception system, which understands what are the objects that hinder some actions,

has been proposed. Such a perception system allows the planning to reason at a semantic level. The

geometrical constraints of the inverse kinematic are evaluated in a lazy way through backtracking

speeding up the reasoning process. To deal with unexpected outcomes replanning is used. As shown

in Figure 6.6 the whole process is quite fast in deciding the next action to do.

This work showed that complex manipulation problems, such the one presented, can be solved

by a symbolic planner, handling some geometrical constraints with symbolic predicates and others

through backtracking.

The planning system has been inspired by the way humans solve the task and the experiments

showed the robot can solve the task with a intelligent sequence of actions that we consider close to

the one a human would do.

The planning system can be easily adapted to every kind of robotic manipulator and gripper, as

it only needs to include the model of the gripper and the inverse kinematic. It can also be easily

60

Task planning for table clearing of cluttered objects 61

integrated with more sophisticated grasping techniques.

Limitations

Although the system showed to work good it has some limitations which could make it no adapt, at

least without further improvements, for a real set up.

A limitation is related to the lack of geometrical information during the planning stage. As pre-

viously said, the pushing action is supposed to push the object far enough from the others ones, this

will be true only if the pushing will be performed up to infinite, and this is not the case. The pushing

could move the object not enough in order to make it graspable, this is though to be solved by re-

planning and the planners will return to push that object again. In that situation it could happen the

planner pushes first in one direction and then in the opposite one, in this way it gets stuck in a loop.

However, during our experiments, this situation was really rare.

Moreover, the planning system does not take into account the objects when the manipulator arm

moves. This could likely lead to undesired collisions and the integration of a obstacle avoidance path

planner should be considered in the action execution stage.

The biggest limitation is that the planning system relies on a good segmentation. A bad segmenta-

tion could not lead to any feasible plan and the parameters should be tuned for each particular scene

in order to achieve a fairly good segmentation. The planning system considers that the segmentation

is perfect and it does not know how to deal in cases the segmentation is bad. This limitation reduces

the scope of the system since without a proper segmentation the system is no more effective.

The scope of this system is limited to scenarios with objects which have simple shapes (cylinders

or parallelepipeds), this is mainly due to the limitation of the decision regarding the direction along

with push an object.

Future Work

As future work we would like to include some geometrical information in the pushing action, that is

knowing how much the robot should push the objects. To do so, the block_dir predicate could be

computed by translating the object along the pushing direction up to finding a pose for that object in

which the grasping pose is not colliding with any object. In this way the robot will push the object

away with the aim to put it in a pose that it can be grasped.

62 Task planning for table clearing of cluttered objects

The integration of MoveIt!1 will be also considered in the action execution stage in order to avoid

collisions.

The robot may execute actions that avoid collisions by just few millimetres, but the noise of the

Kinect and the controllers might make the robot collide. Therefore a cost could be added to the actions

when planning to prefer safer actions with wider collision-free ranges.

1Ioan A. Sucan and Sachin Chitta, “MoveIt!”, [Online] Available:http://moveit.ros.org

http://moveit.ros.org
http://moveit.ros.org

64 Task planning for table clearing of cluttered objects

Acknowledgements

I want to thank to my supervisors David Martínez Martínez and Guillem Alenyà Ribas for guiding

me and teaching me along this thesis. I am very grateful for all your help and allow me to learn so

much.

Un grandissimo ringraziamento alla mia famiglia per avermi sempre supportato durante tutti

questi anni e per avermi permesso di studiare questi due anni a Barcellona e intraprendere questo

cammino.

E ovviamente a tutti i miei amici italiani, in particolare Davide, che hanno condiviso le mie pene

e le mie gioie durante questo percorso.

Y un agradecimiento va a mi amigo Samuél por aguantar mis quejas diarias por todo un año. A

Sara, la mejor amiga que se podia encontrar en Barcelona. En fin a Yann, Angie y Adeline que siempre

intentaron, sin mucho exito, enseñarme que habia algo más del Master.

Chapter 9

Bibliography

[1] Rviz http://wiki.ros.org/rviz, available on may 2016.

[2] PDDL - The Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS TR-

1165, Yale Center for Computational Vision and Control, 1998.

[3] Nichola Abdo, Henrik Kretzschmar, Luciano Spinello, and Cyrill Stachniss. Learning manipu-

lation actions from a few demonstrations. In Robotics and Automation (ICRA), 2013 IEEE Interna-

tional Conference on, pages 1268–1275. IEEE, 2013.

[4] Julien Bidot, Lars Karlsson, Fabien Lagriffoul, and Alessandro Saffiotti. Geometric backtracking

for combined task and motion planning in robotic systems. Artificial Intelligence, 2015.

[5] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. Collaborative grasp planning with multiple

object representations. In Robotics and Automation (ICRA), 2011 IEEE International Conference on,

pages 2851–2858. IEEE, 2011.

[6] Rui Coelho and Alexandre Bernardino. Planning push and grasp actions: Experiments on the

icub robot.

[7] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris Hauser,

Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wurman. Lessons from the

amazon picking challenge. CoRR, abs/1601.05484, 2016.

[8] N. Covallero and G. Alenyà. Grasping novel objects. Technical Report IRI-TR-16-01, Institut de

Robòtica i Informàtica Industrial, CSIC-UPC, 2016.

66

http://wiki.ros.org/rviz

Task planning for table clearing of cluttered objects 67

[9] Richard Dearden and Chris Burbridge. Manipulation planning using learned symbolic state ab-

stractions. Robotics and Autonomous Systems, 62(3):355 – 365, 2014. Advances in Autonomous

Robotics — Selected extended papers of the joint 2012 {TAROS} Conference and the {FIRA}

RoboWorld Congress, Bristol, {UK}.

[10] Mehmet Dogar and Siddhartha Srinivasa. A framework for push-grasping in clutter. In Nick Roy

Hugh Durrant-Whyte and Pieter Abbeel, editors, Robotics: Science and Systems VII. MIT Press,

July 2011.

[11] Mustafa Ersen, Melodi Deniz Ozturk, Mehmet Biberci, Sanem Sariel, and Hulya Yalcin. Scene in-

terpretation for lifelong robot learning. In Proceedings of the 9th international workshop on cognitive

robotics (CogRob 2014) held in conjunction with ECAI-2014, 2014.

[12] Mustafa Ersen, Sanem Sariel Talay, and Hulya Yalcin. Extracting spatial relations among objects

for failure detection. In KIK@ KI, pages 13–20, 2013.

[13] David Fischinger, Astrid Weiss, and Markus Vincze. Learning grasps with topographic features.

volume 34, pages 1167–1194, 2015.

[14] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res.(JAIR), 26:191–246, 2006.

[15] Tucker Hermans, James M. Rehg, and Aaron F. Bobick. Guided pushing for object singulation.

In IROS, pages 4783–4790. IEEE, 2012.

[16] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[17] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Unifying perception, estimation and action for

mobile manipulation via belief space planning. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 2952–2959. IEEE, 2012.

[18] Dov Katz. Interactive perception of articulated objects for autonomous manipulation. University of

Massachusetts Amherst, 2011.

[19] Dov Katz, Moslem Kazemi, J. Andrew (Drew) Bagnell, and Anthony (Tony) Stentz . Clearing a

pile of unknown objects using interactive perception. In Proceedings of IEEE International Confer-

ence on Robotics and Automation, March 2013.

68 Task planning for table clearing of cluttered objects

[20] Dov Katz, Arun Venkatraman, Moslem Kazemi, J Andrew Bagnell, and Anthony Stentz. Perceiv-

ing, learning, and exploiting object affordances for autonomous pile manipulation. Autonomous

Robots, 37(4):369–382, 2014.

[21] Thomas Keller and Patrick Eyerich. Prost: Probabilistic planning based on uct. In ICAPS, 2012.

[22] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source

multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004

IEEE/RSJ International Conference on, volume 3, pages 2149–2154. IEEE.

[23] Andrey Kolobov, Mausam, and Daniel S Weld. Lrtdp vs. uct for online probabilistic planning.

In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[24] Steven M. LaValle. Planning Algorithms. Cambridge University Press, May 2006.

[25] Iain Little, Sylvie Thiebaux, et al. Probabilistic planning vs. replanning. In ICAPS Workshop on

IPC: Past, Present and Future, 2007.

[26] Bhaskara Marthi, Stuart J Russell, and Jason Wolfe. Angelic semantics for high-level actions. In

ICAPS, pages 232–239, 2007.

[27] David Martínez, Guillem Alenya, and Carme Torras. Planning robot manipulation to clean pla-

nar surfaces. Engineering Applications of Artificial Intelligence, 39:23–32, 2015.

[28] Lorenz Mösenlechner and Michael Beetz. Using physics- and sensor-based simulation for high-

fidelity temporal projection of realistic robot behavior. In AIPS, 2009.

[29] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hierarchical ordered

planner. In Proceedings of the 16th international joint conference on Artificial intelligence-Volume 2,

pages 968–973. Morgan Kaufmann Publishers Inc., 1999.

[30] Melodi Ozturk, Mustafa Ersen, Melis Kapotoglu, Cagatay Koc, Sanem Sariel-Talay, and Hulya

Yalcin. Scene interpretation for self-aware cognitive robots. 2014.

[31] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for collision and

proximity queries. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages

3859–3866. IEEE, 2012.

Task planning for table clearing of cluttered objects 69

[32] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Wörgötter. Voxel cloud con-

nectivity segmentation - supervoxels for point clouds. In Computer Vision and Pattern Recognition

(CVPR), 2013 IEEE Conference on, Portland, Oregon, June 22-27 2013.

[33] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on

Open Source Software, 2009.

[34] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,

2 edition, 2003.

[35] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In International

Conference on Robotics and Automation, Shanghai, China, 2011 2011.

[36] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael Beetz. To-

wards 3d point cloud based object maps for household environments. Robotics and Autonomous

Systems, 56(11):927–941, 2008.

[37] S. C. Stein, M. Schoeler, J. Papon, and F. Woergoetter. Object partitioning using local convexity.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[38] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3d point clouds. In

International Symposium on Robotics Research (ISRR), September 2015.

[39] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot placement based on reach-

ability inversion. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages

1970–1975. IEEE, 2013.

	Introduction
	Project motivation
	Objectives
	Methodology
	Problem Approach
	Contributions
	Set up
	Outline of the Thesis

	Previous works
	Planning system
	Task Planners Review
	Planner
	Symbolic Predicates
	Formulation
	Predicates
	Actions
	Backtracking

	Implementation
	Object detection
	Tabletop Object Detection
	Object Segmentation

	Background
	Action Execution
	Pushing
	Grasping

	States generation
	Predicate: block_grasp
	Predicate: on
	Predicate: block_diri

	Software design
	Experiments
	Budget and impact
	Budget
	Impact

	Conclusions
	Bibliography

