
Master’s Thesis 

Master's Degree in Automatic Control and Robotics 

 
 

Control of a hand prosthesis using mixed 
electromyography and pressure sensing 

 
 
 

MEMORY 
 
 
 
 
 
 
 
 Author:  Eduardo Ruiz Ramírez 
 Supervisors:  Cecilio Angulo Bahón and Claudio Castellini 
 Call:  September 2016  
 

 
 

 

S
e
p
te

m
b

e
r 

2
0
1
6
 

M
a

s
te

r'
s
 D

e
g

re
e
 i
n

 A
u

to
m

a
ti

c
 C

o
n

tr
o

l 
a
n

d
 R

o
b

o
ti

c
s
  

E
d
u
a
rd

o
 R

u
iz

 R
a
m

ír
e
z
  

Escola Tècnica Superior 
d’Enginyeria Industrial de Barcelona 



C O N T R O L O F A H A N D P R O S T H E S I S U S I N G M I X E D
E L E C T R O M Y O G R A P H Y A N D P R E S S U R E S E N S I N G

eduardo ruiz ramírez

Master’s Degree in Automatic Control and Robotics

Universitat Politècnica de Catalunya
Escola Tècnica Superior d’Enginyers Industrials de Barcelona (ETSEIB)

Deutsche Zentrum für Luft- und Raumfahrt
Robotics and Mechatronics Center

September 2016



supervisors:
Claudio Castellini
Cecilio Angulo Bahón
submitted:
September 2016

Eduardo Ruiz Ramírez: Control of a hand prosthesis using mixed electromyogra-
phy and pressure sensing, © September 2016



A B S T R A C T

During the last years, new technologies approaches have helped to develop
realistic robotic hands for prosthetic use. Even so, the strategies to con-
trol them (input signals, prediction algorithms) are still limiting a complete
match between the robotic hand and the real hand movements and behav-
iors.

On this thesis, two different input signals (FMG and sEMG) were evalu-
ated. From this analysis characteristic properties from each kind of signal
were obtained, related with wrist and hand movements. In this way two
different learning methods were implemented for the first time on robotic
hand research. The goal of these two methods was to combine both kind of
input signals, supported by the feature analysis previously done, in order to
improve the movements prediction performance. The methods’ performance
were compared with the separate input signals methods, so the improvement
could be measured.

Both mixing methods presented better results than the single input signal
ones. These results along with other considerations defined, could lead to a
robotic hand performance improvement from different perspectives.
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1
I N T R O D U C T I O N

Around 49 million people are living with limb loss around the world [6, 18].
35% of them have an upper limb amputation [6], and according to British
statistics [15], 2% have a wrist disarticulation (hand amputation).
The most common causes for amputation are vascular diseases and trauma
at work or car accidents [6], but also diabetes is taking strength being nowa-
days one of the main causes too. Furthermore, in war-torn countries losses
caused by war effects are a considerable quantity on amputees statistics [32].

The scope of the amputee statistics is most of the times only focused to the
United States and, even there, it is limited and sometimes non-existing. Even
so, LeBlanc [18] proposes that the global statistics could be scaled for each
country according the rate between the country population and the world
population. If this approach is applied, then global and country statistics
can be estimated (was this the way the very first statistic of this work was
calculated).

Through the years, prostheses have been created for replacing the ampu-
tated limbs. With the development and improvement of technology, robotic
prosthesis appeared. In this way the user can move an automatic device by
using signals from the rest of his/her body (bio-signals). Despite this fact,
there are not enough users who prefer to use a bio-signal control prosthe-
sis. Just 25% of them are using myoelectric prostheses for instance [16]. The
main reason of this gap is the fact that most of the prosthesis control are not
robust, they sacrifice robustness for more joint movements accuracy, losing
at the same time potential real life applications.

As mentioned in Jiang et al. [16], this gap can disappear by mixing the
advantages that both, commercial and academic prostheses, offer: on one
hand a robust system, and on the other hand an intuitive control. This gap
is the starting point for upper limb prosthetics control research, based on the
experimentation with different kind of sensors or acquisition methods.

The replacement of a human limb with an artificial one implies several
challenges. The human involved needs to interact with the prosthesis the
same way with a real limb. The main key for a successful interaction is
communication [9]. Communication can be understood as the link between
what the human wants to do and what the prosthesis can do, in other words
how similar the artificial limb compared with a human one is. Although in
the last years there have been significant improvements in the electronics,
mechanics and materials of the prosthetics limbs, managing to build for in-
stance robotic hands with 22 joints that approximates to the human hand
dexterity [9], if this communication feature is not the proper one, then the
patient would have a limited performance using the robotic hand, reducing
completely the real life application of the prosthesis.

1



2 introduction

This is the main problematic in prosthetics field, great mechanical designs
close to a real hand, with innovative materials built in innovative ways (3D
printed for instance), but they cannot be controlled properly by users who
need more robust and real behavior from their new limbs. Hence, instead
of really working as physiologically replacement of the human hand, most
of the prosthesis work only as tools, to provide some functions that were
lost (like grasping), but then, after the desired task performance, they could
be ignored, as they are not working for something else. Despite those facts
actual research is doing a hard work to focus the field progress toward the
creation of true hand replacements [35].

The main goal of robotic prostheses development is to help people with
limb loss to recover at least some of their usual tasks and activities that were
used to do before their loss. Just as an example, 36% of people living with
limb loss experience depression [6]. Here lies one of the main motivations
for this project.

The German Aerospace Center (DLR) in Oberpfaffenhofen, by its Robotic
and Mechatronics Center (RMC), has been working in the research of up-
per limbs improvement, has been working to reduce the gaps, to overcome
the challenges and limitations previously defined. The development of this
project is just a small part of the entire research.

1.1 objectives and hypothesis

Following the motivation line, and based on the work previously done on
DLR, the next objectives were established for being accomplished by the
current project:

Test and design a software suite for acquisition and control devices.
Design two experiments:The first one to make a comparison between two

different bio-signals (FMG and sEMG). The second experiment has as objec-
tive the effectiveness test of a multi-sensor control, as opposed to the single-
sensor one used on the first experiment.

Identify from the first experiment, what type of sensor (sEMG or FSR) has
better response to different hand and wrist movements.

Apply the results of the second experiment to predict movements and test
the results in a 3D hand model.

Improve the user interface, adapting it to the needs of the experiment.
Finally, improve the machine learning algorithm for better prediction.

All these goals are focused to deal with the limitations exposed previ-
ously in this section. The main hypothesis of this porject is that the hand
movements prediction performance could be improved by combining the
defined bio-signals from the two kind of sensors, as those signals are pre-
senting different features and behaviors.

It is important to remark that due to the unavailability of the robotic pros-
thesis hand, this project is limited by the tests on a 3D hand model, however
the project is still focused on the goals appliance on a robotic hand. In fact
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it is relatively simple to move from the 3D hand model control to a real
prosthesis one.

1.2 thesis structure

This thesis is composed by seven chapters.Chapter 1 is the current introduc-
tion.

Chapter 2 is a literature review showing the background and state of art of
the hand anatomy, robotic hand prostheses, sensing methods and machine
learning algorithms.

Chapter 3 presents the state of art of the work previously done on DLR,
as much of the work used on this project was already used in other projects.
This chapter is important as it is a direct background of the project, definitely
needed for a proper understanding of it.

On Chapter 4, the first experiment is executed and evaluated. This exper-
iment is considering the use of sEMG sensors and FSR in order to compare
their signals and identify special characteristics and properties for each of
the sensors. This chapter also contains a study about the usability and user
experience of the device.

On Chapter 5, on a similar way as in the previous chapter, the second
experiment is exposed, showing first the work done for a better experiment
design, then is presented the experiment definition, the results and the dis-
cussion.

Chapter 6 exposes the social, environmental and economical commitments
this project has. Additionally a cost analysis is evaluated.

Finally on Chapter 7 the conclusions and recommended future work are
presented.

Going further, the project work was planned to be done on six months,
dividing it into four stages:

Familiarization with the work previously done on DLR, which corresponds to
Chapters 2 and 3, this stage was performed on two months.

Feature analysis of the two types of sensors (sEMG and FSR), the goal of this
stage was the development of Chapter 4, along with it a publication was
written with the research findings. This stage took one and a half month.

Machine learning development for prediction performance improvement by com-
bining sensors, the work done in this stage is documented on Chapter 5. It
was performed on two months.

Thesis Documentation, even though the thesis writing was done during the
6 months, supported also by the publication of the second stage results, the
last two weeks of the project were used for a final arrangement.





2
S TAT E O F A RT

This chapter is a literature review showing the background and state of art of
the hand anatomy, robotic hand prostheses, sensing methods and machine
learning algorithms. All this information is needed for the project develop-
ment.

5



6 state of art

(a) Hand bones [11]

(b) Hand joints [27]

Figure 1: Hand bones and joints

2.1 human hand structure and movements

The anatomical explanation is based on the work completed by Chen [5]. In
prosthetics field, the system of the hand considered, at least in most of the
prosthesis, is the skeletal system, considering that there are also integumen-
tary, muscular, lymphatic, nervous and cardiovascular systems. The skeletal
system includes bones and tendons. For the purposes of this project, the
main goal is the performance of wrist movements, so there will be consid-
ered also the forearm and wrist skeletal systems. The interested skeletal
region goes from the elbow passing through the forearm, where the Ulna
and Radius bones are located, then goes across the wrist, which works as a
connection for the hand and forearm (the Scaphoid, Lunate, Triquetrum, Pisi-
form, Hamate, Capitate, Trapezoid and Trapezium bones are located in this
part). Finally there is the hand, which is first composed of five Metacarpals
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(palm bones) and five Digits. Each Digit is built by three bones, the Proximal,
Distal and Middle phalanxes; except for the thumb that has just two bones.

If the anatomical terms are translated to robot kinematics, then each bone
can be considered as a link. Connecting those links, as always, there are
joints. Starting with the Radiocarpal one at the wrist, then the Carpo-metacarpal
that is connecting the Hamate, Capitate, Trapezoid and Trapezium with the
Metacarpals; after that, there is the Metacarpal-phalangeal, that is located
between metacarpal and the proximal phalange bones, and finally the prox-
imal and distal interphalangeal joints that separates the phalangeal bones.

This hand anatomy explanation is important for a 3D Hand Model con-
struction, and, in a closer way to this project, with the wrist and finger move-
ments explained in the next paragraph. For a better understanding, Figure 1

shows in a detailed and graphical way the human hand bones and joints. The
joints can perform gliding movements, angular movements, circular move-
ments and special movements (like inversion, eversion, protraction, and re-
traction). This thesis deals with the angular (flexion/extension) and circular
(rotation and pronation/supination) movements.

These movements are shown on Figure 2 for both, fingers and wrist joints.
Each joint can be able to perform one or more movements, but the joints and
movements which this project focuses on are the following:

Wrist Flexion/Extension, wrist (Forearm) Pronation/Supination and grasp-
ing movement (which includes fingers and thumb flexion and thumb rota-
tion).

Summarizing, the human hand is composed by 27 bones and 33 muscles,
which result in a total of 22 DOFs [8]. The hand system is able to perform
basically the following tasks, which are the ones that the robotic prosthesis
hand tries to emulate [39]: Reaching and pre-shaping, grasping, manipu-
lation with stable grasp, exploration with sensori-motor coordination and
gesture expressiveness.

2.2 robotic hand prosthesis

In order to control let a user control a prosthesis, Craelius [9] proposes two
basic requirements.The first requirement prescribes, that the user must have
control over the motor function somewhere in the residual limb, such that
he could sense and imagine the manipulation of the lost limb. If the residual
muscles are damaged, there is the option of surgery to restore the nerves or
reroute them to healthy areas, for example, the hand residual signals could
be rerouted to the pectoral muscles, so then the muscular activity is easier
to access.

The second requirement implies that a device can acquire and decipher
the information generated in the previous requirement. This requirement
is more challenging because of the complexity of the human movement
control. Our smooth and precise movements are the result of functioning
sensor-monitor system, that transforms the result of all senses (tactile, posi-
tional, visual) into fine movements via millions of electrical impulses. The
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(a) Wrist movements

(b) Finger movements

Figure 2: Hand and wrist joints movements [11]

challenge for the prostheses is to restore the lost sensor-monitor function by
the assistance of an artificial limb.

There are four functional issues that need to be considered for the design
and construction of a prosthetic hand: grasping, sensing, actuation and con-
trol strategy. These four issues should be combined in order to fulfill some
of the tasks listed section 2.1. For instance, the hand should provide a natu-
ral grasping capability, a natural appearance, secure grasping, and a natural
and friendly command interface [4].

grasping : Grasping, holding an object, is a complex task because does
not involve just kinematic motion, but also force control. This action depends
on the goal object geometry, strength, stiffness, and surface finish; as well as
on the fingertips features. For a successful grasping, the robotic hand should
be robust and compliant, must have control of the force and slippage of the
object and also needs to be manipulable while grasping [17].

sensing : The sensing in a prosthetic hand could be divided in two types:
The first one are the sensors used for acquiring body signals for the hand
joints movement, this kind of sensors ideally should be non invasive, and
actually are present din the next section.
The second type are the internal sensors of the , not just the ones for used
in the joints for hard control, but also other sensors that could give feedback
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to the user so he or she could feel a more real sensation with the hand, this
kind of sensing is called exterioceptive sensing.[17]

actuation : The actuators should occupy as least amount of space in-
side the hand structure. The most common actuators used are DC motors
and minimotors coupled with gear reductions, both of them are used for
joints movements. Nevertheless, other actuators have been tried, artificial
muscles for example. These artificial muscles are built using pneumatic de-
vices or different materials like shape memory alloy, or ionic polymer metal
composite. The problem with the artificial muscles actuators is that they are
still under development, facing problems in the size of auxiliary elements
and the power of actuation. Finally need to be considered the power storage
and supply issues.[17]

control strategy : The main goal of the hand prosthesis, is to move
and react as a human hand. In order to reach that goal the robotic hand
should apply control strategies that convert the sensed signals into output
signals that are able to move the joints and links and produce natural flow
and forces.

According to Naidu et al. [23], there are two kind of control strategies: the
hard and soft ones. The hard computing includes: multivariable feedback,
optimal, nonlinear, adaptive and robust control techniques; applied, for in-
stance, in impedance control (moment of inertia, joint stiffness or viscosity of
a muscle model). The soft computing involves: artificial intelligence, neural
networks, machine learning, fuzzy logic, genetic algorithms. Some applica-
tions of this techniques are the prediction of the joints movements depending
the sensing of a body signal. After all, the final goal for robotic hand control
is the fusion of both approaches to achieve a more realistic behavior of the
hand.

2.3 non-invasive sensing methods

Different sensing methods are described in this chapter apart of the chosen
sEMG and FMG. These last two methods are compared with each other in
subsection 2.3.6.

2.3.1 sEMG

Electromyography is evaluating and recording the electrical manifestation
of the human muscle movements, it is possible to get information about the
neural signals that control the muscles from the central nervous system [16].
In prosthetics the sEMG signals are used due to the relation between the
neural drive to the desired movement and the power intensity of the signal.
The sEMG signals are acquired by surface sensors located in the remnant
muscles of the stump, they are processed and after that activate certain pros-
thetic functions or movements. Although there are researches with other
bio-signals for the prosthesis control, the surface sEMG signals have been
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the only one that have worked with practical uses of multifunction upper
limb prosthesis since the middle of the last century, consequence of the easy
acquisition of the signal (non invasive, commercial sensors), and it is likely
to be a trend in the near future [16].

2.3.2 FMG

Forcemyography is a relatively unexplored technique that captures, by us-
ing Force Sensor Resistors(FSR), the expansion/contraction of the muscle
surface by registering its pressure. Before they were applied in the prosthet-
ics area, FMG signals were used to monitor physical activity. They were able
to distinguish different limb movements and predict them. Although this
analysis was done in a non real time mode, those applications showed the
feasibility of using FMG for muscle movement capture.[38]
The main difference between FMG and sEMG is that the first one is sensing
mechanical signals, which represents a low-bandwidth and degraded ver-
sion of the neuroelectrical signals, due to this fact, it cannot define activities
for individual muscles [36].

A force sensor resistor (FSR) is made of a polymer film that decreases
its electrical resistance when a force is applied over its sensing area [38].
That means that the output voltage is inversely proportional to the force
applied, additionally, the output response is not linear, presenting different
curves shape depending the resistor used in the voltage divisor of the signal
conditioning circuit.

Until the date of the publication of [36], FMG was the only neuromus-
cular imaging method that had worked with simultaneous, multifunctional
and multi-DOF control of prosthetic hands. But what is really important
about the FMG is that it needs to fulfill practical needs. For example the
sensors and wearing devices must be reliable and durable, easy to calibrate
and compatible with control and learning interfaces so earlier works with
other sensors could be applied for FMG and also the new work done with
FMG could be used in other devices. Preliminary trials have demonstrated
that the FMG devices are easy to wear and calibrate and have had a good
performance with several damaged amputees residual limbs [36].

2.3.3 Ultrasound imaging

The ultrasound waves have a frequency over 20kHz. They can penetrate soft
tissues without harming them, due to this fact, they are used a diagnostic
tool to visualize innards of the human body.

Ultrasound Imaging (US imaging) builds 2D- or 3D-live images from the
interest body parts by the partial reflection of the waves at the tissues with
different acoustic impedance. Until now US imaging does not have any
known side effect, so it is used in most hospitals.

US imaging detects conditions of the muscoloskeletal system, the informa-
tion obtained is starting to be exploited to build a Human-Machine Interface
with clear and potential future applications, like advanced hand prosthetics
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control, becoming a great competitor of the already established non invasive
HMIs, such as sEMG.

There is a relation between the fingers joints and the spatial features ex-
tracted from US images of the forearm, so it is possible to reconstruct the
hand configuration using those US images. The information extracted is
based on the forearm position so it does not depend on the subject’s speed
movement, having its only limitation in the hardware and software features
[31].

2.3.4 OMG

Thanks to the high quality and cheap cameras that exist nowadays, the op-
tical motion tracking and image processing are applied in more complex
tasks, for instance rehabilitation devices for disabled.

Optical Myography (OMG) is based on the idea that, by using optical
tracking and recognition, an amputee’s intended movement can be recon-
structed, just by looking at the muscle activity deformations of the user’s
stump and associated them with movements the subject is trying to perform.
The idea stems from the principles of pressure and tactile sensors.

The first drawback is the fact that human skin provides very little texture
features for computer vision applications, so an artificial tag attached to the
human limb that offers robust and reliable texture fixtures is needed for the
detection and posterior tracking. Even so the tracking of precise features
problem still exists.

At the end the use of plain optical recognition to track the forearm could
improve the interaction between an amputee and a virtual world (virtual
environments, robotic prosthesis) without using any wearable device [24].

2.3.5 IMU and accelerometers

Another option to measure arm movements is the use of accelerometers,
there are commercial wrist accelerometers that can give measures of the
arm movements reading their multidirectional acceleration data. The disad-
vantages of this type of sensors are, first of all, that they cannot provide
real-time feedback to the user, nor are able to capture information about the
hand [38]. So for the purposes of this project the use of accelerometers is
limited. These sensors can be used only for the arm tracking and to improve
the prediction response [14].

2.3.6 Discussion

Among the non-invasive methods, other than the ones here presented, can
be found electroencepahlography (EEG), mechanomyography (MMG), func-
tional magnetic resonance imaging, etc [12, 19]. Anyway, recently the re-
search community is pushing the development and research of multi-sensing
methods.
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Even though the sEMG sensors have been the most used input in the re-
search of prostheses control methods, it is difficult to preform a robust con-
trol solely using this kind of sensors. The point here is that several studies
and works have demonstrated the potential of the sEMG signal processing
to predict limb movements, but none of them has shown that this features
have been implemented in a real and practical prosthetics application [36].
It is necessary to mix different kind of inputs to control complex prosthetic
devices and also give them more intelligence and autonomy, so the the oper-
ation can be simple to the user [16].

Additionally it is important to keep the device in an accessible price for
the user. On one hand there are the sEMG sensors which can reach, at least
the ones used for this project, 150eeach sensor, on the other hand there are
the FSRs, which each sensor can be purchased for less than 5eeach [29].

Furthermore, on the same work done by Ravindra and Castellini [29], a
comparison between FMG, sEMG and ultrasound imaging is done, discard-
ing the ultrasound imaging due to its bad performance wearability and cost,
but putting sEMG and FMG in similar levels, giving some advantage to the
FMG cause its stability and the already mentioned low cost.

Considering these facts, FMG and sEMG were the signals chosen in the
previously DLR’s projects and hence in this one. Afterwards it is expected
to go further through the signals comparison already done.

2.4 machine learning algorithms

The algorithms presented in this section have been used for prosthetic hand
movements prediction, except for the ensemble learning, which is firstly pro-
posed in this field as a method for mixing different models. Further infor-
mation about the algorithms can be found in the references pointed in each
subsection.

2.4.1 Pattern classification

The Pattern Classification applied to the myoelectric control is based on the
assumption that the obtained signals are distinguishable and repeatable pat-
terns depending the muscular activation performed. The drawback of clas-
sification is that the accuracy and usability are inversely proportional. The
reason of this is that while the human limb usually has simultaneous and
proportional movements, given by the articulations of the limb’s DOFs, the
number of patterns is limited, so what is obtained from the pattern classi-
fication is just an approximation of the real parameter space. This approx-
imation produces two problems, the first one is that only one class can be
selected as a decision, the second one is that proportional control is not ob-
tained directly from classification, actually to try to perform a proportional
control affects the accuracy of classification [16].
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2.4.2 Extreme Learning Machine

The Extreme Learning Machine (ELM) is a batch regression learning algo-
rithm for training one kind of Artificial Neural Network, the Single-Hidden
Layer Feedforward Network (one input, one hidden and one output layer).
The algorithm is similar to the non linear regression explained in the next
subsections, it performs linear least squares on a projected feature space [33].

ELM has been used for FSR signals processing and learning [38]. This
algorithm has similar and sometimes better performance compared to the
Support Vector Machine algorithm and Artificial Neural Networks, but with
the advantage of being simpler and having a faster learning speed. This
features are important if the learning is desired to be applied in portable
devices, so it could be programmed using a microcontroller. If the sensor’s
position changes then the learning can be redone fast without any problem
[38].

2.4.3 Linear Least Squares Regression

Linear Regression is a supervised learning algorithm, used to train relation-
ships between an input variable and continuous outputs values from defined
data sets, so future output predictions can be performed using new inputs.
This relationship is represented as a function f : X → Y, that should be lin-
ear, so f(x) is represented as a line (for one dimension), as a plane (for two
dimensions) or hyperplane (for three or more dimensions).

The main goal of this learning approach is to find a vector that contains
the slopes of the linear function. The method for this vector search is the least
squares algorithm. It works based on the idea of minimizing the sum of the
squared distance between observed values, ground truth, and the prediction,
f(x). This algorithm is explained as a background for the Random Fourier
Features Regularized Least Squares method, that actually is the one that has
been used in research for hand movements prediction [33].

2.4.4 Random Fourier Features Regularized Least Squares

The Linear Least Squares Regression algorithm can be translated to a non-
linear regression approach in two different ways. The first one by building a
new model product of the mixture of linear models (each one using distinct
input-dependent weighting functions). The second way to reach the non
linearity consists in project the input space into a feature space using a non
linear kernel function, then a Linear Least Squares Regression is performed
in this feature space. For prediction is used a model built by a weighted sum
of the kernel functions.

A way to build those kernels is by using randomly sampled cosine fea-
tures, as defined in the Fourier Transform Theory. This method called Ran-
dom Features Regularized Least Squares was first purpose by Rahimi and
Recht [28] and improved adding an incremental feature by Gijsberts and
Metta [13] [33].
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This approach has been used in several papers for robotic prostheses con-
trol using biosignals as input data, for instance the one done by Gijsberts
et al. [14], being this algorithm the one previously used in DLR research,
which was the base of this project.vHow this method has been applied in
DLR’s projects is explained in deeper way on Chapter 3.

2.4.5 Ensemble Learning

As was defined in the Introduction, one of the goals for this project is to mix
both kind of sensors (sEMG and FSR) to improve the prediction performance.
In the Machine Learning field, this improvement could be performed by the
appliance of the Ensemble Learning approaches.

In a normal learning algorithm just a single hypothesis is proposed, which
explains the data in the best way. Ensemble Learning on the other hand
construct a set of hypotheses, this hypotheses are voted to predict the new
data samples. Experimental tests have proved that ensemble methods are
often much more accurate than single models.[10].

Ensemble Learning includes three methods that are applied for different
purposes. The one interested, as will be explained on Chapter 5, is the stack-
ing one. Anyway, all the three algorithms are presented in the next para-
graphs.

2.4.5.1 Bagging

Was the first effective ensemble learning method and it is one of the sim-
plest ones. The method uses different "versions" of the training data set by
using bootstrap. Each of this versions are used to train a different model
(usually are classification models, but also could be used with regression).
The outputs of the models are averaged (for regression models) or voted (for
classification models) in order to combine them. This method is only useful
when unstable non-linear models are used [30].

2.4.5.2 Boosting

Boosting is the most used ensemble method, and actually one of the most
important findings in the learning topic in the last twenty years. Its main
idea is to create a weak classifier, which means that the accuracy on the
training set is just a little bit better than a random prediction. After that, iter-
atively, the model is trained using a weighted training set, where the poorly
predicted values from the previous iteration are more weighted. After all,
the successive models are weighted according their success and the outputs
are voted/averaged and combined, creating in this way the final model. The
most popular boosting algorithm is the AdaBoost [30].

2.4.5.3 Stacking

Stacking method is most of the times used for combining two or more dif-
ferent machine learning methods. It works by dividing the training set in
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folds, so a cross-validation can be performed, training in a certain number
of folds and validating in the rest, then change the folds involved, so after
all the training all the folds are trained and validated the same number of
times. For each repetition, the prediction performed with the validation set
is stacked, creating a new input space for a new machine learning appliance,
usually a higher level learner [30].





3
P R E V I O U S W O R K O N D L R

As was mentioned in the Introduction, this project is the continuation of
the work previously done in the DLR related with upper limb prostheses
control. Most of the devices and software used for the project’s experiments
were already developed. This chapter presents a more specific background
in which this work was directly based.

17
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This chapter is structured in 4 parts, the first one explains the acquisition
device used, a second part explaining the 3D Hand Models used , then a
section that shows the GUI applied and finally a fourth part that presents
the learning approach applied.

3.1 acquisition device

3.1.1 Sensors

For the previous projects done in DLR, sEMG sensors and FSRs were used.
For the sEMG acquisition signal, the Ottobock MyoBock 13E200 sensors

were used (Figure 3). This sensors already provide an on-board amplifica-
tion, rectification and filtering, in order to give a high-quality signal. Addi-
tionally this sensors are the standard ones used for clinical prosthetic appli-
cations, furthermore they are commercially available.

(a) FSR [8] (b) sEMG sensor

Figure 3: FSR and sEMG sensor

For the FMG signal acquisition, the FSRs 400 Short (Figure 3) manufac-
tured by Interlink Electronics were used . They are made of a polymer thick
film, having a 5.6 mm diameter sensitive area. They have a large force sen-
sitivity range (0.2N-40N), despite of these facts, FMG also presents some
drawbacks: a non-linear behavior, a non-negligible hysteresis at high force
appliance, and no guarantee of repeatability through sensors. Even so, it has
been shown that this drawbacks are reduced for small forces (0N- 15N), so
the sensors behavior is comparable and almost linear [29].

In order to condition and process the FSR signal, a circuit board was
made. It consists in a voltage amplifier which voltage output corresponds
to: Vout = R2VCC

R1+R2
− R1R4VCC

R1+R2
× 1

RFSR
, where RFSR is the lowest admissible re-

sistance and its equal to RFSR = R1R4

R2
= 6kΩ, this value corresponds to a

theoretical maximum force applied to the FSR surface of 3.33N.(Figure 4)
Both kind of sensors are arranged in Velcro straps, so can be created sen-

sors bracelets that are tightened to the user’s forearm. In order to allow
the attachment of the sensors to the strap, 3D-printed housings have been
designed. These housings are made of flexible thermoplastic polyurethane
(Figure 5). They are designed with braces to allow them sliding on the strap,
so the sensor position can be individually adjusted, changed and maintained,
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Figure 4: FSR amplifier circuit diagram [8]

having a big range of possibilities for the sensor arrangement. This feature
allows any combination of FSR and sEMG, so a complete forearm circumfer-
ence signal acquisition could be performed. For the experiments done, the
sensors were arranged in a low-density surface electrode layout or uniform elec-
trode positioning approach, that basically puts the sensors in an evenly spaced
placement around the forearm (Figure 5). This approach has already been
proved to be effective and useful for robotic hand prosthesis in a number of
previous publications.

The FSR housings are not only useful as a retainer, but also have a struc-
ture that concentrate the force produced by the muscles on the FSR sensitive
area. This concentration is possible thanks to a cone shape in the housing
that points inwards to the sensor sensitive area. The real impact of this struc-
ture in the force signal has not been object of study, so it is assumed that it
increases the signal stability, and hypothetically could add some mechanical
filtering to the signal. A detailed information about the sensors and housing
design can be found in [8]

(a) Bracelet with sensor arrange-
ment

(b) Sensors’ housings (Left FSR,
right sEMG)

Figure 5: Sensors’ housings and bracelet arrangement [8]
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3.1.2 Data acquisition wireless device

The device used for the sensors’ signals acquisition(Figure 6) was designed
and built in DLR and is presented in [8]. It is sending the sensors’ data to
a GUI in a wireless way, by using Bluetooth communication. Going deeper
in its structure, the device consists, first, in a multiplexing stage, so a sensor
number higher than 15 (microcontroller analog inputs) could be used. The
multiplexed signals are then sent to a microcontroller, that converts the ana-
log signals into digital ones. In this way, the signals could be sent via serial
communication to the Bluetooth chipset, which in turn sends the signal to
the device where the GUI is running. This chipset allows data emission and
reception.

In fact this device can also send the prediction obtained in the machine
learning to a robotic hand (iLimb1), so its Bluetooth chipset is working in
a two communication channels way (one for the iLimb, and the other for
the GUI). However as will be later explained, for this project purposes, the
device is used just for data acquisition, so it is working just in with the
GUI communication channel. It is important to remark that the device is just
a communication/acquisition device, the training and prediction tasks, the
data saving, and other signal condition features are performed by the device
in charge of the GUI.

Figure 6: Wireless device

3.2 3d hand model

There are two ways to test the prediction and have visual feedback of the
performance. One way is to apply the predicted output to a real prosthetic
hand, the other one to use a 3D hand model. The latter option is also used
for having a visual feedback during training.

1 Robotic hand manufactured and distributed by Touch Bionics, for more information please
consult the product datasheet [Bionics2016]
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The values representing the DOF of the training 3D hand model, which
will be called stimulus in this thesis, are acting as the ground truth for the
machine training and for performance calculation.

The hand model was designed in Blender. To control it, the degrees of
freedom from the stimulus (9 or 12) are coupled with the real hand de-
grees of freedom (26, now including also wrist DOF). Each of the real hand
DOF is matched also with a model bone, so for instance the wrist prona-
tion/supination DOF is matched with the forearm bone, or both the finger
metacarpophalangeal adduction and the metacarpophalangeal flexion DOF
are matched to the proximal phalange bone.

Figure 7: 3D hand model (Left:Training/performance. Right:Prediction)

On the screen there are two hands displayed. The purpose of displaying
two hands is to use one for a stimulus ground truth for training or for perfor-
mance measurement, while the other hand is used for prediction, so the user
can have a visual feedback about what the machine learning is performing.
The communication between the model and the GUI is done using a UDP
protocol, so for each hand model (training / performance and prediction) a
UDP Port is assigned.

3.3 gui

In this approach, a mobile phone or a PC can be used for visualizing the
GUI. For each of the options was developed a different GUI, with common
and specific tasks.

3.3.1 PC GUI

Basically the GUIs previously programmed on DLR, offered a training and
prediction stage, fingers and wrist movement selection, data storage, and
communication to different applications (iLimb prosthesis, the 3D hand model),
it allows also to use not only the sEMG sensor or FSRs, but additionally other
types of sensors for different kind of measurements, such as fingertip forces
or position tracking. The language used for the GUI programming was C#
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Figure 8: PC GUI

The GUI is shown on Figure 8. As could be appreciated, it has a Radial Plot
that shows all the sensors’ values, the name of the subject can be assigned,
and also has options for storing the sensors data and the stimulus one. The
GUI provides information about the data capture rates, so the user can know
if the stimulus or the acquisition device is having any delay or lag. It is
important to say, that this code was designed for working not only with the
wireless device already presented, but with the sEMG bracelet Myo and with
a PC signal generator (so the GUI could be tested without any acquisition
device).

Continuing with the GUI, the user can select the actions to train from a
list of possible ones, and the number of repetitions the training will perform.
This training could be done in automatic mode (the data capture for training
is done in a previously established time) or manual mode (the user decides
how long the capture stage will last). The GUI is user-friendly, in the way
that it displays in the radial plot also the representations of previous repe-
titions, so the user can have a reference when he or she is performing the
movements. Additionally the GUI shows two progress bars, one showing the
progress of the entire learning stage, and a second one showing the progress
of the data capture stage. Finally the GUI allows the use of other sensors for
hand position tracking (not used for this project).

Internally the GUI code performs the training and prediction of finger and
wrist movements considering all the sensors of the device as input data and
using the incremental Ridge Regression (iRR) algorithm and its non linear
representation, the using Random Fourier Features (iRRRFF) algorithm, as
machine learning approaches (explained in the last section of this chapter).
Apart of that, the code creates and manage the communication between the
Hand Model and the PC using the already mentioned UDP protocol. In this
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way the data used by the code could be sent for visual feedback to the hand
model.

This GUI was used for the second part of the thesis that is presented on
Chapter 5.

3.3.2 Mobile phone GUI

The code for this approach was developed in the Xamarin Studio software,
which allows the development of Android applications using C# (and other
languages) syntax, so the code structure previously done could be used for
the mobile phone application.

This GUI, shown on Figure 9, is a simplified version of the PC one, mainly
because of the mobile phone limitations (processor speed, screen size). Its
advantage over some previous C# codes is that this GUI was designed spe-
cially for the wireless device, which main purpose was the use not only of
the sEMG sensors but also of FSRs, that is why the interface included some
features for the FSR management.

Figure 9: Mobile phone GUI

The GUI has, as the PC one, a radial plot for sensor readings, a list for the
actions selection, the modifiable number of repetitions, the storing feature,
and some text labels showing instructions for the user. Internally the training
and prediction were performed using the same iRRRFF approach.

The difference compared with the PC GUI, as was mentioned, is the pos-
sibility to manage in different ways both kind the sensors. First of all the
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user can select the number of sensors and which of them are FSR. It is im-
portant to differentiate them due to the inverse behavior compared with
sEMG, so then can be applied some kind of signal conditioning to convert
the FSR signals to a similar behavior compared with the sEMG ones. Thanks
to the sensors selection features, the bracelets can be customized, changing
the number of sensors on them or their arrangement. While the system is
used in the training stage, there is a stimulus signal generated, that repre-
sents the movement that is followed by the user. This signal has as elements
as DOF (12 in this case), and the element’s values go from 0 to 1.

The drawback of this interface, at least when it was used for this project
experiments, was the lack of visual feedback for the user. First of all there
was not a display of previous repetitions (as in the PC GUI), also there was
not possible the connection with the PC to move and work with the 3D
Hand Models. The only visual feedback was the normal sensor data polar
plot, and the text labels indicating the movement to perform. This fact could
produce some uncertainty in the measures, nonetheless this uncertainty is
reduced depending the user performance. After all this lack of visual feed-
back did not affect the experiment performance, as will be explained in the
next chapter.

This GUI was used for the development of the experiment presented on
Chapter 4.

3.4 machine learning

There has been used a machine learning approach to predict the prosthesis
movements for a number of hand prosthesis works, experiments and papers
in DLR, this approach is the incremental Ridge Regression Random Fourier
Features (iRRRFF), already introduced on Chapter 2. In order to understand
how it is applied to hand prosthesis control, it is necessary to start with the
Ridge Regression(RR) approach.

RR is a regularized variant of least squares regression. It builds a linear
output model of the form:

f(x) = wTx (1)

where x represents the input space (sensors values) and w is a weighting
vector, trained from a set of input/target pairs (training set) previously col-
lected. The way to train w follows the next equation:

w = (XTX+ λI)−1XTy) (2)

Here X denotes the input training set, and y is a vector collecting the target
values for each collected sample, this vector is considered as the ground
truth and is obtained by the stimulus values gotten in the training stage.
The regularization coefficient λ is normally set at a standard value of 1.[29]

One of the motivations found to use RR algorithm is that it allows incre-
mental updates (from this fact the incremental name of the algorithm) of the
model without the storage of any training samples. A more detailed expla-
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nation of the RR algorithm (specially the incremental part) could be found
in Gijsberts et al. [14].

For sEMG and FSR prediction, a linear approach is not enough, so RR is
limited due its linearity, this limitation is overcome by using the Random
Fourier Features applied to least squares regression (in this case the regular-
ized RR)also already explained on Chapter 2.

The goal of this improvement is to perform the algorithm implicitly in
a n-Dimension feature space, using for that kernel functions. As standard
kernel functions(Radial Basis Function for instance) requires high computa-
tional time due to its potentially infinite dimension, a solution found was
to perform a finite dimensional feature mapping.Rahimi and Recht [28] ap-
plied this strategy and proposed to take a finite number of random samples
in the Fourier domain.

The Random Fourier Feature is represented by:

φ(x) = cos(ωTx+β) (3)

It produces an unbiased estimation of a kernel if ω is drawn from a normal
distribution with mean 1 and if β is drawn from a uniform distribution from
0 to 2π. Furthermore this ω value could be scaled by a learning architecture
parameter σ, that can be tuned for a better algorithm performance. Anyway,
such as the λ parameter, normally σ is set at a value of 1.

To make RR non-linear, should be replaced the input vector (x,X from
equations 1 and2) with its projection φ(x), so the new, and final equations
for RR involving RFF are:

f(x) = wTφ(x) (4)

w = (φ(X)Tφ(X) + λI)−1φ(X)Ty (5)





4
Q U A L I TAT I V E A N A LY S I S O F F M G
A N D S E M G S I G N A L S A N D D E V I C E
U S E R E X P E R I E N C E

This chapter presents the first experiment performed, which main goal was
to analyze the properties and features of each of the sEMG and FMG sig-
nals. The chapter shows a brief introduction, then the experiment definition,
followed by the experiment results and a discussion of the results.

27
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This first experiment was designed to perform a qualitative analysis of
each kind of sensor signal, so the next goals can be accomplished: Identify
specific characteristics for each kind of signal, analyze the separability of
different hand and wrist movements according to each kind of sensor and
define pros and cons of each signal for future prosthetic control applications.

Along with the qualitative analysis, another goal of the experiment was
the analysis of the subject experience using the wireless device presented
in the previous chapter. This experiment was the first time the device was
tested on subjects. An important point was to get to know about how the
subjects feel during the experiment and how they evaluate their experience.
The output of this user study provides information, if further experiments
on this topic can be performed using the wireless device.

For the posterior analysis, the most important data were the raw sensor
values and the stimulus ones (the ground truth of the movements performed
by the user). The reasons, and how were used this values, are explained later
in this chapter. The experiment was applied and guided by the author of
this thesis (experimenter). Furthermore the work presented on this chapter
is part of a paper submitted for publication [8].

4.1 experiment 1 definition

The experiment was applied to ten intact subjects, nine of which were right-
handed. Summarizing, the subjects were 3 females and 7 males, with an
average age of 28 ± 7 years old, an average weight of 72.4 ± 9.91 kg, and
an average height of 177.8± 12.14 cm tall. Each subject received a detailed
description of the experiment, both in oral and written form. In order to
support the experiment for publication, an informed consent was signed
from all participants. Also for the experiment support, as the experiment is
using sensors for bio-signals acquisition, it must be approved by the DLR’s
Ethical Committee.

The experiment consisted on performing a sequence of wrist and hand
movements ten times: wrist flexion, wrist extension, wrist pronation, wrist
supination and power grasp (already explained on Chapter 2), with a rest
stage at the end of each repetition task set. Each movement could be fol-
lowed by the subject using the polar plot from the cell phone GUI, addition-
ally the experimenter was always paying attention, in case the subject was
not performing correctly the tasks. For this experiment, the sensors were
separated in two different bracelets, the first one with ten sEMG sensors, po-
sitioned on the left forearm and the second one with 10 FSRs, positioned on
the right forearm. The bracelets were located approximately 10cm below the
subject’s elbows. After the bracelets attachment, the subject was asked to sit
in a relaxed position with their forearms over their thighs and the hands in a
lateral position (with the palms looking towards each other); the experiment
movements had to be performed in a bilateral way (Figure 10).

The user experience was measured using: The System Usability Scale
(SUS) [3], the NASA Task Load Index [22] and a modified version of the
rework of the Microsoft Desirability Toolkit by David Travis [34].
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Figure 10: Device setup for experiment performance.

The SUS consists of ten questions (Appendix) with answers represented
on a 5 point Likert scale (1 - strongly disagree to 5 - strongly agree). For this
experiment were used the statements just as Brooke proposes, except for one.
The I think that I would like to use this system frequently statement was changed
by I felt comfortable with the device.

As can be noticed, the even statements are negative focused and the odd
ones are focused in a positive way. Due to this fact, the scoring is performed
in a different way depending the statement. For the positive statements, from
the original score, there must be subtracted one point. For the negative ones,
the original score must be subtracted from 5. With this score method, the
scoring in this survey is such that the answers to the strongly agree positive
questions and to the strongly disagree negative questions generate a higher
impact over the final score.

The NASA Task Load Index provides an overall task workload score on
six subscales: Mental, Physical and Temporal Demands; Own Performance,
Effort and Frustration. For each subscale, one question was asked in a way,
such that the answer could be in a range of 21 points, reaching from very low
to very high (except in the 4th question, Own Performance, that goes from
perfect to failure). The questions are showed on the Appendix. In the exper-
iment results the scores are shown in a percentage way, so the higher the
value is, the higher the workload is. All the subscales were considered with
the same importance weight.

Travis’s survey is based on the idea that, according to him, the surveys pre-
sented previously are not reliable, mainly because of the user predisposition
to answer in a positive way to help the experiment results or to show that
he or she had a good experiment performance. The survey is based on the
Microsoft Desirabilty Toolikt, which consists in a series of "reaction cards"
with adjectives that could be applied to the system tested; the user is asked
to select the five cards that most closely match their personal reactions to the
system.
Travis applied a similar questionnaire and saw that the methodology seems
to allow the participants to be critical with the system, selecting both positive
and negative adjectives.
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For this experiment in specific, there were used a list of 75 adjectives in-
stead of the cards (most of them based on Travis’s questionnaire), then the
subject was asked to choose all the adjectives he or she felt more related with
the device. After that, in a more precise selection, the user had to choose only
the 5 most important words and try to give a simple reason about his or her
decision. For a complete view of this survey, please consult the Appendix.

4.2 experiment 1 results

This section displays the results of the first experiment.

4.2.1 Qualitative signal analysis

Using the signals recorded during the experiment, an off-line evaluation
was performed after the experiment. The first thing done with the signals,
was to apply the same filtering in both of them (3rd order low-pass digital
Butterworth filter with a cutoff frequency of 1Hz). This off-line assessment
was done using MATLAB software. Figure 11 shows typical FSR and sEMG
signals obtained while a subject was doing two repetitions of the already
explained task set.

Figure 11: Typical FSR and sEMG signals obtained from one subject two repetitions
of the instructed hand and wrist movements (wrist flexion, wrist exten-
sion, wrist pronation, wrist supination, power grasp and rest).

From Figure 11, can be appreciated that the amplitudes obtained for each
kind of sensor are comparable, each movement is well separated in time
from each other and produces a distinguishable pattern.
It is here where the first big difference between FSR and sEMG signals ap-
pears. FSR signals display a better stability over time compared with sEMG
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signals, could be said that FSR sginals are presenting a "plateau" shape while
each movement was enforced, on the other hand, sEMG signals exhibit the
typical oscillating down-ramp pattern due to muscular motor-unit recruit-
ment (in other words, sEMG is measuring electrical impulses) [20, 21]. To
show in a graphic way this signal stability behavior, in Figure 12 the dif-
ference between consecutive samples for 5 repetitions of the wrist flexion
movement of one of the subjects is plotted. For this plot are just considered
the mean of the 5 sensors with the highest amplitude, in this way the stabil-
ity effect could be better appreciated because there are some sensors that do
not have a significant impact compared with others.
As expected, the sEMG sensors show larger oscillations, while FSRs have a
more stable behavior, with an almost zero difference.

Figure 12: Sensor’s samples difference plot. Five repetitions of the wrist flexion
movement.

Table 1 shows the mean values of the difference signals explained in the
last paragraph, those values were calculated for each user, considering only 3

repetitions and the 3 sensors with the highest amplitude of the wrist flexion
movement.

Table 1: Means and SD of the sensor’s samples difference. Three repetitions of the
wrist flexion movement.

1 2 3 4 5

FSR -3.22E-5±0.0018 0.0002±0.0026 -0.00027±0.0006 -0.001±0.003 0.0013±0.0033

sEMG -0.0018±0.0202 -0.0018±0.0111 -0.0003±0.0019 -1.4E-5±0.0038 -0.0074±0.0144

6 7 8 9 10 AVD±SD

FSR 6.2E-6 ±0.0042 -0.0005±0.0018 -0.0004±0.0016 -0.0012±0.0028 -0.0009±0.0031 0.0024±0.001
sEMG -0.0018±0.0082 -0.0021±0.0037 0.0016±0.0065 -0.0026±0.0082 -0.0039±0.0091 0.0087±0.0054

After this first analysis, was checked the separability between movements
signal values for each type of sensor. This feature helps to know how easy
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(a) FSR Clusters

(b) sEMG Clusters

Figure 13: PCA projection of typical data for each type of sensor.

a machine learning method could classify or predict, as the more separated
the movement signals are, the better the performance of the learning method
will be.
In Figure 13 is shown a reduced representation of the sensor values by using
Principal Component Analysis (were considered the three most significant
sensors from each type, and projected considering each axis as a different
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sensor), the values are clustered depending the movement performed and
was assigned a different color for each cluster.
It is important to remark that , in fact, the clusters are 10-dimensional (num-
ber of sensors), so even though in the PCA projection the clusters could
be seen separable, in the complete dimension representation they are not.
Furthermore, this PCA projection was just performed for visualization pur-
poses, for the analysis that will be presented in the next paragraphs, there
was used the complete dimensional data.

With the idea of separability already explained, there was defined a method
for evaluating it and obtain a more quantitative approach. The Safety Index
value [31], is based on the idea that the separation between the movement
clusters could be defined as the relation between the maximum standard
deviation of each cluster and the Euclidean distance between each them.
The Safety Index sij was obtained for each subject and each pair of clusters
(Ci,Cj), a precise definition of it is given by the Equation 6:

sij =
max(σi)

||Ci −Cj||
(6)

where σi is the standard deviation of cluster Ci and C is the mean of cluster
C.
With Eequation 6 it is implied that the lower the Euclidean distance or the
higher the standard deviation, then the closer the clusters could be; the same
the other way.

After the Safety Index calculation, the values were arranged in a matrix
where the rows represented the Ci clusters and the columns the Cj ones, of
course if Ci and Cj are the same movement, the Euclidean distance between
them is 0 so the separation index is undefined. In order to avoid that fact, the
Safety Index for same movement pairs was considered as zero. On Table 2,
the means of all Safety Index matrix values for each subject are shown (the
diagonal zero values are not considered for the mean).

All the subjects Safety Index matrices were averaged, so a mean Safety
Index matrix was obtained for both, sEMG and FSR sensors. Additionally
was obtained the standard deviations of those movement pairs means. To
visualize those matrices was used a color-map image, so the darker red the
cell, the closer the movements are; on the other hand, the darker blue the
cell, the more separate the clusters are (Figure 14). The standard deviation
values were also visualized in a colormap, so in this way could be evaluated
which movements were more different performed by the subjects through
the experiment (Figure 15).

Finally, the last analysis performed was a prediction performance one.
Considering all the sensors data as a data set, it was divided in three sets, the
first one just including the FSR data, another one just including the sEMG
data, and the third one was the same as the original data set, that means
that it was including both kind of signals (called stack approach from now).
The learning algorithm chosen for this analysis, was the Incremental Ridge
Regression with Random Fourier Features (as was already mentioned in
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(a) FSR S-Index (b) sEMG S-Index

Figure 14: Mean Safety Index matrices for each type of sensor. Lower is better.

(a) FSR S-Index SD (b) sEMG S-Index SD

Figure 15: Standard deviation of the Safety Index matrices for each type of sensor.

Table 2: Mean of the Safety Indexes (without counting the diagonal) for each user,
and their total means.

1 2 3 4 5
FSR 0.158±0.14 0.108±0.06 0.133±0.08 0.216±0.15 0.164±0.06

sEMG 0.149±0.1 0.141±0.09 0.152±0.07 0.279±0.15 0.143±0.09

6 7 8 9 10 AVG±SD

FSR 0.16 ±0.12 0.156±0.09 0.158±0.11 0.115±0.08 0.134±0.08 0.15±0.03
sEMG 0.344±0.33 0.182±0.11 0.217±0.15 0.114±0.06 0.176±0.08 0.189±0.07

the previous chapter, the algorithm was already successfully used multiple
times, for instance in Gijsberts et al. [14] and Ravindra and Castellini [29].

Before continuing, it is needed to explain a concept that will be used not
only on this chapter, but also will be an important part of the next one, this
concept is K-Fold Cross-Validation. Cross-Validation is a model performance
measurement technique, it tries to give a better approach of the performance
by training and validating the model through the entire dataset.
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In K-Fold Cross-Validation, the interested dataset is divided into K equalized
parts (folds). A training set and validation are generated by leaving one of
the folds out (validation set) and combining the remaining folds to build the
training set. This separation should be done K times, each time keeping out
a different fold for the validation. There are two main disadvantages of this
method. The first one, in order to keep the training set large enough, the
validation set must be small. Second one, the training sets overlap through
the repetitions, sharing K - 2 folds. Normally the value of K is 10 or 30, as
K increases the estimator is more robust, but as mentioned, the validation
becomes smaller . [1]. In spite of this facts, actually cross-validation was
applied, just for a general-overview of the prediction, covering statistically
all the data set.

Table 3: Prediction accuracy (nRMSE) obtained by each subject for a movement se-
quence repetition prediction. Were considered the FSRs, the sEMG sensors
and both of them together.

1 2 3 4 5

FSR 0.17±0.016 0.1687±0.0173 0.1495±0.007 0.1636±0.011 0.1762±0.0087

sEMG 0.1494±0.0138 0.1573±0.0175 0.1458±0.0123 0.2056±0.047 0.1673±0.0098

ALL 0.1649±0.0137 0.1608±0.0199 0.1385±0.0083 0.1595±0.0161 0.1636±0.0066

6 7 8 9 10

FSR 0.173 ±0.0184 0.1728±0.0121 0.1893±0.0352 0.1548±0.0133 0.1803±0.0222

sEMG 0.1857±0.0126 0.1736±0.0193 0.2037±0.0343 0.1346±0.0061 0.1801±0.045

ALL 0.1658±0.0139 0.1736±0.0139 0.2054±0.0267 0.1367±0.0048 0.1526±0.013

For the experiment, a 10-fold “"leave-one-repetition-out”" cross-validation
was applied by training each machine on nine of the ten repetition and val-
idating on the remaining one. The input space was chosen from the three
data sets already explained (just FSR, just sEMG and both stacked).
The prediction accuracy was measured by the normalized Root Mean-Squared-
Error (nRMSE) between the predicted values and the stimulus file generated
by the cell phone application, that worked as the ground truth. Notice that
the stimulus values were from 0 to 1, as was explained in the Cell Phone
GUI section, so the normalization of the RMSE is done considering those
values. For general information the RMSE equation is given by:

RMSE =

√√√√√ n∑
i=1

(y− ŷ)2

n
(7)

where y is the ground truth value and ŷ is the predicted value. For nRMSE
was just divided the RMSE by the difference of the maximum and minimum
valued of the stimulus values: nRMSE = RMSE

ymax−ymin
.



36 qualitative analysis of fmg and semg signals and device user experience

Table 3 shows the prediction accuracy obtained by each subject measured
in the just explained way. Here the nRMSE value showed is a mean of all the
nRMSE obtained by the cross-validation. The same values are showed in a
bar graph representation in Figure 16.

Figure 16: Prediction accuracy plot, separated by FSRs, sEMG sensors and both of
them mixed.

4.2.2 Device user experience

4.2.2.1 Acquisition time analysis

Before going through the surveys result, an off-line sample time period anal-
ysis was done, looking for any lag problem that could affect the device per-
formance. This analysis was done considering the time stamps printed for
each sample. There were two kind of behaviors in the experiment (Figure 17).
The first one presents a time increase in the last repetitions , the second one
presents also a lag but at the middle of the experiment and also at the end.
Despite of this, those lags were so small and were not perceptible during the
experiment performance.

4.2.2.2 User satisfaction survey results

The results of the surveys are presented in the same order as they were
presented in the previous section.
For the SUS, the total result of each subject and the mean score are presented
in Table 4. Notice that the higher the score, the more usable the user judged
the device. In this survey the statements that had the worst scores were I
think that I would need the support of a technical person to be able to use this device
and I felt very confident using the device.

For the NASA TLX, the total result for each subscale of each subject and
overall workload are shown in Table 5. In this case, the highest the score,
the more workload the user had when using the device. A plot with average
percentages of the workload by subscale is visible in Figure 18.
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(a) Incremental lag

(b) Double incremental lag

Figure 17: Samples time period plots.

Table 4: Subject’s system usability total scores.

ID 1 2 3 4 5 6 7 8 9 10 AVG

SUS 85 90 100 77.5 92.5 67.5 75 85 100 75 84.75

The first two surveys applied threw suitable results with an usability score
of almost 85 points and an overall workload of 25%.

Finally, for the desirability survey proposed by Travis, there were obtained
two kind of results, the first one using all the words chosen by the user in
the first selection, and the second one considering only the 5 final selections.
In order to have a different visualization, a word cloud for each result was
created (Figure 19), where the bigger and darker the font is, the more often
the word was selected.
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Table 5: NASA TLX workload percentages.

ID 1 2 3 4 5 6 7 8 9 10 AVG

Mental Demand 66.66 19.04 9.52 14.28 23.8 28.57 9.52 14.28 4.76 9.52 20

Physical Demand 33.33 23.8 14.28 14.28 23.8 23.8 9.52 14.28 4.76 76.19 23.8

Temporal Demand 71.42 61.9 52.38 14.28 52.38 57.14 14.28 61.9 4.76 33.33 42.38

Performance 28.57 28.57 19.04 14.28 14.28 19.04 52.38 14.28 4.76 38.09 23.33

Effort 52.38 19.04 23.8 9.52 52.38 19.04 52.38 14.28 4.76 38.09 28.57

Frustration 19.04 14.28 4.76 19.04 23.8 9.52 9.52 9.52 4.76 14.28 12.85

Overall WL 45.2381 27.77 20.63 14.28 31.74 26.19 24.6 21.42 4.76 34.92 25.15

Figure 18: Workload percentage plot.

(a) First selection word cloud (b) Final 5 words selection cloud

Figure 19: Word clouds from the results of the desirability survey .

Considering just the most common adjectives in the final selection, the rea-
sons given by the subject for choosing them were: The word simple was cho-
sen due to the device setup and the experiment performance. The adjective
intuitive because the cell phone application shows what to do. The subjects
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considered the word easy to use because the device has an easy setup. For
the subjects the experiment was familiar as they had done previously similar
ones, furthermore the device can be used for daily life. The adjective reliable
was chosen due to the sensor responses which are consistent, additionally
the device works all the time. Finally subjects felt the device was stable giving
similar reasons as the ones given for the reliable adjective, also the system
presents none errors.

As could be already noticed, an important thing to mention about the
surveys is that even the instructions and the questions were oriented to the
device, some answers referred to the experiment performance. So for in-
stance the familiar adjective was chosen in some cases because the subject
had already done some experiments with sEMG sensors.

4.3 experiment 1 discussion

4.3.1 Comparison between sEMG and FMG

There are marked differences between both kind of signals, proving in that
way one part of the hypothesis statement defined in the Introduction. Even
though the amplitude and features of the sensors change significantly across
all subjects, can be established important remarks about the comparison of
sEMG and FMG signals. Focusing first on an amplitude signal analysis and
looking again to the Figure 11, can be set that:

FSR measurements present an oscillating and different amplitude behav-
ior in the rest stage, so the signal amplitude was rising if the subject was
changing his/her initial rest position (actually the changing of position is
natural, as it is really difficult to go back always to the same position after
a movement performance), creating in this way a noisy rest measurement.
This behavior was expected, due to the stable behavior of the FMG signal
and perhaps also due to the inherent hysteresis that the FSRs have.
On the other hand, sEMG resting phase remains almost in the zero value,
it is not oscillating, even if the user was changing the initial position, again
this behavior was expected, as none considerable impulse muscle activation
was performed.

Supported also by the Safety Index, the movements with the lowest am-
plitude (apart of the rest of course) were: for FSR signals was the wrist ex-
tension, having values comparable with the resting stage on some subjects.
for the sEMG signals, the weakest movement was the wrist supination.

Thanks to the signal conditioning performed in the cell phone applica-
tion, the FMG and sEMG produce similar amplitudes inside the same volt-
age range (0 - 5 V). However, as was already established this amplitude
is reduced in the sEMG case across the movement performance, reaching
sometimes almost half of the initial movement amplitude.
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In a general overview, the FSRs shows more sensibility to the muscle
movements than the sEMG sensors, in the way that each FSR is excited by
each pattern while with sEMG sensors just some of them are considerable
excited. Going deeper, an average of six FSRs present amplitudes over 25%
of the maximum sensor amplitude, whereas just an average of three sEMG
sensors have this behavior.

The Safety Index is really helpful as it is showing unit-less values, inde-
pendent of the sensors voltages, so could perform a more confident analysis
through the subjects.
Considering the Safety Index mean and standard deviation colormap im-
ages, the FSR matrices show an average better performance over the sEMG
ones. Some remarks about this comparison are: FSR Safety Index showed
a higher number of considerable separated values (blue-dark blue), and a
lower number of poor separated values (red-dark red) than the sEMG Safety
Index.

Separation between rest position and all the other movements using sEMG
is poor.

There is a poor separation for the FSR signals only between extension and
rest, and extension and supination.

Looking at the standard deviation matrices, the FSR matrix just had 4

high values, on the other hand sEMG matrix presented 7. From this, can
be conclude that the users were performing more similar FSR Safety Index
values than sEMG, in other words FSR movements separation were more
constant through the subjects, supporting with this fact the idea of high
stability of the FSR measurements.

According to all the previous remarks, there can probably be settled that
FMG enforces a better overall performance than sEMG, although not uni-
formly. The defined pros and cons, combined with the fact that there is not
apparent significant difference in the prediction accuracy, even considering
the combined input space( the nRMSE values range goes from 0.13 to 0.21);
support the idea of interleave or fuse the two type of signals, defining as
an hypothesis the consideration of the best movements performed by each
sensor type.

4.3.2 User satisfaction

Even though there was already done an analysis on the survey results, a
better way to visualize those results is a radial chart (Figure 20), which sep-
arates the results in different categories (Low Workload Demand, Stability,
Task Accomplishment, Interface, Easy to Use, Comfort and Setup) that rep-
resent the main features appreciated by the subjects. Just as a special remark,
the representation of the Low Workload Demand has been inverted to per-
form a better and easier comparability measure with the other categories.
Additionally, the categories are clustered in two main classes: the usability re-
lated features (Interface, Easy to Use, Comfort and Setup) and performance
related features (Workload Demand, Stability and Task Accomplishment).
Those classes are present in the radial chart, where the categories are ar-
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ranged in that way, the performance features on the top of the chart, and the
usability ones on the bottom.

From the radial chart, can be stated that: The wireless device has a consis-
tent, reliable and stable operation.

The device and interface setup are easy, simple and comfortable, creating
with that a low frustration rate;

The user interface is helpful and useful, as it is also friendly, intuitive and
well structured;

The experiment performance took a considerable amount of time (from
this fact the highest workload demand). In fact this workload demand could
become much lower, as in real applications the subject is not expected to
perform several number of repetitions for training, avoiding with this a huge
amount of repetitive movements.

In general the experiment presented a high successful task accomplish-
ment rate, all the subjects were able to achieve the experiment goal.

Low Workload Demand

Stability

Accomplishment

Interface

Easy to Use

Comfort

Setup

Figure 20: Radial chart showing the user satisfaction surveys’ results summarized
in different device features.

The survey results supported the idea, form different perspectives, of us-
ing this device for future applications and experiments, including the final
experiment done for this project, as the user was having positive sensations.
However, the "good" results obtained in the surveys, as was already estab-
lished back into this chapter, could have been influenced by the subject’s
behaviors explained by Travis.
Although the subjects considered on this experiment are not the potential
real application subjects, their feelings and opinion about the device define
a starting point for the device conditioning and possible modification to use
it on amputees and real robotic hand control.





5
P R E D I C T I O N P E R F O R M A N C E
I M P R O V E M E N T B Y S E N S O R S
M I X T U R E

According to the goals defined in Chapter 1, one of the main purposes of this
project is to find a new machine learning method that can mix both kind of
sensors and improve in some way the performance of some, or if possible
all, the actions tested until now. In this chapter the new machine learning
approach is defined. Then a learning algorithm architecture parameter used
in iRRRFF is tuned and tested using the previous experiment data. Finally,
the last experiment is explained, applied, its results are showed and proper
discussions are made.

43
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As it was stated in the previous abstract, this chapter is following the next
goals in order to accomplish the main ones defined on the project introduc-
tion: First of all, find and apply a method for mixing both FSR and sEMG sig-
nals. Perform a further off-line analysis with the previous experiment data,
focusing on the prediction performance. Design an experiment which main
goal is the measurement of the online prediction performance using four
different machine learning methods (including the one just defined). Along
with this goal, modify the PC GUI to adapt it to the designed experiment.
Furthermore, carry out an off-line analysis with the data obtained in the ex-
periments. Finally, build the proper conclusions focusing on the hypothesis
defined in the thesis introduction.

5.1 ensemble learning

Ensemble Learning has been used for different applications and purposes, it
proposes the use of different hypotheses, so the learning has a bigger range
of possibilities to build a final better performed prediction.

Although all the ensemble learning approaches explained in Chapter 2

have shown important results, the nature of the problem presented in this
project led to the use of the stacking approach.

Notice here that this stacking approach is not the same as the approach
used for prediction in the last part of the previous chapter. While the previ-
ous approach is stacking both sensors signal for the input space, this one, as
will be explained in this section, is stacking the outputs of different models.
In order to avoid any confusion, after this section, the ensemble learning
stacking approach will be referred just as ensemble learning while the input
stacking method will be called, as in the previous chapter, stack method.

Ensemble learning stacking is used when different machine learning meth-
ods are used (ANN, SVM, pattern classification). The way to implement this
approach is by training and then obtain a prediction using cross-validation,
so the predicted values are stacked creating a new input space that is used
for training a final machine learning model, which prediction will be the
final system prediction.

Even though the stacking approach is normally used for different learn-
ing algorithms, in the case of this project, the methodology was changed
to fit with the project’s needs, expecting even so the same performance im-
provement. For this project there were not used two different algorithms, but
two different input spaces (sEMG sensors and FSR) trained with the same
algorithm, creating in that way a different output for each model. Basically
this is why this approach was chosen, as each of the different input space
algorithms can be considered as different learning methods.

The algorithm in which the code development was based is the one pro-
posed by Polley and Laan [26] that is based at the same time on the ear-
lier work done by Wolpert [37]. The algorithm was modified so it could be
adapted for this project purposes. The steps followed in this project for the
ensemble learning stacking approach implementation were:
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Figure 21: Ensemble learning stacking approach block diagram

1. Fit each data set used in the training stage(EMG and FSR), with n sam-
ples, on the learning algorithm, Ridge Regression Random Fourier Fea-
tures (RRRFF), to estimate the weight matricesWk, with k = EMG, FSR,
in order to calculate, by using new data, the predicted output Yk and
then stack them to obtain Ψ = [YEMGYFSR]

2. Split the training set into a training and validation set, according to a
V-fold cross-validation, where V is equal to the number of repetitions
performed in the training stage, let the v-th group be the validation set,
and the remaining data the training one, v=1,...,V. Define T(v)k to be
the v-th training data set and V(v)k the corresponding validation set.

3. For the v-th fold, train each T(v)k using the learning model, predict
on the corresponding V(v)k and save them as in step 1 in ΨT(v) =

[YT(v)EMGYT(v)FSR].

4. After the CV, stack the predictions ΨT(v), creating a n size array with
all the predictions.

5. Use the stacked predictions as a new input space for a third machine
learning model (Again a RR RFF approach), get a new weight matrix
WENS.

6. Use Ψ obtained in step 1 and WENS to obtain the final prediction
YENS = WT

ENSΦ(Ψ). Ψ should be obtained for each sample of the on-
line prediction stage.

Because of the nature of the algorithm, as it is using the entire training
set for the CV, was not possible, at least on this project, to apply the incre-
mental feature of the RRRFF algorithm. Even so, the implementation of this
characteristic could be considered as future work.

A summarized and graphical view of the algorithm is shown in Figure 21.

5.2 further first experiment analysis

Before testing the ensemble learning approach on an online experiment, it
was important to check first if it was an improvement compared with the
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Figure 22: CV diagram for σtuning

approaches already designed (Stack, EMG and FSR). In order to accomplish
that comparison, all the learning methods, including the ensemble one, were
tested on the data obtained in the first experiment (sensors and stimulus
data). The main goal was to find which approach had better performance
in the prediction of movements, separating for that the acquired data in
learning, validation and test sets.

As was mentioned on Chapter 2, there is a Ridge Regression Random
Fourier Features architecture parameter σ that is scaling the random distri-
bution ω. Tuning this parameter, the performance of the prediction changes.
From this fact, were proposed two hypotheses: First, each learning method
has a different optimal σ value. Second, this parameter has almost the same
value across all subjects, so can be defined a generalized value for future
applications.

Next subsection explains how the σ parameter was tuned, and the results
of the analysis focused on the hypotheses proof.

5.2.1 σ parameter tuning

First of all, as the experiment data would be used not only for the σ tuning,
but also for the prediction performance evaluation, then each subject data
set should be divided on three sets: the training set (composed by eight
repetitions), the validation set (composed by one repetition), and the test set
(composed by the repetition left). Training and validation sets were used for
the parameter tuning, while test set was used for the prediction performance
final test, applying the tuned σ.

The tuning was done by using again the cross-validation method. In this
case was a 9-fold cross validation, performed in the first nine repetitions of
each subject (one fold for each repetition), the data was split as mentioned in
the last paragraph and illustrated in Figure 22. As could be noticed the test
set is fixed, while the other nine repetitions are involved in the CV, so for
each iteration the validation and training set are changing, keeping always
the same length.

The optimal σ was found by applying a grid search method, so a range of
possible σ was defined and all its elements were considered for the search.
For each CV iteration, all the elements of the σ range were tested, so the
training was performed using them and then a prediction was done in the
validation set. For each σ value, the nRMSE between the validation set pre-
diction and the stimulus signal was obtained, the lowest nRMSE determined
the optimal σ. In order to avoid randomness, but also give the enough statis-
tical support, there were built ten different ω and β representations, so the σ
were also tested using those fixed values. After this procedure was applied
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on each of the CV iterations, then the optimal σ was already defined. The
weight matrix obtained in the training stage using the optimal σ value, was
used for a final prediction performed in the test set (tenth repetition), this
prediction performance is showed in the next subsection.

An optimal σ was obtained, as mentioned, for each of the subjects (Ta-
ble 6). Looking at the average of those values and the standard deviations
can be concluded that each approach presents a different value compared
with the others, especially the multi-sensors approaches compared with the
single-sensor ones. As the standard deviation was not big enough, could
be considered the average values as generalized σ for future applications,
proving in this way the hypotheses previously defined in this section.

Table 6: Optimal σ values obtained by CV for all subjects
Subj. 1 2 3

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

σOpt 0.1 0.398 0.158 0.398 0.1 0.199 0.126 0.316 0.794 1.259 0.794 1.259

Subj. 4 5 6

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

σOpt 0.316 0.316 0.501 0.794 0.199 0.251 0.501 0.794 0.158 0.251 0.199 0.631

Subj. 7 8 9

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

σOpt 0.251 0.794 0.316 0.501 0.199 0.251 0.794 0.316 0.158 0.398 1 0.631

Subj. 10 AVG±SD

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

σOpt 0.199 0.398 1 0.501 0.2476±0.192 0.4516±0.313 0.5391±0.322 0.6142±0.270

5.2.2 Prediction performance

The prediction performance analysis can be divided in two parts. The first
one consists in the prediction performance of the test set for each user, using
the optimal σ obtained for each user. The results of this performance are
shown on Table 7 and illustrated on Figure 23. The nRMSE shown on Table
7 were calculated in a similar way than the prediction performance of the
first experiment, that means that the values correspond to an average nRMSE
of the DOFs considered.

Nevertheless a more robust, and closer to the online application, predic-
tion was performed. A performance analysis was done by applying a 10-fold
cross-validation on each subject using the generalized optimal σ values ob-
tained in the previous subsection. A mean of the nRMSE values of each CV
iteration is obtained for each subject, these results are presented on Table
8, and again illustrated on Figure 26 Noticeably, as closer the generalized σ
was to the subject optimal σ, the performance was better, the same the other
way. From this prediction performance analysis and from a separated action
one(Table 9), some conclusions were stated. First of all, the ensemble method
was the one with better prediction performances, just one subject did not
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Table 7: Performance measurement on the test set for each subject

Subj. 1 2 3

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.156 0.156 0.169 0.139 0.191 0.194 0.211 0.169 0.152 0.143 0.169 0.129

Subj. 4 5 6

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.186 0.229 0.196 0.249 0.188 0.188 0.209 0.198 0.174 0.192 0.194 0.165

Subj. 7 8 9

Meth. Stack EMG FSR ENS Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.176 0.171 0.19 0.169 0.317 0.324 0.325 0.284 0.157 0.155 0.179 0.142

Subj. 10 AVG±SD

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.157 0.156 0.2080 0.13 0.1875±0.048 0.1908±0.067 0.2006±0.061 0.1776±0.064

Figure 23: Prediction performance on the test set using the optimal σ for each sub-
ject

present that method as the best one. Going through the separate actions
analysis, the FSR method presented high error values, especially on the wrist
flexion/extension movements. EMG presented a good performance on the
flexion and extension actions, but was the worst on the pronation/supina-
tion ones. Stack method showed a constant performance, slightly worse than
the ensemble method. By plotting the predicted and the stimulus signal for
each method on one subject repetition (Figure 25), a qualitative analysis of
the prediction signal was done.

From figure 25 could be defined some features corresponding for each
approach. The stack method signals are kind of average of EMG and FSR
prediction amplitudes. EMG method is presenting the typical oscillating be-
havior. FSR approach presented more stable signal but with high noise in
the inactive DOF. Finally the ensemble method seems to inherited the FSR
amplitude, but also the EMG oscillating behavior, also is improving the per-
formance by reducing the noise of the inactive DOFs and the signal delay
respect with the stimulus. The learning approach features obtained in this
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qualitative analysis are expected to appear also in the online analysis, affect-
ing each learning approach performance in the same way as here.

(a) Stack method (b) EMG method

(c) FSR method (d) Ensemble method

Figure 24: Prediction performance on one repetition for each method considering
the CV approach

Figure 25: Prediction performance after a 10-fold CV using the generalized σ for
each subject
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Table 8: Performance measurement using the generalized σ and applying CV for
each subject

Subj. 1 2

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.175±0.033 0.173±0.031 0.207±0.030 0.164±0.043 0.181±0.034 0.178±0.034 0.203±0.029 0.167±0.037

Subj. 3 4

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.159±0.016 0.163±0.023 0.174±0.017 0.146±0.025 0.182±0.018 0.218±0.037 0.189±0.02 0.204±0.065

Subj. 5 6

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.19±0.013 0.193±0.013 0.207±0.014 0.179±0.031 0.185±0.03 0.21±0.035 0.204±0.04 0.164±0.036

Subj. 7 8

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.193±0.029 0.195±0.029 0.208±0.03 0.184±0.041 0.223±0.043 0.231±0.057 0.225±0.048 0.199±0.061

Subj. 9 10

Meth. Stack EMG FSR ENS Stack EMG FSR ENS

nRMSE 0.161±0.017 0.154±0.016 0.182±0.024 0.151±0.026 0.175±0.023 0.2±0.041 0.211±0.038 0.163±0.049

Subj. AVG±SD
Meth. Stack EMG FSR ENS

nRMSE 0.1826±0.026 0.1886±0.031 0.2026±0.03 0.1687±0.039

Table 9: Average of all the subjects performance measurement (nRMSE) for each
action using the generalized σ.

Stack sEMG FSR Ens
Act. Mean±SD Mean±SD Mean±SD Mean±SD

Wr. Flex. 0.187±0.036 0.182±0.036 0.209±0.036 0.177±0.046

Wr. Ext. 0.187±0.034 0.188±0.039522 0.242±0.049 0.179±0.049

Wr. Pro. 0.191±0.025 0.208±0.03 0.199±0.024 0.173±0.037

Wr. Sup. 0.180±0.018 0.206±0.029 0.186±0.022 0.155±0.031

Grasp 0.168±0.02 0.164±0.020 0.176±0.019 0.159±0.032

5.3 experiment 2 definition

The experiment was applied to twelve intact subjects, ten of which were
right-handed. Summarizing, the subjects were 3 females and 9 males, with
an average age of 27± 6 years old, an average weight of 70.66± 12.34 kg,
and an average height of 176.91± 10.39cm tall. Each subject received a de-
tailed description of the experiment, both in oral and written form. As in the
first experiment, an informed consent was signed and the experiment was
approved by the DLR’s Ethical Committee.

For this experiment, the sensors were separated on two different bracelets,
the first one with ten sEMG sensors and the second one with ten FSRs, but
this time both bracelets were positioned on the right forearm. The bracelets
were located approximately 10cm below the subject’s elbows, with the the
FSR’s bracelet closer to the elbow. After the bracelets attachment, as in the
previous experiment, there was asked to the subject to sit in a relaxed posi-
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Figure 26: Prediction performance after a 10-fold CV using the generalized σ for
each action

Figure 27: Second experiment setup and performance

tion with their forearms over their thighs and the hands in a lateral position
(Figure 27).

The experiment consisted on three stages: the training, the performance
and the user experience stage (Figure 28) As in the previous experiment,
the subject had to perform a sequence of wrist and hand movements: wrist
flexion, wrist extension, wrist pronation, wrist supination and power grasp.

On the training stage the subject must perform three repetitions of the
movements sequence, in the same order as presented in the last paragraph,
with a rest training at the beginning of each repetition. The training data
acquisition was done in a manual mode, that means that the data considered
for the training of the Stack, EMG and FSR approaches was captured just
after a button was pressed by the experimenter. In the case of the ensemble
learning, this manual mode is only applied for the training of the first two
learning machines (EMG and FSR), but the stacked outputs are obtained by
predicting in the entire data set, that means that the final output estimation
involves in some way the complete information of the training stage and not
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Figure 28: Experiment block diagram

Figure 29: Training stage state diagram

only the one obtained in the capture state, as in the case of the other three
approaches.

In order to understand better how each action was trained, Figure 29

presents the state diagram of the training stage, where rise and fall are the
transition movements from rest to maximum position and vice versa, hold
state represents the movement in a maximum level but without capturing
data, event that happens in the capture state. dT is the elapsed time from the
beginning of each state. All the states were performed by a predetermined
time except for the hold state, which was acting until the capture button was
pressed.

For the training stage, the subject could follow the movements to perform
using the 3D hand model (Figure 7). In this case the gray hand was the one
showing the action and also the level of intensity, so the subject must follow
exactly in the same way the 3D model. After the data acquisition, all the four
learning methods were trained, obtaining in this way four different weight
matrices used later for prediction.

The next stage was the performance stage, which was the main part of the
experiment. On this stage the user must perform two repetitions of five ac-
tions (wrist flexion, extension, pronation, supination; and grasp) considering
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Figure 30: Performance stage state diagram

the four methods (Stack, EMG, FSR and Ensemble) and also three different
movement degree levels (a complete movement level like in the training
stage, two thirds the level of that movement and one third the level of the
complete movement), in this way a total of 120 tasks must be performed to
cover all the variables. In order to accomplish those tasks, the prediction was
done by all the learning methods, but only was used the one selected for the
task.

In this stage the subject must follow the movement of the gray 3D Hand
(Figure 7), but now the predicted movement is shown by the colored hand,
then the subject must match both of the hands. The way this stage works is
illustrated with the state diagram on Figure 30. The rest, rise and fall states
worked as in the training stage, but instead of having a hold and capture
states, they were called outGoal and inGoal states. The main idea of these
new states is based on the absolute error between the stimulus values of the
guide hand (gray) and the output values obtained by the prediction using
the corresponding learning method. If this error was lower than a threshold
(0.15) then the system moved from the outGoal state to the inGoal. The sub-
ject must keep the error under the threshold (errTh) for 1.5 seconds (holdT),
if he or she could manage to do it, then the task was considered a success,
if the subject went over the error threshold before the 1.5 seconds, then the
system went back to the outGoal state and the inGoal time counter(dtGoal)
was restarted. In total the subject had 30 seconds (timeout) to accomplish
the goal, if he or she was not able to do it, then the task was considered as
unsuccessful. From this stage were saved important information for poste-
rior analysis, like the learning method used for the prediction of the task,
the time elapsed during the task performance, and of course the times the
task was successful.

In order to get more reliable results, the learning method, the actions, and
the movement sorts must be ordered randomly, but at the same time must
have the same number of appearances in a distributed way through the tasks,
in this way all the data could be covered by all the possible combinations.
In the next subsection is proposed a variable sort design that offers a good
enough statistical coverage across all the subjects data.



54 prediction performance improvement by sensors mixture

Finally, the last stage was the user experience. In this stage were obtained
again the predictions of all the methods, but was apply just the one chosen
by the experimenter using the GUI. In this stage just the colored hand was
acting, showing the prediction of the selected approach. The subjects must
move their hand free, performing the movements that they wanted with
the level they wanted, trying to cover all the possibilities. After some time
the subject was asked for some questions about the stability, realism, and
smoothness of the prediction 3D Hand, evaluating each factor from 1 to 7,
being 1 the lowest value and 7 the highest. In this way could be known the
subject impressions about the prediction.

After the experiment, the subjects filled the NASA TLX survey (the same
as in the first experiment). It was a long experiment, so there was expected
a considerable workload present, that actually could affect the experiment
performance.

5.3.1 Variable sort design

This subsection describes the way all the tasks used in the performance stage
were arranged. As there were four learning methods, the best idea would
be to have 24 subjects (4! = 24). As this is a large number of subjects, was
reduced to twelve, so just half of all the possible methods permutations were
considered. Fortunately the number of movement levels was three, so could
be fitted to the number of subjects without any problem.

The real problem appeared with the number of actions, as there were five
different actions, their permutations did not fit with the subjects involve. In
order to overcome this problem, six different blocks including the five ac-
tions to perform were built, even was not possible to cover all the possible
action combinations, these blocks allowed a close representation of the ac-
tion’s permutations. The blocks were built trying to perform each action in
a distributed way, that means that was avoid to repeat for instance the wrist
flexion action always in the first position of the repetitions.
The blocks built were:

Table 10: Action blocks including different sorts of the actions to perform (1- Wrist
Flexion, 2- Wrist Extension, 3- Wrist Pronation, 4- Wrist Supination, 5-
Power Grasp)

Block Actions

B1 1 2 3 4 5

B2 4 5 1 2 3

B3 3 4 2 5 1

B4 2 1 3 5 4

B5 5 4 2 1 3

B6 3 5 1 4 2



5.3 experiment 2 definition 55

Now that the number of blocks (6) allows compatible permutations with
the number of subjects, an overall experiment task sort design was purposed
(Table 11), the order of each variable (method, action block and level) for the
first subject was generated randomly. From there, the rest of the subject sorts
are permutations from the first subject sort. According with Table 11, for the
first six subjects on the first repetition were performed the action blocks
from B1 to B3 related with a certain level sort, on the second repetition were
performed the action blocks from B4 to B6 related with another level sort. As
there are just 6 possible permutations (3!=6), for the last 6 subjects the action
blocks and their assigned level were exchanged between repetitions. In this
way the action blocks/levels done on the first 6 subjects first repetition were
performed on the second repetition for the last 6 subjects and vice versa.

Table 11: Methods, action blocks and level sort across the subjects (for the methods:
1- Stack, 2- sEMG, 3- FSR, 4- Ensemble)

Repetitions
1 2 1 2 1 2

Subject Method Actions Levels

1 3 2 4 1 3 2 4 1 B2 B1 B3 B4 B5 B6 1,0.33,0.66 1,0.66,0.33

2 2 4 1 3 2 4 1 3 B1 B3 B2 B5 B6 B4 0.66,1,0.33 0.33,1,0.66

3 4 1 3 2 4 1 3 2 B3 B2 B1 B6 B4 B5 0.33,0.66,1 0.66,0.33,1
4 1 3 2 4 1 3 2 4 B2 B3 B1 B4 B6 B5 1,0.66,0.33 1,0.33,0.66

5 3 4 2 1 3 4 2 1 B3 B1 B2 B6 B5 B4 0.33,1,0.66 0.66,1,0.33

6 4 2 1 3 4 2 1 3 B1 B2 B3 B5 B4 B6 0.66,0.33,1 0.33,0.66,1
7 2 1 3 4 2 1 3 4 B4 B5 B6 B2 B1 B3 1,0.66,0.33 1,0.33,0.66

8 1 3 4 2 1 3 4 2 B5 B6 B4 B1 B3 B2 0.33,1,0.66 0.66,1,0.33

9 3 1 4 2 3 1 4 2 B6 B4 B5 B3 B2 B1 0.66,0.33,1 0.33,0.66,1
10 1 4 2 3 1 4 2 3 B4 B6 B5 B2 B3 B1 1,0.33,0.66 1,0.66,0.33

11 4 2 3 1 4 2 3 1 B6 B5 B4 B3 B1 B2 0.66,1,0.33 0.33,1,0.66

12 2 3 1 4 2 3 1 4 B5 B4 B6 B1 B2 B3 0.33,0.66,1 0.66,0.33,1

This overall arrangement does not show exactly how the tasks are per-
formed inside each subject. That’s why Table 12 shows in a precise way how
the tasks are sort for instance on subject 1. The two repetitions are performed
for each method consecutively and the action blocks and levels are the same
for each method, so the subject was doing a total of 30 tasks per method, 6

tasks per action and 10 tasks per level.
As could be noticed was not pretended to cover all the possibilities on one

subject, but considering all.
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Table 12: Experiment performance for the first subject

Method Action Level Rep.

3

B2, B1, B3 1,0.33,0.66 1

B4, B5, B6 1,0.66,0.33 2

2

B2, B1, B3 1,0.33,0.66 1

B4, B5, B6 1,0.66,0.33 2

4

B2, B1, B3 1,0.33,0.66 1

B4, B5, B6 1,0.66,0.33 2

1

B2, B1, B3 1,0.33,0.66 1

B4, B5, B6 1,0.66,0.33 2

5.3.2 Modifications to DLR’s previous work

All the modifications were applied on the PC GUI C# code. The main change
was the implementation of the ensemble algorithm, apart of that all the nec-
essary changes for the application of the experiment were done, for instance
for the training stage, all the four methods must be applied (the original
code just performed the Stack method). For the performance stage a text file
with all the task variable sorts was read (generated with MATLAB), also the
modifications were done to just apply the prediction of the right method,
finally the needed GUI elements for the stage start and the number of task
monitoring were created. Additionally just for a better user-interface interac-
tion two face drawings were used (Figure 31), the green face was appearing
when the subject could successfully perform a task, the yellow one appeared
in case of task failure. These faces were already used on previous works on
DLR. Finally for the user experience stage, were created four check boxes,
one for each learning method, so the experimenter could check the one to be
tested by the subject. The experiment final PC GUI is shown on Figure 32.

(a) Success! face (b) Keep trying face

Figure 31: Visual feedback face drawings
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Figure 32: Modified PC GUI

5.4 experiment 2 results

5.4.1 Learning method performance results

After data collection, it was evaluated from different approaches. The analy-
ses considered were: Complete data set analysis, level analysis, performance
evolution across the complete set and performance evolution across learning
method set. There were considered some variables for the performance mea-
surement. These variables are calculated for each learning method and are
explained in the next paragraphs.

completion time : It refers to the seconds needed for each method com-
pletion. Was just considered the time of the outGoal and InGoal states, in
other words, was measured just the time inside the 30 seconds margin, this
because some subjects wanted to make a pause during the experiment (the
pause was made just on the rest state, if a task was being performed the
subject must finish it and then pause), so a total experiment time would not
be an objective measurement.

effectiveness percentage : This value is obtained from the ratio be-
tween the number of successful tasks and number of total tasks. The number
of total tasks can vary depending the analysis performed, for instance the
number of total tasks for an overall approach considering all the actions the
total task are 30, while for an action are 6. This value represents the main
goal of the experiment: which approach is having better successfulness ratio.
But in fact the other two values could give some strength to methods that
did not have a good effectiveness percentage.
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unsuccessful tasks ingoal rate : This value shows the relation be-
tween the number of unsuccessful task samples that were inside the inGoal
state and the total samples part of an unsuccessful task (again just consid-
ering the 30 seconds part). In other words, how many samples of the entire
unsuccessful set were inside the goal zone. This value represents a stability
measurement, so the higher the value, the more unstable the method. Then a
possible solution could be an output filtering to avoid this event and increase
the method performance.

5.4.1.1 Complete data set analysis

In this analysis, were considered all movement levels. The data was divided
by actions, but also there was an overall approach including all of them. For
this analysis were considered the three measurement variables: Completion
time, effectiveness percentage and unsuccessful tasks InGoal rate.

First of all, in order to see how the subjects were performing the exper-
iment, on Table 13 and on Figure 33 are shown the overall measurement
variables. This overall representation will be the only one done by subject,
as the information quantity is really big. From now the measurement vari-
ables for the other analysis will be done using the average of the twelve
subjects. Actually this action is justified by the fact exposed on the previ-
ous section, the complete statistical distribution can be seen just from an all
subjects point of view. On Table 14 and on Figure 34 are shown the average
results of the complete data set analysis for each movement and the overall
approach.

Table 13: Overall experiment 2 performance (Experiment completion time, success-
ful tasks percentage and unsuccessful tasks InGoal rate)

Completion Time

Subj. 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

STACK 352.40 521.09 347.83 538.26 365.99 417.93 219.66 586.92 452.57 743.20 595.77 432.94 464.55±140.67

EMG 366.52 629.31 660.78 679.49 489.62 654.81 502.54 770.17 567.56 691.91 438.24 429.06 573.33±126.27

FSR 489.87 788.35 644.93 739.55 525.70 599.19 755.01 604.48 630.53 569.04 567.76 667.53 631.83±92.44

ENS 521.24 625.59 345.87 705.66 440.85 578.26 518.23 645.73 699.86 559.84 524.80 651.81 568.14±106.57

Successful Tasks Percentage

Subj. 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

STACK 83.3 60 93.3 63.3 83.3 80 93.3 56.6 73.3 36.6 60 80 71.9±16.9
EMG 80 56.6 43.3 40 66.6 46.6 66.6 26.6 60 36.6 73.3 73.3 55.8±16.9
FSR 63.3 23.3 53.3 30 63.3 46.6 26.6 50 53.3 63.3 66.6 50 49.1±15

ENS 70 53.3 83.3 43.3 80 56.6 63.3 56.6 46.6 60 70 56.6 61.6±12.2

Unsuccessful Tasks InGoal Rate

Subj. 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

STACK 0.112 0.044 0.069 0.056 0.034 0.106 0.039 0.027 0.084 0.080 0.049 0.094 0.066±0.029

EMG 0.171 0.060 0.114 0.146 0.163 0.080 0.038 0.092 0.097 0.084 0.123 0.065 0.103±0.042

FSR 0.051 0.007 0.045 0.015 0.004 0.035 0.006 0.016 0.029 0.092 0.023 0.012 0.028±0.025

ENS 0.035 0.031 0.202 0.024 0.089 0.139 0.052 0.060 0.053 0.092 0.150 0.043 0.081±0.056

From the results previously presented, the stack method had an average
better completion time (just three subjects were not having stack method as
the fastest). Actually completion time inside actions was not so different be-
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(a) Completion time

(b) Effectiveness percentage

(c) Unsuccessful tasks inGoal rate

Figure 33: Overall measurement variables for all the subjects

tween methods, but when those times were stacked in the overall approach,
then the time difference increased.

Talking about the effectiveness percentage the stack method was the one
with more successful tasks, on the other hand FSR method was the one hav-
ing in most of the cases the lower successful tasks. For EMG and ensemble
methods, the subjects were having different performances, nevertheless in
the average movement’s measurements and the overall approach, the en-
semble learning had an almost equal or higher number of successful tasks
compared with the EMG ones. The most successful action was the wrist
supination.

As expected (considering the results of the first experiment), EMG sensors
were the most unstable ones, being the method which was more time in the
inGoal state but without being able to stay the 1.5 consecutive seconds.
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Table 14: Experiment 2 average performance (Experiment completion time, success-
ful tasks percentage and unsuccessful tasks InGoal rate) by action

Completion Time
Actions

W.FLEX. W.EXT. W.PRO. W.SUP GRASP OVERALL
STACK 108.7±44.8 99.8±37.2 85.3±44.2 54.7±21.6 116.1±34.0 464.5±140.67
EMG 136.6±40.4 126.4±36.1 100.7±43.4 84.1±36.2 125.5±40.3 573.3±126.27
FSR 97.5±38.6 142.9±32.8 137.7±40.1 104.5±36.3 149.2±27.1 631.8±92.44
ENS 115.9±43.7 122.2±33.6 112.0±44.3 99.7±36.0 118.5±37.8 568.1±106.57

Successful Tasks Percentage
Actions

W.FLEX. W.EXT. W.PRO. W.SUP GRASP OVERALL

STACK 61.1±29.6 68.1±25.1 76.4±24.1 91.7±8.7 62.5±25.7 71.9±16.9
EMG 37.5±31.1 45.8±28.5 65.3±27.9 75.0±24.1 55.6±32.0 55.8±16.9
FSR 63.9±25.5 43.1±33.7 43.1±38.6 63.9±26.4 31.9±25.1 49.2±15.1
ENS 62.5±32.7 52.8±27.4 62.5±28.5 73.6±16.6 56.9±20.7 61.7±12.3

Unsuccessful Tasks InGoal Rate
Actions

W.FLEX. W.EXT. W.PRO. W.SUP GRASP OVERALL

STACK 0.083±0.062 0.064±0.051 0.120±0.070 0.060±0.036 0.049±0.066 0.066±0.029
EMG 0.075±0.060 0.083±0.102 0.179±0.074 0.124±0.138 0.106±0.062 0.103±0.042
FSR 0.041±0.044 0.025±0.029 0.030±0.048 0.035±0.036 0.023±0.034 0.028±0.025
ENS 0.086±0.069 0.100±0.125 0.084±0.074 0.096±0.101 0.050±0.037 0.081±0.056

(a) Effectiveness percentage

(b) Unsuccessful tasks inGoal rate

Figure 34: Average measurement variables for each action and the overall approach



5.4 experiment 2 results 61

5.4.1.2 Level analysis

For level analysis was just considered the effectiveness percentage value. The
data was not just divide as in the previous analysis by action and overall
approach, but also by movement degree level. Calling high to the complete
movement, medium to the two thirds level and low to the one third level. In
this way on Table 15 and Figure 35 are shown the effectiveness percentages
by taking into account just the tasks performed by each level.

Table 15: Experiment 2 average successfulness percentage by action level intensity
for each action (High, medium and low)

High Level
Actions

W.FLEX. W.EXT. W.PRO. W.SUP. GRASP OVERALL

STACK 45.83±45.02 50.00±36.93 75.00±39.89 83.33±24.62 62.50±31.08 63.33±21.03
EMG 50.00±52.22 70.83±39.65 62.50±43.30 50.00±47.67 54.17±33.43 57.50±21.79
FSR 54.17±45.02 37.50±37.69 50.00±47.67 66.67±38.92 54.17±45.02 52.50±21.79
ENS 75.00±45.23 66.67±38.92 54.17±39.65 50.00±42.64 70.83±39.65 63.33±20.60

Medium Level
Actions

W.FLEX. W.EXT. W.PRO. W.SUP. GRASP OVERALL

STACK 70.83±33.43 70.83±39.65 66.67±32.57 95.83±14.43 62.50±43.30 73.33±19.23
EMG 25.00±33.71 37.50±43.30 66.67±38.92 87.50±31.08 45.83±45.02 52.50±22.61
FSR 66.67±38.92 33.33±44.38 37.50±43.30 66.67±32.57 29.17±33.43 46.67±10.73
ENS 54.17±39.65 45.83±39.65 58.33±35.89 83.33±24.62 37.50±37.69 55.83±18.32

Low Level
Actions

W.FLEX. W.EXT. W.PRO. W.SUP. GRASP OVERALL

STACK 66.67±38.92 83.33±32.57 87.50±22.61 95.83±14.43 62.50±43.30 79.17±19.75
EMG 37.50±43.30 29.17±39.65 66.67±38.92 87.50±31.08 66.67±44.38 57.50±16.58
FSR 70.83±33.43 58.33±46.87 41.67±46.87 58.33±41.74 12.50±22.61 48.33±19.92
ENS 58.33±41.74 45.83±33.43 75.00±39.89 87.50±22.61 62.50±31.08 65.83±10.84

In general, the stack method was one more time the one with more effec-
tiveness percentage, however in the high level the best method was shared
between stack and ensemble methods. Can be stated that the ensemble
method works better with high levels. Additionally FSR method worked
better in high level compared with the other two levels, while EMG did it in
intermediate levels. This behavior was not expected, actually should be the
inverse behavior as the sEMG only works with high muscle activation, while
FSRs are more sensible to low intensity actions. This matter is discussed in
the next section.

Looking at the unsuccessful tasks inGoal rate, the only considerable re-
mark to do, is the unstable behave of the stack approach in the medium
level, where an approximate average of 25% of the unsuccessful tasks time
the approach was under the error threshold.
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(a) High level

(b) Medium level

(c) Low level

Figure 35: Average effectiveness percentage for each intensity level considering each
action and an overall approach

With the analyses already explained, it is evident that the stack approach
was the best in all the effectiveness measurements. But an interesting phe-
nomena happened if the data is analyzed in a different way. This analysis is
presented on the following paragraphs.

5.4.1.3 Performance evolution across the tasks set

Considering that each subject task set can be divided in four sections, per-
forming 30 tasks per section (in other words each learning method was
applied on a different section), as there were so many repetitions and the
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methods were performing 30 consecutive tasks, could be possible that the
methods applied in third and fourth section (tasks 61-120), could present
a worst performance because of the subject’s fatigue. The information pre-
sented on Table 16 and illustrated on Figure 36 shows, for each action and
the overall approach, how the methods performance were changing depend-
ing in which section were applied. Section 1 refers to the tasks 1-30 , section
2 to the tasks 31-60, so on.

Figure 36: Average effectiveness percentage evolution across the experiment sec-
tions for each action and the overall approach

From this analysis there are two important remarks to do. Starting with
the stack method, when it was performed in the first section it had a really
bad performance compared with the previous analyses results, the ensemble
method was the best on this first section. Nevertheless in the next sections,
the stack method recovered its good performance, while the ensemble one
performance started to decrease gradually. The other three methods were
decreasing their performance across the experiment, but was with the sEMG
signals where this behavior was happening in a gradually way too. This fact
supports the idea proved in previous works [29], the sEMG signal is affected
during stressing conditions (like long and demanding experiments) by the
muscular fatigue and the formation of sweat between the sensors and the
skin.

5.4.1.4 Performance evolution across learning method set

Finally, a similar analysis from the last one was done. In this case is con-
sidered the evolution of the performance through each method tasks (30

tasks), it does not matter the task set section where they were performed.
The goal of this analysis is to prove the hypothesis of a possible subject
learning through the repetitions, so the performance could be higher in the
last ones.

From Table 17 and Figure 37 can be appreciated that there were not a con-
siderable change through the repetitions. Then there were not considerable
learning applied by the user, also it is important to remark that 30 tasks are
not enough for the fatigue behavior in EMG and ensemble methods, so it
was not affecting the performance .

Unfortunately, could not be performed an off-line performance analysis
based on the nRMSE as with the previous experiment. The problem in this
case was that the prediction signals were not uniform. For instance some
subjects were going back to the rest position to try over again to perform
the movement. As this behavior was not done for all the methods, then a
nRMSE calculation over the prediction signals would not be an objective
measurement.
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Table 16: Average effectiveness percentage evolution across the experiment sections
for each action and the overall approach

Wrist Flexion
Section

1 2 3 4

STACK 33.33±16.67 77.78±25.46 50.00±33.33 83.33±16.67

EMG 44.44±9.62 61.11±53.58 22.22±19.25 22.22±19.25

FSR 72.22±34.69 44.44±34.69 72.22±9.62 66.67±16.67

ENS 66.67±33.33 44.44±19.25 77.78±25.46 61.11±53.58

Wrist Extension
Section

1 2 3 4

STACK 44.44±38.49 88.89±9.62 66.67±16.67 72.22±9.62

EMG 44.44±19.25 61.11±34.69 44.44±34.69 33.33±33.33

FSR 55.56±48.11 61.11±19.25 33.33±44.10 22.22±9.62

ENS 44.44±34.69 61.11±19.25 38.89±41.94 66.67±0.00

Wrist Pronation
Section

1 2 3 4

STACK 44.44±9.62 94.44±9.62 83.33±0.00 83.33±28.87

EMG 77.78±38.49 72.22±19.25 44.44±25.46 66.67±28.87

FSR 83.33±16.67 22.22±38.49 22.22±19.25 44.44±48.11

ENS 72.22±19.25 88.89±9.62 55.56±19.25 33.33±33.33

Wrist Supination
Section

1 2 3 4

STACK 94.44±9.62 94.44±9.62 88.89±9.62 88.89±9.62

EMG 88.89±19.25 66.67±0.00 72.22±34.69 72.22±34.69

FSR 55.56±25.46 66.67±28.87 72.22±19.25 61.11±41.94

ENS 88.89±9.62 72.22±25.46 66.67±0.00 66.67±16.67

Grasp
Section

1 2 3 4

STACK 44.44±34.69 77.78±25.46 77.78±9.62 50.00±16.67

EMG 72.22±25.46 72.22±25.46 55.56±41.94 22.22±9.62

FSR 33.33±16.67 22.22±25.46 44.44±38.49 27.78±25.46

ENS 77.78±25.46 55.56±9.62 50.00±16.67 44.44±19.25

Overall
Section

1 2 3 4

STACK 52.22±13.88 86.67±11.55 73.33±11.55 75.56±13.47
EMG 65.56±8.39 66.67±17.64 47.78±16.44 43.33±16.67
FSR 60.00±5.77 43.33±11.55 48.89±20.37 44.44±20.09
ENS 70.00±13.33 64.44±13.88 57.78±11.71 54.44±10.18

5.4.2 User experience surveys results

From survey applied during the user experience stage, the results are pre-
sented on Table 18 for each subject. Although all the methods were close the
moderate feeling for all the features, the stack and FSR methods were having
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Table 17: Overall average effectiveness percentage evolution across the experiment
tasks

Task repetitions
1-10 11-20 21-30 26-30

STACK 72.50±18.15 73.33±24.25 70.00±21.74 66.67±27.41

EMG 55.00±23.16 55.00±16.79 57.50±19.60 60.00±24.12

FSR 47.50±18.15 48.33±14.67 51.67±23.68 56.67±25.35

ENS 59.17±9.00 64.17±17.82 61.67±18.50 61.67±21.67

Figure 37: Overall average effectiveness percentage evolution across the experiment
tasks

better impressions on the subjects, while the ensemble learning method had
the lowest values of the survey.

Meanwhile on the post-experiment NASA TLX survey, as can be noticed
on Table 19 in a complete subject way or in Figure 38 in an average rep-
resentation, the experiment was demanding a neutral workload, being the
effort one the highest demanding category, this fact is affecting directly to
the EMG and ensemble learning methods as will be explained on the next
section.

Figure 38: Experiment 2 workload percentage plot

5.5 experiment 2 discussion

5.5.1 Experiment performance

Evidently the multi-sensors methods were having a better performance com-
pared with the single-sensors methods, accomplishing in this way the main
hypothesis of the project stated on Chapter 1. But was not expected the
higher quality in the stack method performance compared with the other
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Table 18: User experience survey results

Stack

Subject 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

Realism 6 4 6 3 5 5 3 2 3 3 4 6 4.17±1.40
Stability 4 5 7 4 6 5 1 3 4 2 5 7 4.42±1.83

Smoothness 5 6 7 6 7 3 1 3 2 4 6 5 4.58±1.98

EMG

Subject 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

Realism 5 5 4 4 4 5 6 2 3 5 2 5 4.17±1.27
Stability 2 5 2 3 4 4 5 4 3 3 2 4 3.42±1.08

Smoothness 4 6 4 5 7 5 3 3 2 2 3 5 4.08±1.56

FSR

Subject 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

Realism 3 4 6 2 4 4 2 6 3 6 3 6 4.08±1.56
Stability 3 4 6 3 5 4 6 5 4 7 2 5 4.50±1.45

Smoothness 5 6 6 4 7 4 6 5 3 6 3 6 5.08±1.31

Ensemble

Subject 1 2 3 4 5 6 7 8 9 10 11 12 AVG±SD

Realism 6 3 4 2 5 5 2 3 2 2 3 5 3.50±1.45
Stability 6 2 2 1 6 4 1 3 2 1 2 5 2.92±1.88

Smoothness 6 5 1 2 7 4 1 3 2 1 2 5 3.25±2.09

Table 19: Experiment 2 NASA TLX workload percentages.

ID 1 2 3 4 5 6 7 8 9 10 11 12 AVG

Mental Demand 4.76 57.14 66.66 28.57 85.71 28.57 38.09 52.38 19.04 76.19 52.38 4.76 42.85

Physical Demand 19.04 61.9 71.42 52.38 90.47 80.95 71.42 66.66 52.38 52.38 61.9 71.42 62.69

Temporal Demand 61.9 57.14 66.66 47.61 52.38 52.38 52.38 52.38 23.8 76.19 38.09 4.76 48.8

Performance 33.33 66.66 71.42 71.42 38.09 52.38 47.61 66.66 42.85 71.42 71.42 28.57 55.15

Effort 76.19 57.14 80.95 61.9 80.95 85.71 66.66 66.66 71.42 71.42 61.9 76.19 71.42

Frustration 52.38 57.14 52.38 61.9 66.66 66.66 66.66 61.9 52.38 71.42 52.38 4.76 55.55

Overall WL 41.27 59.52 68.25 53.96 69.04 69.04 57.14 61.11 43.65 69.84 56.34 31.74 56.08
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three methods, especially when the stack approach was the easiest imple-
mented method from the two multi-sensors ones. The success of the stack
method happened because the method was based on a bigger input space.
Then the movement patterns have a higher possibility to be different from
each other. If the EMG signals are not so different or are bad trained they
will be always supported by the different patterns the FSR could generate,
and the same the other way, if the FSR intermediate values are not differ-
entiable from other movements, then are supported by the EMG ones. The
main difference with ensemble learning is that the last one is training with
predictions, so if one of the sensors is not giving good signals, then the pre-
diction considered for stacking will be bad, and the ensemble learning will
be also not good. Maybe it will be better than the EMG and FSR approaches,
but not good enough compared with the stack approach.

Even the ensemble learning could have a better performance (basing on
the off-line analysis with the first experiment data), the long experiment
performance threw some interesting limitations of this method. Since it was
tested in the off-line analysis, ensemble learning apparently was inheriting
some EMG prediction features, like the oscillating output signal behavior.
The fatigue sensibility could not be noticed, as there were just 10 repetitions
in the previous experiment.

Another point to consider is the way the learning is done in this approach.
As was previously defined, first it is trained in the same way as the other ap-
proaches, but for the input space construction for the third machine learning
model the entire data set is considered. Then, what is happening in the rise,
hold and fall states on the training stage, is affecting the ensemble learning.
So the training should be really clean, without any mistakes, following the
stimulus. What happened in the experiments, is that experienced users were
performing a really good training, but the others training were varying. This
fact is actually good as it is giving robustness to the experiment. The main
feature that affects the training are the EMG impulses. When the subject per-
forms a movement, in the rise part there was a high impulse on the EMG
signal that after some seconds decreases almost to rest (Figure 11). Some
users could keep the high amplitude of the EMG by tensing the movement,
but some others could not, then the capture stage was performed in a really
different amplitude compared with the previous high impulse.

Furthermore, the repetitions performed were so low compared with the
first experiment ones (3 against 9), this could be also affecting the ensem-
ble learning performance. However one of the implicit goals of the online
experiment was to try in some way the robustness of the methods for real
applications, following this line it is not practical for a user to perform 10

repetitions of the five actions just for training.
Even though there was the phenomena showed on the Performance evolu-

tion across the tasks set section, where the stack method was not having a good
enough performance on the first section of the experiment, must be consid-
ered, and not just for this but for all the analyses, the length of the task set
used for the analysis. For instance, the total number of tasks performed by
all the users per method was 360, the complete overall approach is consid-



68 prediction performance improvement by sensors mixture

ering the entire set, but the complete action approaches are considering just
72 tasks per method, an overall level analysis is taking into account 24 ,the
section evolution overall analysis was done over 90 tasks per method and
finally the section evolution action analysis was just considering 18 tasks.

In spite of this fact and basing on the overall performance section evolu-
tion, can be stated that the stack method needs some adaptation in order
to have a considerable good performance, based on the bad performance
showed on the first section of the task set.

Without leaving aside the EMG and FSR methods, there is still pending the
explanation about the behavior of these method’s predictions on the differ-
ent levels. First of all EMG sensors were presenting really defined patterns.
Even they were going weaker, when the muscle activation happened the pat-
terns were completely different from each movement. On the other hand,
FSRs also presented differentiable patterns but with an interesting behavior,
each movement was activating in different intensities the FSR sensors, but
most of them were activating almost the same sensors, in other words the
shape on the radial plot was almost the same for each action, the only thing
that was changing was the size(amplitude) of that shape. This behavior can
be appreciated even in Figure 11 from the first experiment. On the FSR sig-
nal, the highest amplitude sensor was always the same for each action, of
course with different amplitudes, while in the EMG the highest amplitude
sensor was different for almost all the actions. That is why FSR had better
performance in high levels, as their patterns were differentiable. The prob-
lem appeared on intermediate levels, where, for instance, an intermediate
level of one movement could have similar shape with a less intense move-
ment, so the prediction was not done properly. This characteristic could be
even more evident due to position of the bracelet, closer than usual to the
elbow.

Summarizing, both multi-sensor learning approaches were better than the
single-sensor ones. Ensemble learning could have a good performance, but
it depends on the way the training is done, what is related with the user
expertise and also could be related with the number of repetitions for train-
ing. Additionally, ensemble approach presents the drawback of fatigue sen-
sibility, and unstable output (that could be fixed with by filtering it). Stack
approach seems to be more robust and evidently with better performance,
even there was the fact of bad performance when it was done first.

5.5.2 User experience surveys

Starting with the online survey, the results are supported by the ideas es-
tablished in the first part of this discussion section. Considering that this
survey was applied at the end of the experiment, after the 120 tasks, it is
understandable that the EMG and ensemble methods were the worst evalu-
ated, as they are influenced by the fatigue. Also the unstable output feature
of both methods was reflected not just in the stability statement but also in
the smoothness one. Additionally as the ensemble method is more sensible
in intermediate levels compared with the EMG, some users interpreted this
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fact as an unreal behavior. On the other hand the results obtained on the
FSR and stack methods just complement the conclusions obtained since the
first experiment analysis.

About the workload survey, the main remark to do is the high effort de-
mand, which is close to the fatigue on the EMG and ensemble methods, this
survey is not showing anything new, but just support the statements already
defined.
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S O C I A L , E N V I R O N M E N TA L A N D
E C O N O M I C A L C O M M I T M E N T S

The scope of this and all the projects done in robotic prosthetics field, goes
beyond a scientific research. They must have social, environmental and eco-
nomical commitments so then they can be considered, along with the tech-
nical achievements, real life applications. In this chapter are presented the
ways this project impacts the three fields exposed.

71



72 social , environmental and economical commitments

6.1 social commitment

As mentioned on the thesis introduction, one of the motivations of the robotic
prosthetics researches is the life quality improvement of the amputee people,
specially when the hand is a limb used for precise and daily life interaction
tasks. The statistics show how the patients are affected in an emotional way.
If the researches results are recovering at least some of the amputees usual
tasks and activities, then these works are going on the right direction, and
they are supported by a humanitarian cause.

6.2 environmental commitment

The work done on this project was not presenting any menace to the environ-
ment, moreover was not considered as a potential danger project according
the Directive 2011/92/EU of the European Parliament and of the Council on
the assessment of the effects of certain public and private projects on the en-
vironment [25]. Although the project is not dangerous with the environment,
it is taking care of it. As an example, the battery used for the wireless device
is a rechargeable LiPo one, which can work, according to the provider, for
a year. A considerable lifespan difference compared with the disposal alka-
line batteries. Even if the LiPo life cycle finishes, it is possible to send it to a
recycle batteries collector.

6.3 economical commitment

Even though the work done in the DLR is focused on a high-technology
device, which normally is not cheap, also focuses on a potential reduction
of the device price. The main example of this commitment is the interest
to research on new sensing methods different from the sEMG, not just for
the performance improvement, but for the cost reduction (as mentioned on
Chapter 2, each sEMG sensor costs around 150 e). In this way the possi-
ble future devices for real life application could be affordable to the people
whom need it.

As part of this section, an estimated cost analysis was done. It is important
to say that this analysis is oriented just for this project research development,
were not included device design, neither previous or parallel works costs.

6.3.1 Costs

In order to have a total cost approach (Table 23), the cost calculation was
divided in four different categories: hardware (Table 20), software (Table 21),
human resources (Table 22) and indirect costs. However, it is important to
make some remarks for each of the categories for a better understanding.

All the costs calculations are subject to the Spanish and the European
Union legislation, as the master’s degree university is located on these coun-
try and political-economical union. For the hardware and software costs,
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was considered the amortized amount corresponding to the weeks of use
for each element, there was applied the constant amortization approach, as
the depreciation across time is considered as continuous and homogeneous.
As lifespan of some elements is undefined or unknown, were considered for
the lifetime the maximum allowed for tax deductions in Spain according to
the 27/2014 Law about the corporate tax. This law is allowing for instance
a maximum lifetime of 10 years for electronic devices, 8 years for IT devices
and 6 years for software.

On the hardware costs were considered an approximate cost of the wire-
less device for a usage approach and not for a construction one, as this last
task was not part of this project. Furthermore as the battery has a lifespan
of 1 year [2], was considered as a separated element. All the elements of
the wireless device were considered as electronic devices. The PC used was
considered as IT device for the amortization calculation.

For the human resources was considered an average engineer salary of
35 000 eper year, also there was just considered one person working on the
project (the thesis author), even there were actually supervisors and collab-
orators contributing to the project accomplishment. Considering a full time
work (1800 billable hours per year), then the cost for each worked hour is
19.44 e. This amount was considered for the human resources costs, as the
project tasks duration considered were defined by hours as the time unit.

Finally as this thesis is a research project, it is difficult to determine in-
direct costs involved on the development. In order to help to the definition
of those costs, every country establishes indirect costs rate that could be ap-
plied on research projects. In the case of the European Union countries, the
Horizon 2020 framework programme for research and innovation, proposes
an indirect cost flat rate of 25% of the direct costs [7]. As a final consider-
ation the Spanish VAT (21%) was applied to get the project final estimated
cost, which amounts to 28536.03 e.

Table 20: Hardware resources costs

Hardware resources costs

Unit cost (e) Units Lifetime (years) Amortization (e)

Wireless Device
sEMG sensor 150.00 10 10 51.92

FSR 5.00 10 10 1.73

Others
(incl. electronics board,

case, bracelets, housings)

110.00 1 10 3.80

Battery 19.00 1 1 6.57

PC 195.00 1 8 12.18

TOTAL 479.00 - - 76.20
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Table 21: Software resources costs

Software Costs

Unit Cost (e) Units Lifetime Amortization (e)

MATLAB
Standard

2000.00 1 6 128.20

Microsoft Visual
Studio Express

0.00 1 - 0.00

Xamarin Studio 0.00 1 - 0.00

WinShell 0.00 1 - 0.00

ShareLATEX 0.00 1 - 0.00

TOTAL 2000.00 - - 128.20

Table 22: Human resources costs

Human resources costs

Task Time (h) Cost (e)

Literature review 120 2332.80

Software and device
familiarization and tests

136 2643.84

Experiment 1
Development 64 1244.16

Test 32 622.08

Implementation 10 194.40

Results analysis 46 894.24

Experiment 2
Development 274 5326.56

Test 40 777.60

Implementation 24 466.56

Results analysis 30 583.20

Documentation 184 3576.96

TOTAL 960 18662.40

Table 23: Total costs

Total costs

Concept Cost (e)

Hardware 76.20

Software 128.20

Human resources 18662.40

Total 18866.80

Indirect costs (25%) 4716.70

Subtotal 23583.50

VAT (21%) 4952.53

TOTAL 28536.03
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C O N C L U S I O N S A N D F U T U R E W O R K

The development of this project focused on the improvement of robotic hand
prosthesis joints movement prediction, going further the single-sensor re-
searches previously done in the area. Additionally, the project worked with
wrist movements, that actually have not been enough evaluated in previous
publications, focusing them on individual fingers movements. The fact of
working with wrist actions opens a new path that can help patients to per-
form more complex tasks, which, along with the fingers movements could
offer a more realistic approach.

The thesis followed a defined path to accomplish its objectives by perform-
ing two experiments. On the first one, there was explored the use of FMG
as an alternative or complementary signal to the often used sEMG, trying to
present a cheaper and simpler system compared not just with the ones used
on research, but with the ones offered on market.

On this first experiment the FSR signals showed better and more signif-
icant properties than the sEMG ones. They had more stable signals that
derived in a more constant experiment performance through the subject, a
higher number of activated sensors and finally more separated movements.
However FSR signals were not perfect at all, they were affected by some
drawbacks, for instance their unstable rest position which is measuring the
small movement variations that the hand could have on this position. Fur-
thermore, FSRs detect the activity from muscles other than the sEMG ones.
The FSR disadvantages along with the significant differences between both
signals, supported the main thesis idea of fusing both input sensors.

Staying on the first experiment, the device used and tested led to interest-
ing conclusions. Besides the possibility of using the device for future exper-
iments, research and perhaps commercialization; the main goal of using a
wireless device is to improve the portability and maneuverability of an ac-
quisition device, then the user could carry it in his or her daily life activities
without any problems.

On the second experiment, two multi-sensor learning models were devel-
oped and then tested with the single-sensor ones. The stack method, which
actually was the simplest and the lowest computation time and resources
consumption from both of the multi-sensors approaches, was the method
with the best overall performance (even if it perhaps needs more adapta-
tion time to reach its best performance). For this result were considering
the completion time of the experiment, the successful tasks performed and
the subjects opinion about the stability, the realism and the smoothness of
the method prediction. The stack method success is based on two facts: first
the use of a bigger input space, allowing the probability to perform more
different patterns and in consequence more separated actions. The second
fact that propitiated the stack method success was the lack of stability and
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good performance from other methods. For instance, the fatigue sensibility
of both EMG and ensemble methods and the unstable output signal of the
same methods.

Talking about the FSR method, even if it was having a good performance
on high values, the bad prediction on the intermediate ones, produced by the
already mentioned measurement features, derived on an overall bad result
for this method.

Ensemble learning presented a high influence from the learning perfor-
mance as the number of samples considered for training were higher than
the other methods. This feature, as explained, could derive on a bad per-
formance of the algorithm as it is depending on each of the sensor model
prediction, but this fact is also producing an interesting behavior, the multi-
DOF control training single DOF actions. Until now if a composed DOF
action, for instance a pointing position (all fingers flexed except for the in-
dex one), was desired to train, then the way to do it was by defining the
composed DOF action as a single action. This means, following the same
pointing position example, that if each finger would be trained in a separate
way, afterwards would be really difficult to perform the action, then the user
must train the models by doing the pointing position. The fact that ensem-
ble learning is considering two different model outputs produces that if an
action is not significant for one of them and other action is performed at
the same time, then the prediction could react with both them, creating a
composed movement. This phenomena could be appreciated for instance on
the wrist rotation actions, the hand could be also extended or flexed while
the rotation was performed. This behavior could be also supported on the
fact that each of the actions are performed on different axis.

Anyway, at the end the hypothesis was proved. It is possible to improve
the prediction performance by combining two different input techniques
(FMG and sEMG on this case). On this project the two multi-sensors meth-
ods were having better results than the single-sensor ones. Each of the multi-
sensor approaches presented special properties to be used for certain appli-
cation and also future developments.

The thesis contributions were: a comparison analysis of the sEMG and
FSR signals properties. A user opinion about the wireless device previously
developed and built, but tested on this project. Additionally were modified
the single-sensor models to create a multi-sensor one (stack method) and
was developed a firstly used on prosthetics field method also based on the
RRRFF algorithm (ensemble method). The PC GUI was modified so now it
is able to train with the four methods and test prediction on a experiment set
or on a free mode. Finally was demonstrated that multi-sensors approaches
were having better performance although there is still a big path for improve-
ment.

future work There is still a long way to cover in the robotic prosthetics
field. The gap defined on the thesis introduction between the research work
and commercial one, is still big. However nowadays, as was demonstrated
across this work, the research started to focus not just on the performance
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prediction, but also on the real life usability and applicability, going further
through new input methods, acquisition devices and prediction algorithms.

Following this line there is an interesting hypothesis created from the ex-
periments design and results. The performance of the robotic hand does
not depend only of the sensors, the actuators or the learning algorithm (of
course these elements are the basis of the prosthetics field and their impor-
tance is evident), but also the user is having a considerable impact on this
performance. Considering for instance the different prediction behaviors on
the experiments depending the subject, or how some of them were adapt-
ing their movements in order to accomplish the task, moreover the surveys
applied gave an extra analysis source that could support or refute the qual-
itative results. Would be interesting to change in some way the approach
by focusing on the subjects feedback to improve the prediction performance,
considering them an important element just as the ones mentioned in the
last paragraph.

Talking specifically about the technical part of this project development,
of course the first task to do after this project, should be the implementation
of the thesis results on a real prosthetic hand. As was mentioned previously
on the work, it is not difficult to do as the stimulus vectors are analog to
the outputs needed to move a robotic hand. Apart of that, future research
must follow the goals defined on this project. For instance the ensemble
learning approach could be improved by using a different machine learning
algorithm on its third model (the one that is using the stacked outputs as
the input space), also as was defined, the incremental feature of the RRRFF
algorithm could be implemented for ensemble learning, and all the methods
could present a better performance by conditioning the output signals (filter-
ing them for example). What is even better, new sensors mixing approaches
could be researched and tested in order to find the one that offers the best
performance. This combination is not just limited to machine learning algo-
rithms, but also to topics related with sensor fusion for instance.

Furthermore, the future work can be focused on exploring more hand
actions, trying different kind of grasps and combining wrist movements with
individual fingers one. Finally a last possibility is the exploration of the
already mentioned multi-DOF control by training single DOF movements.

In this way, making improvements from different perspectives for sure
will help to develop a robotic hand system that is not used just as a tool for
certain tasks, but as a complete replacement of the lost limb.





Part I

A P P E N D I X . U S A B I L I T Y A N D U S E R E X P E R I E N C E
S U RV E Y S





SUS 

 

Please cross the cell that better fits with your device experience. (Leave the total 

column empty) 

 
 

 

NASA TLX 
 

How mentally demanding was the task? 

                     

Very Low       Neutral        Very 

High 

 

How physically demanding was the task? 

                     

Very Low       Neutral        Very 

High 

 

How hurried  or rushed was the pace of the task? 

                     

Very Low       Neutral        Very 

High 

 

How successful were you in accomplishing what you were asked  to do? 

                     

Perfect       Neutral        Failure 

 

How hard  d id  you have to work to accomplish  your level of performance? 

                     

Very Low       Neutral        Very 

High 

 

How insecure, d iscouraged , irritated , stressed , and  annoyed were you? 

                     

Very Low       Neutral        Very 

High 

 

 

 Strongly 

d isagree 

   Strongly 

Agree 

Total 

 1 2 3 4 5  

I felt comfortable with the device        

I found  the device unnecessarily complex       

I thought the device was easy to use        

I think that I would  need  the support of a technical 

person to be able to use this device  

      

I found  the various functions in this system were well 

integrated  

      

I thought there was too much inconsistency in this 

device 

      

I would  imagine that most users would  learn to use 

this device very quickly.  

      

I found  the device very cumbersome to use       

I felt very confident using the device.       

I needed  to learn a lot of things before I could  get going 

with this device. 

      



Travis Survey 
 
Step 1: Read  over the following list of word s. Considering the device you have just used , tick those words that best 

describe your experience with it. You can choose as many words as you wish.  

        

        o Unpredictable 

 

o Trustworthy 

 

o Easy to use 

o Inadequate 

 

o Comfortable 

 

o Convenient 

o Simple 

 

o Efficient 

 

o Innovative 

o Intuitive 

 

o Too technical 

 

o Effortless 

o Poor quality 

 

o Satisfying 

 

o Complex 

o Expected 

 

o Meaningful 

 

o Awkward  

o Distracting 

 

o Usable 

 

o Incomprehensible 

o Ordinary 

 

o Creative 

 

o Fast 

o Secure 

 

o Non-standard  

 

o Attractive 

o New 

 

o Comprehensive 

 

o Hard  to Use 

o Accessible 

 

o Insecure 

 

o Impressive 

o Effective 

 

o Clear 

 

o Pred ictable 

o Stimulating 

 

o System-oriented 

 

o Motivating 

o Time-consuming 

 

o Professional 

 

o Friendly 

o Busy 

 

o Useful 

 

o Stable 

o Credible 

 

o Engaging 

 

o Fun 

o Slow 

 

o High quality 

 

o Unconventional 

o Sophisticated  

 

o Ambiguous 

 

o Understandable 

o Difficult 

 

o Confusing 

 

o Powerful 

o Rigid  

 

o Inconsistent 

 

o Intimidating 

o Ineffective 

 

o Frustrating 

 

o Advanced 

o Boring 

 

o Unattractive 

 

o Consistent 

o Contrad ictory 

 

o Stressful 

 

o Illogical 

o Reliable 

 

o Irrelevant 

 

o Time-saving 

o Familiar 

 

o Organised 

 

o Painful 

        

    

  

   Step 2: Now look at the words you have ticked . Circle five of these words that you think are most descriptive of the 

product and  write a simple reason about your decisions. 

Word Reason 

1.   

2.   

3.   

4.   

5.   



Learning Approach User Experience 

 
 

APPROACH 1 

How real is the hand model movement? 

       

Unreal                                                                                            Moderate                                                                                                Real 

How stable is the hand model movement? 

       

Completely unstable                                                                    Moderate                                                                        Completely stable 

How smooth is the hand model movement? 

       

Low                                                                                                 Moderate                                                                                               High 

 

 

APPROACH 2 

How real is the hand model movement? 

       

Unreal                                                                                            Moderate                                                                                                Real 

How stable is the hand model movement? 

       

Completely unstable                                                                    Moderate                                                                        Completely stable 

How smooth is the hand model movement? 

       

Low                                                                                                 Moderate                                                                                               High 

 

 

APPROACH 3 

How real is the hand model movement? 

       

Unreal                                                                                            Moderate                                                                                                Real 

How stable is the hand model movement? 

       

Completely unstable                                                                    Moderate                                                                        Completely stable 

How smooth is the hand model movement? 

       

Low                                                                                                 Moderate                                                                                               High 

 

 

APPROACH 4 

How real is the hand model movement? 

       

Unreal                                                                                            Moderate                                                                                                Real 

How stable is the hand model movement? 

       

Completely unstable                                                                    Moderate                                                                        Completely stable 

How smooth is the hand model movement? 

       

Low                                                                                                 Moderate                                                                                               High 
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